Implement sinf function that is correctly rounded to all rounding modes.
- We use a simple range reduction for pi/16 < |x| : Let k = round(x / pi) and y = (x/pi) - k. So k is an integer and -0.5 <= y <= 0.5.
Then
sin(x) = sin(y*pi + k*pi) = (-1)^(k & 1) * sin(y*pi) ~ (-1)^(k & 1) * y * P(y^2)
where `y*P(y^2)` is a degree-15 minimax polynomial generated by Sollya with:
> P = fpminimax(sin(x*pi)/x, [|0, 2, 4, 6, 8, 10, 12, 14|], [|D...|], [0, 0.5]);
- Performance benchmark using perf tool from CORE-MATH project
(https://gitlab.inria.fr/core-math/core-math/-/tree/master) on Ryzen 1700:
Before this patch (not correctly rounded):
$ CORE_MATH_PERF_MODE="rdtsc" ./perf.sh sinf CORE-MATH reciprocal throughput : 17.892 System LIBC reciprocal throughput : 25.559 LIBC reciprocal throughput : 29.381
After this patch (correctly rounded):
$ CORE_MATH_PERF_MODE="rdtsc" ./perf.sh sinf CORE-MATH reciprocal throughput : 17.896 System LIBC reciprocal throughput : 25.740 LIBC reciprocal throughput : 27.872 LIBC reciprocal throughput : 20.012 (with `-msse4.2` flag) LIBC reciprocal throughput : 14.244 (with `-mfma` flag)