The default behavior of Clang's indirect function call checker will replace
the address of each CFI-checked function in the output file's symbol table
with the address of a jump table entry which will pass CFI checks. We refer
to this as making the jump table canonical. This property allows code that
was not compiled with `-fsanitize=cfi-icall` to take a CFI-valid address
of a function, but it comes with a couple of caveats that are especially
relevant for users of cross-DSO CFI:
- There is a performance and code size overhead associated with each exported function, because each such function must have an associated jump table entry, which must be emitted even in the common case where the function is never address-taken anywhere in the program, and must be used even for direct calls between DSOs, in addition to the PLT overhead.
- There is no good way to take a CFI-valid address of a function written in assembly or a language not supported by Clang. The reason is that the code generator would need to insert a jump table in order to form a CFI-valid address for assembly functions, but there is no way in general for the code generator to determine the language of the function. This may be possible with LTO in the intra-DSO case, but in the cross-DSO case the only information available is the function declaration. One possible solution is to add a C wrapper for each assembly function, but these wrappers can present a significant maintenance burden for heavy users of assembly in addition to adding runtime overhead.
For these reasons, we provide the option of making the jump table non-canonical
with the flag `-fno-sanitize-cfi-canonical-jump-tables`. When the jump
table is made non-canonical, symbol table entries point directly to the
function body. Any instances of a function's address being taken in C will
be replaced with a jump table address.
This scheme does have its own caveats, however. It does end up breaking
function address equality more aggressively than the default behavior,
especially in cross-DSO mode which normally preserves function address
equality entirely.
Furthermore, it is occasionally necessary for code not compiled with
`-fsanitize=cfi-icall` to take a function address that is valid
for CFI. For example, this is necessary when a function's address
is taken by assembly code and then called by CFI-checking C code. The
`__attribute__((cfi_jump_table_canonical))` attribute may be used to make
the jump table entry of a specific function canonical so that the external
code will end up taking a address for the function that will pass CFI checks.
Fixes PR41972.
would it be more natural to spell it "cfi_canonical_jump_table" ?
No strong feelings one way or the other.