For the test case in this patch like below
struct t { int a; } __attribute__((preserve_access_index)); int foo(void *); int test(struct t *arg) { long param[1]; param[0] = (long)&arg->a; return foo(param); }
The IR right before BPF SimplifyPatchable phase:
%1:gpr = LD_imm64 @"llvm.t:0:0$0:0" %2:gpr = LDD killed %1:gpr, 0 %3:gpr = ADD_rr %0:gpr(tied-def 0), killed %2:gpr STD killed %3:gpr, %stack.0.param, 0
After SimplifyPatchable phase, the incorrect IR is generated:
%1:gpr = LD_imm64 @"llvm.t:0:0$0:0" %3:gpr = ADD_rr %0:gpr(tied-def 0), killed %1:gpr CORE_MEM killed %3:gpr, 306, %0:gpr, @"llvm.t:0:0$0:0"
Note that CORE_MEM pseudo op is introduced to encode
memory operations related to CORE. In the above, we intend
to check whether we have a store like
*(%3:gpr + 0) = ...
and if this is the case, we could replace it with
*(%0:gpr + @"llvm.t:0:0$0:0"_ = ...
Unfortunately, in the above, IR for the store is
*(%stack.0.param + 0) = %3:gpr
and transformation should not happen.
Note that we won't have problem if the actual CORE
dereference (arg->a) happens.
This patch fixed the problem by skip CORE optimization if
the use of ADD_rr result is not the base address of the store
operation.