Introduce NeverAlign fragment type.
The intended usage of this fragment is to insert it before a pair of
macro-op fusion eligible instructions. NeverAlign fragment ensures that
the next fragment (first instruction in the pair) does not end at a
given alignment boundary by emitting a minimal size nop if necessary.
In effect, it ensures that a pair of macro-fusible instructions is not
split by a given alignment boundary, which is a precondition for
macro-op fusion in modern Intel Cores (64B = cache line size, see Intel
Architecture Optimization Reference Manual, 2.3.2.1 Legacy Decode
Pipeline: Macro-Fusion).
This patch introduces functionality used by BOLT when emitting code with
MacroFusion alignment already in place.
The use case is different from BoundaryAlign and instruction bundling:
- BoundaryAlign can be extended to perform the desired alignment for the
first instruction in the macro-op fusion pair (D101817). However, this
approach has higher overhead due to reliance on relaxation as
BoundaryAlign requires in the general case - see
https://reviews.llvm.org/D97982#2710638.
- Instruction bundling: the intent of NeverAlign fragment is to prevent
the first instruction in a pair ending at a given alignment boundary, by
inserting at most one minimum size nop. It's OK if either instruction
crosses the cache line. Padding both instructions using bundles to not
cross the alignment boundary would result in excessive padding. There's
no straightforward way to request instruction bundling to avoid a given
end alignment for the first instruction in the bundle.
Perhaps the name should include X86? Inserting a one-byte nop isn't something any RISC arch can do.