|
| 1 | +//===--- BitTracker.h -----------------------------------------------------===// |
| 2 | +// |
| 3 | +// The LLVM Compiler Infrastructure |
| 4 | +// |
| 5 | +// This file is distributed under the University of Illinois Open Source |
| 6 | +// License. See LICENSE.TXT for details. |
| 7 | +// |
| 8 | +//===----------------------------------------------------------------------===// |
| 9 | + |
| 10 | +#ifndef BITTRACKER_H |
| 11 | +#define BITTRACKER_H |
| 12 | + |
| 13 | +#include "llvm/ADT/SetVector.h" |
| 14 | +#include "llvm/ADT/SmallVector.h" |
| 15 | +#include "llvm/CodeGen/MachineFunction.h" |
| 16 | + |
| 17 | +#include <map> |
| 18 | +#include <queue> |
| 19 | +#include <set> |
| 20 | + |
| 21 | +namespace llvm { |
| 22 | + class ConstantInt; |
| 23 | + class MachineRegisterInfo; |
| 24 | + class MachineBasicBlock; |
| 25 | + class MachineInstr; |
| 26 | + class MachineOperand; |
| 27 | + class raw_ostream; |
| 28 | +} |
| 29 | + |
| 30 | +struct BitTracker { |
| 31 | + struct BitRef; |
| 32 | + struct RegisterRef; |
| 33 | + struct BitValue; |
| 34 | + struct BitMask; |
| 35 | + struct RegisterCell; |
| 36 | + struct MachineEvaluator; |
| 37 | + |
| 38 | + typedef llvm::SetVector<const llvm::MachineBasicBlock*> BranchTargetList; |
| 39 | + |
| 40 | + struct CellMapType : public std::map<unsigned,RegisterCell> { |
| 41 | + bool has(unsigned Reg) const; |
| 42 | + }; |
| 43 | + |
| 44 | + BitTracker(const MachineEvaluator &E, llvm::MachineFunction &F); |
| 45 | + ~BitTracker(); |
| 46 | + |
| 47 | + void run(); |
| 48 | + void trace(bool On = false) { Trace = On; } |
| 49 | + bool has(unsigned Reg) const; |
| 50 | + const RegisterCell &lookup(unsigned Reg) const; |
| 51 | + RegisterCell get(RegisterRef RR) const; |
| 52 | + void put(RegisterRef RR, const RegisterCell &RC); |
| 53 | + void subst(RegisterRef OldRR, RegisterRef NewRR); |
| 54 | + bool reached(const llvm::MachineBasicBlock *B) const; |
| 55 | + |
| 56 | +private: |
| 57 | + void visitPHI(const llvm::MachineInstr *PI); |
| 58 | + void visitNonBranch(const llvm::MachineInstr *MI); |
| 59 | + void visitBranchesFrom(const llvm::MachineInstr *BI); |
| 60 | + void visitUsesOf(unsigned Reg); |
| 61 | + void reset(); |
| 62 | + |
| 63 | + typedef std::pair<int,int> CFGEdge; |
| 64 | + typedef std::set<CFGEdge> EdgeSetType; |
| 65 | + typedef std::set<const llvm::MachineInstr*> InstrSetType; |
| 66 | + typedef std::queue<CFGEdge> EdgeQueueType; |
| 67 | + |
| 68 | + EdgeSetType EdgeExec; // Executable flow graph edges. |
| 69 | + InstrSetType InstrExec; // Executable instructions. |
| 70 | + EdgeQueueType FlowQ; // Work queue of CFG edges. |
| 71 | + bool Trace; // Enable tracing for debugging. |
| 72 | + |
| 73 | + const MachineEvaluator &ME; |
| 74 | + llvm::MachineFunction &MF; |
| 75 | + llvm::MachineRegisterInfo &MRI; |
| 76 | + CellMapType ⤅ |
| 77 | +}; |
| 78 | + |
| 79 | + |
| 80 | +// Abstraction of a reference to bit at position Pos from a register Reg. |
| 81 | +struct BitTracker::BitRef { |
| 82 | + BitRef(unsigned R = 0, uint16_t P = 0) : Reg(R), Pos(P) {} |
| 83 | + BitRef(const BitRef &BR) : Reg(BR.Reg), Pos(BR.Pos) {} |
| 84 | + bool operator== (const BitRef &BR) const { |
| 85 | + // If Reg is 0, disregard Pos. |
| 86 | + return Reg == BR.Reg && (Reg == 0 || Pos == BR.Pos); |
| 87 | + } |
| 88 | + unsigned Reg; |
| 89 | + uint16_t Pos; |
| 90 | +}; |
| 91 | + |
| 92 | + |
| 93 | +// Abstraction of a register reference in MachineOperand. It contains the |
| 94 | +// register number and the subregister index. |
| 95 | +struct BitTracker::RegisterRef { |
| 96 | + RegisterRef(unsigned R = 0, unsigned S = 0) |
| 97 | + : Reg(R), Sub(S) {} |
| 98 | + RegisterRef(const llvm::MachineOperand &MO) |
| 99 | + : Reg(MO.getReg()), Sub(MO.getSubReg()) {} |
| 100 | + unsigned Reg, Sub; |
| 101 | +}; |
| 102 | + |
| 103 | + |
| 104 | +// Value that a single bit can take. This is outside of the context of |
| 105 | +// any register, it is more of an abstraction of the two-element set of |
| 106 | +// possible bit values. One extension here is the "Ref" type, which |
| 107 | +// indicates that this bit takes the same value as the bit described by |
| 108 | +// RefInfo. |
| 109 | +struct BitTracker::BitValue { |
| 110 | + enum ValueType { |
| 111 | + Top, // Bit not yet defined. |
| 112 | + Zero, // Bit = 0. |
| 113 | + One, // Bit = 1. |
| 114 | + Ref // Bit value same as the one described in RefI. |
| 115 | + // Conceptually, there is no explicit "bottom" value: the lattice's |
| 116 | + // bottom will be expressed as a "ref to itself", which, in the context |
| 117 | + // of registers, could be read as "this value of this bit is defined by |
| 118 | + // this bit". |
| 119 | + // The ordering is: |
| 120 | + // x <= Top, |
| 121 | + // Self <= x, where "Self" is "ref to itself". |
| 122 | + // This makes the value lattice different for each virtual register |
| 123 | + // (even for each bit in the same virtual register), since the "bottom" |
| 124 | + // for one register will be a simple "ref" for another register. |
| 125 | + // Since we do not store the "Self" bit and register number, the meet |
| 126 | + // operation will need to take it as a parameter. |
| 127 | + // |
| 128 | + // In practice there is a special case for values that are not associa- |
| 129 | + // ted with any specific virtual register. An example would be a value |
| 130 | + // corresponding to a bit of a physical register, or an intermediate |
| 131 | + // value obtained in some computation (such as instruction evaluation). |
| 132 | + // Such cases are identical to the usual Ref type, but the register |
| 133 | + // number is 0. In such case the Pos field of the reference is ignored. |
| 134 | + // |
| 135 | + // What is worthy of notice is that in value V (that is a "ref"), as long |
| 136 | + // as the RefI.Reg is not 0, it may actually be the same register as the |
| 137 | + // one in which V will be contained. If the RefI.Pos refers to the posi- |
| 138 | + // tion of V, then V is assumed to be "bottom" (as a "ref to itself"), |
| 139 | + // otherwise V is taken to be identical to the referenced bit of the |
| 140 | + // same register. |
| 141 | + // If RefI.Reg is 0, however, such a reference to the same register is |
| 142 | + // not possible. Any value V that is a "ref", and whose RefI.Reg is 0 |
| 143 | + // is treated as "bottom". |
| 144 | + }; |
| 145 | + ValueType Type; |
| 146 | + BitRef RefI; |
| 147 | + |
| 148 | + BitValue(ValueType T = Top) : Type(T) {} |
| 149 | + BitValue(bool B) : Type(B ? One : Zero) {} |
| 150 | + BitValue(const BitValue &V) : Type(V.Type), RefI(V.RefI) {} |
| 151 | + BitValue(unsigned Reg, uint16_t Pos) : Type(Ref), RefI(Reg, Pos) {} |
| 152 | + |
| 153 | + bool operator== (const BitValue &V) const { |
| 154 | + if (Type != V.Type) |
| 155 | + return false; |
| 156 | + if (Type == Ref && !(RefI == V.RefI)) |
| 157 | + return false; |
| 158 | + return true; |
| 159 | + } |
| 160 | + bool operator!= (const BitValue &V) const { |
| 161 | + return !operator==(V); |
| 162 | + } |
| 163 | + bool is(unsigned T) const { |
| 164 | + assert(T == 0 || T == 1); |
| 165 | + return T == 0 ? Type == Zero |
| 166 | + : (T == 1 ? Type == One : false); |
| 167 | + } |
| 168 | + |
| 169 | + // The "meet" operation is the "." operation in a semilattice (L, ., T, B): |
| 170 | + // (1) x.x = x |
| 171 | + // (2) x.y = y.x |
| 172 | + // (3) x.(y.z) = (x.y).z |
| 173 | + // (4) x.T = x (i.e. T = "top") |
| 174 | + // (5) x.B = B (i.e. B = "bottom") |
| 175 | + // |
| 176 | + // This "meet" function will update the value of the "*this" object with |
| 177 | + // the newly calculated one, and return "true" if the value of *this has |
| 178 | + // changed, and "false" otherwise. |
| 179 | + // To prove that it satisfies the conditions (1)-(5), it is sufficient |
| 180 | + // to show that a relation |
| 181 | + // x <= y <=> x.y = x |
| 182 | + // defines a partial order (i.e. that "meet" is same as "infimum"). |
| 183 | + bool meet(const BitValue &V, const BitRef &Self) { |
| 184 | + // First, check the cases where there is nothing to be done. |
| 185 | + if (Type == Ref && RefI == Self) // Bottom.meet(V) = Bottom (i.e. This) |
| 186 | + return false; |
| 187 | + if (V.Type == Top) // This.meet(Top) = This |
| 188 | + return false; |
| 189 | + if (*this == V) // This.meet(This) = This |
| 190 | + return false; |
| 191 | + |
| 192 | + // At this point, we know that the value of "this" will change. |
| 193 | + // If it is Top, it will become the same as V, otherwise it will |
| 194 | + // become "bottom" (i.e. Self). |
| 195 | + if (Type == Top) { |
| 196 | + Type = V.Type; |
| 197 | + RefI = V.RefI; // This may be irrelevant, but copy anyway. |
| 198 | + return true; |
| 199 | + } |
| 200 | + // Become "bottom". |
| 201 | + Type = Ref; |
| 202 | + RefI = Self; |
| 203 | + return true; |
| 204 | + } |
| 205 | + |
| 206 | + // Create a reference to the bit value V. |
| 207 | + static BitValue ref(const BitValue &V); |
| 208 | + // Create a "self". |
| 209 | + static BitValue self(const BitRef &Self = BitRef()); |
| 210 | + |
| 211 | + bool num() const { |
| 212 | + return Type == Zero || Type == One; |
| 213 | + } |
| 214 | + operator bool() const { |
| 215 | + assert(Type == Zero || Type == One); |
| 216 | + return Type == One; |
| 217 | + } |
| 218 | + |
| 219 | + friend llvm::raw_ostream &operator<< (llvm::raw_ostream &OS, |
| 220 | + const BitValue &BV); |
| 221 | +}; |
| 222 | + |
| 223 | + |
| 224 | +// This operation must be idempotent, i.e. ref(ref(V)) == ref(V). |
| 225 | +inline BitTracker::BitValue |
| 226 | +BitTracker::BitValue::ref(const BitValue &V) { |
| 227 | + if (V.Type != Ref) |
| 228 | + return BitValue(V.Type); |
| 229 | + if (V.RefI.Reg != 0) |
| 230 | + return BitValue(V.RefI.Reg, V.RefI.Pos); |
| 231 | + return self(); |
| 232 | +} |
| 233 | + |
| 234 | + |
| 235 | +inline BitTracker::BitValue |
| 236 | +BitTracker::BitValue::self(const BitRef &Self) { |
| 237 | + return BitValue(Self.Reg, Self.Pos); |
| 238 | +} |
| 239 | + |
| 240 | + |
| 241 | +// A sequence of bits starting from index B up to and including index E. |
| 242 | +// If E < B, the mask represents two sections: [0..E] and [B..W) where |
| 243 | +// W is the width of the register. |
| 244 | +struct BitTracker::BitMask { |
| 245 | + BitMask() : B(0), E(0) {} |
| 246 | + BitMask(uint16_t b, uint16_t e) : B(b), E(e) {} |
| 247 | + uint16_t first() const { return B; } |
| 248 | + uint16_t last() const { return E; } |
| 249 | +private: |
| 250 | + uint16_t B, E; |
| 251 | +}; |
| 252 | + |
| 253 | + |
| 254 | +// Representation of a register: a list of BitValues. |
| 255 | +struct BitTracker::RegisterCell { |
| 256 | + RegisterCell(uint16_t Width = DefaultBitN) : Bits(Width) {} |
| 257 | + |
| 258 | + uint16_t width() const { |
| 259 | + return Bits.size(); |
| 260 | + } |
| 261 | + const BitValue &operator[](uint16_t BitN) const { |
| 262 | + assert(BitN < Bits.size()); |
| 263 | + return Bits[BitN]; |
| 264 | + } |
| 265 | + BitValue &operator[](uint16_t BitN) { |
| 266 | + assert(BitN < Bits.size()); |
| 267 | + return Bits[BitN]; |
| 268 | + } |
| 269 | + |
| 270 | + bool meet(const RegisterCell &RC, unsigned SelfR); |
| 271 | + RegisterCell &insert(const RegisterCell &RC, const BitMask &M); |
| 272 | + RegisterCell extract(const BitMask &M) const; // Returns a new cell. |
| 273 | + RegisterCell &rol(uint16_t Sh); // Rotate left. |
| 274 | + RegisterCell &fill(uint16_t B, uint16_t E, const BitValue &V); |
| 275 | + RegisterCell &cat(const RegisterCell &RC); // Concatenate. |
| 276 | + uint16_t cl(bool B) const; |
| 277 | + uint16_t ct(bool B) const; |
| 278 | + |
| 279 | + bool operator== (const RegisterCell &RC) const; |
| 280 | + bool operator!= (const RegisterCell &RC) const { |
| 281 | + return !operator==(RC); |
| 282 | + } |
| 283 | + |
| 284 | + const RegisterCell &operator=(const RegisterCell &RC) { |
| 285 | + Bits = RC.Bits; |
| 286 | + return *this; |
| 287 | + } |
| 288 | + |
| 289 | + // Generate a "ref" cell for the corresponding register. In the resulting |
| 290 | + // cell each bit will be described as being the same as the corresponding |
| 291 | + // bit in register Reg (i.e. the cell is "defined" by register Reg). |
| 292 | + static RegisterCell self(unsigned Reg, uint16_t Width); |
| 293 | + // Generate a "top" cell of given size. |
| 294 | + static RegisterCell top(uint16_t Width); |
| 295 | + // Generate a cell that is a "ref" to another cell. |
| 296 | + static RegisterCell ref(const RegisterCell &C); |
| 297 | + |
| 298 | +private: |
| 299 | + // The DefaultBitN is here only to avoid frequent reallocation of the |
| 300 | + // memory in the vector. |
| 301 | + static const unsigned DefaultBitN = 32; |
| 302 | + typedef llvm::SmallVector<BitValue,DefaultBitN> BitValueList; |
| 303 | + BitValueList Bits; |
| 304 | + |
| 305 | + friend llvm::raw_ostream &operator<< (llvm::raw_ostream &OS, |
| 306 | + const RegisterCell &RC); |
| 307 | +}; |
| 308 | + |
| 309 | + |
| 310 | +inline bool BitTracker::has(unsigned Reg) const { |
| 311 | + return Map.find(Reg) != Map.end(); |
| 312 | +} |
| 313 | + |
| 314 | + |
| 315 | +inline const BitTracker::RegisterCell& |
| 316 | +BitTracker::lookup(unsigned Reg) const { |
| 317 | + CellMapType::const_iterator F = Map.find(Reg); |
| 318 | + assert(F != Map.end()); |
| 319 | + return F->second; |
| 320 | +} |
| 321 | + |
| 322 | + |
| 323 | +inline BitTracker::RegisterCell |
| 324 | +BitTracker::RegisterCell::self(unsigned Reg, uint16_t Width) { |
| 325 | + RegisterCell RC(Width); |
| 326 | + for (uint16_t i = 0; i < Width; ++i) |
| 327 | + RC.Bits[i] = BitValue::self(BitRef(Reg, i)); |
| 328 | + return RC; |
| 329 | +} |
| 330 | + |
| 331 | + |
| 332 | +inline BitTracker::RegisterCell |
| 333 | +BitTracker::RegisterCell::top(uint16_t Width) { |
| 334 | + RegisterCell RC(Width); |
| 335 | + for (uint16_t i = 0; i < Width; ++i) |
| 336 | + RC.Bits[i] = BitValue(BitValue::Top); |
| 337 | + return RC; |
| 338 | +} |
| 339 | + |
| 340 | + |
| 341 | +inline BitTracker::RegisterCell |
| 342 | +BitTracker::RegisterCell::ref(const RegisterCell &C) { |
| 343 | + uint16_t W = C.width(); |
| 344 | + RegisterCell RC(W); |
| 345 | + for (unsigned i = 0; i < W; ++i) |
| 346 | + RC[i] = BitValue::ref(C[i]); |
| 347 | + return RC; |
| 348 | +} |
| 349 | + |
| 350 | + |
| 351 | +inline bool BitTracker::CellMapType::has(unsigned Reg) const { |
| 352 | + return find(Reg) != end(); |
| 353 | +} |
| 354 | + |
| 355 | + |
| 356 | +// A class to evaluate target's instructions and update the cell maps. |
| 357 | +// This is used internally by the bit tracker. A target that wants to |
| 358 | +// utilize this should implement the evaluation functions (noted below) |
| 359 | +// in a subclass of this class. |
| 360 | +struct BitTracker::MachineEvaluator { |
| 361 | + MachineEvaluator(const llvm::TargetRegisterInfo &T, |
| 362 | + llvm::MachineRegisterInfo &M) : TRI(T), MRI(M) {} |
| 363 | + virtual ~MachineEvaluator() {} |
| 364 | + |
| 365 | + uint16_t getRegBitWidth(const RegisterRef &RR) const; |
| 366 | + |
| 367 | + RegisterCell getCell(const RegisterRef &RR, const CellMapType &M) const; |
| 368 | + void putCell(const RegisterRef &RR, RegisterCell RC, CellMapType &M) const; |
| 369 | + // A result of any operation should use refs to the source cells, not |
| 370 | + // the cells directly. This function is a convenience wrapper to quickly |
| 371 | + // generate a ref for a cell corresponding to a register reference. |
| 372 | + RegisterCell getRef(const RegisterRef &RR, const CellMapType &M) const { |
| 373 | + RegisterCell RC = getCell(RR, M); |
| 374 | + return RegisterCell::ref(RC); |
| 375 | + } |
| 376 | + |
| 377 | + // Helper functions. |
| 378 | + // Check if a cell is an immediate value (i.e. all bits are either 0 or 1). |
| 379 | + bool isInt(const RegisterCell &A) const; |
| 380 | + // Convert cell to an immediate value. |
| 381 | + uint64_t toInt(const RegisterCell &A) const; |
| 382 | + |
| 383 | + // Generate cell from an immediate value. |
| 384 | + RegisterCell eIMM(int64_t V, uint16_t W) const; |
| 385 | + RegisterCell eIMM(const llvm::ConstantInt *CI) const; |
| 386 | + |
| 387 | + // Arithmetic. |
| 388 | + RegisterCell eADD(const RegisterCell &A1, const RegisterCell &A2) const; |
| 389 | + RegisterCell eSUB(const RegisterCell &A1, const RegisterCell &A2) const; |
| 390 | + RegisterCell eMLS(const RegisterCell &A1, const RegisterCell &A2) const; |
| 391 | + RegisterCell eMLU(const RegisterCell &A1, const RegisterCell &A2) const; |
| 392 | + |
| 393 | + // Shifts. |
| 394 | + RegisterCell eASL(const RegisterCell &A1, uint16_t Sh) const; |
| 395 | + RegisterCell eLSR(const RegisterCell &A1, uint16_t Sh) const; |
| 396 | + RegisterCell eASR(const RegisterCell &A1, uint16_t Sh) const; |
| 397 | + |
| 398 | + // Logical. |
| 399 | + RegisterCell eAND(const RegisterCell &A1, const RegisterCell &A2) const; |
| 400 | + RegisterCell eORL(const RegisterCell &A1, const RegisterCell &A2) const; |
| 401 | + RegisterCell eXOR(const RegisterCell &A1, const RegisterCell &A2) const; |
| 402 | + RegisterCell eNOT(const RegisterCell &A1) const; |
| 403 | + |
| 404 | + // Set bit, clear bit. |
| 405 | + RegisterCell eSET(const RegisterCell &A1, uint16_t BitN) const; |
| 406 | + RegisterCell eCLR(const RegisterCell &A1, uint16_t BitN) const; |
| 407 | + |
| 408 | + // Count leading/trailing bits (zeros/ones). |
| 409 | + RegisterCell eCLB(const RegisterCell &A1, bool B, uint16_t W) const; |
| 410 | + RegisterCell eCTB(const RegisterCell &A1, bool B, uint16_t W) const; |
| 411 | + |
| 412 | + // Sign/zero extension. |
| 413 | + RegisterCell eSXT(const RegisterCell &A1, uint16_t FromN) const; |
| 414 | + RegisterCell eZXT(const RegisterCell &A1, uint16_t FromN) const; |
| 415 | + |
| 416 | + // Extract/insert |
| 417 | + // XTR R,b,e: extract bits from A1 starting at bit b, ending at e-1. |
| 418 | + // INS R,S,b: take R and replace bits starting from b with S. |
| 419 | + RegisterCell eXTR(const RegisterCell &A1, uint16_t B, uint16_t E) const; |
| 420 | + RegisterCell eINS(const RegisterCell &A1, const RegisterCell &A2, |
| 421 | + uint16_t AtN) const; |
| 422 | + |
| 423 | + // User-provided functions for individual targets: |
| 424 | + |
| 425 | + // Return a sub-register mask that indicates which bits in Reg belong |
| 426 | + // to the subregister Sub. These bits are assumed to be contiguous in |
| 427 | + // the super-register, and have the same ordering in the sub-register |
| 428 | + // as in the super-register. It is valid to call this function with |
| 429 | + // Sub == 0, in this case, the function should return a mask that spans |
| 430 | + // the entire register Reg (which is what the default implementation |
| 431 | + // does). |
| 432 | + virtual BitMask mask(unsigned Reg, unsigned Sub) const; |
| 433 | + // Indicate whether a given register class should be tracked. |
| 434 | + virtual bool track(const llvm::TargetRegisterClass *RC) const { |
| 435 | + return true; |
| 436 | + } |
| 437 | + // Evaluate a non-branching machine instruction, given the cell map with |
| 438 | + // the input values. Place the results in the Outputs map. Return "true" |
| 439 | + // if evaluation succeeded, "false" otherwise. |
| 440 | + virtual bool evaluate(const llvm::MachineInstr *MI, |
| 441 | + const CellMapType &Inputs, CellMapType &Outputs) const; |
| 442 | + // Evaluate a branch, given the cell map with the input values. Fill out |
| 443 | + // a list of all possible branch targets and indicate (through a flag) |
| 444 | + // whether the branch could fall-through. Return "true" if this information |
| 445 | + // has been successfully computed, "false" otherwise. |
| 446 | + virtual bool evaluate(const llvm::MachineInstr *BI, |
| 447 | + const CellMapType &Inputs, BranchTargetList &Targets, |
| 448 | + bool &FallsThru) const = 0; |
| 449 | + |
| 450 | + const llvm::TargetRegisterInfo &TRI; |
| 451 | + llvm::MachineRegisterInfo &MRI; |
| 452 | +}; |
| 453 | + |
| 454 | +#endif |
| 455 | + |
0 commit comments