|
| 1 | +//===-- lib/divtf3.c - Quad-precision division --------------------*- C -*-===// |
| 2 | +// |
| 3 | +// The LLVM Compiler Infrastructure |
| 4 | +// |
| 5 | +// This file is dual licensed under the MIT and the University of Illinois Open |
| 6 | +// Source Licenses. See LICENSE.TXT for details. |
| 7 | +// |
| 8 | +//===----------------------------------------------------------------------===// |
| 9 | +// |
| 10 | +// This file implements quad-precision soft-float division |
| 11 | +// with the IEEE-754 default rounding (to nearest, ties to even). |
| 12 | +// |
| 13 | +// For simplicity, this implementation currently flushes denormals to zero. |
| 14 | +// It should be a fairly straightforward exercise to implement gradual |
| 15 | +// underflow with correct rounding. |
| 16 | +// |
| 17 | +//===----------------------------------------------------------------------===// |
| 18 | + |
| 19 | +#define QUAD_PRECISION |
| 20 | +#include "fp_lib.h" |
| 21 | + |
| 22 | +#if defined(CRT_HAS_128BIT) && defined(CRT_LDBL_128BIT) |
| 23 | +COMPILER_RT_ABI fp_t __divtf3(fp_t a, fp_t b) { |
| 24 | + |
| 25 | + const unsigned int aExponent = toRep(a) >> significandBits & maxExponent; |
| 26 | + const unsigned int bExponent = toRep(b) >> significandBits & maxExponent; |
| 27 | + const rep_t quotientSign = (toRep(a) ^ toRep(b)) & signBit; |
| 28 | + |
| 29 | + rep_t aSignificand = toRep(a) & significandMask; |
| 30 | + rep_t bSignificand = toRep(b) & significandMask; |
| 31 | + int scale = 0; |
| 32 | + |
| 33 | + // Detect if a or b is zero, denormal, infinity, or NaN. |
| 34 | + if (aExponent-1U >= maxExponent-1U || bExponent-1U >= maxExponent-1U) { |
| 35 | + |
| 36 | + const rep_t aAbs = toRep(a) & absMask; |
| 37 | + const rep_t bAbs = toRep(b) & absMask; |
| 38 | + |
| 39 | + // NaN / anything = qNaN |
| 40 | + if (aAbs > infRep) return fromRep(toRep(a) | quietBit); |
| 41 | + // anything / NaN = qNaN |
| 42 | + if (bAbs > infRep) return fromRep(toRep(b) | quietBit); |
| 43 | + |
| 44 | + if (aAbs == infRep) { |
| 45 | + // infinity / infinity = NaN |
| 46 | + if (bAbs == infRep) return fromRep(qnanRep); |
| 47 | + // infinity / anything else = +/- infinity |
| 48 | + else return fromRep(aAbs | quotientSign); |
| 49 | + } |
| 50 | + |
| 51 | + // anything else / infinity = +/- 0 |
| 52 | + if (bAbs == infRep) return fromRep(quotientSign); |
| 53 | + |
| 54 | + if (!aAbs) { |
| 55 | + // zero / zero = NaN |
| 56 | + if (!bAbs) return fromRep(qnanRep); |
| 57 | + // zero / anything else = +/- zero |
| 58 | + else return fromRep(quotientSign); |
| 59 | + } |
| 60 | + // anything else / zero = +/- infinity |
| 61 | + if (!bAbs) return fromRep(infRep | quotientSign); |
| 62 | + |
| 63 | + // one or both of a or b is denormal, the other (if applicable) is a |
| 64 | + // normal number. Renormalize one or both of a and b, and set scale to |
| 65 | + // include the necessary exponent adjustment. |
| 66 | + if (aAbs < implicitBit) scale += normalize(&aSignificand); |
| 67 | + if (bAbs < implicitBit) scale -= normalize(&bSignificand); |
| 68 | + } |
| 69 | + |
| 70 | + // Or in the implicit significand bit. (If we fell through from the |
| 71 | + // denormal path it was already set by normalize( ), but setting it twice |
| 72 | + // won't hurt anything.) |
| 73 | + aSignificand |= implicitBit; |
| 74 | + bSignificand |= implicitBit; |
| 75 | + int quotientExponent = aExponent - bExponent + scale; |
| 76 | + |
| 77 | + // Align the significand of b as a Q63 fixed-point number in the range |
| 78 | + // [1, 2.0) and get a Q64 approximate reciprocal using a small minimax |
| 79 | + // polynomial approximation: reciprocal = 3/4 + 1/sqrt(2) - b/2. This |
| 80 | + // is accurate to about 3.5 binary digits. |
| 81 | + const uint64_t q63b = bSignificand >> 49; |
| 82 | + uint64_t recip64 = UINT64_C(0x7504f333F9DE6484) - q63b; |
| 83 | + // 0x7504f333F9DE6484 / 2^64 + 1 = 3/4 + 1/sqrt(2) |
| 84 | + |
| 85 | + // Now refine the reciprocal estimate using a Newton-Raphson iteration: |
| 86 | + // |
| 87 | + // x1 = x0 * (2 - x0 * b) |
| 88 | + // |
| 89 | + // This doubles the number of correct binary digits in the approximation |
| 90 | + // with each iteration. |
| 91 | + uint64_t correction64; |
| 92 | + correction64 = -((rep_t)recip64 * q63b >> 64); |
| 93 | + recip64 = (rep_t)recip64 * correction64 >> 63; |
| 94 | + correction64 = -((rep_t)recip64 * q63b >> 64); |
| 95 | + recip64 = (rep_t)recip64 * correction64 >> 63; |
| 96 | + correction64 = -((rep_t)recip64 * q63b >> 64); |
| 97 | + recip64 = (rep_t)recip64 * correction64 >> 63; |
| 98 | + correction64 = -((rep_t)recip64 * q63b >> 64); |
| 99 | + recip64 = (rep_t)recip64 * correction64 >> 63; |
| 100 | + correction64 = -((rep_t)recip64 * q63b >> 64); |
| 101 | + recip64 = (rep_t)recip64 * correction64 >> 63; |
| 102 | + |
| 103 | + // recip64 might have overflowed to exactly zero in the preceeding |
| 104 | + // computation if the high word of b is exactly 1.0. This would sabotage |
| 105 | + // the full-width final stage of the computation that follows, so we adjust |
| 106 | + // recip64 downward by one bit. |
| 107 | + recip64--; |
| 108 | + |
| 109 | + // We need to perform one more iteration to get us to 112 binary digits; |
| 110 | + // The last iteration needs to happen with extra precision. |
| 111 | + const uint64_t q127blo = bSignificand << 15; |
| 112 | + rep_t correction, reciprocal; |
| 113 | + |
| 114 | + // NOTE: This operation is equivalent to __multi3, which is not implemented |
| 115 | + // in some architechure |
| 116 | + rep_t r64q63, r64q127, r64cH, r64cL, dummy; |
| 117 | + wideMultiply((rep_t)recip64, (rep_t)q63b, &dummy, &r64q63); |
| 118 | + wideMultiply((rep_t)recip64, (rep_t)q127blo, &dummy, &r64q127); |
| 119 | + |
| 120 | + correction = -(r64q63 + (r64q127 >> 64)); |
| 121 | + |
| 122 | + uint64_t cHi = correction >> 64; |
| 123 | + uint64_t cLo = correction; |
| 124 | + |
| 125 | + wideMultiply((rep_t)recip64, (rep_t)cHi, &dummy, &r64cH); |
| 126 | + wideMultiply((rep_t)recip64, (rep_t)cLo, &dummy, &r64cL); |
| 127 | + |
| 128 | + reciprocal = r64cH + (r64cL >> 64); |
| 129 | + |
| 130 | + // We already adjusted the 64-bit estimate, now we need to adjust the final |
| 131 | + // 128-bit reciprocal estimate downward to ensure that it is strictly smaller |
| 132 | + // than the infinitely precise exact reciprocal. Because the computation |
| 133 | + // of the Newton-Raphson step is truncating at every step, this adjustment |
| 134 | + // is small; most of the work is already done. |
| 135 | + reciprocal -= 2; |
| 136 | + |
| 137 | + // The numerical reciprocal is accurate to within 2^-112, lies in the |
| 138 | + // interval [0.5, 1.0), and is strictly smaller than the true reciprocal |
| 139 | + // of b. Multiplying a by this reciprocal thus gives a numerical q = a/b |
| 140 | + // in Q127 with the following properties: |
| 141 | + // |
| 142 | + // 1. q < a/b |
| 143 | + // 2. q is in the interval [0.5, 2.0) |
| 144 | + // 3. the error in q is bounded away from 2^-113 (actually, we have a |
| 145 | + // couple of bits to spare, but this is all we need). |
| 146 | + |
| 147 | + // We need a 128 x 128 multiply high to compute q, which isn't a basic |
| 148 | + // operation in C, so we need to be a little bit fussy. |
| 149 | + rep_t quotient, quotientLo; |
| 150 | + wideMultiply(aSignificand << 2, reciprocal, "ient, "ientLo); |
| 151 | + |
| 152 | + // Two cases: quotient is in [0.5, 1.0) or quotient is in [1.0, 2.0). |
| 153 | + // In either case, we are going to compute a residual of the form |
| 154 | + // |
| 155 | + // r = a - q*b |
| 156 | + // |
| 157 | + // We know from the construction of q that r satisfies: |
| 158 | + // |
| 159 | + // 0 <= r < ulp(q)*b |
| 160 | + // |
| 161 | + // if r is greater than 1/2 ulp(q)*b, then q rounds up. Otherwise, we |
| 162 | + // already have the correct result. The exact halfway case cannot occur. |
| 163 | + // We also take this time to right shift quotient if it falls in the [1,2) |
| 164 | + // range and adjust the exponent accordingly. |
| 165 | + rep_t residual; |
| 166 | + rep_t qb; |
| 167 | + |
| 168 | + if (quotient < (implicitBit << 1)) { |
| 169 | + wideMultiply(quotient, bSignificand, &dummy, &qb); |
| 170 | + residual = (aSignificand << 113) - qb; |
| 171 | + quotientExponent--; |
| 172 | + } else { |
| 173 | + quotient >>= 1; |
| 174 | + wideMultiply(quotient, bSignificand, &dummy, &qb); |
| 175 | + residual = (aSignificand << 112) - qb; |
| 176 | + } |
| 177 | + |
| 178 | + const int writtenExponent = quotientExponent + exponentBias; |
| 179 | + |
| 180 | + if (writtenExponent >= maxExponent) { |
| 181 | + // If we have overflowed the exponent, return infinity. |
| 182 | + return fromRep(infRep | quotientSign); |
| 183 | + } |
| 184 | + else if (writtenExponent < 1) { |
| 185 | + // Flush denormals to zero. In the future, it would be nice to add |
| 186 | + // code to round them correctly. |
| 187 | + return fromRep(quotientSign); |
| 188 | + } |
| 189 | + else { |
| 190 | + const bool round = (residual << 1) >= bSignificand; |
| 191 | + // Clear the implicit bit |
| 192 | + rep_t absResult = quotient & significandMask; |
| 193 | + // Insert the exponent |
| 194 | + absResult |= (rep_t)writtenExponent << significandBits; |
| 195 | + // Round |
| 196 | + absResult += round; |
| 197 | + // Insert the sign and return |
| 198 | + const long double result = fromRep(absResult | quotientSign); |
| 199 | + return result; |
| 200 | + } |
| 201 | +} |
| 202 | + |
| 203 | +#endif |
0 commit comments