This patch gets a DWARF parsing speed improvement by having DWARFAbbreviationDeclaration instances know if they have a fixed byte size. If an abbreviation has a fixed byte size that can be calculated given a DWARFUnit, then parsing a DIE becomes two steps: parse ULEB128 abbrev code, and then add constant size to the offset.
This patch also adds a fixed byte size to each DWARFAbbreviationDeclaration::AttributeSpec so that attributes can quickly skip their values if needed without the need to lookup the fixed for size.
Notable improvements:
- DWARFAbbreviationDeclaration::findAttributeIndex() now returns an Optional<uint32_t> instead of a uint32_t and we no longer have to look for the magic -1U return value
Optional<uint32_t> DWARFAbbreviationDeclaration::findAttributeIndex(dwarf::Attribute attr) const;
- DWARFAbbreviationDeclaration now has a getAttributeValue() function that extracts an attribute value given a DIE offset that takes advantage of the DWARFAbbreviationDeclaration::AttributeSpec::ByteSize
bool DWARFAbbreviationDeclaration::getAttributeValue(const uint32_t DIEOffset, const dwarf::Attribute Attr, const DWARFUnit &U, DWARFFormValue &FormValue) const;
- A DWARFAbbreviationDeclaration instance can return a fixed byte size for itself so DWARF parsing is faster:
Optional<size_t> DWARFAbbreviationDeclaration::getFixedAttributesByteSize(const DWARFUnit &U) const;
- Any functions that used to take a "const DWARFUnit *U" that would crash if U was NULL now take a "const DWARFUnit &U" and are only called with a valid DWARFUnit
This is pointer to an offset in the section? Would a uint32_t & be more readable here? (Not sure since it is then less clear that this is an inout argument at the call site.)