This is correct for all values, i.e. the same as promoting the division to fp32 in the NVPTX backend. But it is faster (~10% in average, sometimes more) because:
- it performs less Newton iterations
- it avoids the slow path for e.g. denormals
- it allows reuse of the reciprocal for multiple divisions by the same divisor
Test program:
#include <stdio.h>
#include "cuda_fp16.h"
// This is a variant of CUDA's own __hdiv which is fast than hdiv_promote below
// and doesn't suffer from the perf cliff of div.rn.fp32 with 'special' values.
__device__ half hdiv_newton(half a, half b) {
  float fa = __half2float(a);
  float fb = __half2float(b);
  float rcp;
  asm("{rcp.approx.ftz.f32 %0, %1;\n}" : "=f"(rcp) : "f"(fb));
  float result = fa * rcp;
  auto exponent = reinterpret_cast<const unsigned&>(result) & 0x7f800000;
  if (exponent != 0 && exponent != 0x7f800000) {
    float err = __fmaf_rn(-fb, result, fa);
    result = __fmaf_rn(rcp, err, result);
  }
  return __float2half(result);
}
// Surprisingly, this is faster than CUDA's own __hdiv.
__device__ half hdiv_promote(half a, half b) {
  return __float2half(__half2float(a) / __half2float(b));
}
// This is an approximation that is accurate up to 1 ulp.
__device__ half hdiv_approx(half a, half b) {
  float fa = __half2float(a);
  float fb = __half2float(b);
  float result;
  asm("{div.approx.ftz.f32 %0, %1, %2;\n}" : "=f"(result) : "f"(fa), "f"(fb));
  return __float2half(result);
}
__global__ void CheckCorrectness() {
  int i = threadIdx.x + blockIdx.x * blockDim.x;
  half x = reinterpret_cast<const half&>(i);
  for (int j = 0; j < 65536; ++j) {
    half y = reinterpret_cast<const half&>(j);
    half d1 = hdiv_newton(x, y);
    half d2 = hdiv_promote(x, y);
    auto s1 = reinterpret_cast<const short&>(d1);
    auto s2 = reinterpret_cast<const short&>(d2);
    if (s1 != s2) {
      printf("%f (%u) / %f (%u), got %f (%hu), expected: %f (%hu)\n",
             __half2float(x), i, __half2float(y), j, __half2float(d1), s1,
             __half2float(d2), s2);
      //__trap();
    }
  }
}
__device__ half dst;
__global__ void ProfileBuiltin(half x) {
  #pragma unroll 1
  for (int i = 0; i < 10000000; ++i) {
    x = x / x;
  }
  dst = x;
}
__global__ void ProfilePromote(half x) {
  #pragma unroll 1
  for (int i = 0; i < 10000000; ++i) {
    x = hdiv_promote(x, x);
  }
  dst = x;
}
__global__ void ProfileNewton(half x) {
  #pragma unroll 1
  for (int i = 0; i < 10000000; ++i) {
    x = hdiv_newton(x, x);
  }
  dst = x;
}
__global__ void ProfileApprox(half x) {
  #pragma unroll 1
  for (int i = 0; i < 10000000; ++i) {
    x = hdiv_approx(x, x);
  }
  dst = x;
}
int main() {
  CheckCorrectness<<<256, 256>>>();
  half one = __float2half(1.0f);
  ProfileBuiltin<<<1, 1>>>(one);  // 1.001s
  ProfilePromote<<<1, 1>>>(one);  // 0.560s
  ProfileNewton<<<1, 1>>>(one);   // 0.508s
  ProfileApprox<<<1, 1>>>(one);   // 0.304s
  auto status = cudaDeviceSynchronize();
  printf("%s\n", cudaGetErrorString(status));
}
Maybe llvm-optimize-for-nvvm? Or even llvm-optimize-for-nvvm-target?
This does not really optimize nvvm but rewrites llvm ir.