While the logic here is somewhat similar to the arithmetic lowering, it
is different enough that it made sense to have its own function.
I actually tried a bunch of different optimizations here and none worked
well so I gave up and just always do the arithmetic based lowering.
Looking at code from the PR test case, we actually pessimize a bunch of
code when generating these. Because SETB_C* pseudo instructions clobber
EFLAGS, we end up creating a bunch of copies of EFLAGS to feed multiple
SETB_C* pseudos from a single set of EFLAGS. This in turn causes the
lowering code to ruin all the clever code generation that SETB_C* was
hoping to achieve. None of this is needed. Whenever we're generating
multiple SETB_C* instructions from a single set of EFLAGS we should
instead generate a single maximally wide one and extract subregs for all
the different desired widths. That would result in substantially better
code generation. But this patch doesn't attempt to address that.
The test case from the PR is included as well as more directed testing
of the specific lowering pattern used for these pseudos.