MSVC doesn't extend integer types smaller than 64bit, so to preserve
binary compatibility, clang shouldn't either.
For example, the following C code built with MSVC:
unsigned test(unsigned v);
unsigned foobar(unsigned short);
int main() { return test(0xffffffff) + foobar(28); }
Produces the following:
0000000000000004: B9 FF FF FF FF mov ecx,0FFFFFFFFh 0000000000000009: E8 00 00 00 00 call test 000000000000000E: 89 44 24 20 mov dword ptr [rsp+20h],eax 0000000000000012: 66 B9 1C 00 mov cx,1Ch 0000000000000016: E8 00 00 00 00 call foobar
And as you can see, when setting up the call to foobar, only cx is overwritten.
If foobar is compiled with clang, then the zero extension added by clang means
the rest of the register, which contains garbage, could be used.
For example if foobar is:
unsigned foobar(unsigned short v) {
return v;
}
Compiled with clang -fomit-frame-pointer -O3 gives the following assembly:
foobar:
0000000000000000: 89 C8 mov eax,ecx 0000000000000002: C3 ret
And that function would return garbage because the 16 most significant bits of
ecx still contain garbage from the first call.
With this change, the code for that function is now:
foobar:
0000000000000000: 0F B7 C1 movzx eax,cx 0000000000000003: C3 ret
Let's just give this an explicit x86 triple.