Bug Summary

File:/Users/adergachev/svn/llvm/tools/clang/lib/Sema/SemaInit.cpp
Warning:line 5740, column 16
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-apple-macosx10.14.0 -Wdeprecated-objc-isa-usage -Werror=deprecated-objc-isa-usage -analyze -disable-free -main-file-name SemaInit.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=osx -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -mrelocation-model pic -pic-level 2 -mthread-model posix -mdisable-fp-elim -masm-verbose -munwind-tables -target-cpu penryn -dwarf-column-info -debugger-tuning=lldb -ggnu-pubnames -target-linker-version 450.3 -resource-dir /Users/adergachev/svn/release-c++17/lib/clang/9.0.0 -D GTEST_HAS_RTTI=0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I tools/clang/lib/Sema -I /Users/adergachev/svn/llvm/tools/clang/lib/Sema -I /Users/adergachev/svn/llvm/tools/clang/include -I tools/clang/include -I /usr/include/libxml2 -I include -I /Users/adergachev/svn/llvm/include -U NDEBUG -stdlib=libc++ -internal-isystem /Users/adergachev/svn/release-c++17/bin/../include/c++/v1 -O3 -Wno-unused-parameter -Wno-long-long -Wno-noexcept-type -Wno-nested-anon-types -pedantic -std=c++1z -fdeprecated-macro -fdebug-compilation-dir /Users/adergachev/svn/release-c++17 -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 1 -fblocks -fencode-extended-block-signature -fno-rtti -fregister-global-dtors-with-atexit -fobjc-runtime=macosx-10.14.0 -fmax-type-align=16 -fno-common -fdiagnostics-show-option -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -o /Users/adergachev/reports/scan-build-2019-03-20-18-43-26-302777-xKOEgD -x c++ /Users/adergachev/svn/llvm/tools/clang/lib/Sema/SemaInit.cpp
<
1//===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements semantic analysis for initializers.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/AST/ASTContext.h"
14#include "clang/AST/DeclObjC.h"
15#include "clang/AST/ExprCXX.h"
16#include "clang/AST/ExprObjC.h"
17#include "clang/AST/ExprOpenMP.h"
18#include "clang/AST/TypeLoc.h"
19#include "clang/Basic/TargetInfo.h"
20#include "clang/Sema/Designator.h"
21#include "clang/Sema/Initialization.h"
22#include "clang/Sema/Lookup.h"
23#include "clang/Sema/SemaInternal.h"
24#include "llvm/ADT/APInt.h"
25#include "llvm/ADT/SmallString.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/raw_ostream.h"
28
29using namespace clang;
30
31//===----------------------------------------------------------------------===//
32// Sema Initialization Checking
33//===----------------------------------------------------------------------===//
34
35/// Check whether T is compatible with a wide character type (wchar_t,
36/// char16_t or char32_t).
37static bool IsWideCharCompatible(QualType T, ASTContext &Context) {
38 if (Context.typesAreCompatible(Context.getWideCharType(), T))
39 return true;
40 if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) {
41 return Context.typesAreCompatible(Context.Char16Ty, T) ||
42 Context.typesAreCompatible(Context.Char32Ty, T);
43 }
44 return false;
45}
46
47enum StringInitFailureKind {
48 SIF_None,
49 SIF_NarrowStringIntoWideChar,
50 SIF_WideStringIntoChar,
51 SIF_IncompatWideStringIntoWideChar,
52 SIF_UTF8StringIntoPlainChar,
53 SIF_PlainStringIntoUTF8Char,
54 SIF_Other
55};
56
57/// Check whether the array of type AT can be initialized by the Init
58/// expression by means of string initialization. Returns SIF_None if so,
59/// otherwise returns a StringInitFailureKind that describes why the
60/// initialization would not work.
61static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT,
62 ASTContext &Context) {
63 if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
64 return SIF_Other;
65
66 // See if this is a string literal or @encode.
67 Init = Init->IgnoreParens();
68
69 // Handle @encode, which is a narrow string.
70 if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
71 return SIF_None;
72
73 // Otherwise we can only handle string literals.
74 StringLiteral *SL = dyn_cast<StringLiteral>(Init);
75 if (!SL)
76 return SIF_Other;
77
78 const QualType ElemTy =
79 Context.getCanonicalType(AT->getElementType()).getUnqualifiedType();
80
81 switch (SL->getKind()) {
82 case StringLiteral::UTF8:
83 // char8_t array can be initialized with a UTF-8 string.
84 if (ElemTy->isChar8Type())
85 return SIF_None;
86 LLVM_FALLTHROUGH[[fallthrough]];
87 case StringLiteral::Ascii:
88 // char array can be initialized with a narrow string.
89 // Only allow char x[] = "foo"; not char x[] = L"foo";
90 if (ElemTy->isCharType())
91 return (SL->getKind() == StringLiteral::UTF8 &&
92 Context.getLangOpts().Char8)
93 ? SIF_UTF8StringIntoPlainChar
94 : SIF_None;
95 if (ElemTy->isChar8Type())
96 return SIF_PlainStringIntoUTF8Char;
97 if (IsWideCharCompatible(ElemTy, Context))
98 return SIF_NarrowStringIntoWideChar;
99 return SIF_Other;
100 // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15:
101 // "An array with element type compatible with a qualified or unqualified
102 // version of wchar_t, char16_t, or char32_t may be initialized by a wide
103 // string literal with the corresponding encoding prefix (L, u, or U,
104 // respectively), optionally enclosed in braces.
105 case StringLiteral::UTF16:
106 if (Context.typesAreCompatible(Context.Char16Ty, ElemTy))
107 return SIF_None;
108 if (ElemTy->isCharType() || ElemTy->isChar8Type())
109 return SIF_WideStringIntoChar;
110 if (IsWideCharCompatible(ElemTy, Context))
111 return SIF_IncompatWideStringIntoWideChar;
112 return SIF_Other;
113 case StringLiteral::UTF32:
114 if (Context.typesAreCompatible(Context.Char32Ty, ElemTy))
115 return SIF_None;
116 if (ElemTy->isCharType() || ElemTy->isChar8Type())
117 return SIF_WideStringIntoChar;
118 if (IsWideCharCompatible(ElemTy, Context))
119 return SIF_IncompatWideStringIntoWideChar;
120 return SIF_Other;
121 case StringLiteral::Wide:
122 if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy))
123 return SIF_None;
124 if (ElemTy->isCharType() || ElemTy->isChar8Type())
125 return SIF_WideStringIntoChar;
126 if (IsWideCharCompatible(ElemTy, Context))
127 return SIF_IncompatWideStringIntoWideChar;
128 return SIF_Other;
129 }
130
131 llvm_unreachable("missed a StringLiteral kind?")::llvm::llvm_unreachable_internal("missed a StringLiteral kind?"
, "/Users/adergachev/svn/llvm/tools/clang/lib/Sema/SemaInit.cpp"
, 131)
;
132}
133
134static StringInitFailureKind IsStringInit(Expr *init, QualType declType,
135 ASTContext &Context) {
136 const ArrayType *arrayType = Context.getAsArrayType(declType);
137 if (!arrayType)
138 return SIF_Other;
139 return IsStringInit(init, arrayType, Context);
140}
141
142/// Update the type of a string literal, including any surrounding parentheses,
143/// to match the type of the object which it is initializing.
144static void updateStringLiteralType(Expr *E, QualType Ty) {
145 while (true) {
146 E->setType(Ty);
147 E->setValueKind(VK_RValue);
148 if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E)) {
149 break;
150 } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
151 E = PE->getSubExpr();
152 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
153 assert(UO->getOpcode() == UO_Extension)(__builtin_expect(!(UO->getOpcode() == UO_Extension), 0) ?
__assert_rtn(__func__, "/Users/adergachev/svn/llvm/tools/clang/lib/Sema/SemaInit.cpp"
, 153, "UO->getOpcode() == UO_Extension") : (void)0)
;
154 E = UO->getSubExpr();
155 } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) {
156 E = GSE->getResultExpr();
157 } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) {
158 E = CE->getChosenSubExpr();
159 } else {
160 llvm_unreachable("unexpected expr in string literal init")::llvm::llvm_unreachable_internal("unexpected expr in string literal init"
, "/Users/adergachev/svn/llvm/tools/clang/lib/Sema/SemaInit.cpp"
, 160)
;
161 }
162 }
163}
164
165/// Fix a compound literal initializing an array so it's correctly marked
166/// as an rvalue.
167static void updateGNUCompoundLiteralRValue(Expr *E) {
168 while (true) {
169 E->setValueKind(VK_RValue);
170 if (isa<CompoundLiteralExpr>(E)) {
171 break;
172 } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
173 E = PE->getSubExpr();
174 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
175 assert(UO->getOpcode() == UO_Extension)(__builtin_expect(!(UO->getOpcode() == UO_Extension), 0) ?
__assert_rtn(__func__, "/Users/adergachev/svn/llvm/tools/clang/lib/Sema/SemaInit.cpp"
, 175, "UO->getOpcode() == UO_Extension") : (void)0)
;
176 E = UO->getSubExpr();
177 } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) {
178 E = GSE->getResultExpr();
179 } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) {
180 E = CE->getChosenSubExpr();
181 } else {
182 llvm_unreachable("unexpected expr in array compound literal init")::llvm::llvm_unreachable_internal("unexpected expr in array compound literal init"
, "/Users/adergachev/svn/llvm/tools/clang/lib/Sema/SemaInit.cpp"
, 182)
;
183 }
184 }
185}
186
187static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
188 Sema &S) {
189 // Get the length of the string as parsed.
190 auto *ConstantArrayTy =
191 cast<ConstantArrayType>(Str->getType()->getAsArrayTypeUnsafe());
192 uint64_t StrLength = ConstantArrayTy->getSize().getZExtValue();
193
194 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
195 // C99 6.7.8p14. We have an array of character type with unknown size
196 // being initialized to a string literal.
197 llvm::APInt ConstVal(32, StrLength);
198 // Return a new array type (C99 6.7.8p22).
199 DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
200 ConstVal,
201 ArrayType::Normal, 0);
202 updateStringLiteralType(Str, DeclT);
203 return;
204 }
205
206 const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
207
208 // We have an array of character type with known size. However,
209 // the size may be smaller or larger than the string we are initializing.
210 // FIXME: Avoid truncation for 64-bit length strings.
211 if (S.getLangOpts().CPlusPlus) {
212 if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) {
213 // For Pascal strings it's OK to strip off the terminating null character,
214 // so the example below is valid:
215 //
216 // unsigned char a[2] = "\pa";
217 if (SL->isPascal())
218 StrLength--;
219 }
220
221 // [dcl.init.string]p2
222 if (StrLength > CAT->getSize().getZExtValue())
223 S.Diag(Str->getBeginLoc(),
224 diag::err_initializer_string_for_char_array_too_long)
225 << Str->getSourceRange();
226 } else {
227 // C99 6.7.8p14.
228 if (StrLength-1 > CAT->getSize().getZExtValue())
229 S.Diag(Str->getBeginLoc(),
230 diag::ext_initializer_string_for_char_array_too_long)
231 << Str->getSourceRange();
232 }
233
234 // Set the type to the actual size that we are initializing. If we have
235 // something like:
236 // char x[1] = "foo";
237 // then this will set the string literal's type to char[1].
238 updateStringLiteralType(Str, DeclT);
239}
240
241//===----------------------------------------------------------------------===//
242// Semantic checking for initializer lists.
243//===----------------------------------------------------------------------===//
244
245namespace {
246
247/// Semantic checking for initializer lists.
248///
249/// The InitListChecker class contains a set of routines that each
250/// handle the initialization of a certain kind of entity, e.g.,
251/// arrays, vectors, struct/union types, scalars, etc. The
252/// InitListChecker itself performs a recursive walk of the subobject
253/// structure of the type to be initialized, while stepping through
254/// the initializer list one element at a time. The IList and Index
255/// parameters to each of the Check* routines contain the active
256/// (syntactic) initializer list and the index into that initializer
257/// list that represents the current initializer. Each routine is
258/// responsible for moving that Index forward as it consumes elements.
259///
260/// Each Check* routine also has a StructuredList/StructuredIndex
261/// arguments, which contains the current "structured" (semantic)
262/// initializer list and the index into that initializer list where we
263/// are copying initializers as we map them over to the semantic
264/// list. Once we have completed our recursive walk of the subobject
265/// structure, we will have constructed a full semantic initializer
266/// list.
267///
268/// C99 designators cause changes in the initializer list traversal,
269/// because they make the initialization "jump" into a specific
270/// subobject and then continue the initialization from that
271/// point. CheckDesignatedInitializer() recursively steps into the
272/// designated subobject and manages backing out the recursion to
273/// initialize the subobjects after the one designated.
274class InitListChecker {
275 Sema &SemaRef;
276 bool hadError;
277 bool VerifyOnly; // no diagnostics, no structure building
278 bool TreatUnavailableAsInvalid; // Used only in VerifyOnly mode.
279 llvm::DenseMap<InitListExpr *, InitListExpr *> SyntacticToSemantic;
280 InitListExpr *FullyStructuredList;
281
282 void CheckImplicitInitList(const InitializedEntity &Entity,
283 InitListExpr *ParentIList, QualType T,
284 unsigned &Index, InitListExpr *StructuredList,
285 unsigned &StructuredIndex);
286 void CheckExplicitInitList(const InitializedEntity &Entity,
287 InitListExpr *IList, QualType &T,
288 InitListExpr *StructuredList,
289 bool TopLevelObject = false);
290 void CheckListElementTypes(const InitializedEntity &Entity,
291 InitListExpr *IList, QualType &DeclType,
292 bool SubobjectIsDesignatorContext,
293 unsigned &Index,
294 InitListExpr *StructuredList,
295 unsigned &StructuredIndex,
296 bool TopLevelObject = false);
297 void CheckSubElementType(const InitializedEntity &Entity,
298 InitListExpr *IList, QualType ElemType,
299 unsigned &Index,
300 InitListExpr *StructuredList,
301 unsigned &StructuredIndex);
302 void CheckComplexType(const InitializedEntity &Entity,
303 InitListExpr *IList, QualType DeclType,
304 unsigned &Index,
305 InitListExpr *StructuredList,
306 unsigned &StructuredIndex);
307 void CheckScalarType(const InitializedEntity &Entity,
308 InitListExpr *IList, QualType DeclType,
309 unsigned &Index,
310 InitListExpr *StructuredList,
311 unsigned &StructuredIndex);
312 void CheckReferenceType(const InitializedEntity &Entity,
313 InitListExpr *IList, QualType DeclType,
314 unsigned &Index,
315 InitListExpr *StructuredList,
316 unsigned &StructuredIndex);
317 void CheckVectorType(const InitializedEntity &Entity,
318 InitListExpr *IList, QualType DeclType, unsigned &Index,
319 InitListExpr *StructuredList,
320 unsigned &StructuredIndex);
321 void CheckStructUnionTypes(const InitializedEntity &Entity,
322 InitListExpr *IList, QualType DeclType,
323 CXXRecordDecl::base_class_range Bases,
324 RecordDecl::field_iterator Field,
325 bool SubobjectIsDesignatorContext, unsigned &Index,
326 InitListExpr *StructuredList,
327 unsigned &StructuredIndex,
328 bool TopLevelObject = false);
329 void CheckArrayType(const InitializedEntity &Entity,
330 InitListExpr *IList, QualType &DeclType,
331 llvm::APSInt elementIndex,
332 bool SubobjectIsDesignatorContext, unsigned &Index,
333 InitListExpr *StructuredList,
334 unsigned &StructuredIndex);
335 bool CheckDesignatedInitializer(const InitializedEntity &Entity,
336 InitListExpr *IList, DesignatedInitExpr *DIE,
337 unsigned DesigIdx,
338 QualType &CurrentObjectType,
339 RecordDecl::field_iterator *NextField,
340 llvm::APSInt *NextElementIndex,
341 unsigned &Index,
342 InitListExpr *StructuredList,
343 unsigned &StructuredIndex,
344 bool FinishSubobjectInit,
345 bool TopLevelObject);
346 InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
347 QualType CurrentObjectType,
348 InitListExpr *StructuredList,
349 unsigned StructuredIndex,
350 SourceRange InitRange,
351 bool IsFullyOverwritten = false);
352 void UpdateStructuredListElement(InitListExpr *StructuredList,
353 unsigned &StructuredIndex,
354 Expr *expr);
355 int numArrayElements(QualType DeclType);
356 int numStructUnionElements(QualType DeclType);
357
358 static ExprResult PerformEmptyInit(Sema &SemaRef,
359 SourceLocation Loc,
360 const InitializedEntity &Entity,
361 bool VerifyOnly,
362 bool TreatUnavailableAsInvalid);
363
364 // Explanation on the "FillWithNoInit" mode:
365 //
366 // Assume we have the following definitions (Case#1):
367 // struct P { char x[6][6]; } xp = { .x[1] = "bar" };
368 // struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' };
369 //
370 // l.lp.x[1][0..1] should not be filled with implicit initializers because the
371 // "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf".
372 //
373 // But if we have (Case#2):
374 // struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } };
375 //
376 // l.lp.x[1][0..1] are implicitly initialized and do not use values from the
377 // "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0".
378 //
379 // To distinguish Case#1 from Case#2, and also to avoid leaving many "holes"
380 // in the InitListExpr, the "holes" in Case#1 are filled not with empty
381 // initializers but with special "NoInitExpr" place holders, which tells the
382 // CodeGen not to generate any initializers for these parts.
383 void FillInEmptyInitForBase(unsigned Init, const CXXBaseSpecifier &Base,
384 const InitializedEntity &ParentEntity,
385 InitListExpr *ILE, bool &RequiresSecondPass,
386 bool FillWithNoInit);
387 void FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
388 const InitializedEntity &ParentEntity,
389 InitListExpr *ILE, bool &RequiresSecondPass,
390 bool FillWithNoInit = false);
391 void FillInEmptyInitializations(const InitializedEntity &Entity,
392 InitListExpr *ILE, bool &RequiresSecondPass,
393 InitListExpr *OuterILE, unsigned OuterIndex,
394 bool FillWithNoInit = false);
395 bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
396 Expr *InitExpr, FieldDecl *Field,
397 bool TopLevelObject);
398 void CheckEmptyInitializable(const InitializedEntity &Entity,
399 SourceLocation Loc);
400
401public:
402 InitListChecker(Sema &S, const InitializedEntity &Entity,
403 InitListExpr *IL, QualType &T, bool VerifyOnly,
404 bool TreatUnavailableAsInvalid);
405 bool HadError() { return hadError; }
406
407 // Retrieves the fully-structured initializer list used for
408 // semantic analysis and code generation.
409 InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
410};
411
412} // end anonymous namespace
413
414ExprResult InitListChecker::PerformEmptyInit(Sema &SemaRef,
415 SourceLocation Loc,
416 const InitializedEntity &Entity,
417 bool VerifyOnly,
418 bool TreatUnavailableAsInvalid) {
419 InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
420 true);
421 MultiExprArg SubInit;
422 Expr *InitExpr;
423 InitListExpr DummyInitList(SemaRef.Context, Loc, None, Loc);
424
425 // C++ [dcl.init.aggr]p7:
426 // If there are fewer initializer-clauses in the list than there are
427 // members in the aggregate, then each member not explicitly initialized
428 // ...
429 bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 &&
430 Entity.getType()->getBaseElementTypeUnsafe()->isRecordType();
431 if (EmptyInitList) {
432 // C++1y / DR1070:
433 // shall be initialized [...] from an empty initializer list.
434 //
435 // We apply the resolution of this DR to C++11 but not C++98, since C++98
436 // does not have useful semantics for initialization from an init list.
437 // We treat this as copy-initialization, because aggregate initialization
438 // always performs copy-initialization on its elements.
439 //
440 // Only do this if we're initializing a class type, to avoid filling in
441 // the initializer list where possible.
442 InitExpr = VerifyOnly ? &DummyInitList : new (SemaRef.Context)
443 InitListExpr(SemaRef.Context, Loc, None, Loc);
444 InitExpr->setType(SemaRef.Context.VoidTy);
445 SubInit = InitExpr;
446 Kind = InitializationKind::CreateCopy(Loc, Loc);
447 } else {
448 // C++03:
449 // shall be value-initialized.
450 }
451
452 InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit);
453 // libstdc++4.6 marks the vector default constructor as explicit in
454 // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case.
455 // stlport does so too. Look for std::__debug for libstdc++, and for
456 // std:: for stlport. This is effectively a compiler-side implementation of
457 // LWG2193.
458 if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() ==
459 InitializationSequence::FK_ExplicitConstructor) {
460 OverloadCandidateSet::iterator Best;
461 OverloadingResult O =
462 InitSeq.getFailedCandidateSet()
463 .BestViableFunction(SemaRef, Kind.getLocation(), Best);
464 (void)O;
465 assert(O == OR_Success && "Inconsistent overload resolution")(__builtin_expect(!(O == OR_Success && "Inconsistent overload resolution"
), 0) ? __assert_rtn(__func__, "/Users/adergachev/svn/llvm/tools/clang/lib/Sema/SemaInit.cpp"
, 465, "O == OR_Success && \"Inconsistent overload resolution\""
) : (void)0)
;
466 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
467 CXXRecordDecl *R = CtorDecl->getParent();
468
469 if (CtorDecl->getMinRequiredArguments() == 0 &&
470 CtorDecl->isExplicit() && R->getDeclName() &&
471 SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) {
472 bool IsInStd = false;
473 for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext());
474 ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) {
475 if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND))
476 IsInStd = true;
477 }
478
479 if (IsInStd && llvm::StringSwitch<bool>(R->getName())
480 .Cases("basic_string", "deque", "forward_list", true)
481 .Cases("list", "map", "multimap", "multiset", true)
482 .Cases("priority_queue", "queue", "set", "stack", true)
483 .Cases("unordered_map", "unordered_set", "vector", true)
484 .Default(false)) {
485 InitSeq.InitializeFrom(
486 SemaRef, Entity,
487 InitializationKind::CreateValue(Loc, Loc, Loc, true),
488 MultiExprArg(), /*TopLevelOfInitList=*/false,
489 TreatUnavailableAsInvalid);
490 // Emit a warning for this. System header warnings aren't shown
491 // by default, but people working on system headers should see it.
492 if (!VerifyOnly) {
493 SemaRef.Diag(CtorDecl->getLocation(),
494 diag::warn_invalid_initializer_from_system_header);
495 if (Entity.getKind() == InitializedEntity::EK_Member)
496 SemaRef.Diag(Entity.getDecl()->getLocation(),
497 diag::note_used_in_initialization_here);
498 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement)
499 SemaRef.Diag(Loc, diag::note_used_in_initialization_here);
500 }
501 }
502 }
503 }
504 if (!InitSeq) {
505 if (!VerifyOnly) {
506 InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit);
507 if (Entity.getKind() == InitializedEntity::EK_Member)
508 SemaRef.Diag(Entity.getDecl()->getLocation(),
509 diag::note_in_omitted_aggregate_initializer)
510 << /*field*/1 << Entity.getDecl();
511 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) {
512 bool IsTrailingArrayNewMember =
513 Entity.getParent() &&
514 Entity.getParent()->isVariableLengthArrayNew();
515 SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer)
516 << (IsTrailingArrayNewMember ? 2 : /*array element*/0)
517 << Entity.getElementIndex();
518 }
519 }
520 return ExprError();
521 }
522
523 return VerifyOnly ? ExprResult(static_cast<Expr *>(nullptr))
524 : InitSeq.Perform(SemaRef, Entity, Kind, SubInit);
525}
526
527void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity,
528 SourceLocation Loc) {
529 assert(VerifyOnly &&(__builtin_expect(!(VerifyOnly && "CheckEmptyInitializable is only inteded for verification mode."
), 0) ? __assert_rtn(__func__, "/Users/adergachev/svn/llvm/tools/clang/lib/Sema/SemaInit.cpp"
, 530, "VerifyOnly && \"CheckEmptyInitializable is only inteded for verification mode.\""
) : (void)0)
530 "CheckEmptyInitializable is only inteded for verification mode.")(__builtin_expect(!(VerifyOnly && "CheckEmptyInitializable is only inteded for verification mode."
), 0) ? __assert_rtn(__func__, "/Users/adergachev/svn/llvm/tools/clang/lib/Sema/SemaInit.cpp"
, 530, "VerifyOnly && \"CheckEmptyInitializable is only inteded for verification mode.\""
) : (void)0)
;
531 if (PerformEmptyInit(SemaRef, Loc, Entity, /*VerifyOnly*/true,
532 TreatUnavailableAsInvalid).isInvalid())
533 hadError = true;
534}
535
536void InitListChecker::FillInEmptyInitForBase(
537 unsigned Init, const CXXBaseSpecifier &Base,
538 const InitializedEntity &ParentEntity, InitListExpr *ILE,
539 bool &RequiresSecondPass, bool FillWithNoInit) {
540 assert(Init < ILE->getNumInits() && "should have been expanded")(__builtin_expect(!(Init < ILE->getNumInits() &&
"should have been expanded"), 0) ? __assert_rtn(__func__, "/Users/adergachev/svn/llvm/tools/clang/lib/Sema/SemaInit.cpp"
, 540, "Init < ILE->getNumInits() && \"should have been expanded\""
) : (void)0)
;
541
542 InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
543 SemaRef.Context, &Base, false, &ParentEntity);
544
545 if (!ILE->getInit(Init)) {
546 ExprResult BaseInit =
547 FillWithNoInit
548 ? new (SemaRef.Context) NoInitExpr(Base.getType())
549 : PerformEmptyInit(SemaRef, ILE->getEndLoc(), BaseEntity,
550 /*VerifyOnly*/ false, TreatUnavailableAsInvalid);
551 if (BaseInit.isInvalid()) {
552 hadError = true;
553 return;
554 }
555
556 ILE->setInit(Init, BaseInit.getAs<Expr>());
557 } else if (InitListExpr *InnerILE =
558 dyn_cast<InitListExpr>(ILE->getInit(Init))) {
559 FillInEmptyInitializations(BaseEntity, InnerILE, RequiresSecondPass,
560 ILE, Init, FillWithNoInit);
561 } else if (DesignatedInitUpdateExpr *InnerDIUE =
562 dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) {
563 FillInEmptyInitializations(BaseEntity, InnerDIUE->getUpdater(),
564 RequiresSecondPass, ILE, Init,
565 /*FillWithNoInit =*/true);
566 }
567}
568
569void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
570 const InitializedEntity &ParentEntity,
571 InitListExpr *ILE,
572 bool &RequiresSecondPass,
573 bool FillWithNoInit) {
574 SourceLocation Loc = ILE->getEndLoc();
575 unsigned NumInits = ILE->getNumInits();
576 InitializedEntity MemberEntity
577 = InitializedEntity::InitializeMember(Field, &ParentEntity);
578
579 if (const RecordType *RType = ILE->getType()->getAs<RecordType>())
580 if (!RType->getDecl()->isUnion())
581 assert(Init < NumInits && "This ILE should have been expanded")(__builtin_expect(!(Init < NumInits && "This ILE should have been expanded"
), 0) ? __assert_rtn(__func__, "/Users/adergachev/svn/llvm/tools/clang/lib/Sema/SemaInit.cpp"
, 581, "Init < NumInits && \"This ILE should have been expanded\""
) : (void)0)
;
582
583 if (Init >= NumInits || !ILE->getInit(Init)) {
584 if (FillWithNoInit) {
585 Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType());
586 if (Init < NumInits)
587 ILE->setInit(Init, Filler);
588 else
589 ILE->updateInit(SemaRef.Context, Init, Filler);
590 return;
591 }
592 // C++1y [dcl.init.aggr]p7:
593 // If there are fewer initializer-clauses in the list than there are
594 // members in the aggregate, then each member not explicitly initialized
595 // shall be initialized from its brace-or-equal-initializer [...]
596 if (Field->hasInClassInitializer()) {
597 ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field);
598 if (DIE.isInvalid()) {
599 hadError = true;
600 return;
601 }
602 SemaRef.checkInitializerLifetime(MemberEntity, DIE.get());
603 if (Init < NumInits)
604 ILE->setInit(Init, DIE.get());
605 else {
606 ILE->updateInit(SemaRef.Context, Init, DIE.get());
607 RequiresSecondPass = true;
608 }
609 return;
610 }
611
612 if (Field->getType()->isReferenceType()) {
613 // C++ [dcl.init.aggr]p9:
614 // If an incomplete or empty initializer-list leaves a
615 // member of reference type uninitialized, the program is
616 // ill-formed.
617 SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
618 << Field->getType()
619 << ILE->getSyntacticForm()->getSourceRange();
620 SemaRef.Diag(Field->getLocation(),
621 diag::note_uninit_reference_member);
622 hadError = true;
623 return;
624 }
625
626 ExprResult MemberInit = PerformEmptyInit(SemaRef, Loc, MemberEntity,
627 /*VerifyOnly*/false,
628 TreatUnavailableAsInvalid);
629 if (MemberInit.isInvalid()) {
630 hadError = true;
631 return;
632 }
633
634 if (hadError) {
635 // Do nothing
636 } else if (Init < NumInits) {
637 ILE->setInit(Init, MemberInit.getAs<Expr>());
638 } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) {
639 // Empty initialization requires a constructor call, so
640 // extend the initializer list to include the constructor
641 // call and make a note that we'll need to take another pass
642 // through the initializer list.
643 ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>());
644 RequiresSecondPass = true;
645 }
646 } else if (InitListExpr *InnerILE
647 = dyn_cast<InitListExpr>(ILE->getInit(Init)))
648 FillInEmptyInitializations(MemberEntity, InnerILE,
649 RequiresSecondPass, ILE, Init, FillWithNoInit);
650 else if (DesignatedInitUpdateExpr *InnerDIUE
651 = dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init)))
652 FillInEmptyInitializations(MemberEntity, InnerDIUE->getUpdater(),
653 RequiresSecondPass, ILE, Init,
654 /*FillWithNoInit =*/true);
655}
656
657/// Recursively replaces NULL values within the given initializer list
658/// with expressions that perform value-initialization of the
659/// appropriate type, and finish off the InitListExpr formation.
660void
661InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity,
662 InitListExpr *ILE,
663 bool &RequiresSecondPass,
664 InitListExpr *OuterILE,
665 unsigned OuterIndex,
666 bool FillWithNoInit) {
667 assert((ILE->getType() != SemaRef.Context.VoidTy) &&(__builtin_expect(!((ILE->getType() != SemaRef.Context.VoidTy
) && "Should not have void type"), 0) ? __assert_rtn(
__func__, "/Users/adergachev/svn/llvm/tools/clang/lib/Sema/SemaInit.cpp"
, 668, "(ILE->getType() != SemaRef.Context.VoidTy) && \"Should not have void type\""
) : (void)0)
668 "Should not have void type")(__builtin_expect(!((ILE->getType() != SemaRef.Context.VoidTy
) && "Should not have void type"), 0) ? __assert_rtn(
__func__, "/Users/adergachev/svn/llvm/tools/clang/lib/Sema/SemaInit.cpp"
, 668, "(ILE->getType() != SemaRef.Context.VoidTy) && \"Should not have void type\""
) : (void)0)
;
669
670 // If this is a nested initializer list, we might have changed its contents
671 // (and therefore some of its properties, such as instantiation-dependence)
672 // while filling it in. Inform the outer initializer list so that its state
673 // can be updated to match.
674 // FIXME: We should fully build the inner initializers before constructing
675 // the outer InitListExpr instead of mutating AST nodes after they have
676 // been used as subexpressions of other nodes.
677 struct UpdateOuterILEWithUpdatedInit {
678 InitListExpr *Outer;
679 unsigned OuterIndex;
680 ~UpdateOuterILEWithUpdatedInit() {
681 if (Outer)
682 Outer->setInit(OuterIndex, Outer->getInit(OuterIndex));
683 }
684 } UpdateOuterRAII = {OuterILE, OuterIndex};
685
686 // A transparent ILE is not performing aggregate initialization and should
687 // not be filled in.
688 if (ILE->isTransparent())
689 return;
690
691 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
692 const RecordDecl *RDecl = RType->getDecl();
693 if (RDecl->isUnion() && ILE->getInitializedFieldInUnion())
694 FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(),
695 Entity, ILE, RequiresSecondPass, FillWithNoInit);
696 else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) &&
697 cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) {
698 for (auto *Field : RDecl->fields()) {
699 if (Field->hasInClassInitializer()) {
700 FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass,
701 FillWithNoInit);
702 break;
703 }
704 }
705 } else {
706 // The fields beyond ILE->getNumInits() are default initialized, so in
707 // order to leave them uninitialized, the ILE is expanded and the extra
708 // fields are then filled with NoInitExpr.
709 unsigned NumElems = numStructUnionElements(ILE->getType());
710 if (RDecl->hasFlexibleArrayMember())
711 ++NumElems;
712 if (ILE->getNumInits() < NumElems)
713 ILE->resizeInits(SemaRef.Context, NumElems);
714
715 unsigned Init = 0;
716
717 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RDecl)) {
718 for (auto &Base : CXXRD->bases()) {
719 if (hadError)
720 return;
721
722 FillInEmptyInitForBase(Init, Base, Entity, ILE, RequiresSecondPass,
723 FillWithNoInit);
724 ++Init;
725 }
726 }
727
728 for (auto *Field : RDecl->fields()) {
729 if (Field->isUnnamedBitfield())
730 continue;
731
732 if (hadError)
733 return;
734
735 FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass,
736 FillWithNoInit);
737 if (hadError)
738 return;
739
740 ++Init;
741
742 // Only look at the first initialization of a union.
743 if (RDecl->isUnion())
744 break;
745 }
746 }
747
748 return;
749 }
750
751 QualType ElementType;
752
753 InitializedEntity ElementEntity = Entity;
754 unsigned NumInits = ILE->getNumInits();
755 unsigned NumElements = NumInits;
756 if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
757 ElementType = AType->getElementType();
758 if (const auto *CAType = dyn_cast<ConstantArrayType>(AType))
759 NumElements = CAType->getSize().getZExtValue();
760 // For an array new with an unknown bound, ask for one additional element
761 // in order to populate the array filler.
762 if (Entity.isVariableLengthArrayNew())
763 ++NumElements;
764 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
765 0, Entity);
766 } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
767 ElementType = VType->getElementType();
768 NumElements = VType->getNumElements();
769 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
770 0, Entity);
771 } else
772 ElementType = ILE->getType();
773
774 for (unsigned Init = 0; Init != NumElements; ++Init) {
775 if (hadError)
776 return;
777
778 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
779 ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
780 ElementEntity.setElementIndex(Init);
781
782 if (Init >= NumInits && ILE->hasArrayFiller())
783 return;
784
785 Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr);
786 if (!InitExpr && Init < NumInits && ILE->hasArrayFiller())
787 ILE->setInit(Init, ILE->getArrayFiller());
788 else if (!InitExpr && !ILE->hasArrayFiller()) {
789 Expr *Filler = nullptr;
790
791 if (FillWithNoInit)
792 Filler = new (SemaRef.Context) NoInitExpr(ElementType);
793 else {
794 ExprResult ElementInit =
795 PerformEmptyInit(SemaRef, ILE->getEndLoc(), ElementEntity,
796 /*VerifyOnly*/ false, TreatUnavailableAsInvalid);
797 if (ElementInit.isInvalid()) {
798 hadError = true;
799 return;
800 }
801
802 Filler = ElementInit.getAs<Expr>();
803 }
804
805 if (hadError) {
806 // Do nothing
807 } else if (Init < NumInits) {
808 // For arrays, just set the expression used for value-initialization
809 // of the "holes" in the array.
810 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
811 ILE->setArrayFiller(Filler);
812 else
813 ILE->setInit(Init, Filler);
814 } else {
815 // For arrays, just set the expression used for value-initialization
816 // of the rest of elements and exit.
817 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
818 ILE->setArrayFiller(Filler);
819 return;
820 }
821
822 if (!isa<ImplicitValueInitExpr>(Filler) && !isa<NoInitExpr>(Filler)) {
823 // Empty initialization requires a constructor call, so
824 // extend the initializer list to include the constructor
825 // call and make a note that we'll need to take another pass
826 // through the initializer list.
827 ILE->updateInit(SemaRef.Context, Init, Filler);
828 RequiresSecondPass = true;
829 }
830 }
831 } else if (InitListExpr *InnerILE
832 = dyn_cast_or_null<InitListExpr>(InitExpr))
833 FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass,
834 ILE, Init, FillWithNoInit);
835 else if (DesignatedInitUpdateExpr *InnerDIUE
836 = dyn_cast_or_null<DesignatedInitUpdateExpr>(InitExpr))
837 FillInEmptyInitializations(ElementEntity, InnerDIUE->getUpdater(),
838 RequiresSecondPass, ILE, Init,
839 /*FillWithNoInit =*/true);
840 }
841}
842
843InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
844 InitListExpr *IL, QualType &T,
845 bool VerifyOnly,
846 bool TreatUnavailableAsInvalid)
847 : SemaRef(S), VerifyOnly(VerifyOnly),
848 TreatUnavailableAsInvalid(TreatUnavailableAsInvalid) {
849 // FIXME: Check that IL isn't already the semantic form of some other
850 // InitListExpr. If it is, we'd create a broken AST.
851
852 hadError = false;
853
854 FullyStructuredList =
855 getStructuredSubobjectInit(IL, 0, T, nullptr, 0, IL->getSourceRange());
856 CheckExplicitInitList(Entity, IL, T, FullyStructuredList,
857 /*TopLevelObject=*/true);
858
859 if (!hadError && !VerifyOnly) {
860 bool RequiresSecondPass = false;
861 FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass,
862 /*OuterILE=*/nullptr, /*OuterIndex=*/0);
863 if (RequiresSecondPass && !hadError)
864 FillInEmptyInitializations(Entity, FullyStructuredList,
865 RequiresSecondPass, nullptr, 0);
866 }
867}
868
869int InitListChecker::numArrayElements(QualType DeclType) {
870 // FIXME: use a proper constant
871 int maxElements = 0x7FFFFFFF;
872 if (const ConstantArrayType *CAT =
873 SemaRef.Context.getAsConstantArrayType(DeclType)) {
874 maxElements = static_cast<int>(CAT->getSize().getZExtValue());
875 }
876 return maxElements;
877}
878
879int InitListChecker::numStructUnionElements(QualType DeclType) {
880 RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
881 int InitializableMembers = 0;
882 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(structDecl))
883 InitializableMembers += CXXRD->getNumBases();
884 for (const auto *Field : structDecl->fields())
885 if (!Field->isUnnamedBitfield())
886 ++InitializableMembers;
887
888 if (structDecl->isUnion())
889 return std::min(InitializableMembers, 1);
890 return InitializableMembers - structDecl->hasFlexibleArrayMember();
891}
892
893/// Determine whether Entity is an entity for which it is idiomatic to elide
894/// the braces in aggregate initialization.
895static bool isIdiomaticBraceElisionEntity(const InitializedEntity &Entity) {
896 // Recursive initialization of the one and only field within an aggregate
897 // class is considered idiomatic. This case arises in particular for
898 // initialization of std::array, where the C++ standard suggests the idiom of
899 //
900 // std::array<T, N> arr = {1, 2, 3};
901 //
902 // (where std::array is an aggregate struct containing a single array field.
903
904 // FIXME: Should aggregate initialization of a struct with a single
905 // base class and no members also suppress the warning?
906 if (Entity.getKind() != InitializedEntity::EK_Member || !Entity.getParent())
907 return false;
908
909 auto *ParentRD =
910 Entity.getParent()->getType()->castAs<RecordType>()->getDecl();
911 if (CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(ParentRD))
912 if (CXXRD->getNumBases())
913 return false;
914
915 auto FieldIt = ParentRD->field_begin();
916 assert(FieldIt != ParentRD->field_end() &&(__builtin_expect(!(FieldIt != ParentRD->field_end() &&
"no fields but have initializer for member?"), 0) ? __assert_rtn
(__func__, "/Users/adergachev/svn/llvm/tools/clang/lib/Sema/SemaInit.cpp"
, 917, "FieldIt != ParentRD->field_end() && \"no fields but have initializer for member?\""
) : (void)0)
917 "no fields but have initializer for member?")(__builtin_expect(!(FieldIt != ParentRD->field_end() &&
"no fields but have initializer for member?"), 0) ? __assert_rtn
(__func__, "/Users/adergachev/svn/llvm/tools/clang/lib/Sema/SemaInit.cpp"
, 917, "FieldIt != ParentRD->field_end() && \"no fields but have initializer for member?\""
) : (void)0)
;
918 return ++FieldIt == ParentRD->field_end();
919}
920
921/// Check whether the range of the initializer \p ParentIList from element
922/// \p Index onwards can be used to initialize an object of type \p T. Update
923/// \p Index to indicate how many elements of the list were consumed.
924///
925/// This also fills in \p StructuredList, from element \p StructuredIndex
926/// onwards, with the fully-braced, desugared form of the initialization.
927void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
928 InitListExpr *ParentIList,
929 QualType T, unsigned &Index,
930 InitListExpr *StructuredList,
931 unsigned &StructuredIndex) {
932 int maxElements = 0;
933
934 if (T->isArrayType())
935 maxElements = numArrayElements(T);
936 else if (T->isRecordType())
937 maxElements = numStructUnionElements(T);
938 else if (T->isVectorType())
939 maxElements = T->getAs<VectorType>()->getNumElements();
940 else
941 llvm_unreachable("CheckImplicitInitList(): Illegal type")::llvm::llvm_unreachable_internal("CheckImplicitInitList(): Illegal type"
, "/Users/adergachev/svn/llvm/tools/clang/lib/Sema/SemaInit.cpp"
, 941)
;
942
943 if (maxElements == 0) {
944 if (!VerifyOnly)
945 SemaRef.Diag(ParentIList->getInit(Index)->getBeginLoc(),
946 diag::err_implicit_empty_initializer);
947 ++Index;
948 hadError = true;
949 return;
950 }
951
952 // Build a structured initializer list corresponding to this subobject.
953 InitListExpr *StructuredSubobjectInitList = getStructuredSubobjectInit(
954 ParentIList, Index, T, StructuredList, StructuredIndex,
955 SourceRange(ParentIList->getInit(Index)->getBeginLoc(),
956 ParentIList->getSourceRange().getEnd()));
957 unsigned StructuredSubobjectInitIndex = 0;
958
959 // Check the element types and build the structural subobject.
960 unsigned StartIndex = Index;
961 CheckListElementTypes(Entity, ParentIList, T,
962 /*SubobjectIsDesignatorContext=*/false, Index,
963 StructuredSubobjectInitList,
964 StructuredSubobjectInitIndex);
965
966 if (!VerifyOnly) {
967 StructuredSubobjectInitList->setType(T);
968
969 unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
970 // Update the structured sub-object initializer so that it's ending
971 // range corresponds with the end of the last initializer it used.
972 if (EndIndex < ParentIList->getNumInits() &&
973 ParentIList->getInit(EndIndex)) {
974 SourceLocation EndLoc
975 = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
976 StructuredSubobjectInitList->setRBraceLoc(EndLoc);
977 }
978
979 // Complain about missing braces.
980 if ((T->isArrayType() || T->isRecordType()) &&
981 !ParentIList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()) &&
982 !isIdiomaticBraceElisionEntity(Entity)) {
983 SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(),
984 diag::warn_missing_braces)
985 << StructuredSubobjectInitList->getSourceRange()
986 << FixItHint::CreateInsertion(
987 StructuredSubobjectInitList->getBeginLoc(), "{")
988 << FixItHint::CreateInsertion(
989 SemaRef.getLocForEndOfToken(
990 StructuredSubobjectInitList->getEndLoc()),
991 "}");
992 }
993
994 // Warn if this type won't be an aggregate in future versions of C++.
995 auto *CXXRD = T->getAsCXXRecordDecl();
996 if (CXXRD && CXXRD->hasUserDeclaredConstructor()) {
997 SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(),
998 diag::warn_cxx2a_compat_aggregate_init_with_ctors)
999 << StructuredSubobjectInitList->getSourceRange() << T;
1000 }
1001 }
1002}
1003
1004/// Warn that \p Entity was of scalar type and was initialized by a
1005/// single-element braced initializer list.
1006static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity,
1007 SourceRange Braces) {
1008 // Don't warn during template instantiation. If the initialization was
1009 // non-dependent, we warned during the initial parse; otherwise, the
1010 // type might not be scalar in some uses of the template.
1011 if (S.inTemplateInstantiation())
1012 return;
1013
1014 unsigned DiagID = 0;
1015
1016 switch (Entity.getKind()) {
1017 case InitializedEntity::EK_VectorElement:
1018 case InitializedEntity::EK_ComplexElement:
1019 case InitializedEntity::EK_ArrayElement:
1020 case InitializedEntity::EK_Parameter:
1021 case InitializedEntity::EK_Parameter_CF_Audited:
1022 case InitializedEntity::EK_Result:
1023 // Extra braces here are suspicious.
1024 DiagID = diag::warn_braces_around_scalar_init;
1025 break;
1026
1027 case InitializedEntity::EK_Member:
1028 // Warn on aggregate initialization but not on ctor init list or
1029 // default member initializer.
1030 if (Entity.getParent())
1031 DiagID = diag::warn_braces_around_scalar_init;
1032 break;
1033
1034 case InitializedEntity::EK_Variable:
1035 case InitializedEntity::EK_LambdaCapture:
1036 // No warning, might be direct-list-initialization.
1037 // FIXME: Should we warn for copy-list-initialization in these cases?
1038 break;
1039
1040 case InitializedEntity::EK_New:
1041 case InitializedEntity::EK_Temporary:
1042 case InitializedEntity::EK_CompoundLiteralInit:
1043 // No warning, braces are part of the syntax of the underlying construct.
1044 break;
1045
1046 case InitializedEntity::EK_RelatedResult:
1047 // No warning, we already warned when initializing the result.
1048 break;
1049
1050 case InitializedEntity::EK_Exception:
1051 case InitializedEntity::EK_Base:
1052 case InitializedEntity::EK_Delegating:
1053 case InitializedEntity::EK_BlockElement:
1054 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
1055 case InitializedEntity::EK_Binding:
1056 case InitializedEntity::EK_StmtExprResult:
1057 llvm_unreachable("unexpected braced scalar init")::llvm::llvm_unreachable_internal("unexpected braced scalar init"
, "/Users/adergachev/svn/llvm/tools/clang/lib/Sema/SemaInit.cpp"
, 1057)
;
1058 }
1059
1060 if (DiagID) {
1061 S.Diag(Braces.getBegin(), DiagID)
1062 << Braces
1063 << FixItHint::CreateRemoval(Braces.getBegin())
1064 << FixItHint::CreateRemoval(Braces.getEnd());
1065 }
1066}
1067
1068/// Check whether the initializer \p IList (that was written with explicit
1069/// braces) can be used to initialize an object of type \p T.
1070///
1071/// This also fills in \p StructuredList with the fully-braced, desugared
1072/// form of the initialization.
1073void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
1074 InitListExpr *IList, QualType &T,
1075 InitListExpr *StructuredList,
1076 bool TopLevelObject) {
1077 if (!VerifyOnly) {
1078 SyntacticToSemantic[IList] = StructuredList;
1079 StructuredList->setSyntacticForm(IList);
1080 }
1081
1082 unsigned Index = 0, StructuredIndex = 0;
1083 CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
1084 Index, StructuredList, StructuredIndex, TopLevelObject);
1085 if (!VerifyOnly) {
1086 QualType ExprTy = T;
1087 if (!ExprTy->isArrayType())
1088 ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context);
1089 IList->setType(ExprTy);
1090 StructuredList->setType(ExprTy);
1091 }
1092 if (hadError)
1093 return;
1094
1095 if (Index < IList->getNumInits()) {
1096 // We have leftover initializers
1097 if (VerifyOnly) {
1098 if (SemaRef.getLangOpts().CPlusPlus ||
1099 (SemaRef.getLangOpts().OpenCL &&
1100 IList->getType()->isVectorType())) {
1101 hadError = true;
1102 }
1103 return;
1104 }
1105
1106 if (StructuredIndex == 1 &&
1107 IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) ==
1108 SIF_None) {
1109 unsigned DK = diag::ext_excess_initializers_in_char_array_initializer;
1110 if (SemaRef.getLangOpts().CPlusPlus) {
1111 DK = diag::err_excess_initializers_in_char_array_initializer;
1112 hadError = true;
1113 }
1114 // Special-case
1115 SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1116 << IList->getInit(Index)->getSourceRange();
1117 } else if (!T->isIncompleteType()) {
1118 // Don't complain for incomplete types, since we'll get an error
1119 // elsewhere
1120 QualType CurrentObjectType = StructuredList->getType();
1121 int initKind =
1122 CurrentObjectType->isArrayType()? 0 :
1123 CurrentObjectType->isVectorType()? 1 :
1124 CurrentObjectType->isScalarType()? 2 :
1125 CurrentObjectType->isUnionType()? 3 :
1126 4;
1127
1128 unsigned DK = diag::ext_excess_initializers;
1129 if (SemaRef.getLangOpts().CPlusPlus) {
1130 DK = diag::err_excess_initializers;
1131 hadError = true;
1132 }
1133 if (SemaRef.getLangOpts().OpenCL && initKind == 1) {
1134 DK = diag::err_excess_initializers;
1135 hadError = true;
1136 }
1137
1138 SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1139 << initKind << IList->getInit(Index)->getSourceRange();
1140 }
1141 }
1142
1143 if (!VerifyOnly) {
1144 if (T->isScalarType() && IList->getNumInits() == 1 &&
1145 !isa<InitListExpr>(IList->getInit(0)))
1146 warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange());
1147
1148 // Warn if this is a class type that won't be an aggregate in future
1149 // versions of C++.
1150 auto *CXXRD = T->getAsCXXRecordDecl();
1151 if (CXXRD && CXXRD->hasUserDeclaredConstructor()) {
1152 // Don't warn if there's an equivalent default constructor that would be
1153 // used instead.
1154 bool HasEquivCtor = false;
1155 if (IList->getNumInits() == 0) {
1156 auto *CD = SemaRef.LookupDefaultConstructor(CXXRD);
1157 HasEquivCtor = CD && !CD->isDeleted();
1158 }
1159
1160 if (!HasEquivCtor) {
1161 SemaRef.Diag(IList->getBeginLoc(),
1162 diag::warn_cxx2a_compat_aggregate_init_with_ctors)
1163 << IList->getSourceRange() << T;
1164 }
1165 }
1166 }
1167}
1168
1169void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
1170 InitListExpr *IList,
1171 QualType &DeclType,
1172 bool SubobjectIsDesignatorContext,
1173 unsigned &Index,
1174 InitListExpr *StructuredList,
1175 unsigned &StructuredIndex,
1176 bool TopLevelObject) {
1177 if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
1178 // Explicitly braced initializer for complex type can be real+imaginary
1179 // parts.
1180 CheckComplexType(Entity, IList, DeclType, Index,
1181 StructuredList, StructuredIndex);
1182 } else if (DeclType->isScalarType()) {
1183 CheckScalarType(Entity, IList, DeclType, Index,
1184 StructuredList, StructuredIndex);
1185 } else if (DeclType->isVectorType()) {
1186 CheckVectorType(Entity, IList, DeclType, Index,
1187 StructuredList, StructuredIndex);
1188 } else if (DeclType->isRecordType()) {
1189 assert(DeclType->isAggregateType() &&(__builtin_expect(!(DeclType->isAggregateType() &&
"non-aggregate records should be handed in CheckSubElementType"
), 0) ? __assert_rtn(__func__, "/Users/adergachev/svn/llvm/tools/clang/lib/Sema/SemaInit.cpp"
, 1190, "DeclType->isAggregateType() && \"non-aggregate records should be handed in CheckSubElementType\""
) : (void)0)
1190 "non-aggregate records should be handed in CheckSubElementType")(__builtin_expect(!(DeclType->isAggregateType() &&
"non-aggregate records should be handed in CheckSubElementType"
), 0) ? __assert_rtn(__func__, "/Users/adergachev/svn/llvm/tools/clang/lib/Sema/SemaInit.cpp"
, 1190, "DeclType->isAggregateType() && \"non-aggregate records should be handed in CheckSubElementType\""
) : (void)0)
;
1191 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1192 auto Bases =
1193 CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
1194 CXXRecordDecl::base_class_iterator());
1195 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1196 Bases = CXXRD->bases();
1197 CheckStructUnionTypes(Entity, IList, DeclType, Bases, RD->field_begin(),
1198 SubobjectIsDesignatorContext, Index, StructuredList,
1199 StructuredIndex, TopLevelObject);
1200 } else if (DeclType->isArrayType()) {
1201 llvm::APSInt Zero(
1202 SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
1203 false);
1204 CheckArrayType(Entity, IList, DeclType, Zero,
1205 SubobjectIsDesignatorContext, Index,
1206 StructuredList, StructuredIndex);
1207 } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
1208 // This type is invalid, issue a diagnostic.
1209 ++Index;
1210 if (!VerifyOnly)
1211 SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type)
1212 << DeclType;
1213 hadError = true;
1214 } else if (DeclType->isReferenceType()) {
1215 CheckReferenceType(Entity, IList, DeclType, Index,
1216 StructuredList, StructuredIndex);
1217 } else if (DeclType->isObjCObjectType()) {
1218 if (!VerifyOnly)
1219 SemaRef.Diag(IList->getBeginLoc(), diag::err_init_objc_class) << DeclType;
1220 hadError = true;
1221 } else if (DeclType->isOCLIntelSubgroupAVCType()) {
1222 // Checks for scalar type are sufficient for these types too.
1223 CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
1224 StructuredIndex);
1225 } else {
1226 if (!VerifyOnly)
1227 SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type)
1228 << DeclType;
1229 hadError = true;
1230 }
1231}
1232
1233void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
1234 InitListExpr *IList,
1235 QualType ElemType,
1236 unsigned &Index,
1237 InitListExpr *StructuredList,
1238 unsigned &StructuredIndex) {
1239 Expr *expr = IList->getInit(Index);
1240
1241 if (ElemType->isReferenceType())
1242 return CheckReferenceType(Entity, IList, ElemType, Index,
1243 StructuredList, StructuredIndex);
1244
1245 if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
1246 if (SubInitList->getNumInits() == 1 &&
1247 IsStringInit(SubInitList->getInit(0), ElemType, SemaRef.Context) ==
1248 SIF_None) {
1249 expr = SubInitList->getInit(0);
1250 } else if (!SemaRef.getLangOpts().CPlusPlus) {
1251 InitListExpr *InnerStructuredList
1252 = getStructuredSubobjectInit(IList, Index, ElemType,
1253 StructuredList, StructuredIndex,
1254 SubInitList->getSourceRange(), true);
1255 CheckExplicitInitList(Entity, SubInitList, ElemType,
1256 InnerStructuredList);
1257
1258 if (!hadError && !VerifyOnly) {
1259 bool RequiresSecondPass = false;
1260 FillInEmptyInitializations(Entity, InnerStructuredList,
1261 RequiresSecondPass, StructuredList,
1262 StructuredIndex);
1263 if (RequiresSecondPass && !hadError)
1264 FillInEmptyInitializations(Entity, InnerStructuredList,
1265 RequiresSecondPass, StructuredList,
1266 StructuredIndex);
1267 }
1268 ++StructuredIndex;
1269 ++Index;
1270 return;
1271 }
1272 // C++ initialization is handled later.
1273 } else if (isa<ImplicitValueInitExpr>(expr)) {
1274 // This happens during template instantiation when we see an InitListExpr
1275 // that we've already checked once.
1276 assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) &&(__builtin_expect(!(SemaRef.Context.hasSameType(expr->getType
(), ElemType) && "found implicit initialization for the wrong type"
), 0) ? __assert_rtn(__func__, "/Users/adergachev/svn/llvm/tools/clang/lib/Sema/SemaInit.cpp"
, 1277, "SemaRef.Context.hasSameType(expr->getType(), ElemType) && \"found implicit initialization for the wrong type\""
) : (void)0)
1277 "found implicit initialization for the wrong type")(__builtin_expect(!(SemaRef.Context.hasSameType(expr->getType
(), ElemType) && "found implicit initialization for the wrong type"
), 0) ? __assert_rtn(__func__, "/Users/adergachev/svn/llvm/tools/clang/lib/Sema/SemaInit.cpp"
, 1277, "SemaRef.Context.hasSameType(expr->getType(), ElemType) && \"found implicit initialization for the wrong type\""
) : (void)0)
;
1278 if (!VerifyOnly)
1279 UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1280 ++Index;
1281 return;
1282 }
1283
1284 if (SemaRef.getLangOpts().CPlusPlus) {
1285 // C++ [dcl.init.aggr]p2:
1286 // Each member is copy-initialized from the corresponding
1287 // initializer-clause.
1288
1289 // FIXME: Better EqualLoc?
1290 InitializationKind Kind =
1291 InitializationKind::CreateCopy(expr->getBeginLoc(), SourceLocation());
1292 InitializationSequence Seq(SemaRef, Entity, Kind, expr,
1293 /*TopLevelOfInitList*/ true);
1294
1295 // C++14 [dcl.init.aggr]p13:
1296 // If the assignment-expression can initialize a member, the member is
1297 // initialized. Otherwise [...] brace elision is assumed
1298 //
1299 // Brace elision is never performed if the element is not an
1300 // assignment-expression.
1301 if (Seq || isa<InitListExpr>(expr)) {
1302 if (!VerifyOnly) {
1303 ExprResult Result =
1304 Seq.Perform(SemaRef, Entity, Kind, expr);
1305 if (Result.isInvalid())
1306 hadError = true;
1307
1308 UpdateStructuredListElement(StructuredList, StructuredIndex,
1309 Result.getAs<Expr>());
1310 } else if (!Seq)
1311 hadError = true;
1312 ++Index;
1313 return;
1314 }
1315
1316 // Fall through for subaggregate initialization
1317 } else if (ElemType->isScalarType() || ElemType->isAtomicType()) {
1318 // FIXME: Need to handle atomic aggregate types with implicit init lists.
1319 return CheckScalarType(Entity, IList, ElemType, Index,
1320 StructuredList, StructuredIndex);
1321 } else if (const ArrayType *arrayType =
1322 SemaRef.Context.getAsArrayType(ElemType)) {
1323 // arrayType can be incomplete if we're initializing a flexible
1324 // array member. There's nothing we can do with the completed
1325 // type here, though.
1326
1327 if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) {
1328 if (!VerifyOnly) {
1329 CheckStringInit(expr, ElemType, arrayType, SemaRef);
1330 UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1331 }
1332 ++Index;
1333 return;
1334 }
1335
1336 // Fall through for subaggregate initialization.
1337
1338 } else {
1339 assert((ElemType->isRecordType() || ElemType->isVectorType() ||(__builtin_expect(!((ElemType->isRecordType() || ElemType->
isVectorType() || ElemType->isOpenCLSpecificType()) &&
"Unexpected type"), 0) ? __assert_rtn(__func__, "/Users/adergachev/svn/llvm/tools/clang/lib/Sema/SemaInit.cpp"
, 1340, "(ElemType->isRecordType() || ElemType->isVectorType() || ElemType->isOpenCLSpecificType()) && \"Unexpected type\""
) : (void)0)
1340 ElemType->isOpenCLSpecificType()) && "Unexpected type")(__builtin_expect(!((ElemType->isRecordType() || ElemType->
isVectorType() || ElemType->isOpenCLSpecificType()) &&
"Unexpected type"), 0) ? __assert_rtn(__func__, "/Users/adergachev/svn/llvm/tools/clang/lib/Sema/SemaInit.cpp"
, 1340, "(ElemType->isRecordType() || ElemType->isVectorType() || ElemType->isOpenCLSpecificType()) && \"Unexpected type\""
) : (void)0)
;
1341
1342 // C99 6.7.8p13:
1343 //
1344 // The initializer for a structure or union object that has
1345 // automatic storage duration shall be either an initializer
1346 // list as described below, or a single expression that has
1347 // compatible structure or union type. In the latter case, the
1348 // initial value of the object, including unnamed members, is
1349 // that of the expression.
1350 ExprResult ExprRes = expr;
1351 if (SemaRef.CheckSingleAssignmentConstraints(
1352 ElemType, ExprRes, !VerifyOnly) != Sema::Incompatible) {
1353 if (ExprRes.isInvalid())
1354 hadError = true;
1355 else {
1356 ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get());
1357 if (ExprRes.isInvalid())
1358 hadError = true;
1359 }
1360 UpdateStructuredListElement(StructuredList, StructuredIndex,
1361 ExprRes.getAs<Expr>());
1362 ++Index;
1363 return;
1364 }
1365 ExprRes.get();
1366 // Fall through for subaggregate initialization
1367 }
1368
1369 // C++ [dcl.init.aggr]p12:
1370 //
1371 // [...] Otherwise, if the member is itself a non-empty
1372 // subaggregate, brace elision is assumed and the initializer is
1373 // considered for the initialization of the first member of
1374 // the subaggregate.
1375 // OpenCL vector initializer is handled elsewhere.
1376 if ((!SemaRef.getLangOpts().OpenCL && ElemType->isVectorType()) ||
1377 ElemType->isAggregateType()) {
1378 CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
1379 StructuredIndex);
1380 ++StructuredIndex;
1381 } else {
1382 if (!VerifyOnly) {
1383 // We cannot initialize this element, so let
1384 // PerformCopyInitialization produce the appropriate diagnostic.
1385 SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr,
1386 /*TopLevelOfInitList=*/true);
1387 }
1388 hadError = true;
1389 ++Index;
1390 ++StructuredIndex;
1391 }
1392}
1393
1394void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
1395 InitListExpr *IList, QualType DeclType,
1396 unsigned &Index,
1397 InitListExpr *StructuredList,
1398 unsigned &StructuredIndex) {
1399 assert(Index == 0 && "Index in explicit init list must be zero")(__builtin_expect(!(Index == 0 && "Index in explicit init list must be zero"
), 0) ? __assert_rtn(__func__, "/Users/adergachev/svn/llvm/tools/clang/lib/Sema/SemaInit.cpp"
, 1399, "Index == 0 && \"Index in explicit init list must be zero\""
) : (void)0)
;
1400
1401 // As an extension, clang supports complex initializers, which initialize
1402 // a complex number component-wise. When an explicit initializer list for
1403 // a complex number contains two two initializers, this extension kicks in:
1404 // it exepcts the initializer list to contain two elements convertible to
1405 // the element type of the complex type. The first element initializes
1406 // the real part, and the second element intitializes the imaginary part.
1407
1408 if (IList->getNumInits() != 2)
1409 return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
1410 StructuredIndex);
1411
1412 // This is an extension in C. (The builtin _Complex type does not exist
1413 // in the C++ standard.)
1414 if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly)
1415 SemaRef.Diag(IList->getBeginLoc(), diag::ext_complex_component_init)
1416 << IList->getSourceRange();
1417
1418 // Initialize the complex number.
1419 QualType elementType = DeclType->getAs<ComplexType>()->getElementType();
1420 InitializedEntity ElementEntity =
1421 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1422
1423 for (unsigned i = 0; i < 2; ++i) {
1424 ElementEntity.setElementIndex(Index);
1425 CheckSubElementType(ElementEntity, IList, elementType, Index,
1426 StructuredList, StructuredIndex);
1427 }
1428}
1429
1430void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
1431 InitListExpr *IList, QualType DeclType,
1432 unsigned &Index,
1433 InitListExpr *StructuredList,
1434 unsigned &StructuredIndex) {
1435 if (Index >= IList->getNumInits()) {
1436 if (!VerifyOnly)
1437 SemaRef.Diag(IList->getBeginLoc(),
1438 SemaRef.getLangOpts().CPlusPlus11
1439 ? diag::warn_cxx98_compat_empty_scalar_initializer
1440 : diag::err_empty_scalar_initializer)
1441 << IList->getSourceRange();
1442 hadError = !SemaRef.getLangOpts().CPlusPlus11;
1443 ++Index;
1444 ++StructuredIndex;
1445 return;
1446 }
1447
1448 Expr *expr = IList->getInit(Index);
1449 if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
1450 // FIXME: This is invalid, and accepting it causes overload resolution
1451 // to pick the wrong overload in some corner cases.
1452 if (!VerifyOnly)
1453 SemaRef.Diag(SubIList->getBeginLoc(),
1454 diag::ext_many_braces_around_scalar_init)
1455 << SubIList->getSourceRange();
1456
1457 CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
1458 StructuredIndex);
1459 return;
1460 } else if (isa<DesignatedInitExpr>(expr)) {
1461 if (!VerifyOnly)
1462 SemaRef.Diag(expr->getBeginLoc(), diag::err_designator_for_scalar_init)
1463 << DeclType << expr->getSourceRange();
1464 hadError = true;
1465 ++Index;
1466 ++StructuredIndex;
1467 return;
1468 }
1469
1470 if (VerifyOnly) {
1471 if (!SemaRef.CanPerformCopyInitialization(Entity,expr))
1472 hadError = true;
1473 ++Index;
1474 return;
1475 }
1476
1477 ExprResult Result =
1478 SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr,
1479 /*TopLevelOfInitList=*/true);
1480
1481 Expr *ResultExpr = nullptr;
1482
1483 if (Result.isInvalid())
1484 hadError = true; // types weren't compatible.
1485 else {
1486 ResultExpr = Result.getAs<Expr>();
1487
1488 if (ResultExpr != expr) {
1489 // The type was promoted, update initializer list.
1490 IList->setInit(Index, ResultExpr);
1491 }
1492 }
1493 if (hadError)
1494 ++StructuredIndex;
1495 else
1496 UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
1497 ++Index;
1498}
1499
1500void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
1501 InitListExpr *IList, QualType DeclType,
1502 unsigned &Index,
1503 InitListExpr *StructuredList,
1504 unsigned &StructuredIndex) {
1505 if (Index >= IList->getNumInits()) {
1506 // FIXME: It would be wonderful if we could point at the actual member. In
1507 // general, it would be useful to pass location information down the stack,
1508 // so that we know the location (or decl) of the "current object" being
1509 // initialized.
1510 if (!VerifyOnly)
1511 SemaRef.Diag(IList->getBeginLoc(),
1512 diag::err_init_reference_member_uninitialized)
1513 << DeclType << IList->getSourceRange();
1514 hadError = true;
1515 ++Index;
1516 ++StructuredIndex;
1517 return;
1518 }
1519
1520 Expr *expr = IList->getInit(Index);
1521 if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) {
1522 if (!VerifyOnly)
1523 SemaRef.Diag(IList->getBeginLoc(), diag::err_init_non_aggr_init_list)
1524 << DeclType << IList->getSourceRange();
1525 hadError = true;
1526 ++Index;
1527 ++StructuredIndex;
1528 return;
1529 }
1530
1531 if (VerifyOnly) {
1532 if (!SemaRef.CanPerformCopyInitialization(Entity,expr))
1533 hadError = true;
1534 ++Index;
1535 return;
1536 }
1537
1538 ExprResult Result =
1539 SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr,
1540 /*TopLevelOfInitList=*/true);
1541
1542 if (Result.isInvalid())
1543 hadError = true;
1544
1545 expr = Result.getAs<Expr>();
1546 IList->setInit(Index, expr);
1547
1548 if (hadError)
1549 ++StructuredIndex;
1550 else
1551 UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1552 ++Index;
1553}
1554
1555void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
1556 InitListExpr *IList, QualType DeclType,
1557 unsigned &Index,
1558 InitListExpr *StructuredList,
1559 unsigned &StructuredIndex) {
1560 const VectorType *VT = DeclType->getAs<VectorType>();
1561 unsigned maxElements = VT->getNumElements();
1562 unsigned numEltsInit = 0;
1563 QualType elementType = VT->getElementType();
1564
1565 if (Index >= IList->getNumInits()) {
1566 // Make sure the element type can be value-initialized.
1567 if (VerifyOnly)
1568 CheckEmptyInitializable(
1569 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
1570 IList->getEndLoc());
1571 return;
1572 }
1573
1574 if (!SemaRef.getLangOpts().OpenCL) {
1575 // If the initializing element is a vector, try to copy-initialize
1576 // instead of breaking it apart (which is doomed to failure anyway).
1577 Expr *Init = IList->getInit(Index);
1578 if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
1579 if (VerifyOnly) {
1580 if (!SemaRef.CanPerformCopyInitialization(Entity, Init))
1581 hadError = true;
1582 ++Index;
1583 return;
1584 }
1585
1586 ExprResult Result =
1587 SemaRef.PerformCopyInitialization(Entity, Init->getBeginLoc(), Init,
1588 /*TopLevelOfInitList=*/true);
1589
1590 Expr *ResultExpr = nullptr;
1591 if (Result.isInvalid())
1592 hadError = true; // types weren't compatible.
1593 else {
1594 ResultExpr = Result.getAs<Expr>();
1595
1596 if (ResultExpr != Init) {
1597 // The type was promoted, update initializer list.
1598 IList->setInit(Index, ResultExpr);
1599 }
1600 }
1601 if (hadError)
1602 ++StructuredIndex;
1603 else
1604 UpdateStructuredListElement(StructuredList, StructuredIndex,
1605 ResultExpr);
1606 ++Index;
1607 return;
1608 }
1609
1610 InitializedEntity ElementEntity =
1611 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1612
1613 for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
1614 // Don't attempt to go past the end of the init list
1615 if (Index >= IList->getNumInits()) {
1616 if (VerifyOnly)
1617 CheckEmptyInitializable(ElementEntity, IList->getEndLoc());
1618 break;
1619 }
1620
1621 ElementEntity.setElementIndex(Index);
1622 CheckSubElementType(ElementEntity, IList, elementType, Index,
1623 StructuredList, StructuredIndex);
1624 }
1625
1626 if (VerifyOnly)
1627 return;
1628
1629 bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian();
1630 const VectorType *T = Entity.getType()->getAs<VectorType>();
1631 if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector ||
1632 T->getVectorKind() == VectorType::NeonPolyVector)) {
1633 // The ability to use vector initializer lists is a GNU vector extension
1634 // and is unrelated to the NEON intrinsics in arm_neon.h. On little
1635 // endian machines it works fine, however on big endian machines it
1636 // exhibits surprising behaviour:
1637 //
1638 // uint32x2_t x = {42, 64};
1639 // return vget_lane_u32(x, 0); // Will return 64.
1640 //
1641 // Because of this, explicitly call out that it is non-portable.
1642 //
1643 SemaRef.Diag(IList->getBeginLoc(),
1644 diag::warn_neon_vector_initializer_non_portable);
1645
1646 const char *typeCode;
1647 unsigned typeSize = SemaRef.Context.getTypeSize(elementType);
1648
1649 if (elementType->isFloatingType())
1650 typeCode = "f";
1651 else if (elementType->isSignedIntegerType())
1652 typeCode = "s";
1653 else if (elementType->isUnsignedIntegerType())
1654 typeCode = "u";
1655 else
1656 llvm_unreachable("Invalid element type!")::llvm::llvm_unreachable_internal("Invalid element type!", "/Users/adergachev/svn/llvm/tools/clang/lib/Sema/SemaInit.cpp"
, 1656)
;
1657
1658 SemaRef.Diag(IList->getBeginLoc(),
1659 SemaRef.Context.getTypeSize(VT) > 64
1660 ? diag::note_neon_vector_initializer_non_portable_q
1661 : diag::note_neon_vector_initializer_non_portable)
1662 << typeCode << typeSize;
1663 }
1664
1665 return;
1666 }
1667
1668 InitializedEntity ElementEntity =
1669 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1670
1671 // OpenCL initializers allows vectors to be constructed from vectors.
1672 for (unsigned i = 0; i < maxElements; ++i) {
1673 // Don't attempt to go past the end of the init list
1674 if (Index >= IList->getNumInits())
1675 break;
1676
1677 ElementEntity.setElementIndex(Index);
1678
1679 QualType IType = IList->getInit(Index)->getType();
1680 if (!IType->isVectorType()) {
1681 CheckSubElementType(ElementEntity, IList, elementType, Index,
1682 StructuredList, StructuredIndex);
1683 ++numEltsInit;
1684 } else {
1685 QualType VecType;
1686 const VectorType *IVT = IType->getAs<VectorType>();
1687 unsigned numIElts = IVT->getNumElements();
1688
1689 if (IType->isExtVectorType())
1690 VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
1691 else
1692 VecType = SemaRef.Context.getVectorType(elementType, numIElts,
1693 IVT->getVectorKind());
1694 CheckSubElementType(ElementEntity, IList, VecType, Index,
1695 StructuredList, StructuredIndex);
1696 numEltsInit += numIElts;
1697 }
1698 }
1699
1700 // OpenCL requires all elements to be initialized.
1701 if (numEltsInit != maxElements) {
1702 if (!VerifyOnly)
1703 SemaRef.Diag(IList->getBeginLoc(),
1704 diag::err_vector_incorrect_num_initializers)
1705 << (numEltsInit < maxElements) << maxElements << numEltsInit;
1706 hadError = true;
1707 }
1708}
1709
1710void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
1711 InitListExpr *IList, QualType &DeclType,
1712 llvm::APSInt elementIndex,
1713 bool SubobjectIsDesignatorContext,
1714 unsigned &Index,
1715 InitListExpr *StructuredList,
1716 unsigned &StructuredIndex) {
1717 const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
1718
1719 // Check for the special-case of initializing an array with a string.
1720 if (Index < IList->getNumInits()) {
1721 if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) ==
1722 SIF_None) {
1723 // We place the string literal directly into the resulting
1724 // initializer list. This is the only place where the structure
1725 // of the structured initializer list doesn't match exactly,
1726 // because doing so would involve allocating one character
1727 // constant for each string.
1728 if (!VerifyOnly) {
1729 CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef);
1730 UpdateStructuredListElement(StructuredList, StructuredIndex,
1731 IList->getInit(Index));
1732 StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
1733 }
1734 ++Index;
1735 return;
1736 }
1737 }
1738 if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
1739 // Check for VLAs; in standard C it would be possible to check this
1740 // earlier, but I don't know where clang accepts VLAs (gcc accepts
1741 // them in all sorts of strange places).
1742 if (!VerifyOnly)
1743 SemaRef.Diag(VAT->getSizeExpr()->getBeginLoc(),
1744 diag::err_variable_object_no_init)
1745 << VAT->getSizeExpr()->getSourceRange();
1746 hadError = true;
1747 ++Index;
1748 ++StructuredIndex;
1749 return;
1750 }
1751
1752 // We might know the maximum number of elements in advance.
1753 llvm::APSInt maxElements(elementIndex.getBitWidth(),
1754 elementIndex.isUnsigned());
1755 bool maxElementsKnown = false;
1756 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
1757 maxElements = CAT->getSize();
1758 elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
1759 elementIndex.setIsUnsigned(maxElements.isUnsigned());
1760 maxElementsKnown = true;
1761 }
1762
1763 QualType elementType = arrayType->getElementType();
1764 while (Index < IList->getNumInits()) {
1765 Expr *Init = IList->getInit(Index);
1766 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1767 // If we're not the subobject that matches up with the '{' for
1768 // the designator, we shouldn't be handling the
1769 // designator. Return immediately.
1770 if (!SubobjectIsDesignatorContext)
1771 return;
1772
1773 // Handle this designated initializer. elementIndex will be
1774 // updated to be the next array element we'll initialize.
1775 if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1776 DeclType, nullptr, &elementIndex, Index,
1777 StructuredList, StructuredIndex, true,
1778 false)) {
1779 hadError = true;
1780 continue;
1781 }
1782
1783 if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1784 maxElements = maxElements.extend(elementIndex.getBitWidth());
1785 else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1786 elementIndex = elementIndex.extend(maxElements.getBitWidth());
1787 elementIndex.setIsUnsigned(maxElements.isUnsigned());
1788
1789 // If the array is of incomplete type, keep track of the number of
1790 // elements in the initializer.
1791 if (!maxElementsKnown && elementIndex > maxElements)
1792 maxElements = elementIndex;
1793
1794 continue;
1795 }
1796
1797 // If we know the maximum number of elements, and we've already
1798 // hit it, stop consuming elements in the initializer list.
1799 if (maxElementsKnown && elementIndex == maxElements)
1800 break;
1801
1802 InitializedEntity ElementEntity =
1803 InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1804 Entity);
1805 // Check this element.
1806 CheckSubElementType(ElementEntity, IList, elementType, Index,
1807 StructuredList, StructuredIndex);
1808 ++elementIndex;
1809
1810 // If the array is of incomplete type, keep track of the number of
1811 // elements in the initializer.
1812 if (!maxElementsKnown && elementIndex > maxElements)
1813 maxElements = elementIndex;
1814 }
1815 if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
1816 // If this is an incomplete array type, the actual type needs to
1817 // be calculated here.
1818 llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1819 if (maxElements == Zero && !Entity.isVariableLengthArrayNew()) {
1820 // Sizing an array implicitly to zero is not allowed by ISO C,
1821 // but is supported by GNU.
1822 SemaRef.Diag(IList->getBeginLoc(), diag::ext_typecheck_zero_array_size);
1823 }
1824
1825 DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
1826 ArrayType::Normal, 0);
1827 }
1828 if (!hadError && VerifyOnly) {
1829 // If there are any members of the array that get value-initialized, check
1830 // that is possible. That happens if we know the bound and don't have
1831 // enough elements, or if we're performing an array new with an unknown
1832 // bound.
1833 // FIXME: This needs to detect holes left by designated initializers too.
1834 if ((maxElementsKnown && elementIndex < maxElements) ||
1835 Entity.isVariableLengthArrayNew())
1836 CheckEmptyInitializable(
1837 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
1838 IList->getEndLoc());
1839 }
1840}
1841
1842bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
1843 Expr *InitExpr,
1844 FieldDecl *Field,
1845 bool TopLevelObject) {
1846 // Handle GNU flexible array initializers.
1847 unsigned FlexArrayDiag;
1848 if (isa<InitListExpr>(InitExpr) &&
1849 cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
1850 // Empty flexible array init always allowed as an extension
1851 FlexArrayDiag = diag::ext_flexible_array_init;
1852 } else if (SemaRef.getLangOpts().CPlusPlus) {
1853 // Disallow flexible array init in C++; it is not required for gcc
1854 // compatibility, and it needs work to IRGen correctly in general.
1855 FlexArrayDiag = diag::err_flexible_array_init;
1856 } else if (!TopLevelObject) {
1857 // Disallow flexible array init on non-top-level object
1858 FlexArrayDiag = diag::err_flexible_array_init;
1859 } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
1860 // Disallow flexible array init on anything which is not a variable.
1861 FlexArrayDiag = diag::err_flexible_array_init;
1862 } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
1863 // Disallow flexible array init on local variables.
1864 FlexArrayDiag = diag::err_flexible_array_init;
1865 } else {
1866 // Allow other cases.
1867 FlexArrayDiag = diag::ext_flexible_array_init;
1868 }
1869
1870 if (!VerifyOnly) {
1871 SemaRef.Diag(InitExpr->getBeginLoc(), FlexArrayDiag)
1872 << InitExpr->getBeginLoc();
1873 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1874 << Field;
1875 }
1876
1877 return FlexArrayDiag != diag::ext_flexible_array_init;
1878}
1879
1880/// Check if the type of a class element has an accessible destructor.
1881///
1882/// Aggregate initialization requires a class element's destructor be
1883/// accessible per 11.6.1 [dcl.init.aggr]:
1884///
1885/// The destructor for each element of class type is potentially invoked
1886/// (15.4 [class.dtor]) from the context where the aggregate initialization
1887/// occurs.
1888static bool hasAccessibleDestructor(QualType ElementType, SourceLocation Loc,
1889 Sema &SemaRef) {
1890 auto *CXXRD = ElementType->getAsCXXRecordDecl();
1891 if (!CXXRD)
1892 return false;
1893
1894 CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(CXXRD);
1895 SemaRef.CheckDestructorAccess(Loc, Destructor,
1896 SemaRef.PDiag(diag::err_access_dtor_temp)
1897 << ElementType);
1898 SemaRef.MarkFunctionReferenced(Loc, Destructor);
1899 if (SemaRef.DiagnoseUseOfDecl(Destructor, Loc))
1900 return true;
1901 return false;
1902}
1903
1904void InitListChecker::CheckStructUnionTypes(
1905 const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType,
1906 CXXRecordDecl::base_class_range Bases, RecordDecl::field_iterator Field,
1907 bool SubobjectIsDesignatorContext, unsigned &Index,
1908 InitListExpr *StructuredList, unsigned &StructuredIndex,
1909 bool TopLevelObject) {
1910 RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
1911
1912 // If the record is invalid, some of it's members are invalid. To avoid
1913 // confusion, we forgo checking the intializer for the entire record.
1914 if (structDecl->isInvalidDecl()) {
1915 // Assume it was supposed to consume a single initializer.
1916 ++Index;
1917 hadError = true;
1918 return;
1919 }
1920
1921 if (DeclType->isUnionType() && IList->getNumInits() == 0) {
1922 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1923
1924 if (!VerifyOnly)
1925 for (FieldDecl *FD : RD->fields()) {
1926 QualType ET = SemaRef.Context.getBaseElementType(FD->getType());
1927 if (hasAccessibleDestructor(ET, IList->getEndLoc(), SemaRef)) {
1928 hadError = true;
1929 return;
1930 }
1931 }
1932
1933 // If there's a default initializer, use it.
1934 if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->hasInClassInitializer()) {
1935 if (VerifyOnly)
1936 return;
1937 for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1938 Field != FieldEnd; ++Field) {
1939 if (Field->hasInClassInitializer()) {
1940 StructuredList->setInitializedFieldInUnion(*Field);
1941 // FIXME: Actually build a CXXDefaultInitExpr?
1942 return;
1943 }
1944 }
1945 }
1946
1947 // Value-initialize the first member of the union that isn't an unnamed
1948 // bitfield.
1949 for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1950 Field != FieldEnd; ++Field) {
1951 if (!Field->isUnnamedBitfield()) {
1952 if (VerifyOnly)
1953 CheckEmptyInitializable(
1954 InitializedEntity::InitializeMember(*Field, &Entity),
1955 IList->getEndLoc());
1956 else
1957 StructuredList->setInitializedFieldInUnion(*Field);
1958 break;
1959 }
1960 }
1961 return;
1962 }
1963
1964 bool InitializedSomething = false;
1965
1966 // If we have any base classes, they are initialized prior to the fields.
1967 for (auto &Base : Bases) {
1968 Expr *Init = Index < IList->getNumInits() ? IList->getInit(Index) : nullptr;
1969
1970 // Designated inits always initialize fields, so if we see one, all
1971 // remaining base classes have no explicit initializer.
1972 if (Init && isa<DesignatedInitExpr>(Init))
1973 Init = nullptr;
1974
1975 SourceLocation InitLoc = Init ? Init->getBeginLoc() : IList->getEndLoc();
1976 InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
1977 SemaRef.Context, &Base, false, &Entity);
1978 if (Init) {
1979 CheckSubElementType(BaseEntity, IList, Base.getType(), Index,
1980 StructuredList, StructuredIndex);
1981 InitializedSomething = true;
1982 } else if (VerifyOnly) {
1983 CheckEmptyInitializable(BaseEntity, InitLoc);
1984 }
1985
1986 if (!VerifyOnly)
1987 if (hasAccessibleDestructor(Base.getType(), InitLoc, SemaRef)) {
1988 hadError = true;
1989 return;
1990 }
1991 }
1992
1993 // If structDecl is a forward declaration, this loop won't do
1994 // anything except look at designated initializers; That's okay,
1995 // because an error should get printed out elsewhere. It might be
1996 // worthwhile to skip over the rest of the initializer, though.
1997 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1998 RecordDecl::field_iterator FieldEnd = RD->field_end();
1999 bool CheckForMissingFields =
2000 !IList->isIdiomaticZeroInitializer(SemaRef.getLangOpts());
2001 bool HasDesignatedInit = false;
2002
2003 while (Index < IList->getNumInits()) {
2004 Expr *Init = IList->getInit(Index);
2005 SourceLocation InitLoc = Init->getBeginLoc();
2006
2007 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
2008 // If we're not the subobject that matches up with the '{' for
2009 // the designator, we shouldn't be handling the
2010 // designator. Return immediately.
2011 if (!SubobjectIsDesignatorContext)
2012 return;
2013
2014 HasDesignatedInit = true;
2015
2016 // Handle this designated initializer. Field will be updated to
2017 // the next field that we'll be initializing.
2018 if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
2019 DeclType, &Field, nullptr, Index,
2020 StructuredList, StructuredIndex,
2021 true, TopLevelObject))
2022 hadError = true;
2023 else if (!VerifyOnly) {
2024 // Find the field named by the designated initializer.
2025 RecordDecl::field_iterator F = RD->field_begin();
2026 while (std::next(F) != Field)
2027 ++F;
2028 QualType ET = SemaRef.Context.getBaseElementType(F->getType());
2029 if (hasAccessibleDestructor(ET, InitLoc, SemaRef)) {
2030 hadError = true;
2031 return;
2032 }
2033 }
2034
2035 InitializedSomething = true;
2036
2037 // Disable check for missing fields when designators are used.
2038 // This matches gcc behaviour.
2039 CheckForMissingFields = false;
2040 continue;
2041 }
2042
2043 if (Field == FieldEnd) {
2044 // We've run out of fields. We're done.
2045 break;
2046 }
2047
2048 // We've already initialized a member of a union. We're done.
2049 if (InitializedSomething && DeclType->isUnionType())
2050 break;
2051
2052 // If we've hit the flexible array member at the end, we're done.
2053 if (Field->getType()->isIncompleteArrayType())
2054 break;
2055
2056 if (Field->isUnnamedBitfield()) {
2057 // Don't initialize unnamed bitfields, e.g. "int : 20;"
2058 ++Field;
2059 continue;
2060 }
2061
2062 // Make sure we can use this declaration.
2063 bool InvalidUse;
2064 if (VerifyOnly)
2065 InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
2066 else
2067 InvalidUse = SemaRef.DiagnoseUseOfDecl(
2068 *Field, IList->getInit(Index)->getBeginLoc());
2069 if (InvalidUse) {
2070 ++Index;
2071 ++Field;
2072 hadError = true;
2073 continue;
2074 }
2075
2076 if (!VerifyOnly) {
2077 QualType ET = SemaRef.Context.getBaseElementType(Field->getType());
2078 if (hasAccessibleDestructor(ET, InitLoc, SemaRef)) {
2079 hadError = true;
2080 return;
2081 }
2082 }
2083
2084 InitializedEntity MemberEntity =
2085 InitializedEntity::InitializeMember(*Field, &Entity);
2086 CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2087 StructuredList, StructuredIndex);
2088 InitializedSomething = true;
2089
2090 if (DeclType->isUnionType() && !VerifyOnly) {
2091 // Initialize the first field within the union.
2092 StructuredList->setInitializedFieldInUnion(*Field);
2093 }
2094
2095 ++Field;
2096 }
2097
2098 // Emit warnings for missing struct field initializers.
2099 if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
2100 Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
2101 !DeclType->isUnionType()) {
2102 // It is possible we have one or more unnamed bitfields remaining.
2103 // Find first (if any) named field and emit warning.
2104 for (RecordDecl::field_iterator it = Field, end = RD->field_end();
2105 it != end; ++it) {
2106 if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) {
2107 SemaRef.Diag(IList->getSourceRange().getEnd(),
2108 diag::warn_missing_field_initializers) << *it;
2109 break;
2110 }
2111 }
2112 }
2113
2114 // Check that any remaining fields can be value-initialized.
2115 if (VerifyOnly && Field != FieldEnd && !DeclType->isUnionType() &&
2116 !Field->getType()->isIncompleteArrayType()) {
2117 // FIXME: Should check for holes left by designated initializers too.
2118 for (; Field != FieldEnd && !hadError; ++Field) {
2119 if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer())
2120 CheckEmptyInitializable(
2121 InitializedEntity::InitializeMember(*Field, &Entity),
2122 IList->getEndLoc());
2123 }
2124 }
2125
2126 // Check that the types of the remaining fields have accessible destructors.
2127 if (!VerifyOnly) {
2128 // If the initializer expression has a designated initializer, check the
2129 // elements for which a designated initializer is not provided too.
2130 RecordDecl::field_iterator I = HasDesignatedInit ? RD->field_begin()
2131 : Field;
2132 for (RecordDecl::field_iterator E = RD->field_end(); I != E; ++I) {
2133 QualType ET = SemaRef.Context.getBaseElementType(I->getType());
2134 if (hasAccessibleDestructor(ET, IList->getEndLoc(), SemaRef)) {
2135 hadError = true;
2136 return;
2137 }
2138 }
2139 }
2140
2141 if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
2142 Index >= IList->getNumInits())
2143 return;
2144
2145 if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
2146 TopLevelObject)) {
2147 hadError = true;
2148 ++Index;
2149 return;
2150 }
2151
2152 InitializedEntity MemberEntity =
2153 InitializedEntity::InitializeMember(*Field, &Entity);
2154
2155 if (isa<InitListExpr>(IList->getInit(Index)))
2156 CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2157 StructuredList, StructuredIndex);
2158 else
2159 CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
2160 StructuredList, StructuredIndex);
2161}
2162
2163/// Expand a field designator that refers to a member of an
2164/// anonymous struct or union into a series of field designators that
2165/// refers to the field within the appropriate subobject.
2166///
2167static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
2168 DesignatedInitExpr *DIE,
2169 unsigned DesigIdx,
2170 IndirectFieldDecl *IndirectField) {
2171 typedef DesignatedInitExpr::Designator Designator;
2172
2173 // Build the replacement designators.
2174 SmallVector<Designator, 4> Replacements;
2175 for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
2176 PE = IndirectField->chain_end(); PI != PE; ++PI) {
2177 if (PI + 1 == PE)
2178 Replacements.push_back(Designator((IdentifierInfo *)nullptr,
2179 DIE->getDesignator(DesigIdx)->getDotLoc(),
2180 DIE->getDesignator(DesigIdx)->getFieldLoc()));
2181 else
2182 Replacements.push_back(Designator((IdentifierInfo *)nullptr,
2183 SourceLocation(), SourceLocation()));
2184 assert(isa<FieldDecl>(*PI))(__builtin_expect(!(isa<FieldDecl>(*PI)), 0) ? __assert_rtn
(__func__, "/Users/adergachev/svn/llvm/tools/clang/lib/Sema/SemaInit.cpp"
, 2184, "isa<FieldDecl>(*PI)") : (void)0)
;
2185 Replacements.back().setField(cast<FieldDecl>(*PI));
2186 }
2187
2188 // Expand the current designator into the set of replacement
2189 // designators, so we have a full subobject path down to where the
2190 // member of the anonymous struct/union is actually stored.
2191 DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
2192 &Replacements[0] + Replacements.size());
2193}
2194
2195static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
2196 DesignatedInitExpr *DIE) {
2197 unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
2198 SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
2199 for (unsigned I = 0; I < NumIndexExprs; ++I)
2200 IndexExprs[I] = DIE->getSubExpr(I + 1);
2201 return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators(),
2202 IndexExprs,
2203 DIE->getEqualOrColonLoc(),
2204 DIE->usesGNUSyntax(), DIE->getInit());
2205}
2206
2207namespace {
2208
2209// Callback to only accept typo corrections that are for field members of
2210// the given struct or union.
2211class FieldInitializerValidatorCCC : public CorrectionCandidateCallback {
2212 public:
2213 explicit FieldInitializerValidatorCCC(RecordDecl *RD)
2214 : Record(RD) {}
2215
2216 bool ValidateCandidate(const TypoCorrection &candidate) override {
2217 FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>();
2218 return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record);
2219 }
2220
2221 private:
2222 RecordDecl *Record;
2223};
2224
2225} // end anonymous namespace
2226
2227/// Check the well-formedness of a C99 designated initializer.
2228///
2229/// Determines whether the designated initializer @p DIE, which
2230/// resides at the given @p Index within the initializer list @p
2231/// IList, is well-formed for a current object of type @p DeclType
2232/// (C99 6.7.8). The actual subobject that this designator refers to
2233/// within the current subobject is returned in either
2234/// @p NextField or @p NextElementIndex (whichever is appropriate).
2235///
2236/// @param IList The initializer list in which this designated
2237/// initializer occurs.
2238///
2239/// @param DIE The designated initializer expression.
2240///
2241/// @param DesigIdx The index of the current designator.
2242///
2243/// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17),
2244/// into which the designation in @p DIE should refer.
2245///
2246/// @param NextField If non-NULL and the first designator in @p DIE is
2247/// a field, this will be set to the field declaration corresponding
2248/// to the field named by the designator.
2249///
2250/// @param NextElementIndex If non-NULL and the first designator in @p
2251/// DIE is an array designator or GNU array-range designator, this
2252/// will be set to the last index initialized by this designator.
2253///
2254/// @param Index Index into @p IList where the designated initializer
2255/// @p DIE occurs.
2256///
2257/// @param StructuredList The initializer list expression that
2258/// describes all of the subobject initializers in the order they'll
2259/// actually be initialized.
2260///
2261/// @returns true if there was an error, false otherwise.
2262bool
2263InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
2264 InitListExpr *IList,
2265 DesignatedInitExpr *DIE,
2266 unsigned DesigIdx,
2267 QualType &CurrentObjectType,
2268 RecordDecl::field_iterator *NextField,
2269 llvm::APSInt *NextElementIndex,
2270 unsigned &Index,
2271 InitListExpr *StructuredList,
2272 unsigned &StructuredIndex,
2273 bool FinishSubobjectInit,
2274 bool TopLevelObject) {
2275 if (DesigIdx == DIE->size()) {
2276 // Check the actual initialization for the designated object type.
2277 bool prevHadError = hadError;
2278
2279 // Temporarily remove the designator expression from the
2280 // initializer list that the child calls see, so that we don't try
2281 // to re-process the designator.
2282 unsigned OldIndex = Index;
2283 IList->setInit(OldIndex, DIE->getInit());
2284
2285 CheckSubElementType(Entity, IList, CurrentObjectType, Index,
2286 StructuredList, StructuredIndex);
2287
2288 // Restore the designated initializer expression in the syntactic
2289 // form of the initializer list.
2290 if (IList->getInit(OldIndex) != DIE->getInit())
2291 DIE->setInit(IList->getInit(OldIndex));
2292 IList->setInit(OldIndex, DIE);
2293
2294 return hadError && !prevHadError;
2295 }
2296
2297 DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
2298 bool IsFirstDesignator = (DesigIdx == 0);
2299 if (!VerifyOnly) {
2300 assert((IsFirstDesignator || StructuredList) &&(__builtin_expect(!((IsFirstDesignator || StructuredList) &&
"Need a non-designated initializer list to start from"), 0) ?
__assert_rtn(__func__, "/Users/adergachev/svn/llvm/tools/clang/lib/Sema/SemaInit.cpp"
, 2301, "(IsFirstDesignator || StructuredList) && \"Need a non-designated initializer list to start from\""
) : (void)0)
2301 "Need a non-designated initializer list to start from")(__builtin_expect(!((IsFirstDesignator || StructuredList) &&
"Need a non-designated initializer list to start from"), 0) ?
__assert_rtn(__func__, "/Users/adergachev/svn/llvm/tools/clang/lib/Sema/SemaInit.cpp"
, 2301, "(IsFirstDesignator || StructuredList) && \"Need a non-designated initializer list to start from\""
) : (void)0)
;
2302
2303 // Determine the structural initializer list that corresponds to the
2304 // current subobject.
2305 if (IsFirstDesignator)
2306 StructuredList = SyntacticToSemantic.lookup(IList);
2307 else {
2308 Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ?
2309 StructuredList->getInit(StructuredIndex) : nullptr;
2310 if (!ExistingInit && StructuredList->hasArrayFiller())
2311 ExistingInit = StructuredList->getArrayFiller();
2312
2313 if (!ExistingInit)
2314 StructuredList = getStructuredSubobjectInit(
2315 IList, Index, CurrentObjectType, StructuredList, StructuredIndex,
2316 SourceRange(D->getBeginLoc(), DIE->getEndLoc()));
2317 else if (InitListExpr *Result = dyn_cast<InitListExpr>(ExistingInit))
2318 StructuredList = Result;
2319 else {
2320 if (DesignatedInitUpdateExpr *E =
2321 dyn_cast<DesignatedInitUpdateExpr>(ExistingInit))
2322 StructuredList = E->getUpdater();
2323 else {
2324 DesignatedInitUpdateExpr *DIUE = new (SemaRef.Context)
2325 DesignatedInitUpdateExpr(SemaRef.Context, D->getBeginLoc(),
2326 ExistingInit, DIE->getEndLoc());
2327 StructuredList->updateInit(SemaRef.Context, StructuredIndex, DIUE);
2328 StructuredList = DIUE->getUpdater();
2329 }
2330
2331 // We need to check on source range validity because the previous
2332 // initializer does not have to be an explicit initializer. e.g.,
2333 //
2334 // struct P { int a, b; };
2335 // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 };
2336 //
2337 // There is an overwrite taking place because the first braced initializer
2338 // list "{ .a = 2 }" already provides value for .p.b (which is zero).
2339 if (ExistingInit->getSourceRange().isValid()) {
2340 // We are creating an initializer list that initializes the
2341 // subobjects of the current object, but there was already an
2342 // initialization that completely initialized the current
2343 // subobject, e.g., by a compound literal:
2344 //
2345 // struct X { int a, b; };
2346 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2347 //
2348 // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2349 // designated initializer re-initializes the whole
2350 // subobject [0], overwriting previous initializers.
2351 SemaRef.Diag(D->getBeginLoc(),
2352 diag::warn_subobject_initializer_overrides)
2353 << SourceRange(D->getBeginLoc(), DIE->getEndLoc());
2354
2355 SemaRef.Diag(ExistingInit->getBeginLoc(),
2356 diag::note_previous_initializer)
2357 << /*FIXME:has side effects=*/0 << ExistingInit->getSourceRange();
2358 }
2359 }
2360 }
2361 assert(StructuredList && "Expected a structured initializer list")(__builtin_expect(!(StructuredList && "Expected a structured initializer list"
), 0) ? __assert_rtn(__func__, "/Users/adergachev/svn/llvm/tools/clang/lib/Sema/SemaInit.cpp"
, 2361, "StructuredList && \"Expected a structured initializer list\""
) : (void)0)
;
2362 }
2363
2364 if (D->isFieldDesignator()) {
2365 // C99 6.7.8p7:
2366 //
2367 // If a designator has the form
2368 //
2369 // . identifier
2370 //
2371 // then the current object (defined below) shall have
2372 // structure or union type and the identifier shall be the
2373 // name of a member of that type.
2374 const RecordType *RT = CurrentObjectType->getAs<RecordType>();
2375 if (!RT) {
2376 SourceLocation Loc = D->getDotLoc();
2377 if (Loc.isInvalid())
2378 Loc = D->getFieldLoc();
2379 if (!VerifyOnly)
2380 SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
2381 << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType;
2382 ++Index;
2383 return true;
2384 }
2385
2386 FieldDecl *KnownField = D->getField();
2387 if (!KnownField) {
2388 IdentifierInfo *FieldName = D->getFieldName();
2389 DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
2390 for (NamedDecl *ND : Lookup) {
2391 if (auto *FD = dyn_cast<FieldDecl>(ND)) {
2392 KnownField = FD;
2393 break;
2394 }
2395 if (auto *IFD = dyn_cast<IndirectFieldDecl>(ND)) {
2396 // In verify mode, don't modify the original.
2397 if (VerifyOnly)
2398 DIE = CloneDesignatedInitExpr(SemaRef, DIE);
2399 ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD);
2400 D = DIE->getDesignator(DesigIdx);
2401 KnownField = cast<FieldDecl>(*IFD->chain_begin());
2402 break;
2403 }
2404 }
2405 if (!KnownField) {
2406 if (VerifyOnly) {
2407 ++Index;
2408 return true; // No typo correction when just trying this out.
2409 }
2410
2411 // Name lookup found something, but it wasn't a field.
2412 if (!Lookup.empty()) {
2413 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
2414 << FieldName;
2415 SemaRef.Diag(Lookup.front()->getLocation(),
2416 diag::note_field_designator_found);
2417 ++Index;
2418 return true;
2419 }
2420
2421 // Name lookup didn't find anything.
2422 // Determine whether this was a typo for another field name.
2423 if (TypoCorrection Corrected = SemaRef.CorrectTypo(
2424 DeclarationNameInfo(FieldName, D->getFieldLoc()),
2425 Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr,
2426 llvm::make_unique<FieldInitializerValidatorCCC>(RT->getDecl()),
2427 Sema::CTK_ErrorRecovery, RT->getDecl())) {
2428 SemaRef.diagnoseTypo(
2429 Corrected,
2430 SemaRef.PDiag(diag::err_field_designator_unknown_suggest)
2431 << FieldName << CurrentObjectType);
2432 KnownField = Corrected.getCorrectionDeclAs<FieldDecl>();
2433 hadError = true;
2434 } else {
2435 // Typo correction didn't find anything.
2436 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
2437 << FieldName << CurrentObjectType;
2438 ++Index;
2439 return true;
2440 }
2441 }
2442 }
2443
2444 unsigned FieldIndex = 0;
2445
2446 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2447 FieldIndex = CXXRD->getNumBases();
2448
2449 for (auto *FI : RT->getDecl()->fields()) {
2450 if (FI->isUnnamedBitfield())
2451 continue;
2452 if (declaresSameEntity(KnownField, FI)) {
2453 KnownField = FI;
2454 break;
2455 }
2456 ++FieldIndex;
2457 }
2458
2459 RecordDecl::field_iterator Field =
2460 RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField));
2461
2462 // All of the fields of a union are located at the same place in
2463 // the initializer list.
2464 if (RT->getDecl()->isUnion()) {
2465 FieldIndex = 0;
2466 if (!VerifyOnly) {
2467 FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion();
2468 if (CurrentField && !declaresSameEntity(CurrentField, *Field)) {
2469 assert(StructuredList->getNumInits() == 1(__builtin_expect(!(StructuredList->getNumInits() == 1 &&
"A union should never have more than one initializer!"), 0) ?
__assert_rtn(__func__, "/Users/adergachev/svn/llvm/tools/clang/lib/Sema/SemaInit.cpp"
, 2470, "StructuredList->getNumInits() == 1 && \"A union should never have more than one initializer!\""
) : (void)0)
2470 && "A union should never have more than one initializer!")(__builtin_expect(!(StructuredList->getNumInits() == 1 &&
"A union should never have more than one initializer!"), 0) ?
__assert_rtn(__func__, "/Users/adergachev/svn/llvm/tools/clang/lib/Sema/SemaInit.cpp"
, 2470, "StructuredList->getNumInits() == 1 && \"A union should never have more than one initializer!\""
) : (void)0)
;
2471
2472 Expr *ExistingInit = StructuredList->getInit(0);
2473 if (ExistingInit) {
2474 // We're about to throw away an initializer, emit warning.
2475 SemaRef.Diag(D->getFieldLoc(),
2476 diag::warn_initializer_overrides)
2477 << D->getSourceRange();
2478 SemaRef.Diag(ExistingInit->getBeginLoc(),
2479 diag::note_previous_initializer)
2480 << /*FIXME:has side effects=*/0
2481 << ExistingInit->getSourceRange();
2482 }
2483
2484 // remove existing initializer
2485 StructuredList->resizeInits(SemaRef.Context, 0);
2486 StructuredList->setInitializedFieldInUnion(nullptr);
2487 }
2488
2489 StructuredList->setInitializedFieldInUnion(*Field);
2490 }
2491 }
2492
2493 // Make sure we can use this declaration.
2494 bool InvalidUse;
2495 if (VerifyOnly)
2496 InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
2497 else
2498 InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
2499 if (InvalidUse) {
2500 ++Index;
2501 return true;
2502 }
2503
2504 if (!VerifyOnly) {
2505 // Update the designator with the field declaration.
2506 D->setField(*Field);
2507
2508 // Make sure that our non-designated initializer list has space
2509 // for a subobject corresponding to this field.
2510 if (FieldIndex >= StructuredList->getNumInits())
2511 StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
2512 }
2513
2514 // This designator names a flexible array member.
2515 if (Field->getType()->isIncompleteArrayType()) {
2516 bool Invalid = false;
2517 if ((DesigIdx + 1) != DIE->size()) {
2518 // We can't designate an object within the flexible array
2519 // member (because GCC doesn't allow it).
2520 if (!VerifyOnly) {
2521 DesignatedInitExpr::Designator *NextD
2522 = DIE->getDesignator(DesigIdx + 1);
2523 SemaRef.Diag(NextD->getBeginLoc(),
2524 diag::err_designator_into_flexible_array_member)
2525 << SourceRange(NextD->getBeginLoc(), DIE->getEndLoc());
2526 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2527 << *Field;
2528 }
2529 Invalid = true;
2530 }
2531
2532 if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
2533 !isa<StringLiteral>(DIE->getInit())) {
2534 // The initializer is not an initializer list.
2535 if (!VerifyOnly) {
2536 SemaRef.Diag(DIE->getInit()->getBeginLoc(),
2537 diag::err_flexible_array_init_needs_braces)
2538 << DIE->getInit()->getSourceRange();
2539 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2540 << *Field;
2541 }
2542 Invalid = true;
2543 }
2544
2545 // Check GNU flexible array initializer.
2546 if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
2547 TopLevelObject))
2548 Invalid = true;
2549
2550 if (Invalid) {
2551 ++Index;
2552 return true;
2553 }
2554
2555 // Initialize the array.
2556 bool prevHadError = hadError;
2557 unsigned newStructuredIndex = FieldIndex;
2558 unsigned OldIndex = Index;
2559 IList->setInit(Index, DIE->getInit());
2560
2561 InitializedEntity MemberEntity =
2562 InitializedEntity::InitializeMember(*Field, &Entity);
2563 CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2564 StructuredList, newStructuredIndex);
2565
2566 IList->setInit(OldIndex, DIE);
2567 if (hadError && !prevHadError) {
2568 ++Field;
2569 ++FieldIndex;
2570 if (NextField)
2571 *NextField = Field;
2572 StructuredIndex = FieldIndex;
2573 return true;
2574 }
2575 } else {
2576 // Recurse to check later designated subobjects.
2577 QualType FieldType = Field->getType();
2578 unsigned newStructuredIndex = FieldIndex;
2579
2580 InitializedEntity MemberEntity =
2581 InitializedEntity::InitializeMember(*Field, &Entity);
2582 if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
2583 FieldType, nullptr, nullptr, Index,
2584 StructuredList, newStructuredIndex,
2585 FinishSubobjectInit, false))
2586 return true;
2587 }
2588
2589 // Find the position of the next field to be initialized in this
2590 // subobject.
2591 ++Field;
2592 ++FieldIndex;
2593
2594 // If this the first designator, our caller will continue checking
2595 // the rest of this struct/class/union subobject.
2596 if (IsFirstDesignator) {
2597 if (NextField)
2598 *NextField = Field;
2599 StructuredIndex = FieldIndex;
2600 return false;
2601 }
2602
2603 if (!FinishSubobjectInit)
2604 return false;
2605
2606 // We've already initialized something in the union; we're done.
2607 if (RT->getDecl()->isUnion())
2608 return hadError;
2609
2610 // Check the remaining fields within this class/struct/union subobject.
2611 bool prevHadError = hadError;
2612
2613 auto NoBases =
2614 CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
2615 CXXRecordDecl::base_class_iterator());
2616 CheckStructUnionTypes(Entity, IList, CurrentObjectType, NoBases, Field,
2617 false, Index, StructuredList, FieldIndex);
2618 return hadError && !prevHadError;
2619 }
2620
2621 // C99 6.7.8p6:
2622 //
2623 // If a designator has the form
2624 //
2625 // [ constant-expression ]
2626 //
2627 // then the current object (defined below) shall have array
2628 // type and the expression shall be an integer constant
2629 // expression. If the array is of unknown size, any
2630 // nonnegative value is valid.
2631 //
2632 // Additionally, cope with the GNU extension that permits
2633 // designators of the form
2634 //
2635 // [ constant-expression ... constant-expression ]
2636 const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
2637 if (!AT) {
2638 if (!VerifyOnly)
2639 SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
2640 << CurrentObjectType;
2641 ++Index;
2642 return true;
2643 }
2644
2645 Expr *IndexExpr = nullptr;
2646 llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
2647 if (D->isArrayDesignator()) {
2648 IndexExpr = DIE->getArrayIndex(*D);
2649 DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
2650 DesignatedEndIndex = DesignatedStartIndex;
2651 } else {
2652 assert(D->isArrayRangeDesignator() && "Need array-range designator")(__builtin_expect(!(D->isArrayRangeDesignator() &&
"Need array-range designator"), 0) ? __assert_rtn(__func__, "/Users/adergachev/svn/llvm/tools/clang/lib/Sema/SemaInit.cpp"
, 2652, "D->isArrayRangeDesignator() && \"Need array-range designator\""
) : (void)0)
;
2653
2654 DesignatedStartIndex =
2655 DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
2656 DesignatedEndIndex =
2657 DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
2658 IndexExpr = DIE->getArrayRangeEnd(*D);
2659
2660 // Codegen can't handle evaluating array range designators that have side
2661 // effects, because we replicate the AST value for each initialized element.
2662 // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
2663 // elements with something that has a side effect, so codegen can emit an
2664 // "error unsupported" error instead of miscompiling the app.
2665 if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
2666 DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
2667 FullyStructuredList->sawArrayRangeDesignator();
2668 }
2669
2670 if (isa<ConstantArrayType>(AT)) {
2671 llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
2672 DesignatedStartIndex
2673 = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
2674 DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
2675 DesignatedEndIndex
2676 = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
2677 DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
2678 if (DesignatedEndIndex >= MaxElements) {
2679 if (!VerifyOnly)
2680 SemaRef.Diag(IndexExpr->getBeginLoc(),
2681 diag::err_array_designator_too_large)
2682 << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
2683 << IndexExpr->getSourceRange();
2684 ++Index;
2685 return true;
2686 }
2687 } else {
2688 unsigned DesignatedIndexBitWidth =
2689 ConstantArrayType::getMaxSizeBits(SemaRef.Context);
2690 DesignatedStartIndex =
2691 DesignatedStartIndex.extOrTrunc(DesignatedIndexBitWidth);
2692 DesignatedEndIndex =
2693 DesignatedEndIndex.extOrTrunc(DesignatedIndexBitWidth);
2694 DesignatedStartIndex.setIsUnsigned(true);
2695 DesignatedEndIndex.setIsUnsigned(true);
2696 }
2697
2698 if (!VerifyOnly && StructuredList->isStringLiteralInit()) {
2699 // We're modifying a string literal init; we have to decompose the string
2700 // so we can modify the individual characters.
2701 ASTContext &Context = SemaRef.Context;
2702 Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens();
2703
2704 // Compute the character type
2705 QualType CharTy = AT->getElementType();
2706
2707 // Compute the type of the integer literals.
2708 QualType PromotedCharTy = CharTy;
2709 if (CharTy->isPromotableIntegerType())
2710 PromotedCharTy = Context.getPromotedIntegerType(CharTy);
2711 unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy);
2712
2713 if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) {
2714 // Get the length of the string.
2715 uint64_t StrLen = SL->getLength();
2716 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2717 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2718 StructuredList->resizeInits(Context, StrLen);
2719
2720 // Build a literal for each character in the string, and put them into
2721 // the init list.
2722 for (unsigned i = 0, e = StrLen; i != e; ++i) {
2723 llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i));
2724 Expr *Init = new (Context) IntegerLiteral(
2725 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2726 if (CharTy != PromotedCharTy)
2727 Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2728 Init, nullptr, VK_RValue);
2729 StructuredList->updateInit(Context, i, Init);
2730 }
2731 } else {
2732 ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr);
2733 std::string Str;
2734 Context.getObjCEncodingForType(E->getEncodedType(), Str);
2735
2736 // Get the length of the string.
2737 uint64_t StrLen = Str.size();
2738 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2739 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2740 StructuredList->resizeInits(Context, StrLen);
2741
2742 // Build a literal for each character in the string, and put them into
2743 // the init list.
2744 for (unsigned i = 0, e = StrLen; i != e; ++i) {
2745 llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]);
2746 Expr *Init = new (Context) IntegerLiteral(
2747 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2748 if (CharTy != PromotedCharTy)
2749 Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2750 Init, nullptr, VK_RValue);
2751 StructuredList->updateInit(Context, i, Init);
2752 }
2753 }
2754 }
2755
2756 // Make sure that our non-designated initializer list has space
2757 // for a subobject corresponding to this array element.
2758 if (!VerifyOnly &&
2759 DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
2760 StructuredList->resizeInits(SemaRef.Context,
2761 DesignatedEndIndex.getZExtValue() + 1);
2762
2763 // Repeatedly perform subobject initializations in the range
2764 // [DesignatedStartIndex, DesignatedEndIndex].
2765
2766 // Move to the next designator
2767 unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
2768 unsigned OldIndex = Index;
2769
2770 InitializedEntity ElementEntity =
2771 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
2772
2773 while (DesignatedStartIndex <= DesignatedEndIndex) {
2774 // Recurse to check later designated subobjects.
2775 QualType ElementType = AT->getElementType();
2776 Index = OldIndex;
2777
2778 ElementEntity.setElementIndex(ElementIndex);
2779 if (CheckDesignatedInitializer(
2780 ElementEntity, IList, DIE, DesigIdx + 1, ElementType, nullptr,
2781 nullptr, Index, StructuredList, ElementIndex,
2782 FinishSubobjectInit && (DesignatedStartIndex == DesignatedEndIndex),
2783 false))
2784 return true;
2785
2786 // Move to the next index in the array that we'll be initializing.
2787 ++DesignatedStartIndex;
2788 ElementIndex = DesignatedStartIndex.getZExtValue();
2789 }
2790
2791 // If this the first designator, our caller will continue checking
2792 // the rest of this array subobject.
2793 if (IsFirstDesignator) {
2794 if (NextElementIndex)
2795 *NextElementIndex = DesignatedStartIndex;
2796 StructuredIndex = ElementIndex;
2797 return false;
2798 }
2799
2800 if (!FinishSubobjectInit)
2801 return false;
2802
2803 // Check the remaining elements within this array subobject.
2804 bool prevHadError = hadError;
2805 CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
2806 /*SubobjectIsDesignatorContext=*/false, Index,
2807 StructuredList, ElementIndex);
2808 return hadError && !prevHadError;
2809}
2810
2811// Get the structured initializer list for a subobject of type
2812// @p CurrentObjectType.
2813InitListExpr *
2814InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
2815 QualType CurrentObjectType,
2816 InitListExpr *StructuredList,
2817 unsigned StructuredIndex,
2818 SourceRange InitRange,
2819 bool IsFullyOverwritten) {
2820 if (VerifyOnly)
2821 return nullptr; // No structured list in verification-only mode.
2822 Expr *ExistingInit = nullptr;
2823 if (!StructuredList)
2824 ExistingInit = SyntacticToSemantic.lookup(IList);
2825 else if (StructuredIndex < StructuredList->getNumInits())
2826 ExistingInit = StructuredList->getInit(StructuredIndex);
2827
2828 if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
2829 // There might have already been initializers for subobjects of the current
2830 // object, but a subsequent initializer list will overwrite the entirety
2831 // of the current object. (See DR 253 and C99 6.7.8p21). e.g.,
2832 //
2833 // struct P { char x[6]; };
2834 // struct P l = { .x[2] = 'x', .x = { [0] = 'f' } };
2835 //
2836 // The first designated initializer is ignored, and l.x is just "f".
2837 if (!IsFullyOverwritten)
2838 return Result;
2839
2840 if (ExistingInit) {
2841 // We are creating an initializer list that initializes the
2842 // subobjects of the current object, but there was already an
2843 // initialization that completely initialized the current
2844 // subobject, e.g., by a compound literal:
2845 //
2846 // struct X { int a, b; };
2847 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2848 //
2849 // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2850 // designated initializer re-initializes the whole
2851 // subobject [0], overwriting previous initializers.
2852 SemaRef.Diag(InitRange.getBegin(),
2853 diag::warn_subobject_initializer_overrides)
2854 << InitRange;
2855 SemaRef.Diag(ExistingInit->getBeginLoc(), diag::note_previous_initializer)
2856 << /*FIXME:has side effects=*/0 << ExistingInit->getSourceRange();
2857 }
2858
2859 InitListExpr *Result
2860 = new (SemaRef.Context) InitListExpr(SemaRef.Context,
2861 InitRange.getBegin(), None,
2862 InitRange.getEnd());
2863
2864 QualType ResultType = CurrentObjectType;
2865 if (!ResultType->isArrayType())
2866 ResultType = ResultType.getNonLValueExprType(SemaRef.Context);
2867 Result->setType(ResultType);
2868
2869 // Pre-allocate storage for the structured initializer list.
2870 unsigned NumElements = 0;
2871 unsigned NumInits = 0;
2872 bool GotNumInits = false;
2873 if (!StructuredList) {
2874 NumInits = IList->getNumInits();
2875 GotNumInits = true;
2876 } else if (Index < IList->getNumInits()) {
2877 if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) {
2878 NumInits = SubList->getNumInits();
2879 GotNumInits = true;
2880 }
2881 }
2882
2883 if (const ArrayType *AType
2884 = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
2885 if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
2886 NumElements = CAType->getSize().getZExtValue();
2887 // Simple heuristic so that we don't allocate a very large
2888 // initializer with many empty entries at the end.
2889 if (GotNumInits && NumElements > NumInits)
2890 NumElements = 0;
2891 }
2892 } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
2893 NumElements = VType->getNumElements();
2894 else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
2895 RecordDecl *RDecl = RType->getDecl();
2896 if (RDecl->isUnion())
2897 NumElements = 1;
2898 else
2899 NumElements = std::distance(RDecl->field_begin(), RDecl->field_end());
2900 }
2901
2902 Result->reserveInits(SemaRef.Context, NumElements);
2903
2904 // Link this new initializer list into the structured initializer
2905 // lists.
2906 if (StructuredList)
2907 StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
2908 else {
2909 Result->setSyntacticForm(IList);
2910 SyntacticToSemantic[IList] = Result;
2911 }
2912
2913 return Result;
2914}
2915
2916/// Update the initializer at index @p StructuredIndex within the
2917/// structured initializer list to the value @p expr.
2918void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
2919 unsigned &StructuredIndex,
2920 Expr *expr) {
2921 // No structured initializer list to update
2922 if (!StructuredList)
2923 return;
2924
2925 if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
2926 StructuredIndex, expr)) {
2927 // This initializer overwrites a previous initializer. Warn.
2928 // We need to check on source range validity because the previous
2929 // initializer does not have to be an explicit initializer.
2930 // struct P { int a, b; };
2931 // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 };
2932 // There is an overwrite taking place because the first braced initializer
2933 // list "{ .a = 2 }' already provides value for .p.b (which is zero).
2934 if (PrevInit->getSourceRange().isValid()) {
2935 SemaRef.Diag(expr->getBeginLoc(), diag::warn_initializer_overrides)
2936 << expr->getSourceRange();
2937
2938 SemaRef.Diag(PrevInit->getBeginLoc(), diag::note_previous_initializer)
2939 << /*FIXME:has side effects=*/0 << PrevInit->getSourceRange();
2940 }
2941 }
2942
2943 ++StructuredIndex;
2944}
2945
2946/// Check that the given Index expression is a valid array designator
2947/// value. This is essentially just a wrapper around
2948/// VerifyIntegerConstantExpression that also checks for negative values
2949/// and produces a reasonable diagnostic if there is a
2950/// failure. Returns the index expression, possibly with an implicit cast
2951/// added, on success. If everything went okay, Value will receive the
2952/// value of the constant expression.
2953static ExprResult
2954CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
2955 SourceLocation Loc = Index->getBeginLoc();
2956
2957 // Make sure this is an integer constant expression.
2958 ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value);
2959 if (Result.isInvalid())
2960 return Result;
2961
2962 if (Value.isSigned() && Value.isNegative())
2963 return S.Diag(Loc, diag::err_array_designator_negative)
2964 << Value.toString(10) << Index->getSourceRange();
2965
2966 Value.setIsUnsigned(true);
2967 return Result;
2968}
2969
2970ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
2971 SourceLocation Loc,
2972 bool GNUSyntax,
2973 ExprResult Init) {
2974 typedef DesignatedInitExpr::Designator ASTDesignator;
2975
2976 bool Invalid = false;
2977 SmallVector<ASTDesignator, 32> Designators;
2978 SmallVector<Expr *, 32> InitExpressions;
2979
2980 // Build designators and check array designator expressions.
2981 for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
2982 const Designator &D = Desig.getDesignator(Idx);
2983 switch (D.getKind()) {
2984 case Designator::FieldDesignator:
2985 Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
2986 D.getFieldLoc()));
2987 break;
2988
2989 case Designator::ArrayDesignator: {
2990 Expr *Index = static_cast<Expr *>(D.getArrayIndex());
2991 llvm::APSInt IndexValue;
2992 if (!Index->isTypeDependent() && !Index->isValueDependent())
2993 Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get();
2994 if (!Index)
2995 Invalid = true;
2996 else {
2997 Designators.push_back(ASTDesignator(InitExpressions.size(),
2998 D.getLBracketLoc(),
2999 D.getRBracketLoc()));
3000 InitExpressions.push_back(Index);
3001 }
3002 break;
3003 }
3004
3005 case Designator::ArrayRangeDesignator: {
3006 Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
3007 Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
3008 llvm::APSInt StartValue;
3009 llvm::APSInt EndValue;
3010 bool StartDependent = StartIndex->isTypeDependent() ||
3011 StartIndex->isValueDependent();
3012 bool EndDependent = EndIndex->isTypeDependent() ||
3013 EndIndex->isValueDependent();
3014 if (!StartDependent)
3015 StartIndex =
3016 CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get();
3017 if (!EndDependent)
3018 EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get();
3019
3020 if (!StartIndex || !EndIndex)
3021 Invalid = true;
3022 else {
3023 // Make sure we're comparing values with the same bit width.
3024 if (StartDependent || EndDependent) {
3025 // Nothing to compute.
3026 } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
3027 EndValue = EndValue.extend(StartValue.getBitWidth());
3028 else if (StartValue.getBitWidth() < EndValue.getBitWidth())
3029 StartValue = StartValue.extend(EndValue.getBitWidth());
3030
3031 if (!StartDependent && !EndDependent && EndValue < StartValue) {
3032 Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
3033 << StartValue.toString(10) << EndValue.toString(10)
3034 << StartIndex->getSourceRange() << EndIndex->getSourceRange();
3035 Invalid = true;
3036 } else {
3037 Designators.push_back(ASTDesignator(InitExpressions.size(),
3038 D.getLBracketLoc(),
3039 D.getEllipsisLoc(),
3040 D.getRBracketLoc()));
3041 InitExpressions.push_back(StartIndex);
3042 InitExpressions.push_back(EndIndex);
3043 }
3044 }
3045 break;
3046 }
3047 }
3048 }
3049
3050 if (Invalid || Init.isInvalid())
3051 return ExprError();
3052
3053 // Clear out the expressions within the designation.
3054 Desig.ClearExprs(*this);
3055
3056 DesignatedInitExpr *DIE
3057 = DesignatedInitExpr::Create(Context,
3058 Designators,
3059 InitExpressions, Loc, GNUSyntax,
3060 Init.getAs<Expr>());
3061
3062 if (!getLangOpts().C99)
3063 Diag(DIE->getBeginLoc(), diag::ext_designated_init)
3064 << DIE->getSourceRange();
3065
3066 return DIE;
3067}
3068
3069//===----------------------------------------------------------------------===//
3070// Initialization entity
3071//===----------------------------------------------------------------------===//
3072
3073InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
3074 const InitializedEntity &Parent)
3075 : Parent(&Parent), Index(Index)
3076{
3077 if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
3078 Kind = EK_ArrayElement;
3079 Type = AT->getElementType();
3080 } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
3081 Kind = EK_VectorElement;
3082 Type = VT->getElementType();
3083 } else {
3084 const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
3085 assert(CT && "Unexpected type")(__builtin_expect(!(CT && "Unexpected type"), 0) ? __assert_rtn
(__func__, "/Users/adergachev/svn/llvm/tools/clang/lib/Sema/SemaInit.cpp"
, 3085, "CT && \"Unexpected type\"") : (void)0)
;
3086 Kind = EK_ComplexElement;
3087 Type = CT->getElementType();
3088 }
3089}
3090
3091InitializedEntity
3092InitializedEntity::InitializeBase(ASTContext &Context,
3093 const CXXBaseSpecifier *Base,
3094 bool IsInheritedVirtualBase,
3095 const InitializedEntity *Parent) {
3096 InitializedEntity Result;
3097 Result.Kind = EK_Base;
3098 Result.Parent = Parent;
3099 Result.Base = reinterpret_cast<uintptr_t>(Base);
3100 if (IsInheritedVirtualBase)
3101 Result.Base |= 0x01;
3102
3103 Result.Type = Base->getType();
3104 return Result;
3105}
3106
3107DeclarationName InitializedEntity::getName() const {
3108 switch (getKind()) {
3109 case EK_Parameter:
3110 case EK_Parameter_CF_Audited: {
3111 ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
3112 return (D ? D->getDeclName() : DeclarationName());
3113 }
3114
3115 case EK_Variable:
3116 case EK_Member:
3117 case EK_Binding:
3118 return Variable.VariableOrMember->getDeclName();
3119
3120 case EK_LambdaCapture:
3121 return DeclarationName(Capture.VarID);
3122
3123 case EK_Result:
3124 case EK_StmtExprResult:
3125 case EK_Exception:
3126 case EK_New:
3127 case EK_Temporary:
3128 case EK_Base:
3129 case EK_Delegating:
3130 case EK_ArrayElement:
3131 case EK_VectorElement:
3132 case EK_ComplexElement:
3133 case EK_BlockElement:
3134 case EK_LambdaToBlockConversionBlockElement:
3135 case EK_CompoundLiteralInit:
3136 case EK_RelatedResult:
3137 return DeclarationName();
3138 }
3139
3140 llvm_unreachable("Invalid EntityKind!")::llvm::llvm_unreachable_internal("Invalid EntityKind!", "/Users/adergachev/svn/llvm/tools/clang/lib/Sema/SemaInit.cpp"
, 3140)
;
3141}
3142
3143ValueDecl *InitializedEntity::getDecl() const {
3144 switch (getKind()) {
3145 case EK_Variable:
3146 case EK_Member:
3147 case EK_Binding:
3148 return Variable.VariableOrMember;
3149
3150 case EK_Parameter:
3151 case EK_Parameter_CF_Audited:
3152 return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
3153
3154 case EK_Result:
3155 case EK_StmtExprResult:
3156 case EK_Exception:
3157 case EK_New:
3158 case EK_Temporary:
3159 case EK_Base:
3160 case EK_Delegating:
3161 case EK_ArrayElement:
3162 case EK_VectorElement:
3163 case EK_ComplexElement:
3164 case EK_BlockElement:
3165 case EK_LambdaToBlockConversionBlockElement:
3166 case EK_LambdaCapture:
3167 case EK_CompoundLiteralInit:
3168 case EK_RelatedResult:
3169 return nullptr;
3170 }
3171
3172 llvm_unreachable("Invalid EntityKind!")::llvm::llvm_unreachable_internal("Invalid EntityKind!", "/Users/adergachev/svn/llvm/tools/clang/lib/Sema/SemaInit.cpp"
, 3172)
;
3173}
3174
3175bool InitializedEntity::allowsNRVO() const {
3176 switch (getKind()) {
3177 case EK_Result:
3178 case EK_Exception:
3179 return LocAndNRVO.NRVO;
3180
3181 case EK_StmtExprResult:
3182 case EK_Variable:
3183 case EK_Parameter:
3184 case EK_Parameter_CF_Audited:
3185 case EK_Member:
3186 case EK_Binding:
3187 case EK_New:
3188 case EK_Temporary:
3189 case EK_CompoundLiteralInit:
3190 case EK_Base:
3191 case EK_Delegating:
3192 case EK_ArrayElement:
3193 case EK_VectorElement:
3194 case EK_ComplexElement:
3195 case EK_BlockElement:
3196 case EK_LambdaToBlockConversionBlockElement:
3197 case EK_LambdaCapture:
3198 case EK_RelatedResult:
3199 break;
3200 }
3201
3202 return false;
3203}
3204
3205unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const {
3206 assert(getParent() != this)(__builtin_expect(!(getParent() != this), 0) ? __assert_rtn(__func__
, "/Users/adergachev/svn/llvm/tools/clang/lib/Sema/SemaInit.cpp"
, 3206, "getParent() != this") : (void)0)
;
3207 unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0;
3208 for (unsigned I = 0; I != Depth; ++I)
3209 OS << "`-";
3210
3211 switch (getKind()) {
3212 case EK_Variable: OS << "Variable"; break;
3213 case EK_Parameter: OS << "Parameter"; break;
3214 case EK_Parameter_CF_Audited: OS << "CF audited function Parameter";
3215 break;
3216 case EK_Result: OS << "Result"; break;
3217 case EK_StmtExprResult: OS << "StmtExprResult"; break;
3218 case EK_Exception: OS << "Exception"; break;
3219 case EK_Member: OS << "Member"; break;
3220 case EK_Binding: OS << "Binding"; break;
3221 case EK_New: OS << "New"; break;
3222 case EK_Temporary: OS << "Temporary"; break;
3223 case EK_CompoundLiteralInit: OS << "CompoundLiteral";break;
3224 case EK_RelatedResult: OS << "RelatedResult"; break;
3225 case EK_Base: OS << "Base"; break;
3226 case EK_Delegating: OS << "Delegating"; break;
3227 case EK_ArrayElement: OS << "ArrayElement " << Index; break;
3228 case EK_VectorElement: OS << "VectorElement " << Index; break;
3229 case EK_ComplexElement: OS << "ComplexElement " << Index; break;
3230 case EK_BlockElement: OS << "Block"; break;
3231 case EK_LambdaToBlockConversionBlockElement:
3232 OS << "Block (lambda)";
3233 break;
3234 case EK_LambdaCapture:
3235 OS << "LambdaCapture ";
3236 OS << DeclarationName(Capture.VarID);
3237 break;
3238 }
3239
3240 if (auto *D = getDecl()) {
3241 OS << " ";
3242 D->printQualifiedName(OS);
3243 }
3244
3245 OS << " '" << getType().getAsString() << "'\n";
3246
3247 return Depth + 1;
3248}
3249
3250LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void InitializedEntity::dump() const {
3251 dumpImpl(llvm::errs());
3252}
3253
3254//===----------------------------------------------------------------------===//
3255// Initialization sequence
3256//===----------------------------------------------------------------------===//
3257
3258void InitializationSequence::Step::Destroy() {
3259 switch (Kind) {
3260 case SK_ResolveAddressOfOverloadedFunction:
3261 case SK_CastDerivedToBaseRValue:
3262 case SK_CastDerivedToBaseXValue:
3263 case SK_CastDerivedToBaseLValue:
3264 case SK_BindReference:
3265 case SK_BindReferenceToTemporary:
3266 case SK_FinalCopy:
3267 case SK_ExtraneousCopyToTemporary:
3268 case SK_UserConversion:
3269 case SK_QualificationConversionRValue:
3270 case SK_QualificationConversionXValue:
3271 case SK_QualificationConversionLValue:
3272 case SK_AtomicConversion:
3273 case SK_LValueToRValue:
3274 case SK_ListInitialization:
3275 case SK_UnwrapInitList:
3276 case SK_RewrapInitList:
3277 case SK_ConstructorInitialization:
3278 case SK_ConstructorInitializationFromList:
3279 case SK_ZeroInitialization:
3280 case SK_CAssignment:
3281 case SK_StringInit:
3282 case SK_ObjCObjectConversion:
3283 case SK_ArrayLoopIndex:
3284 case SK_ArrayLoopInit:
3285 case SK_ArrayInit:
3286 case SK_GNUArrayInit:
3287 case SK_ParenthesizedArrayInit:
3288 case SK_PassByIndirectCopyRestore:
3289 case SK_PassByIndirectRestore:
3290 case SK_ProduceObjCObject:
3291 case SK_StdInitializerList:
3292 case SK_StdInitializerListConstructorCall:
3293 case SK_OCLSamplerInit:
3294 case SK_OCLZeroOpaqueType:
3295 break;
3296
3297 case SK_ConversionSequence:
3298 case SK_ConversionSequenceNoNarrowing:
3299 delete ICS;
3300 }
3301}
3302
3303bool InitializationSequence::isDirectReferenceBinding() const {
3304 // There can be some lvalue adjustments after the SK_BindReference step.
3305 for (auto I = Steps.rbegin(); I != Steps.rend(); ++I) {
3306 if (I->Kind == SK_BindReference)
3307 return true;
3308 if (I->Kind == SK_BindReferenceToTemporary)
3309 return false;
3310 }
3311 return false;
3312}
3313
3314bool InitializationSequence::isAmbiguous() const {
3315 if (!Failed())
3316 return false;
3317
3318 switch (getFailureKind()) {
3319 case FK_TooManyInitsForReference:
3320 case FK_ParenthesizedListInitForReference:
3321 case FK_ArrayNeedsInitList:
3322 case FK_ArrayNeedsInitListOrStringLiteral:
3323 case FK_ArrayNeedsInitListOrWideStringLiteral:
3324 case FK_NarrowStringIntoWideCharArray:
3325 case FK_WideStringIntoCharArray:
3326 case FK_IncompatWideStringIntoWideChar:
3327 case FK_PlainStringIntoUTF8Char:
3328 case FK_UTF8StringIntoPlainChar:
3329 case FK_AddressOfOverloadFailed: // FIXME: Could do better
3330 case FK_NonConstLValueReferenceBindingToTemporary:
3331 case FK_NonConstLValueReferenceBindingToBitfield:
3332 case FK_NonConstLValueReferenceBindingToVectorElement:
3333 case FK_NonConstLValueReferenceBindingToUnrelated:
3334 case FK_RValueReferenceBindingToLValue:
3335 case FK_ReferenceInitDropsQualifiers:
3336 case FK_ReferenceInitFailed:
3337 case FK_ConversionFailed:
3338 case FK_ConversionFromPropertyFailed:
3339 case FK_TooManyInitsForScalar:
3340 case FK_ParenthesizedListInitForScalar:
3341 case FK_ReferenceBindingToInitList:
3342 case FK_InitListBadDestinationType:
3343 case FK_DefaultInitOfConst:
3344 case FK_Incomplete:
3345 case FK_ArrayTypeMismatch:
3346 case FK_NonConstantArrayInit:
3347 case FK_ListInitializationFailed:
3348 case FK_VariableLengthArrayHasInitializer:
3349 case FK_PlaceholderType:
3350 case FK_ExplicitConstructor:
3351 case FK_AddressOfUnaddressableFunction:
3352 return false;
3353
3354 case FK_ReferenceInitOverloadFailed:
3355 case FK_UserConversionOverloadFailed:
3356 case FK_ConstructorOverloadFailed:
3357 case FK_ListConstructorOverloadFailed:
3358 return FailedOverloadResult == OR_Ambiguous;
3359 }
3360
3361 llvm_unreachable("Invalid EntityKind!")::llvm::llvm_unreachable_internal("Invalid EntityKind!", "/Users/adergachev/svn/llvm/tools/clang/lib/Sema/SemaInit.cpp"
, 3361)
;
3362}
3363
3364bool InitializationSequence::isConstructorInitialization() const {
3365 return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
3366}
3367
3368void
3369InitializationSequence
3370::AddAddressOverloadResolutionStep(FunctionDecl *Function,
3371 DeclAccessPair Found,
3372 bool HadMultipleCandidates) {
3373 Step S;
3374 S.Kind = SK_ResolveAddressOfOverloadedFunction;
3375 S.Type = Function->getType();
3376 S.Function.HadMultipleCandidates = HadMultipleCandidates;
3377 S.Function.Function = Function;
3378 S.Function.FoundDecl = Found;
3379 Steps.push_back(S);
3380}
3381
3382void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
3383 ExprValueKind VK) {
3384 Step S;
3385 switch (VK) {
3386 case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
3387 case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
3388 case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
3389 }
3390 S.Type = BaseType;
3391 Steps.push_back(S);
3392}
3393
3394void InitializationSequence::AddReferenceBindingStep(QualType T,
3395 bool BindingTemporary) {
3396 Step S;
3397 S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
3398 S.Type = T;
3399 Steps.push_back(S);
3400}
3401
3402void InitializationSequence::AddFinalCopy(QualType T) {
3403 Step S;
3404 S.Kind = SK_FinalCopy;
3405 S.Type = T;
3406 Steps.push_back(S);
3407}
3408
3409void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
3410 Step S;
3411 S.Kind = SK_ExtraneousCopyToTemporary;
3412 S.Type = T;
3413 Steps.push_back(S);
3414}
3415
3416void
3417InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
3418 DeclAccessPair FoundDecl,
3419 QualType T,
3420 bool HadMultipleCandidates) {
3421 Step S;
3422 S.Kind = SK_UserConversion;
3423 S.Type = T;
3424 S.Function.HadMultipleCandidates = HadMultipleCandidates;
3425 S.Function.Function = Function;
3426 S.Function.FoundDecl = FoundDecl;
3427 Steps.push_back(S);
3428}
3429
3430void InitializationSequence::AddQualificationConversionStep(QualType Ty,
3431 ExprValueKind VK) {
3432 Step S;
3433 S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
3434 switch (VK) {
3435 case VK_RValue:
3436 S.Kind = SK_QualificationConversionRValue;
3437 break;
3438 case VK_XValue:
3439 S.Kind = SK_QualificationConversionXValue;
3440 break;
3441 case VK_LValue:
3442 S.Kind = SK_QualificationConversionLValue;
3443 break;
3444 }
3445 S.Type = Ty;
3446 Steps.push_back(S);
3447}
3448
3449void InitializationSequence::AddAtomicConversionStep(QualType Ty) {
3450 Step S;
3451 S.Kind = SK_AtomicConversion;
3452 S.Type = Ty;
3453 Steps.push_back(S);
3454}
3455
3456void InitializationSequence::AddLValueToRValueStep(QualType Ty) {
3457 assert(!Ty.hasQualifiers() && "rvalues may not have qualifiers")(__builtin_expect(!(!Ty.hasQualifiers() && "rvalues may not have qualifiers"
), 0) ? __assert_rtn(__func__, "/Users/adergachev/svn/llvm/tools/clang/lib/Sema/SemaInit.cpp"
, 3457, "!Ty.hasQualifiers() && \"rvalues may not have qualifiers\""
) : (void)0)
;
3458
3459 Step S;
3460 S.Kind = SK_LValueToRValue;
3461 S.Type = Ty;
3462 Steps.push_back(S);
3463}
3464
3465void InitializationSequence::AddConversionSequenceStep(
3466 const ImplicitConversionSequence &ICS, QualType T,
3467 bool TopLevelOfInitList) {
3468 Step S;
3469 S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing
3470 : SK_ConversionSequence;
3471 S.Type = T;
3472 S.ICS = new ImplicitConversionSequence(ICS);
3473 Steps.push_back(S);
3474}
3475
3476void InitializationSequence::AddListInitializationStep(QualType T) {
3477 Step S;
3478 S.Kind = SK_ListInitialization;
3479 S.Type = T;
3480 Steps.push_back(S);
3481}
3482
3483void InitializationSequence::AddConstructorInitializationStep(
3484 DeclAccessPair FoundDecl, CXXConstructorDecl *Constructor, QualType T,
3485 bool HadMultipleCandidates, bool FromInitList, bool AsInitList) {
3486 Step S;
3487 S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall
3488 : SK_ConstructorInitializationFromList
3489 : SK_ConstructorInitialization;
3490 S.Type = T;
3491 S.Function.HadMultipleCandidates = HadMultipleCandidates;
3492 S.Function.Function = Constructor;
3493 S.Function.FoundDecl = FoundDecl;
3494 Steps.push_back(S);
3495}
3496
3497void InitializationSequence::AddZeroInitializationStep(QualType T) {
3498 Step S;
3499 S.Kind = SK_ZeroInitialization;
3500 S.Type = T;
3501 Steps.push_back(S);
3502}
3503
3504void InitializationSequence::AddCAssignmentStep(QualType T) {
3505 Step S;
3506 S.Kind = SK_CAssignment;
3507 S.Type = T;
3508 Steps.push_back(S);
3509}
3510
3511void InitializationSequence::AddStringInitStep(QualType T) {
3512 Step S;
3513 S.Kind = SK_StringInit;
3514 S.Type = T;
3515 Steps.push_back(S);
3516}
3517
3518void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
3519 Step S;
3520 S.Kind = SK_ObjCObjectConversion;
3521 S.Type = T;
3522 Steps.push_back(S);
3523}
3524
3525void InitializationSequence::AddArrayInitStep(QualType T, bool IsGNUExtension) {
3526 Step S;
3527 S.Kind = IsGNUExtension ? SK_GNUArrayInit : SK_ArrayInit;
3528 S.Type = T;
3529 Steps.push_back(S);
3530}
3531
3532void InitializationSequence::AddArrayInitLoopStep(QualType T, QualType EltT) {
3533 Step S;
3534 S.Kind = SK_ArrayLoopIndex;
3535 S.Type = EltT;
3536 Steps.insert(Steps.begin(), S);
3537
3538 S.Kind = SK_ArrayLoopInit;
3539 S.Type = T;
3540 Steps.push_back(S);
3541}
3542
3543void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) {
3544 Step S;
3545 S.Kind = SK_ParenthesizedArrayInit;
3546 S.Type = T;
3547 Steps.push_back(S);
3548}
3549
3550void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
3551 bool shouldCopy) {
3552 Step s;
3553 s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
3554 : SK_PassByIndirectRestore);
3555 s.Type = type;
3556 Steps.push_back(s);
3557}
3558
3559void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
3560 Step S;
3561 S.Kind = SK_ProduceObjCObject;
3562 S.Type = T;
3563 Steps.push_back(S);
3564}
3565
3566void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) {
3567 Step S;
3568 S.Kind = SK_StdInitializerList;
3569 S.Type = T;
3570 Steps.push_back(S);
3571}
3572
3573void InitializationSequence::AddOCLSamplerInitStep(QualType T) {
3574 Step S;
3575 S.Kind = SK_OCLSamplerInit;
3576 S.Type = T;
3577 Steps.push_back(S);
3578}
3579
3580void InitializationSequence::AddOCLZeroOpaqueTypeStep(QualType T) {
3581 Step S;
3582 S.Kind = SK_OCLZeroOpaqueType;
3583 S.Type = T;
3584 Steps.push_back(S);
3585}
3586
3587void InitializationSequence::RewrapReferenceInitList(QualType T,
3588 InitListExpr *Syntactic) {
3589 assert(Syntactic->getNumInits() == 1 &&(__builtin_expect(!(Syntactic->getNumInits() == 1 &&
"Can only rewrap trivial init lists."), 0) ? __assert_rtn(__func__
, "/Users/adergachev/svn/llvm/tools/clang/lib/Sema/SemaInit.cpp"
, 3590, "Syntactic->getNumInits() == 1 && \"Can only rewrap trivial init lists.\""
) : (void)0)
3590 "Can only rewrap trivial init lists.")(__builtin_expect(!(Syntactic->getNumInits() == 1 &&
"Can only rewrap trivial init lists."), 0) ? __assert_rtn(__func__
, "/Users/adergachev/svn/llvm/tools/clang/lib/Sema/SemaInit.cpp"
, 3590, "Syntactic->getNumInits() == 1 && \"Can only rewrap trivial init lists.\""
) : (void)0)
;
3591 Step S;
3592 S.Kind = SK_UnwrapInitList;
3593 S.Type = Syntactic->getInit(0)->getType();
3594 Steps.insert(Steps.begin(), S);
3595
3596 S.Kind = SK_RewrapInitList;
3597 S.Type = T;
3598 S.WrappingSyntacticList = Syntactic;
3599 Steps.push_back(S);
3600}
3601
3602void InitializationSequence::SetOverloadFailure(FailureKind Failure,
3603 OverloadingResult Result) {
3604 setSequenceKind(FailedSequence);
3605 this->Failure = Failure;
3606 this->FailedOverloadResult = Result;
3607}
3608
3609//===----------------------------------------------------------------------===//
3610// Attempt initialization
3611//===----------------------------------------------------------------------===//
3612
3613/// Tries to add a zero initializer. Returns true if that worked.
3614static bool
3615maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence,
3616 const InitializedEntity &Entity) {
3617 if (Entity.getKind() != InitializedEntity::EK_Variable)
3618 return false;
3619
3620 VarDecl *VD = cast<VarDecl>(Entity.getDecl());
3621 if (VD->getInit() || VD->getEndLoc().isMacroID())
3622 return false;
3623
3624 QualType VariableTy = VD->getType().getCanonicalType();
3625 SourceLocation Loc = S.getLocForEndOfToken(VD->getEndLoc());
3626 std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc);
3627 if (!Init.empty()) {
3628 Sequence.AddZeroInitializationStep(Entity.getType());
3629 Sequence.SetZeroInitializationFixit(Init, Loc);
3630 return true;
3631 }
3632 return false;
3633}
3634
3635static void MaybeProduceObjCObject(Sema &S,
3636 InitializationSequence &Sequence,
3637 const InitializedEntity &Entity) {
3638 if (!S.getLangOpts().ObjCAutoRefCount) return;
3639
3640 /// When initializing a parameter, produce the value if it's marked
3641 /// __attribute__((ns_consumed)).
3642 if (Entity.isParameterKind()) {
3643 if (!Entity.isParameterConsumed())
3644 return;
3645
3646 assert(Entity.getType()->isObjCRetainableType() &&(__builtin_expect(!(Entity.getType()->isObjCRetainableType
() && "consuming an object of unretainable type?"), 0
) ? __assert_rtn(__func__, "/Users/adergachev/svn/llvm/tools/clang/lib/Sema/SemaInit.cpp"
, 3647, "Entity.getType()->isObjCRetainableType() && \"consuming an object of unretainable type?\""
) : (void)0)
3647 "consuming an object of unretainable type?")(__builtin_expect(!(Entity.getType()->isObjCRetainableType
() && "consuming an object of unretainable type?"), 0
) ? __assert_rtn(__func__, "/Users/adergachev/svn/llvm/tools/clang/lib/Sema/SemaInit.cpp"
, 3647, "Entity.getType()->isObjCRetainableType() && \"consuming an object of unretainable type?\""
) : (void)0)
;
3648 Sequence.AddProduceObjCObjectStep(Entity.getType());
3649
3650 /// When initializing a return value, if the return type is a
3651 /// retainable type, then returns need to immediately retain the
3652 /// object. If an autorelease is required, it will be done at the
3653 /// last instant.
3654 } else if (Entity.getKind() == InitializedEntity::EK_Result ||
3655 Entity.getKind() == InitializedEntity::EK_StmtExprResult) {
3656 if (!Entity.getType()->isObjCRetainableType())
3657 return;
3658
3659 Sequence.AddProduceObjCObjectStep(Entity.getType());
3660 }
3661}
3662
3663static void TryListInitialization(Sema &S,
3664 const InitializedEntity &Entity,
3665 const InitializationKind &Kind,
3666 InitListExpr *InitList,
3667 InitializationSequence &Sequence,
3668 bool TreatUnavailableAsInvalid);
3669
3670/// When initializing from init list via constructor, handle
3671/// initialization of an object of type std::initializer_list<T>.
3672///
3673/// \return true if we have handled initialization of an object of type
3674/// std::initializer_list<T>, false otherwise.
3675static bool TryInitializerListConstruction(Sema &S,
3676 InitListExpr *List,
3677 QualType DestType,
3678 InitializationSequence &Sequence,
3679 bool TreatUnavailableAsInvalid) {
3680 QualType E;
3681 if (!S.isStdInitializerList(DestType, &E))
3682 return false;
3683
3684 if (!S.isCompleteType(List->getExprLoc(), E)) {
3685 Sequence.setIncompleteTypeFailure(E);
3686 return true;
3687 }
3688
3689 // Try initializing a temporary array from the init list.
3690 QualType ArrayType = S.Context.getConstantArrayType(
3691 E.withConst(), llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
3692 List->getNumInits()),
3693 clang::ArrayType::Normal, 0);
3694 InitializedEntity HiddenArray =
3695 InitializedEntity::InitializeTemporary(ArrayType);
3696 InitializationKind Kind = InitializationKind::CreateDirectList(
3697 List->getExprLoc(), List->getBeginLoc(), List->getEndLoc());
3698 TryListInitialization(S, HiddenArray, Kind, List, Sequence,
3699 TreatUnavailableAsInvalid);
3700 if (Sequence)
3701 Sequence.AddStdInitializerListConstructionStep(DestType);
3702 return true;
3703}
3704
3705/// Determine if the constructor has the signature of a copy or move
3706/// constructor for the type T of the class in which it was found. That is,
3707/// determine if its first parameter is of type T or reference to (possibly
3708/// cv-qualified) T.
3709static bool hasCopyOrMoveCtorParam(ASTContext &Ctx,
3710 const ConstructorInfo &Info) {
3711 if (Info.Constructor->getNumParams() == 0)
3712 return false;
3713
3714 QualType ParmT =
3715 Info.Constructor->getParamDecl(0)->getType().getNonReferenceType();
3716 QualType ClassT =
3717 Ctx.getRecordType(cast<CXXRecordDecl>(Info.FoundDecl->getDeclContext()));
3718
3719 return Ctx.hasSameUnqualifiedType(ParmT, ClassT);
3720}
3721
3722static OverloadingResult
3723ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc,
3724 MultiExprArg Args,
3725 OverloadCandidateSet &CandidateSet,
3726 QualType DestType,
3727 DeclContext::lookup_result Ctors,
3728 OverloadCandidateSet::iterator &Best,
3729 bool CopyInitializing, bool AllowExplicit,
3730 bool OnlyListConstructors, bool IsListInit,
3731 bool SecondStepOfCopyInit = false) {
3732 CandidateSet.clear(OverloadCandidateSet::CSK_InitByConstructor);
3733
3734 for (NamedDecl *D : Ctors) {
3735 auto Info = getConstructorInfo(D);
3736 if (!Info.Constructor || Info.Constructor->isInvalidDecl())
3737 continue;
3738
3739 if (!AllowExplicit && Info.Constructor->isExplicit())
3740 continue;
3741
3742 if (OnlyListConstructors && !S.isInitListConstructor(Info.Constructor))
3743 continue;
3744
3745 // C++11 [over.best.ics]p4:
3746 // ... and the constructor or user-defined conversion function is a
3747 // candidate by
3748 // - 13.3.1.3, when the argument is the temporary in the second step
3749 // of a class copy-initialization, or
3750 // - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases), [not handled here]
3751 // - the second phase of 13.3.1.7 when the initializer list has exactly
3752 // one element that is itself an initializer list, and the target is
3753 // the first parameter of a constructor of class X, and the conversion
3754 // is to X or reference to (possibly cv-qualified X),
3755 // user-defined conversion sequences are not considered.
3756 bool SuppressUserConversions =
3757 SecondStepOfCopyInit ||
3758 (IsListInit && Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
3759 hasCopyOrMoveCtorParam(S.Context, Info));
3760
3761 if (Info.ConstructorTmpl)
3762 S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
3763 /*ExplicitArgs*/ nullptr, Args,
3764 CandidateSet, SuppressUserConversions);
3765 else {
3766 // C++ [over.match.copy]p1:
3767 // - When initializing a temporary to be bound to the first parameter
3768 // of a constructor [for type T] that takes a reference to possibly
3769 // cv-qualified T as its first argument, called with a single
3770 // argument in the context of direct-initialization, explicit
3771 // conversion functions are also considered.
3772 // FIXME: What if a constructor template instantiates to such a signature?
3773 bool AllowExplicitConv = AllowExplicit && !CopyInitializing &&
3774 Args.size() == 1 &&
3775 hasCopyOrMoveCtorParam(S.Context, Info);
3776 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, Args,
3777 CandidateSet, SuppressUserConversions,
3778 /*PartialOverloading=*/false,
3779 /*AllowExplicit=*/AllowExplicitConv);
3780 }
3781 }
3782
3783 // FIXME: Work around a bug in C++17 guaranteed copy elision.
3784 //
3785 // When initializing an object of class type T by constructor
3786 // ([over.match.ctor]) or by list-initialization ([over.match.list])
3787 // from a single expression of class type U, conversion functions of
3788 // U that convert to the non-reference type cv T are candidates.
3789 // Explicit conversion functions are only candidates during
3790 // direct-initialization.
3791 //
3792 // Note: SecondStepOfCopyInit is only ever true in this case when
3793 // evaluating whether to produce a C++98 compatibility warning.
3794 if (S.getLangOpts().CPlusPlus17 && Args.size() == 1 &&
3795 !SecondStepOfCopyInit) {
3796 Expr *Initializer = Args[0];
3797 auto *SourceRD = Initializer->getType()->getAsCXXRecordDecl();
3798 if (SourceRD && S.isCompleteType(DeclLoc, Initializer->getType())) {
3799 const auto &Conversions = SourceRD->getVisibleConversionFunctions();
3800 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
3801 NamedDecl *D = *I;
3802 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3803 D = D->getUnderlyingDecl();
3804
3805 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
3806 CXXConversionDecl *Conv;
3807 if (ConvTemplate)
3808 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3809 else
3810 Conv = cast<CXXConversionDecl>(D);
3811
3812 if ((AllowExplicit && !CopyInitializing) || !Conv->isExplicit()) {
3813 if (ConvTemplate)
3814 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
3815 ActingDC, Initializer, DestType,
3816 CandidateSet, AllowExplicit,
3817 /*AllowResultConversion*/false);
3818 else
3819 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer,
3820 DestType, CandidateSet, AllowExplicit,
3821 /*AllowResultConversion*/false);
3822 }
3823 }
3824 }
3825 }
3826
3827 // Perform overload resolution and return the result.
3828 return CandidateSet.BestViableFunction(S, DeclLoc, Best);
3829}
3830
3831/// Attempt initialization by constructor (C++ [dcl.init]), which
3832/// enumerates the constructors of the initialized entity and performs overload
3833/// resolution to select the best.
3834/// \param DestType The destination class type.
3835/// \param DestArrayType The destination type, which is either DestType or
3836/// a (possibly multidimensional) array of DestType.
3837/// \param IsListInit Is this list-initialization?
3838/// \param IsInitListCopy Is this non-list-initialization resulting from a
3839/// list-initialization from {x} where x is the same
3840/// type as the entity?
3841static void TryConstructorInitialization(Sema &S,
3842 const InitializedEntity &Entity,
3843 const InitializationKind &Kind,
3844 MultiExprArg Args, QualType DestType,
3845 QualType DestArrayType,
3846 InitializationSequence &Sequence,
3847 bool IsListInit = false,
3848 bool IsInitListCopy = false) {
3849 assert(((!IsListInit && !IsInitListCopy) ||(__builtin_expect(!(((!IsListInit && !IsInitListCopy)
|| (Args.size() == 1 && isa<InitListExpr>(Args
[0]))) && "IsListInit/IsInitListCopy must come with a single initializer list "
"argument."), 0) ? __assert_rtn(__func__, "/Users/adergachev/svn/llvm/tools/clang/lib/Sema/SemaInit.cpp"
, 3852, "((!IsListInit && !IsInitListCopy) || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && \"IsListInit/IsInitListCopy must come with a single initializer list \" \"argument.\""
) : (void)0)
3850 (Args.size() == 1 && isa<InitListExpr>(Args[0]))) &&(__builtin_expect(!(((!IsListInit && !IsInitListCopy)
|| (Args.size() == 1 && isa<InitListExpr>(Args
[0]))) && "IsListInit/IsInitListCopy must come with a single initializer list "
"argument."), 0) ? __assert_rtn(__func__, "/Users/adergachev/svn/llvm/tools/clang/lib/Sema/SemaInit.cpp"
, 3852, "((!IsListInit && !IsInitListCopy) || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && \"IsListInit/IsInitListCopy must come with a single initializer list \" \"argument.\""
) : (void)0)
3851 "IsListInit/IsInitListCopy must come with a single initializer list "(__builtin_expect(!(((!IsListInit && !IsInitListCopy)
|| (Args.size() == 1 && isa<InitListExpr>(Args
[0]))) && "IsListInit/IsInitListCopy must come with a single initializer list "
"argument."), 0) ? __assert_rtn(__func__, "/Users/adergachev/svn/llvm/tools/clang/lib/Sema/SemaInit.cpp"
, 3852, "((!IsListInit && !IsInitListCopy) || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && \"IsListInit/IsInitListCopy must come with a single initializer list \" \"argument.\""
) : (void)0)
3852 "argument.")(__builtin_expect(!(((!IsListInit && !IsInitListCopy)
|| (Args.size() == 1 && isa<InitListExpr>(Args
[0]))) && "IsListInit/IsInitListCopy must come with a single initializer list "
"argument."), 0) ? __assert_rtn(__func__, "/Users/adergachev/svn/llvm/tools/clang/lib/Sema/SemaInit.cpp"
, 3852, "((!IsListInit && !IsInitListCopy) || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && \"IsListInit/IsInitListCopy must come with a single initializer list \" \"argument.\""
) : (void)0)
;
3853 InitListExpr *ILE =
3854 (IsListInit || IsInitListCopy) ? cast<InitListExpr>(Args[0]) : nullptr;
3855 MultiExprArg UnwrappedArgs =
3856 ILE ? MultiExprArg(ILE->getInits(), ILE->getNumInits()) : Args;
3857
3858 // The type we're constructing needs to be complete.
3859 if (!S.isCompleteType(Kind.getLocation(), DestType)) {
3860 Sequence.setIncompleteTypeFailure(DestType);
3861 return;
3862 }
3863
3864 // C++17 [dcl.init]p17:
3865 // - If the initializer expression is a prvalue and the cv-unqualified
3866 // version of the source type is the same class as the class of the
3867 // destination, the initializer expression is used to initialize the
3868 // destination object.
3869 // Per DR (no number yet), this does not apply when initializing a base
3870 // class or delegating to another constructor from a mem-initializer.
3871 // ObjC++: Lambda captured by the block in the lambda to block conversion
3872 // should avoid copy elision.
3873 if (S.getLangOpts().CPlusPlus17 &&
3874 Entity.getKind() != InitializedEntity::EK_Base &&
3875 Entity.getKind() != InitializedEntity::EK_Delegating &&
3876 Entity.getKind() !=
3877 InitializedEntity::EK_LambdaToBlockConversionBlockElement &&
3878 UnwrappedArgs.size() == 1 && UnwrappedArgs[0]->isRValue() &&
3879 S.Context.hasSameUnqualifiedType(UnwrappedArgs[0]->getType(), DestType)) {
3880 // Convert qualifications if necessary.
3881 Sequence.AddQualificationConversionStep(DestType, VK_RValue);
3882 if (ILE)
3883 Sequence.RewrapReferenceInitList(DestType, ILE);
3884 return;
3885 }
3886
3887 const RecordType *DestRecordType = DestType->getAs<RecordType>();
3888 assert(DestRecordType && "Constructor initialization requires record type")(__builtin_expect(!(DestRecordType && "Constructor initialization requires record type"
), 0) ? __assert_rtn(__func__, "/Users/adergachev/svn/llvm/tools/clang/lib/Sema/SemaInit.cpp"
, 3888, "DestRecordType && \"Constructor initialization requires record type\""
) : (void)0)
;
3889 CXXRecordDecl *DestRecordDecl
3890 = cast<CXXRecordDecl>(DestRecordType->getDecl());
3891
3892 // Build the candidate set directly in the initialization sequence
3893 // structure, so that it will persist if we fail.
3894 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3895
3896 // Determine whether we are allowed to call explicit constructors or
3897 // explicit conversion operators.
3898 bool AllowExplicit = Kind.AllowExplicit() || IsListInit;
3899 bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy;
3900
3901 // - Otherwise, if T is a class type, constructors are considered. The
3902 // applicable constructors are enumerated, and the best one is chosen
3903 // through overload resolution.
3904 DeclContext::lookup_result Ctors = S.LookupConstructors(DestRecordDecl);
3905
3906 OverloadingResult Result = OR_No_Viable_Function;
3907 OverloadCandidateSet::iterator Best;
3908 bool AsInitializerList = false;
3909
3910 // C++11 [over.match.list]p1, per DR1467:
3911 // When objects of non-aggregate type T are list-initialized, such that
3912 // 8.5.4 [dcl.init.list] specifies that overload resolution is performed
3913 // according to the rules in this section, overload resolution selects
3914 // the constructor in two phases:
3915 //
3916 // - Initially, the candidate functions are the initializer-list
3917 // constructors of the class T and the argument list consists of the
3918 // initializer list as a single argument.
3919 if (IsListInit) {
3920 AsInitializerList = true;
3921
3922 // If the initializer list has no elements and T has a default constructor,
3923 // the first phase is omitted.
3924 if (!(UnwrappedArgs.empty() && DestRecordDecl->hasDefaultConstructor()))
3925 Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
3926 CandidateSet, DestType, Ctors, Best,
3927 CopyInitialization, AllowExplicit,
3928 /*OnlyListConstructor=*/true,
3929 IsListInit);
3930 }
3931
3932 // C++11 [over.match.list]p1:
3933 // - If no viable initializer-list constructor is found, overload resolution
3934 // is performed again, where the candidate functions are all the
3935 // constructors of the class T and the argument list consists of the
3936 // elements of the initializer list.
3937 if (Result == OR_No_Viable_Function) {
3938 AsInitializerList = false;
3939 Result = ResolveConstructorOverload(S, Kind.getLocation(), UnwrappedArgs,
3940 CandidateSet, DestType, Ctors, Best,
3941 CopyInitialization, AllowExplicit,
3942 /*OnlyListConstructors=*/false,
3943 IsListInit);
3944 }
3945 if (Result) {
3946 Sequence.SetOverloadFailure(IsListInit ?
3947 InitializationSequence::FK_ListConstructorOverloadFailed :
3948 InitializationSequence::FK_ConstructorOverloadFailed,
3949 Result);
3950 return;
3951 }
3952
3953 bool HadMultipleCandidates = (CandidateSet.size() > 1);
3954
3955 // In C++17, ResolveConstructorOverload can select a conversion function
3956 // instead of a constructor.
3957 if (auto *CD = dyn_cast<CXXConversionDecl>(Best->Function)) {
3958 // Add the user-defined conversion step that calls the conversion function.
3959 QualType ConvType = CD->getConversionType();
3960 assert(S.Context.hasSameUnqualifiedType(ConvType, DestType) &&(__builtin_expect(!(S.Context.hasSameUnqualifiedType(ConvType
, DestType) && "should not have selected this conversion function"
), 0) ? __assert_rtn(__func__, "/Users/adergachev/svn/llvm/tools/clang/lib/Sema/SemaInit.cpp"
, 3961, "S.Context.hasSameUnqualifiedType(ConvType, DestType) && \"should not have selected this conversion function\""
) : (void)0)
3961 "should not have selected this conversion function")(__builtin_expect(!(S.Context.hasSameUnqualifiedType(ConvType
, DestType) && "should not have selected this conversion function"
), 0) ? __assert_rtn(__func__, "/Users/adergachev/svn/llvm/tools/clang/lib/Sema/SemaInit.cpp"
, 3961, "S.Context.hasSameUnqualifiedType(ConvType, DestType) && \"should not have selected this conversion function\""
) : (void)0)
;
3962 Sequence.AddUserConversionStep(CD, Best->FoundDecl, ConvType,
3963 HadMultipleCandidates);
3964 if (!S.Context.hasSameType(ConvType, DestType))
3965 Sequence.AddQualificationConversionStep(DestType, VK_RValue);
3966 if (IsListInit)
3967 Sequence.RewrapReferenceInitList(Entity.getType(), ILE);
3968 return;
3969 }
3970
3971 // C++11 [dcl.init]p6:
3972 // If a program calls for the default initialization of an object
3973 // of a const-qualified type T, T shall be a class type with a
3974 // user-provided default constructor.
3975 // C++ core issue 253 proposal:
3976 // If the implicit default constructor initializes all subobjects, no
3977 // initializer should be required.
3978 // The 253 proposal is for example needed to process libstdc++ headers in 5.x.
3979 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
3980 if (Kind.getKind() == InitializationKind::IK_Default &&
3981 Entity.getType().isConstQualified()) {
3982 if (!CtorDecl->getParent()->allowConstDefaultInit()) {
3983 if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
3984 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
3985 return;
3986 }
3987 }
3988
3989 // C++11 [over.match.list]p1:
3990 // In copy-list-initialization, if an explicit constructor is chosen, the
3991 // initializer is ill-formed.
3992 if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) {
3993 Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor);
3994 return;
3995 }
3996
3997 // Add the constructor initialization step. Any cv-qualification conversion is
3998 // subsumed by the initialization.
3999 Sequence.AddConstructorInitializationStep(
4000 Best->FoundDecl, CtorDecl, DestArrayType, HadMultipleCandidates,
4001 IsListInit | IsInitListCopy, AsInitializerList);
4002}
4003
4004static bool
4005ResolveOverloadedFunctionForReferenceBinding(Sema &S,
4006 Expr *Initializer,
4007 QualType &SourceType,
4008 QualType &UnqualifiedSourceType,
4009 QualType UnqualifiedTargetType,
4010 InitializationSequence &Sequence) {
4011 if (S.Context.getCanonicalType(UnqualifiedSourceType) ==
4012 S.Context.OverloadTy) {
4013 DeclAccessPair Found;
4014 bool HadMultipleCandidates = false;
4015 if (FunctionDecl *Fn
4016 = S.ResolveAddressOfOverloadedFunction(Initializer,
4017 UnqualifiedTargetType,
4018 false, Found,
4019 &HadMultipleCandidates)) {
4020 Sequence.AddAddressOverloadResolutionStep(Fn, Found,
4021 HadMultipleCandidates);
4022 SourceType = Fn->getType();
4023 UnqualifiedSourceType = SourceType.getUnqualifiedType();
4024 } else if (!UnqualifiedTargetType->isRecordType()) {
4025 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4026 return true;
4027 }
4028 }
4029 return false;
4030}
4031
4032static void TryReferenceInitializationCore(Sema &S,
4033 const InitializedEntity &Entity,
4034 const InitializationKind &Kind,
4035 Expr *Initializer,
4036 QualType cv1T1, QualType T1,
4037 Qualifiers T1Quals,
4038 QualType cv2T2, QualType T2,
4039 Qualifiers T2Quals,
4040 InitializationSequence &Sequence);
4041
4042static void TryValueInitialization(Sema &S,
4043 const InitializedEntity &Entity,
4044 const InitializationKind &Kind,
4045 InitializationSequence &Sequence,
4046 InitListExpr *InitList = nullptr);
4047
4048/// Attempt list initialization of a reference.
4049static void TryReferenceListInitialization(Sema &S,
4050 const InitializedEntity &Entity,
4051 const InitializationKind &Kind,
4052 InitListExpr *InitList,
4053 InitializationSequence &Sequence,
4054 bool TreatUnavailableAsInvalid) {
4055 // First, catch C++03 where this isn't possible.
4056 if (!S.getLangOpts().CPlusPlus11) {
4057 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
4058 return;
4059 }
4060 // Can't reference initialize a compound literal.
4061 if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) {
4062 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
4063 return;
4064 }
4065
4066 QualType DestType = Entity.getType();
4067 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
4068 Qualifiers T1Quals;
4069 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
4070
4071 // Reference initialization via an initializer list works thus:
4072 // If the initializer list consists of a single element that is
4073 // reference-related to the referenced type, bind directly to that element
4074 // (possibly creating temporaries).
4075 // Otherwise, initialize a temporary with the initializer list and
4076 // bind to that.
4077 if (InitList->getNumInits() == 1) {
4078 Expr *Initializer = InitList->getInit(0);
4079 QualType cv2T2 = Initializer->getType();
4080 Qualifiers T2Quals;
4081 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
4082
4083 // If this fails, creating a temporary wouldn't work either.
4084 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
4085 T1, Sequence))
4086 return;
4087
4088 SourceLocation DeclLoc = Initializer->getBeginLoc();
4089 bool dummy1, dummy2, dummy3;
4090 Sema::ReferenceCompareResult RefRelationship
4091 = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, dummy1,
4092 dummy2, dummy3);
4093 if (RefRelationship >= Sema::Ref_Related) {
4094 // Try to bind the reference here.
4095 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
4096 T1Quals, cv2T2, T2, T2Quals, Sequence);
4097 if (Sequence)
4098 Sequence.RewrapReferenceInitList(cv1T1, InitList);
4099 return;
4100 }
4101
4102 // Update the initializer if we've resolved an overloaded function.
4103 if (Sequence.step_begin() != Sequence.step_end())
4104 Sequence.RewrapReferenceInitList(cv1T1, InitList);
4105 }
4106
4107 // Not reference-related. Create a temporary and bind to that.
4108 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
4109
4110 TryListInitialization(S, TempEntity, Kind, InitList, Sequence,
4111 TreatUnavailableAsInvalid);
4112 if (Sequence) {
4113 if (DestType->isRValueReferenceType() ||
4114 (T1Quals.hasConst() && !T1Quals.hasVolatile()))
4115 Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
4116 else
4117 Sequence.SetFailed(
4118 InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
4119 }
4120}
4121
4122/// Attempt list initialization (C++0x [dcl.init.list])
4123static void TryListInitialization(Sema &S,
4124 const InitializedEntity &Entity,
4125 const InitializationKind &Kind,
4126 InitListExpr *InitList,
4127 InitializationSequence &Sequence,
4128 bool TreatUnavailableAsInvalid) {
4129 QualType DestType = Entity.getType();
4130
4131 // C++ doesn't allow scalar initialization with more than one argument.
4132 // But C99 complex numbers are scalars and it makes sense there.
4133 if (S.getLangOpts().CPlusPlus && DestType->isScalarType() &&
4134 !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
4135 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
4136 return;
4137 }
4138 if (DestType->isReferenceType()) {
4139 TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence,
4140 TreatUnavailableAsInvalid);
4141 return;
4142 }
4143
4144 if (DestType->isRecordType() &&
4145 !S.isCompleteType(InitList->getBeginLoc(), DestType)) {
4146 Sequence.setIncompleteTypeFailure(DestType);
4147 return;
4148 }
4149
4150 // C++11 [dcl.init.list]p3, per DR1467:
4151 // - If T is a class type and the initializer list has a single element of
4152 // type cv U, where U is T or a class derived from T, the object is
4153 // initialized from that element (by copy-initialization for
4154 // copy-list-initialization, or by direct-initialization for
4155 // direct-list-initialization).
4156 // - Otherwise, if T is a character array and the initializer list has a
4157 // single element that is an appropriately-typed string literal
4158 // (8.5.2 [dcl.init.string]), initialization is performed as described
4159 // in that section.
4160 // - Otherwise, if T is an aggregate, [...] (continue below).
4161 if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1) {
4162 if (DestType->isRecordType()) {
4163 QualType InitType = InitList->getInit(0)->getType();
4164 if (S.Context.hasSameUnqualifiedType(InitType, DestType) ||
4165 S.IsDerivedFrom(InitList->getBeginLoc(), InitType, DestType)) {
4166 Expr *InitListAsExpr = InitList;
4167 TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
4168 DestType, Sequence,
4169 /*InitListSyntax*/false,
4170 /*IsInitListCopy*/true);
4171 return;
4172 }
4173 }
4174 if (const ArrayType *DestAT = S.Context.getAsArrayType(DestType)) {
4175 Expr *SubInit[1] = {InitList->getInit(0)};
4176 if (!isa<VariableArrayType>(DestAT) &&
4177 IsStringInit(SubInit[0], DestAT, S.Context) == SIF_None) {
4178 InitializationKind SubKind =
4179 Kind.getKind() == InitializationKind::IK_DirectList
4180 ? InitializationKind::CreateDirect(Kind.getLocation(),
4181 InitList->getLBraceLoc(),
4182 InitList->getRBraceLoc())
4183 : Kind;
4184 Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
4185 /*TopLevelOfInitList*/ true,
4186 TreatUnavailableAsInvalid);
4187
4188 // TryStringLiteralInitialization() (in InitializeFrom()) will fail if
4189 // the element is not an appropriately-typed string literal, in which
4190 // case we should proceed as in C++11 (below).
4191 if (Sequence) {
4192 Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4193 return;
4194 }
4195 }
4196 }
4197 }
4198
4199 // C++11 [dcl.init.list]p3:
4200 // - If T is an aggregate, aggregate initialization is performed.
4201 if ((DestType->isRecordType() && !DestType->isAggregateType()) ||
4202 (S.getLangOpts().CPlusPlus11 &&
4203 S.isStdInitializerList(DestType, nullptr))) {
4204 if (S.getLangOpts().CPlusPlus11) {
4205 // - Otherwise, if the initializer list has no elements and T is a
4206 // class type with a default constructor, the object is
4207 // value-initialized.
4208 if (InitList->getNumInits() == 0) {
4209 CXXRecordDecl *RD = DestType->getAsCXXRecordDecl();
4210 if (RD->hasDefaultConstructor()) {
4211 TryValueInitialization(S, Entity, Kind, Sequence, InitList);
4212 return;
4213 }
4214 }
4215
4216 // - Otherwise, if T is a specialization of std::initializer_list<E>,
4217 // an initializer_list object constructed [...]
4218 if (TryInitializerListConstruction(S, InitList, DestType, Sequence,
4219 TreatUnavailableAsInvalid))
4220 return;
4221
4222 // - Otherwise, if T is a class type, constructors are considered.
4223 Expr *InitListAsExpr = InitList;
4224 TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
4225 DestType, Sequence, /*InitListSyntax*/true);
4226 } else
4227 Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType);
4228 return;
4229 }
4230
4231 if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() &&
4232 InitList->getNumInits() == 1) {
4233 Expr *E = InitList->getInit(0);
4234
4235 // - Otherwise, if T is an enumeration with a fixed underlying type,
4236 // the initializer-list has a single element v, and the initialization
4237 // is direct-list-initialization, the object is initialized with the
4238 // value T(v); if a narrowing conversion is required to convert v to
4239 // the underlying type of T, the program is ill-formed.
4240 auto *ET = DestType->getAs<EnumType>();
4241 if (S.getLangOpts().CPlusPlus17 &&
4242 Kind.getKind() == InitializationKind::IK_DirectList &&
4243 ET && ET->getDecl()->isFixed() &&
4244 !S.Context.hasSameUnqualifiedType(E->getType(), DestType) &&
4245 (E->getType()->isIntegralOrEnumerationType() ||
4246 E->getType()->isFloatingType())) {
4247 // There are two ways that T(v) can work when T is an enumeration type.
4248 // If there is either an implicit conversion sequence from v to T or
4249 // a conversion function that can convert from v to T, then we use that.
4250 // Otherwise, if v is of integral, enumeration, or floating-point type,
4251 // it is converted to the enumeration type via its underlying type.
4252 // There is no overlap possible between these two cases (except when the
4253 // source value is already of the destination type), and the first
4254 // case is handled by the general case for single-element lists below.
4255 ImplicitConversionSequence ICS;
4256 ICS.setStandard();
4257 ICS.Standard.setAsIdentityConversion();
4258 if (!E->isRValue())
4259 ICS.Standard.First = ICK_Lvalue_To_Rvalue;
4260 // If E is of a floating-point type, then the conversion is ill-formed
4261 // due to narrowing, but go through the motions in order to produce the
4262 // right diagnostic.
4263 ICS.Standard.Second = E->getType()->isFloatingType()
4264 ? ICK_Floating_Integral
4265 : ICK_Integral_Conversion;
4266 ICS.Standard.setFromType(E->getType());
4267 ICS.Standard.setToType(0, E->getType());
4268 ICS.Standard.setToType(1, DestType);
4269 ICS.Standard.setToType(2, DestType);
4270 Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2),
4271 /*TopLevelOfInitList*/true);
4272 Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4273 return;
4274 }
4275
4276 // - Otherwise, if the initializer list has a single element of type E
4277 // [...references are handled above...], the object or reference is
4278 // initialized from that element (by copy-initialization for
4279 // copy-list-initialization, or by direct-initialization for
4280 // direct-list-initialization); if a narrowing conversion is required
4281 // to convert the element to T, the program is ill-formed.
4282 //
4283 // Per core-24034, this is direct-initialization if we were performing
4284 // direct-list-initialization and copy-initialization otherwise.
4285 // We can't use InitListChecker for this, because it always performs
4286 // copy-initialization. This only matters if we might use an 'explicit'
4287 // conversion operator, so we only need to handle the cases where the source
4288 // is of record type.
4289 if (InitList->getInit(0)->getType()->isRecordType()) {
4290 InitializationKind SubKind =
4291 Kind.getKind() == InitializationKind::IK_DirectList
4292 ? InitializationKind::CreateDirect(Kind.getLocation(),
4293 InitList->getLBraceLoc(),
4294 InitList->getRBraceLoc())
4295 : Kind;
4296 Expr *SubInit[1] = { InitList->getInit(0) };
4297 Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
4298 /*TopLevelOfInitList*/true,
4299 TreatUnavailableAsInvalid);
4300 if (Sequence)
4301 Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4302 return;
4303 }
4304 }
4305
4306 InitListChecker CheckInitList(S, Entity, InitList,
4307 DestType, /*VerifyOnly=*/true, TreatUnavailableAsInvalid);
4308 if (CheckInitList.HadError()) {
4309 Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
4310 return;
4311 }
4312
4313 // Add the list initialization step with the built init list.
4314 Sequence.AddListInitializationStep(DestType);
4315}
4316
4317/// Try a reference initialization that involves calling a conversion
4318/// function.
4319static OverloadingResult TryRefInitWithConversionFunction(
4320 Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind,
4321 Expr *Initializer, bool AllowRValues, bool IsLValueRef,
4322 InitializationSequence &Sequence) {
4323 QualType DestType = Entity.getType();
4324 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
4325 QualType T1 = cv1T1.getUnqualifiedType();
4326 QualType cv2T2 = Initializer->getType();
4327 QualType T2 = cv2T2.getUnqualifiedType();
4328
4329 bool DerivedToBase;
4330 bool ObjCConversion;
4331 bool ObjCLifetimeConversion;
4332 assert(!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2,(__builtin_expect(!(!S.CompareReferenceRelationship(Initializer
->getBeginLoc(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion
) && "Must have incompatible references when binding via conversion"
), 0) ? __assert_rtn(__func__, "/Users/adergachev/svn/llvm/tools/clang/lib/Sema/SemaInit.cpp"
, 4335, "!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion) && \"Must have incompatible references when binding via conversion\""
) : (void)0)
4333 DerivedToBase, ObjCConversion,(__builtin_expect(!(!S.CompareReferenceRelationship(Initializer
->getBeginLoc(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion
) && "Must have incompatible references when binding via conversion"
), 0) ? __assert_rtn(__func__, "/Users/adergachev/svn/llvm/tools/clang/lib/Sema/SemaInit.cpp"
, 4335, "!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion) && \"Must have incompatible references when binding via conversion\""
) : (void)0)
4334 ObjCLifetimeConversion) &&(__builtin_expect(!(!S.CompareReferenceRelationship(Initializer
->getBeginLoc(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion
) && "Must have incompatible references when binding via conversion"
), 0) ? __assert_rtn(__func__, "/Users/adergachev/svn/llvm/tools/clang/lib/Sema/SemaInit.cpp"
, 4335, "!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion) && \"Must have incompatible references when binding via conversion\""
) : (void)0)
4335 "Must have incompatible references when binding via conversion")(__builtin_expect(!(!S.CompareReferenceRelationship(Initializer
->getBeginLoc(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion
) && "Must have incompatible references when binding via conversion"
), 0) ? __assert_rtn(__func__, "/Users/adergachev/svn/llvm/tools/clang/lib/Sema/SemaInit.cpp"
, 4335, "!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion) && \"Must have incompatible references when binding via conversion\""
) : (void)0)
;
4336 (void)DerivedToBase;
4337 (void)ObjCConversion;
4338 (void)ObjCLifetimeConversion;
4339
4340 // Build the candidate set directly in the initialization sequence
4341 // structure, so that it will persist if we fail.
4342 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4343 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
4344
4345 // Determine whether we are allowed to call explicit conversion operators.
4346 // Note that none of [over.match.copy], [over.match.conv], nor
4347 // [over.match.ref] permit an explicit constructor to be chosen when
4348 // initializing a reference, not even for direct-initialization.
4349 bool AllowExplicitCtors = false;
4350 bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding();
4351
4352 const RecordType *T1RecordType = nullptr;
4353 if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
4354 S.isCompleteType(Kind.getLocation(), T1)) {
4355 // The type we're converting to is a class type. Enumerate its constructors
4356 // to see if there is a suitable conversion.
4357 CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
4358
4359 for (NamedDecl *D : S.LookupConstructors(T1RecordDecl)) {
4360 auto Info = getConstructorInfo(D);
4361 if (!Info.Constructor)
4362 continue;
4363
4364 if (!Info.Constructor->isInvalidDecl() &&
4365 Info.Constructor->isConvertingConstructor(AllowExplicitCtors)) {
4366 if (Info.ConstructorTmpl)
4367 S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
4368 /*ExplicitArgs*/ nullptr,
4369 Initializer, CandidateSet,
4370 /*SuppressUserConversions=*/true);
4371 else
4372 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
4373 Initializer, CandidateSet,
4374 /*SuppressUserConversions=*/true);
4375 }
4376 }
4377 }
4378 if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
4379 return OR_No_Viable_Function;
4380
4381 const RecordType *T2RecordType = nullptr;
4382 if ((T2RecordType = T2->getAs<RecordType>()) &&
4383 S.isCompleteType(Kind.getLocation(), T2)) {
4384 // The type we're converting from is a class type, enumerate its conversion
4385 // functions.
4386 CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
4387
4388 const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
4389 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4390 NamedDecl *D = *I;
4391 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4392 if (isa<UsingShadowDecl>(D))
4393 D = cast<UsingShadowDecl>(D)->getTargetDecl();
4394
4395 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4396 CXXConversionDecl *Conv;
4397 if (ConvTemplate)
4398 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4399 else
4400 Conv = cast<CXXConversionDecl>(D);
4401
4402 // If the conversion function doesn't return a reference type,
4403 // it can't be considered for this conversion unless we're allowed to
4404 // consider rvalues.
4405 // FIXME: Do we need to make sure that we only consider conversion
4406 // candidates with reference-compatible results? That might be needed to
4407 // break recursion.
4408 if ((AllowExplicitConvs || !Conv->isExplicit()) &&
4409 (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){
4410 if (ConvTemplate)
4411 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
4412 ActingDC, Initializer,
4413 DestType, CandidateSet,
4414 /*AllowObjCConversionOnExplicit=*/
4415 false);
4416 else
4417 S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
4418 Initializer, DestType, CandidateSet,
4419 /*AllowObjCConversionOnExplicit=*/false);
4420 }
4421 }
4422 }
4423 if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
4424 return OR_No_Viable_Function;
4425
4426 SourceLocation DeclLoc = Initializer->getBeginLoc();
4427
4428 // Perform overload resolution. If it fails, return the failed result.
4429 OverloadCandidateSet::iterator Best;
4430 if (OverloadingResult Result
4431 = CandidateSet.BestViableFunction(S, DeclLoc, Best))
4432 return Result;
4433
4434 FunctionDecl *Function = Best->Function;
4435 // This is the overload that will be used for this initialization step if we
4436 // use this initialization. Mark it as referenced.
4437 Function->setReferenced();
4438
4439 // Compute the returned type and value kind of the conversion.
4440 QualType cv3T3;
4441 if (isa<CXXConversionDecl>(Function))
4442 cv3T3 = Function->getReturnType();
4443 else
4444 cv3T3 = T1;
4445
4446 ExprValueKind VK = VK_RValue;
4447 if (cv3T3->isLValueReferenceType())
4448 VK = VK_LValue;
4449 else if (const auto *RRef = cv3T3->getAs<RValueReferenceType>())
4450 VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
4451 cv3T3 = cv3T3.getNonLValueExprType(S.Context);
4452
4453 // Add the user-defined conversion step.
4454 bool HadMultipleCandidates = (CandidateSet.size() > 1);
4455 Sequence.AddUserConversionStep(Function, Best->FoundDecl, cv3T3,
4456 HadMultipleCandidates);
4457
4458 // Determine whether we'll need to perform derived-to-base adjustments or
4459 // other conversions.
4460 bool NewDerivedToBase = false;
4461 bool NewObjCConversion = false;
4462 bool NewObjCLifetimeConversion = false;
4463 Sema::ReferenceCompareResult NewRefRelationship
4464 = S.CompareReferenceRelationship(DeclLoc, T1, cv3T3,
4465 NewDerivedToBase, NewObjCConversion,
4466 NewObjCLifetimeConversion);
4467
4468 // Add the final conversion sequence, if necessary.
4469 if (NewRefRelationship == Sema::Ref_Incompatible) {
4470 assert(!isa<CXXConstructorDecl>(Function) &&(__builtin_expect(!(!isa<CXXConstructorDecl>(Function) &&
"should not have conversion after constructor"), 0) ? __assert_rtn
(__func__, "/Users/adergachev/svn/llvm/tools/clang/lib/Sema/SemaInit.cpp"
, 4471, "!isa<CXXConstructorDecl>(Function) && \"should not have conversion after constructor\""
) : (void)0)
4471 "should not have conversion after constructor")(__builtin_expect(!(!isa<CXXConstructorDecl>(Function) &&
"should not have conversion after constructor"), 0) ? __assert_rtn
(__func__, "/Users/adergachev/svn/llvm/tools/clang/lib/Sema/SemaInit.cpp"
, 4471, "!isa<CXXConstructorDecl>(Function) && \"should not have conversion after constructor\""
) : (void)0)
;
4472
4473 ImplicitConversionSequence ICS;
4474 ICS.setStandard();
4475 ICS.Standard = Best->FinalConversion;
4476 Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2));
4477
4478 // Every implicit conversion results in a prvalue, except for a glvalue
4479 // derived-to-base conversion, which we handle below.
4480 cv3T3 = ICS.Standard.getToType(2);
4481 VK = VK_RValue;
4482 }
4483
4484 // If the converted initializer is a prvalue, its type T4 is adjusted to
4485 // type "cv1 T4" and the temporary materialization conversion is applied.
4486 //
4487 // We adjust the cv-qualifications to match the reference regardless of
4488 // whether we have a prvalue so that the AST records the change. In this
4489 // case, T4 is "cv3 T3".
4490 QualType cv1T4 = S.Context.getQualifiedType(cv3T3, cv1T1.getQualifiers());
4491 if (cv1T4.getQualifiers() != cv3T3.getQualifiers())
4492 Sequence.AddQualificationConversionStep(cv1T4, VK);
4493 Sequence.AddReferenceBindingStep(cv1T4, VK == VK_RValue);
4494 VK = IsLValueRef ? VK_LValue : VK_XValue;
4495
4496 if (NewDerivedToBase)
4497 Sequence.AddDerivedToBaseCastStep(cv1T1, VK);
4498 else if (NewObjCConversion)
4499 Sequence.AddObjCObjectConversionStep(cv1T1);
4500
4501 return OR_Success;
4502}
4503
4504static void CheckCXX98CompatAccessibleCopy(Sema &S,
4505 const InitializedEntity &Entity,
4506 Expr *CurInitExpr);
4507
4508/// Attempt reference initialization (C++0x [dcl.init.ref])
4509static void TryReferenceInitialization(Sema &S,
4510 const InitializedEntity &Entity,
4511 const InitializationKind &Kind,
4512 Expr *Initializer,
4513 InitializationSequence &Sequence) {
4514 QualType DestType = Entity.getType();
4515 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
4516 Qualifiers T1Quals;
4517 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
4518 QualType cv2T2 = Initializer->getType();
4519 Qualifiers T2Quals;
4520 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
4521
4522 // If the initializer is the address of an overloaded function, try
4523 // to resolve the overloaded function. If all goes well, T2 is the
4524 // type of the resulting function.
4525 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
4526 T1, Sequence))
4527 return;
4528
4529 // Delegate everything else to a subfunction.
4530 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
4531 T1Quals, cv2T2, T2, T2Quals, Sequence);
4532}
4533
4534/// Determine whether an expression is a non-referenceable glvalue (one to
4535/// which a reference can never bind). Attempting to bind a reference to
4536/// such a glvalue will always create a temporary.
4537static bool isNonReferenceableGLValue(Expr *E) {
4538 return E->refersToBitField() || E->refersToVectorElement();
4539}
4540
4541/// Reference initialization without resolving overloaded functions.
4542static void TryReferenceInitializationCore(Sema &S,
4543 const InitializedEntity &Entity,
4544 const InitializationKind &Kind,
4545 Expr *Initializer,
4546 QualType cv1T1, QualType T1,
4547 Qualifiers T1Quals,
4548 QualType cv2T2, QualType T2,
4549 Qualifiers T2Quals,
4550 InitializationSequence &Sequence) {
4551 QualType DestType = Entity.getType();
4552 SourceLocation DeclLoc = Initializer->getBeginLoc();
4553 // Compute some basic properties of the types and the initializer.
4554 bool isLValueRef = DestType->isLValueReferenceType();
4555 bool isRValueRef = !isLValueRef;
4556 bool DerivedToBase = false;
4557 bool ObjCConversion = false;
4558 bool ObjCLifetimeConversion = false;
4559 Expr::Classification InitCategory = Initializer->Classify(S.Context);
4560 Sema::ReferenceCompareResult RefRelationship
4561 = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase,
4562 ObjCConversion, ObjCLifetimeConversion);
4563
4564 // C++0x [dcl.init.ref]p5:
4565 // A reference to type "cv1 T1" is initialized by an expression of type
4566 // "cv2 T2" as follows:
4567 //
4568 // - If the reference is an lvalue reference and the initializer
4569 // expression
4570 // Note the analogous bullet points for rvalue refs to functions. Because
4571 // there are no function rvalues in C++, rvalue refs to functions are treated
4572 // like lvalue refs.
4573 OverloadingResult ConvOvlResult = OR_Success;
4574 bool T1Function = T1->isFunctionType();
4575 if (isLValueRef || T1Function) {
4576 if (InitCategory.isLValue() && !isNonReferenceableGLValue(Initializer) &&
4577 (RefRelationship == Sema::Ref_Compatible ||
4578 (Kind.isCStyleOrFunctionalCast() &&
4579 RefRelationship == Sema::Ref_Related))) {
4580 // - is an lvalue (but is not a bit-field), and "cv1 T1" is
4581 // reference-compatible with "cv2 T2," or
4582 if (T1Quals != T2Quals)
4583 // Convert to cv1 T2. This should only add qualifiers unless this is a
4584 // c-style cast. The removal of qualifiers in that case notionally
4585 // happens after the reference binding, but that doesn't matter.
4586 Sequence.AddQualificationConversionStep(
4587 S.Context.getQualifiedType(T2, T1Quals),
4588 Initializer->getValueKind());
4589 if (DerivedToBase)
4590 Sequence.AddDerivedToBaseCastStep(cv1T1, VK_LValue);
4591 else if (ObjCConversion)
4592 Sequence.AddObjCObjectConversionStep(cv1T1);
4593
4594 // We only create a temporary here when binding a reference to a
4595 // bit-field or vector element. Those cases are't supposed to be
4596 // handled by this bullet, but the outcome is the same either way.
4597 Sequence.AddReferenceBindingStep(cv1T1, false);
4598 return;
4599 }
4600
4601 // - has a class type (i.e., T2 is a class type), where T1 is not
4602 // reference-related to T2, and can be implicitly converted to an
4603 // lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
4604 // with "cv3 T3" (this conversion is selected by enumerating the
4605 // applicable conversion functions (13.3.1.6) and choosing the best
4606 // one through overload resolution (13.3)),
4607 // If we have an rvalue ref to function type here, the rhs must be
4608 // an rvalue. DR1287 removed the "implicitly" here.
4609 if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
4610 (isLValueRef || InitCategory.isRValue())) {
4611 ConvOvlResult = TryRefInitWithConversionFunction(
4612 S, Entity, Kind, Initializer, /*AllowRValues*/ isRValueRef,
4613 /*IsLValueRef*/ isLValueRef, Sequence);
4614 if (ConvOvlResult == OR_Success)
4615 return;
4616 if (ConvOvlResult != OR_No_Viable_Function)
4617 Sequence.SetOverloadFailure(
4618 InitializationSequence::FK_ReferenceInitOverloadFailed,
4619 ConvOvlResult);
4620 }
4621 }
4622
4623 // - Otherwise, the reference shall be an lvalue reference to a
4624 // non-volatile const type (i.e., cv1 shall be const), or the reference
4625 // shall be an rvalue reference.
4626 if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) {
4627 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
4628 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4629 else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
4630 Sequence.SetOverloadFailure(
4631 InitializationSequence::FK_ReferenceInitOverloadFailed,
4632 ConvOvlResult);
4633 else if (!InitCategory.isLValue())
4634 Sequence.SetFailed(
4635 InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
4636 else {
4637 InitializationSequence::FailureKind FK;
4638 switch (RefRelationship) {
4639 case Sema::Ref_Compatible:
4640 if (Initializer->refersToBitField())
4641 FK = InitializationSequence::
4642 FK_NonConstLValueReferenceBindingToBitfield;
4643 else if (Initializer->refersToVectorElement())
4644 FK = InitializationSequence::
4645 FK_NonConstLValueReferenceBindingToVectorElement;
4646 else
4647 llvm_unreachable("unexpected kind of compatible initializer")::llvm::llvm_unreachable_internal("unexpected kind of compatible initializer"
, "/Users/adergachev/svn/llvm/tools/clang/lib/Sema/SemaInit.cpp"
, 4647)
;
4648 break;
4649 case Sema::Ref_Related:
4650 FK = InitializationSequence::FK_ReferenceInitDropsQualifiers;
4651 break;
4652 case Sema::Ref_Incompatible:
4653 FK = InitializationSequence::
4654 FK_NonConstLValueReferenceBindingToUnrelated;
4655 break;
4656 }
4657 Sequence.SetFailed(FK);
4658 }
4659 return;
4660 }
4661
4662 // - If the initializer expression
4663 // - is an
4664 // [<=14] xvalue (but not a bit-field), class prvalue, array prvalue, or
4665 // [1z] rvalue (but not a bit-field) or
4666 // function lvalue and "cv1 T1" is reference-compatible with "cv2 T2"
4667 //
4668 // Note: functions are handled above and below rather than here...
4669 if (!T1Function &&
4670 (RefRelationship == Sema::Ref_Compatible ||
4671 (Kind.isCStyleOrFunctionalCast() &&
4672 RefRelationship == Sema::Ref_Related)) &&
4673 ((InitCategory.isXValue() && !isNonReferenceableGLValue(Initializer)) ||
4674 (InitCategory.isPRValue() &&
4675 (S.getLangOpts().CPlusPlus17 || T2->isRecordType() ||
4676 T2->isArrayType())))) {
4677 ExprValueKind ValueKind = InitCategory.isXValue() ? VK_XValue : VK_RValue;
4678 if (InitCategory.isPRValue() && T2->isRecordType()) {
4679 // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
4680 // compiler the freedom to perform a copy here or bind to the
4681 // object, while C++0x requires that we bind directly to the
4682 // object. Hence, we always bind to the object without making an
4683 // extra copy. However, in C++03 requires that we check for the
4684 // presence of a suitable copy constructor:
4685 //
4686 // The constructor that would be used to make the copy shall
4687 // be callable whether or not the copy is actually done.
4688 if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt)
4689 Sequence.AddExtraneousCopyToTemporary(cv2T2);
4690 else if (S.getLangOpts().CPlusPlus11)
4691 CheckCXX98CompatAccessibleCopy(S, Entity, Initializer);
4692 }
4693
4694 // C++1z [dcl.init.ref]/5.2.1.2:
4695 // If the converted initializer is a prvalue, its type T4 is adjusted
4696 // to type "cv1 T4" and the temporary materialization conversion is
4697 // applied.
4698 // Postpone address space conversions to after the temporary materialization
4699 // conversion to allow creating temporaries in the alloca address space.
4700 auto T1QualsIgnoreAS = T1Quals;
4701 auto T2QualsIgnoreAS = T2Quals;
4702 if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) {
4703 T1QualsIgnoreAS.removeAddressSpace();
4704 T2QualsIgnoreAS.removeAddressSpace();
4705 }
4706 QualType cv1T4 = S.Context.getQualifiedType(cv2T2, T1QualsIgnoreAS);
4707 if (T1QualsIgnoreAS != T2QualsIgnoreAS)
4708 Sequence.AddQualificationConversionStep(cv1T4, ValueKind);
4709 Sequence.AddReferenceBindingStep(cv1T4, ValueKind == VK_RValue);
4710 ValueKind = isLValueRef ? VK_LValue : VK_XValue;
4711 // Add addr space conversion if required.
4712 if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) {
4713 auto T4Quals = cv1T4.getQualifiers();
4714 T4Quals.addAddressSpace(T1Quals.getAddressSpace());
4715 QualType cv1T4WithAS = S.Context.getQualifiedType(T2, T4Quals);
4716 Sequence.AddQualificationConversionStep(cv1T4WithAS, ValueKind);
4717 }
4718
4719 // In any case, the reference is bound to the resulting glvalue (or to
4720 // an appropriate base class subobject).
4721 if (DerivedToBase)
4722 Sequence.AddDerivedToBaseCastStep(cv1T1, ValueKind);
4723 else if (ObjCConversion)
4724 Sequence.AddObjCObjectConversionStep(cv1T1);
4725 return;
4726 }
4727
4728 // - has a class type (i.e., T2 is a class type), where T1 is not
4729 // reference-related to T2, and can be implicitly converted to an
4730 // xvalue, class prvalue, or function lvalue of type "cv3 T3",
4731 // where "cv1 T1" is reference-compatible with "cv3 T3",
4732 //
4733 // DR1287 removes the "implicitly" here.
4734 if (T2->isRecordType()) {
4735 if (RefRelationship == Sema::Ref_Incompatible) {
4736 ConvOvlResult = TryRefInitWithConversionFunction(
4737 S, Entity, Kind, Initializer, /*AllowRValues*/ true,
4738 /*IsLValueRef*/ isLValueRef, Sequence);
4739 if (ConvOvlResult)
4740 Sequence.SetOverloadFailure(
4741 InitializationSequence::FK_ReferenceInitOverloadFailed,
4742 ConvOvlResult);
4743
4744 return;
4745 }
4746
4747 if (RefRelationship == Sema::Ref_Compatible &&
4748 isRValueRef && InitCategory.isLValue()) {
4749 Sequence.SetFailed(
4750 InitializationSequence::FK_RValueReferenceBindingToLValue);
4751 return;
4752 }
4753
4754 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
4755 return;
4756 }
4757
4758 // - Otherwise, a temporary of type "cv1 T1" is created and initialized
4759 // from the initializer expression using the rules for a non-reference
4760 // copy-initialization (8.5). The reference is then bound to the
4761 // temporary. [...]
4762
4763 // Ignore address space of reference type at this point and perform address
4764 // space conversion after the reference binding step.
4765 QualType cv1T1IgnoreAS =
4766 T1Quals.hasAddressSpace()
4767 ? S.Context.getQualifiedType(T1, T1Quals.withoutAddressSpace())
4768 : cv1T1;
4769
4770 InitializedEntity TempEntity =
4771 InitializedEntity::InitializeTemporary(cv1T1IgnoreAS);
4772
4773 // FIXME: Why do we use an implicit conversion here rather than trying
4774 // copy-initialization?
4775 ImplicitConversionSequence ICS
4776 = S.TryImplicitConversion(Initializer, TempEntity.getType(),
4777 /*SuppressUserConversions=*/false,
4778 /*AllowExplicit=*/false,
4779 /*FIXME:InOverloadResolution=*/false,
4780 /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
4781 /*AllowObjCWritebackConversion=*/false);
4782
4783 if (ICS.isBad()) {
4784 // FIXME: Use the conversion function set stored in ICS to turn
4785 // this into an overloading ambiguity diagnostic. However, we need
4786 // to keep that set as an OverloadCandidateSet rather than as some
4787 // other kind of set.
4788 if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
4789 Sequence.SetOverloadFailure(
4790 InitializationSequence::FK_ReferenceInitOverloadFailed,
4791 ConvOvlResult);
4792 else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
4793 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4794 else
4795 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
4796 return;
4797 } else {
4798 Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
4799 }
4800
4801 // [...] If T1 is reference-related to T2, cv1 must be the
4802 // same cv-qualification as, or greater cv-qualification
4803 // than, cv2; otherwise, the program is ill-formed.
4804 unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
4805 unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
4806 if ((RefRelationship == Sema::Ref_Related &&
4807 (T1CVRQuals | T2CVRQuals) != T1CVRQuals) ||
4808 !T1Quals.isAddressSpaceSupersetOf(T2Quals)) {
4809 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
4810 return;
4811 }
4812
4813 // [...] If T1 is reference-related to T2 and the reference is an rvalue
4814 // reference, the initializer expression shall not be an lvalue.
4815 if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
4816 InitCategory.isLValue()) {
4817 Sequence.SetFailed(
4818 InitializationSequence::FK_RValueReferenceBindingToLValue);
4819 return;
4820 }
4821
4822 Sequence.AddReferenceBindingStep(cv1T1IgnoreAS, /*bindingTemporary=*/true);
4823
4824 if (T1Quals.hasAddressSpace())
4825 Sequence.AddQualificationConversionStep(cv1T1, isLValueRef ? VK_LValue
4826 : VK_XValue);
4827}
4828
4829/// Attempt character array initialization from a string literal
4830/// (C++ [dcl.init.string], C99 6.7.8).
4831static void TryStringLiteralInitialization(Sema &S,
4832 const InitializedEntity &Entity,
4833 const InitializationKind &Kind,
4834 Expr *Initializer,
4835 InitializationSequence &Sequence) {
4836 Sequence.AddStringInitStep(Entity.getType());
4837}
4838
4839/// Attempt value initialization (C++ [dcl.init]p7).
4840static void TryValueInitialization(Sema &S,
4841 const InitializedEntity &Entity,
4842 const InitializationKind &Kind,
4843 InitializationSequence &Sequence,
4844 InitListExpr *InitList) {
4845 assert((!InitList || InitList->getNumInits() == 0) &&(__builtin_expect(!((!InitList || InitList->getNumInits() ==
0) && "Shouldn't use value-init for non-empty init lists"
), 0) ? __assert_rtn(__func__, "/Users/adergachev/svn/llvm/tools/clang/lib/Sema/SemaInit.cpp"
, 4846, "(!InitList || InitList->getNumInits() == 0) && \"Shouldn't use value-init for non-empty init lists\""
) : (void)0)
4846 "Shouldn't use value-init for non-empty init lists")(__builtin_expect(!((!InitList || InitList->getNumInits() ==
0) && "Shouldn't use value-init for non-empty init lists"
), 0) ? __assert_rtn(__func__, "/Users/adergachev/svn/llvm/tools/clang/lib/Sema/SemaInit.cpp"
, 4846, "(!InitList || InitList->getNumInits() == 0) && \"Shouldn't use value-init for non-empty init lists\""
) : (void)0)
;
4847
4848 // C++98 [dcl.init]p5, C++11 [dcl.init]p7:
4849 //
4850 // To value-initialize an object of type T means:
4851 QualType T = Entity.getType();
4852
4853 // -- if T is an array type, then each element is value-initialized;
4854 T = S.Context.getBaseElementType(T);
4855
4856 if (const RecordType *RT = T->getAs<RecordType>()) {
4857 if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
4858 bool NeedZeroInitialization = true;
4859 // C++98:
4860 // -- if T is a class type (clause 9) with a user-declared constructor
4861 // (12.1), then the default constructor for T is called (and the
4862 // initialization is ill-formed if T has no accessible default
4863 // constructor);
4864 // C++11:
4865 // -- if T is a class type (clause 9) with either no default constructor
4866 // (12.1 [class.ctor]) or a default constructor that is user-provided
4867 // or deleted, then the object is default-initialized;
4868 //
4869 // Note that the C++11 rule is the same as the C++98 rule if there are no
4870 // defaulted or deleted constructors, so we just use it unconditionally.
4871 CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl);
4872 if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted())
4873 NeedZeroInitialization = false;
4874
4875 // -- if T is a (possibly cv-qualified) non-union class type without a
4876 // user-provided or deleted default constructor, then the object is
4877 // zero-initialized and, if T has a non-trivial default constructor,
4878 // default-initialized;
4879 // The 'non-union' here was removed by DR1502. The 'non-trivial default
4880 // constructor' part was removed by DR1507.
4881 if (NeedZeroInitialization)
4882 Sequence.AddZeroInitializationStep(Entity.getType());
4883
4884 // C++03:
4885 // -- if T is a non-union class type without a user-declared constructor,
4886 // then every non-static data member and base class component of T is
4887 // value-initialized;
4888 // [...] A program that calls for [...] value-initialization of an
4889 // entity of reference type is ill-formed.
4890 //
4891 // C++11 doesn't need this handling, because value-initialization does not
4892 // occur recursively there, and the implicit default constructor is
4893 // defined as deleted in the problematic cases.
4894 if (!S.getLangOpts().CPlusPlus11 &&
4895 ClassDecl->hasUninitializedReferenceMember()) {
4896 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference);
4897 return;
4898 }
4899
4900 // If this is list-value-initialization, pass the empty init list on when
4901 // building the constructor call. This affects the semantics of a few
4902 // things (such as whether an explicit default constructor can be called).
4903 Expr *InitListAsExpr = InitList;
4904 MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0);
4905 bool InitListSyntax = InitList;
4906
4907 // FIXME: Instead of creating a CXXConstructExpr of array type here,
4908 // wrap a class-typed CXXConstructExpr in an ArrayInitLoopExpr.
4909 return TryConstructorInitialization(
4910 S, Entity, Kind, Args, T, Entity.getType(), Sequence, InitListSyntax);
4911 }
4912 }
4913
4914 Sequence.AddZeroInitializationStep(Entity.getType());
4915}
4916
4917/// Attempt default initialization (C++ [dcl.init]p6).
4918static void TryDefaultInitialization(Sema &S,
4919 const InitializedEntity &Entity,
4920 const InitializationKind &Kind,
4921 InitializationSequence &Sequence) {
4922 assert(Kind.getKind() == InitializationKind::IK_Default)(__builtin_expect(!(Kind.getKind() == InitializationKind::IK_Default
), 0) ? __assert_rtn(__func__, "/Users/adergachev/svn/llvm/tools/clang/lib/Sema/SemaInit.cpp"
, 4922, "Kind.getKind() == InitializationKind::IK_Default") :
(void)0)
;
4923
4924 // C++ [dcl.init]p6:
4925 // To default-initialize an object of type T means:
4926 // - if T is an array type, each element is default-initialized;
4927 QualType DestType = S.Context.getBaseElementType(Entity.getType());
4928
4929 // - if T is a (possibly cv-qualified) class type (Clause 9), the default
4930 // constructor for T is called (and the initialization is ill-formed if
4931 // T has no accessible default constructor);
4932 if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) {
4933 TryConstructorInitialization(S, Entity, Kind, None, DestType,
4934 Entity.getType(), Sequence);
4935 return;
4936 }
4937
4938 // - otherwise, no initialization is performed.
4939
4940 // If a program calls for the default initialization of an object of
4941 // a const-qualified type T, T shall be a class type with a user-provided
4942 // default constructor.
4943 if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) {
4944 if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
4945 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
4946 return;
4947 }
4948
4949 // If the destination type has a lifetime property, zero-initialize it.
4950 if (DestType.getQualifiers().hasObjCLifetime()) {
4951 Sequence.AddZeroInitializationStep(Entity.getType());
4952 return;
4953 }
4954}
4955
4956/// Attempt a user-defined conversion between two types (C++ [dcl.init]),
4957/// which enumerates all conversion functions and performs overload resolution
4958/// to select the best.
4959static void TryUserDefinedConversion(Sema &S,
4960 QualType DestType,
4961 const InitializationKind &Kind,
4962 Expr *Initializer,
4963 InitializationSequence &Sequence,
4964 bool TopLevelOfInitList) {
4965 assert(!DestType->isReferenceType() && "References are handled elsewhere")(__builtin_expect(!(!DestType->isReferenceType() &&
"References are handled elsewhere"), 0) ? __assert_rtn(__func__
, "/Users/adergachev/svn/llvm/tools/clang/lib/Sema/SemaInit.cpp"
, 4965, "!DestType->isReferenceType() && \"References are handled elsewhere\""
) : (void)0)
;
4966 QualType SourceType = Initializer->getType();
4967 assert((DestType->isRecordType() || SourceType->isRecordType()) &&(__builtin_expect(!((DestType->isRecordType() || SourceType
->isRecordType()) && "Must have a class type to perform a user-defined conversion"
), 0) ? __assert_rtn(__func__, "/Users/adergachev/svn/llvm/tools/clang/lib/Sema/SemaInit.cpp"
, 4968, "(DestType->isRecordType() || SourceType->isRecordType()) && \"Must have a class type to perform a user-defined conversion\""
) : (void)0)
4968 "Must have a class type to perform a user-defined conversion")(__builtin_expect(!((DestType->isRecordType() || SourceType
->isRecordType()) && "Must have a class type to perform a user-defined conversion"
), 0) ? __assert_rtn(__func__, "/Users/adergachev/svn/llvm/tools/clang/lib/Sema/SemaInit.cpp"
, 4968, "(DestType->isRecordType() || SourceType->isRecordType()) && \"Must have a class type to perform a user-defined conversion\""
) : (void)0)
;
4969
4970 // Build the candidate set directly in the initialization sequence
4971 // structure, so that it will persist if we fail.
4972 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4973 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
4974
4975 // Determine whether we are allowed to call explicit constructors or
4976 // explicit conversion operators.
4977 bool AllowExplicit = Kind.AllowExplicit();
4978
4979 if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
4980 // The type we're converting to is a class type. Enumerate its constructors
4981 // to see if there is a suitable conversion.
4982 CXXRecordDecl *DestRecordDecl
4983 = cast<CXXRecordDecl>(DestRecordType->getDecl());
4984
4985 // Try to complete the type we're converting to.
4986 if (S.isCompleteType(Kind.getLocation(), DestType)) {
4987 for (NamedDecl *D : S.LookupConstructors(DestRecordDecl)) {
4988 auto Info = getConstructorInfo(D);
4989 if (!Info.Constructor)
4990 continue;
4991
4992 if (!Info.Constructor->isInvalidDecl() &&
4993 Info.Constructor->isConvertingConstructor(AllowExplicit)) {
4994 if (Info.ConstructorTmpl)
4995 S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
4996 /*ExplicitArgs*/ nullptr,
4997 Initializer, CandidateSet,
4998 /*SuppressUserConversions=*/true);
4999 else
5000 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
5001 Initializer, CandidateSet,
5002 /*SuppressUserConversions=*/true);
5003 }
5004 }
5005 }
5006 }
5007
5008 SourceLocation DeclLoc = Initializer->getBeginLoc();
5009
5010 if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
5011 // The type we're converting from is a class type, enumerate its conversion
5012 // functions.
5013
5014 // We can only enumerate the conversion functions for a complete type; if
5015 // the type isn't complete, simply skip this step.
5016 if (S.isCompleteType(DeclLoc, SourceType)) {
5017 CXXRecordDecl *SourceRecordDecl
5018 = cast<CXXRecordDecl>(SourceRecordType->getDecl());
5019
5020 const auto &Conversions =
5021 SourceRecordDecl->getVisibleConversionFunctions();
5022 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
5023 NamedDecl *D = *I;
5024 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
5025 if (isa<UsingShadowDecl>(D))
5026 D = cast<UsingShadowDecl>(D)->getTargetDecl();
5027
5028 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
5029 CXXConversionDecl *Conv;
5030 if (ConvTemplate)
5031 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
5032 else
5033 Conv = cast<CXXConversionDecl>(D);
5034
5035 if (AllowExplicit || !Conv->isExplicit()) {
5036 if (ConvTemplate)
5037 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
5038 ActingDC, Initializer, DestType,
5039 CandidateSet, AllowExplicit);
5040 else
5041 S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
5042 Initializer, DestType, CandidateSet,
5043 AllowExplicit);
5044 }
5045 }
5046 }
5047 }
5048
5049 // Perform overload resolution. If it fails, return the failed result.
5050 OverloadCandidateSet::iterator Best;
5051 if (OverloadingResult Result
5052 = CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
5053 Sequence.SetOverloadFailure(
5054 InitializationSequence::FK_UserConversionOverloadFailed,
5055 Result);
5056 return;
5057 }
5058
5059 FunctionDecl *Function = Best->Function;
5060 Function->setReferenced();
5061 bool HadMultipleCandidates = (CandidateSet.size() > 1);
5062
5063 if (isa<CXXConstructorDecl>(Function)) {
5064 // Add the user-defined conversion step. Any cv-qualification conversion is
5065 // subsumed by the initialization. Per DR5, the created temporary is of the
5066 // cv-unqualified type of the destination.
5067 Sequence.AddUserConversionStep(Function, Best->FoundDecl,
5068 DestType.getUnqualifiedType(),
5069 HadMultipleCandidates);
5070
5071 // C++14 and before:
5072 // - if the function is a constructor, the call initializes a temporary
5073 // of the cv-unqualified version of the destination type. The [...]
5074 // temporary [...] is then used to direct-initialize, according to the
5075 // rules above, the object that is the destination of the
5076 // copy-initialization.
5077 // Note that this just performs a simple object copy from the temporary.
5078 //
5079 // C++17:
5080 // - if the function is a constructor, the call is a prvalue of the
5081 // cv-unqualified version of the destination type whose return object
5082 // is initialized by the constructor. The call is used to
5083 // direct-initialize, according to the rules above, the object that
5084 // is the destination of the copy-initialization.
5085 // Therefore we need to do nothing further.
5086 //
5087 // FIXME: Mark this copy as extraneous.
5088 if (!S.getLangOpts().CPlusPlus17)
5089 Sequence.AddFinalCopy(DestType);
5090 else if (DestType.hasQualifiers())
5091 Sequence.AddQualificationConversionStep(DestType, VK_RValue);
5092 return;
5093 }
5094
5095 // Add the user-defined conversion step that calls the conversion function.
5096 QualType ConvType = Function->getCallResultType();
5097 Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType,
5098 HadMultipleCandidates);
5099
5100 if (ConvType->getAs<RecordType>()) {
5101 // The call is used to direct-initialize [...] the object that is the
5102 // destination of the copy-initialization.
5103 //
5104 // In C++17, this does not call a constructor if we enter /17.6.1:
5105 // - If the initializer expression is a prvalue and the cv-unqualified
5106 // version of the source type is the same as the class of the
5107 // destination [... do not make an extra copy]
5108 //
5109 // FIXME: Mark this copy as extraneous.
5110 if (!S.getLangOpts().CPlusPlus17 ||
5111 Function->getReturnType()->isReferenceType() ||
5112 !S.Context.hasSameUnqualifiedType(ConvType, DestType))
5113 Sequence.AddFinalCopy(DestType);
5114 else if (!S.Context.hasSameType(ConvType, DestType))
5115 Sequence.AddQualificationConversionStep(DestType, VK_RValue);
5116 return;
5117 }
5118
5119 // If the conversion following the call to the conversion function
5120 // is interesting, add it as a separate step.
5121 if (Best->FinalConversion.First || Best->FinalConversion.Second ||
5122 Best->FinalConversion.Third) {
5123 ImplicitConversionSequence ICS;
5124 ICS.setStandard();
5125 ICS.Standard = Best->FinalConversion;
5126 Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
5127 }
5128}
5129
5130/// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>,
5131/// a function with a pointer return type contains a 'return false;' statement.
5132/// In C++11, 'false' is not a null pointer, so this breaks the build of any
5133/// code using that header.
5134///
5135/// Work around this by treating 'return false;' as zero-initializing the result
5136/// if it's used in a pointer-returning function in a system header.
5137static bool isLibstdcxxPointerReturnFalseHack(Sema &S,
5138 const InitializedEntity &Entity,
5139 const Expr *Init) {
5140 return S.getLangOpts().CPlusPlus11 &&
5141 Entity.getKind() == InitializedEntity::EK_Result &&
5142 Entity.getType()->isPointerType() &&
5143 isa<CXXBoolLiteralExpr>(Init) &&
5144 !cast<CXXBoolLiteralExpr>(Init)->getValue() &&
5145 S.getSourceManager().isInSystemHeader(Init->getExprLoc());
5146}
5147
5148/// The non-zero enum values here are indexes into diagnostic alternatives.
5149enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
5150
5151/// Determines whether this expression is an acceptable ICR source.
5152static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
5153 bool isAddressOf, bool &isWeakAccess) {
5154 // Skip parens.
5155 e = e->IgnoreParens();
5156
5157 // Skip address-of nodes.
5158 if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
5159 if (op->getOpcode() == UO_AddrOf)
5160 return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true,
5161 isWeakAccess);
5162
5163 // Skip certain casts.
5164 } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
5165 switch (ce->getCastKind()) {
5166 case CK_Dependent:
5167 case CK_BitCast:
5168 case CK_LValueBitCast:
5169 case CK_NoOp:
5170 return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess);
5171
5172 case CK_ArrayToPointerDecay:
5173 return IIK_nonscalar;
5174
5175 case CK_NullToPointer:
5176 return IIK_okay;
5177
5178 default:
5179 break;
5180 }
5181
5182 // If we have a declaration reference, it had better be a local variable.
5183 } else if (isa<DeclRefExpr>(e)) {
5184 // set isWeakAccess to true, to mean that there will be an implicit
5185 // load which requires a cleanup.
5186 if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
5187 isWeakAccess = true;
5188
5189 if (!isAddressOf) return IIK_nonlocal;
5190
5191 VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
5192 if (!var) return IIK_nonlocal;
5193
5194 return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
5195
5196 // If we have a conditional operator, check both sides.
5197 } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
5198 if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf,
5199 isWeakAccess))
5200 return iik;
5201
5202 return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess);
5203
5204 // These are never scalar.
5205 } else if (isa<ArraySubscriptExpr>(e)) {
5206 return IIK_nonscalar;
5207
5208 // Otherwise, it needs to be a null pointer constant.
5209 } else {
5210 return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
5211 ? IIK_okay : IIK_nonlocal);
5212 }
5213
5214 return IIK_nonlocal;
5215}
5216
5217/// Check whether the given expression is a valid operand for an
5218/// indirect copy/restore.
5219static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
5220 assert(src->isRValue())(__builtin_expect(!(src->isRValue()), 0) ? __assert_rtn(__func__
, "/Users/adergachev/svn/llvm/tools/clang/lib/Sema/SemaInit.cpp"
, 5220, "src->isRValue()") : (void)0)
;
5221 bool isWeakAccess = false;
5222 InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess);
5223 // If isWeakAccess to true, there will be an implicit
5224 // load which requires a cleanup.
5225 if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess)
5226 S.Cleanup.setExprNeedsCleanups(true);
5227
5228 if (iik == IIK_okay) return;
5229
5230 S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
5231 << ((unsigned) iik - 1) // shift index into diagnostic explanations
5232 << src->getSourceRange();
5233}
5234
5235/// Determine whether we have compatible array types for the
5236/// purposes of GNU by-copy array initialization.
5237static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest,
5238 const ArrayType *Source) {
5239 // If the source and destination array types are equivalent, we're
5240 // done.
5241 if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
5242 return true;
5243
5244 // Make sure that the element types are the same.
5245 if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
5246 return false;
5247
5248 // The only mismatch we allow is when the destination is an
5249 // incomplete array type and the source is a constant array type.
5250 return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
5251}
5252
5253static bool tryObjCWritebackConversion(Sema &S,
5254 InitializationSequence &Sequence,
5255 const InitializedEntity &Entity,
5256 Expr *Initializer) {
5257 bool ArrayDecay = false;
5258 QualType ArgType = Initializer->getType();
5259 QualType ArgPointee;
5260 if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
5261 ArrayDecay = true;
5262 ArgPointee = ArgArrayType->getElementType();
5263 ArgType = S.Context.getPointerType(ArgPointee);
5264 }
5265
5266 // Handle write-back conversion.
5267 QualType ConvertedArgType;
5268 if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
5269 ConvertedArgType))
5270 return false;
5271
5272 // We should copy unless we're passing to an argument explicitly
5273 // marked 'out'.
5274 bool ShouldCopy = true;
5275 if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
5276 ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
5277
5278 // Do we need an lvalue conversion?
5279 if (ArrayDecay || Initializer->isGLValue()) {
5280 ImplicitConversionSequence ICS;
5281 ICS.setStandard();
5282 ICS.Standard.setAsIdentityConversion();
5283
5284 QualType ResultType;
5285 if (ArrayDecay) {
5286 ICS.Standard.First = ICK_Array_To_Pointer;
5287 ResultType = S.Context.getPointerType(ArgPointee);
5288 } else {
5289 ICS.Standard.First = ICK_Lvalue_To_Rvalue;
5290 ResultType = Initializer->getType().getNonLValueExprType(S.Context);
5291 }
5292
5293 Sequence.AddConversionSequenceStep(ICS, ResultType);
5294 }
5295
5296 Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
5297 return true;
5298}
5299
5300static bool TryOCLSamplerInitialization(Sema &S,
5301 InitializationSequence &Sequence,
5302 QualType DestType,
5303 Expr *Initializer) {
5304 if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() ||
5305 (!Initializer->isIntegerConstantExpr(S.Context) &&
5306 !Initializer->getType()->isSamplerT()))
5307 return false;
5308
5309 Sequence.AddOCLSamplerInitStep(DestType);
5310 return true;
5311}
5312
5313static bool IsZeroInitializer(Expr *Initializer, Sema &S) {
5314 return Initializer->isIntegerConstantExpr(S.getASTContext()) &&
5315 (Initializer->EvaluateKnownConstInt(S.getASTContext()) == 0);
5316}
5317
5318static bool TryOCLZeroOpaqueTypeInitialization(Sema &S,
5319 InitializationSequence &Sequence,
5320 QualType DestType,
5321 Expr *Initializer) {
5322 if (!S.getLangOpts().OpenCL)
5323 return false;
5324
5325 //
5326 // OpenCL 1.2 spec, s6.12.10
5327 //
5328 // The event argument can also be used to associate the
5329 // async_work_group_copy with a previous async copy allowing
5330 // an event to be shared by multiple async copies; otherwise
5331 // event should be zero.
5332 //
5333 if (DestType->isEventT() || DestType->isQueueT()) {
5334 if (!IsZeroInitializer(Initializer, S))
5335 return false;
5336
5337 Sequence.AddOCLZeroOpaqueTypeStep(DestType);
5338 return true;
5339 }
5340
5341 // We should allow zero initialization for all types defined in the
5342 // cl_intel_device_side_avc_motion_estimation extension, except
5343 // intel_sub_group_avc_mce_payload_t and intel_sub_group_avc_mce_result_t.
5344 if (S.getOpenCLOptions().isEnabled(
5345 "cl_intel_device_side_avc_motion_estimation") &&
5346 DestType->isOCLIntelSubgroupAVCType()) {
5347 if (DestType->isOCLIntelSubgroupAVCMcePayloadType() ||
5348 DestType->isOCLIntelSubgroupAVCMceResultType())
5349 return false;
5350 if (!IsZeroInitializer(Initializer, S))
5351 return false;
5352
5353 Sequence.AddOCLZeroOpaqueTypeStep(DestType);
5354 return true;
5355 }
5356
5357 return false;
5358}
5359
5360InitializationSequence::InitializationSequence(Sema &S,
5361 const InitializedEntity &Entity,
5362 const InitializationKind &Kind,
5363 MultiExprArg Args,
5364 bool TopLevelOfInitList,
5365 bool TreatUnavailableAsInvalid)
5366 : FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) {
5367 InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList,
5368 TreatUnavailableAsInvalid);
5369}
5370
5371/// Tries to get a FunctionDecl out of `E`. If it succeeds and we can take the
5372/// address of that function, this returns true. Otherwise, it returns false.
5373static bool isExprAnUnaddressableFunction(Sema &S, const Expr *E) {
5374 auto *DRE = dyn_cast<DeclRefExpr>(E);
5375 if (!DRE || !isa<FunctionDecl>(DRE->getDecl()))
5376 return false;
5377
5378 return !S.checkAddressOfFunctionIsAvailable(
5379 cast<FunctionDecl>(DRE->getDecl()));
5380}
5381
5382/// Determine whether we can perform an elementwise array copy for this kind
5383/// of entity.
5384static bool canPerformArrayCopy(const InitializedEntity &Entity) {
5385 switch (Entity.getKind()) {
5386 case InitializedEntity::EK_LambdaCapture:
5387 // C++ [expr.prim.lambda]p24:
5388 // For array members, the array elements are direct-initialized in
5389 // increasing subscript order.
5390 return true;
5391
5392 case InitializedEntity::EK_Variable:
5393 // C++ [dcl.decomp]p1:
5394 // [...] each element is copy-initialized or direct-initialized from the
5395 // corresponding element of the assignment-expression [...]
5396 return isa<DecompositionDecl>(Entity.getDecl());
5397
5398 case InitializedEntity::EK_Member:
5399 // C++ [class.copy.ctor]p14:
5400 // - if the member is an array, each element is direct-initialized with
5401 // the corresponding subobject of x
5402 return Entity.isImplicitMemberInitializer();
5403
5404 case InitializedEntity::EK_ArrayElement:
5405 // All the above cases are intended to apply recursively, even though none
5406 // of them actually say that.
5407 if (auto *E = Entity.getParent())
5408 return canPerformArrayCopy(*E);
5409 break;
5410
5411 default:
5412 break;
5413 }
5414
5415 return false;
5416}
5417
5418void InitializationSequence::InitializeFrom(Sema &S,
5419 const InitializedEntity &Entity,
5420 const InitializationKind &Kind,
5421 MultiExprArg Args,
5422 bool TopLevelOfInitList,
5423 bool TreatUnavailableAsInvalid) {
5424 ASTContext &Context = S.Context;
5425
5426 // Eliminate non-overload placeholder types in the arguments. We
5427 // need to do this before checking whether types are dependent
5428 // because lowering a pseudo-object expression might well give us
5429 // something of dependent type.
5430 for (unsigned I = 0, E = Args.size(); I != E; ++I)
1
Assuming 'I' is equal to 'E'
2
Loop condition is false. Execution continues on line 5447
5431 if (Args[I]->getType()->isNonOverloadPlaceholderType()) {
5432 // FIXME: should we be doing this here?
5433 ExprResult result = S.CheckPlaceholderExpr(Args[I]);
5434 if (result.isInvalid()) {
5435 SetFailed(FK_PlaceholderType);
5436 return;
5437 }
5438 Args[I] = result.get();
5439 }
5440
5441 // C++0x [dcl.init]p16:
5442 // The semantics of initializers are as follows. The destination type is
5443 // the type of the object or reference being initialized and the source
5444 // type is the type of the initializer expression. The source type is not
5445 // defined when the initializer is a braced-init-list or when it is a
5446 // parenthesized list of expressions.
5447 QualType DestType = Entity.getType();
5448
5449 if (DestType->isDependentType() ||
3
Assuming the condition is false
5
Taking false branch
5450 Expr::hasAnyTypeDependentArguments(Args)) {
4
Assuming the condition is false
5451 SequenceKind = DependentSequence;
5452 return;
5453 }
5454
5455 // Almost everything is a normal sequence.
5456 setSequenceKind(NormalSequence);
5457
5458 QualType SourceType;
5459 Expr *Initializer = nullptr;
6
'Initializer' initialized to a null pointer value
5460 if (Args.size() == 1) {
7
Assuming the condition is false
8
Taking false branch
5461 Initializer = Args[0];
5462 if (S.getLangOpts().ObjC) {
5463 if (S.CheckObjCBridgeRelatedConversions(Initializer->getBeginLoc(),
5464 DestType, Initializer->getType(),
5465 Initializer) ||
5466 S.ConversionToObjCStringLiteralCheck(DestType, Initializer))
5467 Args[0] = Initializer;
5468 }
5469 if (!isa<InitListExpr>(Initializer))
5470 SourceType = Initializer->getType();
5471 }
5472
5473 // - If the initializer is a (non-parenthesized) braced-init-list, the
5474 // object is list-initialized (8.5.4).
5475 if (Kind.getKind() != InitializationKind::IK_Direct) {
9
Assuming the condition is false
10
Taking false branch
5476 if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
5477 TryListInitialization(S, Entity, Kind, InitList, *this,
5478 TreatUnavailableAsInvalid);
5479 return;
5480 }
5481 }
5482
5483 // - If the destination type is a reference type, see 8.5.3.
5484 if (DestType->isReferenceType()) {
11
The condition is false
12
Taking false branch
5485 // C++0x [dcl.init.ref]p1:
5486 // A variable declared to be a T& or T&&, that is, "reference to type T"
5487 // (8.3.2), shall be initialized by an object, or function, of type T or
5488 // by an object that can be converted into a T.
5489 // (Therefore, multiple arguments are not permitted.)
5490 if (Args.size() != 1)
5491 SetFailed(FK_TooManyInitsForReference);
5492 // C++17 [dcl.init.ref]p5:
5493 // A reference [...] is initialized by an expression [...] as follows:
5494 // If the initializer is not an expression, presumably we should reject,
5495 // but the standard fails to actually say so.
5496 else if (isa<InitListExpr>(Args[0]))
5497 SetFailed(FK_ParenthesizedListInitForReference);
5498 else
5499 TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
5500 return;
5501 }
5502
5503 // - If the initializer is (), the object is value-initialized.
5504 if (Kind.getKind() == InitializationKind::IK_Value ||
13
The condition is false
16
Taking false branch
5505 (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) {
14
The condition is true
15
Assuming the condition is false
5506 TryValueInitialization(S, Entity, Kind, *this);
5507 return;
5508 }
5509
5510 // Handle default initialization.
5511 if (Kind.getKind() == InitializationKind::IK_Default) {
17
The condition is false
18
Taking false branch
5512 TryDefaultInitialization(S, Entity, Kind, *this);
5513 return;
5514 }
5515
5516 // - If the destination type is an array of characters, an array of
5517 // char16_t, an array of char32_t, or an array of wchar_t, and the
5518 // initializer is a string literal, see 8.5.2.
5519 // - Otherwise, if the destination type is an array, the program is
5520 // ill-formed.
5521 if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
19
Assuming 'DestAT' is null
20
Taking false branch
5522 if (Initializer && isa<VariableArrayType>(DestAT)) {
5523 SetFailed(FK_VariableLengthArrayHasInitializer);
5524 return;
5525 }
5526
5527 if (Initializer) {
5528 switch (IsStringInit(Initializer, DestAT, Context)) {
5529 case SIF_None:
5530 TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
5531 return;
5532 case SIF_NarrowStringIntoWideChar:
5533 SetFailed(FK_NarrowStringIntoWideCharArray);
5534 return;
5535 case SIF_WideStringIntoChar:
5536 SetFailed(FK_WideStringIntoCharArray);
5537 return;
5538 case SIF_IncompatWideStringIntoWideChar:
5539 SetFailed(FK_IncompatWideStringIntoWideChar);
5540 return;
5541 case SIF_PlainStringIntoUTF8Char:
5542 SetFailed(FK_PlainStringIntoUTF8Char);
5543 return;
5544 case SIF_UTF8StringIntoPlainChar:
5545 SetFailed(FK_UTF8StringIntoPlainChar);
5546 return;
5547 case SIF_Other:
5548 break;
5549 }
5550 }
5551
5552 // Some kinds of initialization permit an array to be initialized from
5553 // another array of the same type, and perform elementwise initialization.
5554 if (Initializer && isa<ConstantArrayType>(DestAT) &&
5555 S.Context.hasSameUnqualifiedType(Initializer->getType(),
5556 Entity.getType()) &&
5557 canPerformArrayCopy(Entity)) {
5558 // If source is a prvalue, use it directly.
5559 if (Initializer->getValueKind() == VK_RValue) {
5560 AddArrayInitStep(DestType, /*IsGNUExtension*/false);
5561 return;
5562 }
5563
5564 // Emit element-at-a-time copy loop.
5565 InitializedEntity Element =
5566 InitializedEntity::InitializeElement(S.Context, 0, Entity);
5567 QualType InitEltT =
5568 Context.getAsArrayType(Initializer->getType())->getElementType();
5569 OpaqueValueExpr OVE(Initializer->getExprLoc(), InitEltT,
5570 Initializer->getValueKind(),
5571 Initializer->getObjectKind());
5572 Expr *OVEAsExpr = &OVE;
5573 InitializeFrom(S, Element, Kind, OVEAsExpr, TopLevelOfInitList,
5574 TreatUnavailableAsInvalid);
5575 if (!Failed())
5576 AddArrayInitLoopStep(Entity.getType(), InitEltT);
5577 return;
5578 }
5579
5580 // Note: as an GNU C extension, we allow initialization of an
5581 // array from a compound literal that creates an array of the same
5582 // type, so long as the initializer has no side effects.
5583 if (!S.getLangOpts().CPlusPlus && Initializer &&
5584 isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
5585 Initializer->getType()->isArrayType()) {
5586 const ArrayType *SourceAT
5587 = Context.getAsArrayType(Initializer->getType());
5588 if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
5589 SetFailed(FK_ArrayTypeMismatch);
5590 else if (Initializer->HasSideEffects(S.Context))
5591 SetFailed(FK_NonConstantArrayInit);
5592 else {
5593 AddArrayInitStep(DestType, /*IsGNUExtension*/true);
5594 }
5595 }
5596 // Note: as a GNU C++ extension, we allow list-initialization of a
5597 // class member of array type from a parenthesized initializer list.
5598 else if (S.getLangOpts().CPlusPlus &&
5599 Entity.getKind() == InitializedEntity::EK_Member &&
5600 Initializer && isa<InitListExpr>(Initializer)) {
5601 TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer),
5602 *this, TreatUnavailableAsInvalid);
5603 AddParenthesizedArrayInitStep(DestType);
5604 } else if (DestAT->getElementType()->isCharType())
5605 SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
5606 else if (IsWideCharCompatible(DestAT->getElementType(), Context))
5607 SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral);
5608 else
5609 SetFailed(FK_ArrayNeedsInitList);
5610
5611 return;
5612 }
5613
5614 // Determine whether we should consider writeback conversions for
5615 // Objective-C ARC.
5616 bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount &&
21
Assuming the condition is false
5617 Entity.isParameterKind();
5618
5619 // We're at the end of the line for C: it's either a write-back conversion
5620 // or it's a C assignment. There's no need to check anything else.
5621 if (!S.getLangOpts().CPlusPlus) {
22
Assuming the condition is false
23
Taking false branch
5622 // If allowed, check whether this is an Objective-C writeback conversion.
5623 if (allowObjCWritebackConversion &&
5624 tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
5625 return;
5626 }
5627
5628 if (TryOCLSamplerInitialization(S, *this, DestType, Initializer))
5629 return;
5630
5631 if (TryOCLZeroOpaqueTypeInitialization(S, *this, DestType, Initializer))
5632 return;
5633
5634 // Handle initialization in C
5635 AddCAssignmentStep(DestType);
5636 MaybeProduceObjCObject(S, *this, Entity);
5637 return;
5638 }
5639
5640 assert(S.getLangOpts().CPlusPlus)(__builtin_expect(!(S.getLangOpts().CPlusPlus), 0) ? __assert_rtn
(__func__, "/Users/adergachev/svn/llvm/tools/clang/lib/Sema/SemaInit.cpp"
, 5640, "S.getLangOpts().CPlusPlus") : (void)0)
;
24
The condition is false
25
The condition is false
26
'?' condition is false
5641
5642 // - If the destination type is a (possibly cv-qualified) class type:
5643 if (DestType->isRecordType()) {
27
The condition is false
28
Taking false branch
5644 // - If the initialization is direct-initialization, or if it is
5645 // copy-initialization where the cv-unqualified version of the
5646 // source type is the same class as, or a derived class of, the
5647 // class of the destination, constructors are considered. [...]
5648 if (Kind.getKind() == InitializationKind::IK_Direct ||
5649 (Kind.getKind() == InitializationKind::IK_Copy &&
5650 (Context.hasSameUnqualifiedType(SourceType, DestType) ||
5651 S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, DestType))))
5652 TryConstructorInitialization(S, Entity, Kind, Args,
5653 DestType, DestType, *this);
5654 // - Otherwise (i.e., for the remaining copy-initialization cases),
5655 // user-defined conversion sequences that can convert from the source
5656 // type to the destination type or (when a conversion function is
5657 // used) to a derived class thereof are enumerated as described in
5658 // 13.3.1.4, and the best one is chosen through overload resolution
5659 // (13.3).
5660 else
5661 TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5662 TopLevelOfInitList);
5663 return;
5664 }
5665
5666 assert(Args.size() >= 1 && "Zero-argument case handled above")(__builtin_expect(!(Args.size() >= 1 && "Zero-argument case handled above"
), 0) ? __assert_rtn(__func__, "/Users/adergachev/svn/llvm/tools/clang/lib/Sema/SemaInit.cpp"
, 5666, "Args.size() >= 1 && \"Zero-argument case handled above\""
) : (void)0)
;
29
Assuming the condition is true
30
The condition is false
31
'?' condition is false
5667
5668 // The remaining cases all need a source type.
5669 if (Args.size() > 1) {
32
Assuming the condition is false
33
Taking false branch
5670 SetFailed(FK_TooManyInitsForScalar);
5671 return;
5672 } else if (isa<InitListExpr>(Args[0])) {
34
Assuming the condition is false
35
Taking false branch
5673 SetFailed(FK_ParenthesizedListInitForScalar);
5674 return;
5675 }
5676
5677 // - Otherwise, if the source type is a (possibly cv-qualified) class
5678 // type, conversion functions are considered.
5679 if (!SourceType.isNull() && SourceType->isRecordType()) {
36
The condition is false
5680 // For a conversion to _Atomic(T) from either T or a class type derived
5681 // from T, initialize the T object then convert to _Atomic type.
5682 bool NeedAtomicConversion = false;
5683 if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) {
5684 if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) ||
5685 S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType,
5686 Atomic->getValueType())) {
5687 DestType = Atomic->getValueType();
5688 NeedAtomicConversion = true;
5689 }
5690 }
5691
5692 TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5693 TopLevelOfInitList);
5694 MaybeProduceObjCObject(S, *this, Entity);
5695 if (!Failed() && NeedAtomicConversion)
5696 AddAtomicConversionStep(Entity.getType());
5697 return;
5698 }
5699
5700 // - Otherwise, the initial value of the object being initialized is the
5701 // (possibly converted) value of the initializer expression. Standard
5702 // conversions (Clause 4) will be used, if necessary, to convert the
5703 // initializer expression to the cv-unqualified version of the
5704 // destination type; no user-defined conversions are considered.
5705
5706 ImplicitConversionSequence ICS
5707 = S.TryImplicitConversion(Initializer, DestType,
5708 /*SuppressUserConversions*/true,
5709 /*AllowExplicitConversions*/ false,
5710 /*InOverloadResolution*/ false,
5711 /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
5712 allowObjCWritebackConversion);
5713
5714 if (ICS.isStandard() &&
37
The condition is false
5715 ICS.Standard.Second == ICK_Writeback_Conversion) {
5716 // Objective-C ARC writeback conversion.
5717
5718 // We should copy unless we're passing to an argument explicitly
5719 // marked 'out'.
5720 bool ShouldCopy = true;
5721 if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
5722 ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
5723
5724 // If there was an lvalue adjustment, add it as a separate conversion.
5725 if (ICS.Standard.First == ICK_Array_To_Pointer ||
5726 ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
5727 ImplicitConversionSequence LvalueICS;
5728 LvalueICS.setStandard();
5729 LvalueICS.Standard.setAsIdentityConversion();
5730 LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
5731 LvalueICS.Standard.First = ICS.Standard.First;
5732 AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
5733 }
5734
5735 AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy);
5736 } else if (ICS.isBad()) {
38
The condition is true
39
Taking true branch
5737 DeclAccessPair dap;
5738 if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) {
40
The condition is false
41
Taking false branch
5739 AddZeroInitializationStep(Entity.getType());
5740 } else if (Initializer->getType() == Context.OverloadTy &&
42
Called C++ object pointer is null
5741 !S.ResolveAddressOfOverloadedFunction(Initializer, DestType,
5742 false, dap))
5743 SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
5744 else if (Initializer->getType()->isFunctionType() &&
5745 isExprAnUnaddressableFunction(S, Initializer))
5746 SetFailed(InitializationSequence::FK_AddressOfUnaddressableFunction);
5747 else
5748 SetFailed(InitializationSequence::FK_ConversionFailed);
5749 } else {
5750 AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
5751
5752 MaybeProduceObjCObject(S, *this, Entity);
5753 }
5754}
5755
5756InitializationSequence::~InitializationSequence() {
5757 for (auto &S : Steps)
5758 S.Destroy();
5759}
5760
5761//===----------------------------------------------------------------------===//
5762// Perform initialization
5763//===----------------------------------------------------------------------===//
5764static Sema::AssignmentAction
5765getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) {
5766 switch(Entity.getKind()) {
5767 case InitializedEntity::EK_Variable:
5768 case InitializedEntity::EK_New:
5769 case InitializedEntity::EK_Exception:
5770 case InitializedEntity::EK_Base:
5771 case InitializedEntity::EK_Delegating:
5772 return Sema::AA_Initializing;
5773
5774 case InitializedEntity::EK_Parameter:
5775 if (Entity.getDecl() &&
5776 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
5777 return Sema::AA_Sending;
5778
5779 return Sema::AA_Passing;
5780
5781 case InitializedEntity::EK_Parameter_CF_Audited:
5782 if (Entity.getDecl() &&
5783 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
5784 return Sema::AA_Sending;
5785
5786 return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited;
5787
5788 case InitializedEntity::EK_Result:
5789 case InitializedEntity::EK_StmtExprResult: // FIXME: Not quite right.
5790 return Sema::AA_Returning;
5791
5792 case InitializedEntity::EK_Temporary:
5793 case InitializedEntity::EK_RelatedResult:
5794 // FIXME: Can we tell apart casting vs. converting?
5795 return Sema::AA_Casting;
5796
5797 case InitializedEntity::EK_Member:
5798 case InitializedEntity::EK_Binding:
5799 case InitializedEntity::EK_ArrayElement:
5800 case InitializedEntity::EK_VectorElement:
5801 case InitializedEntity::EK_ComplexElement:
5802 case InitializedEntity::EK_BlockElement:
5803 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
5804 case InitializedEntity::EK_LambdaCapture:
5805 case InitializedEntity::EK_CompoundLiteralInit:
5806 return Sema::AA_Initializing;
5807 }
5808
5809 llvm_unreachable("Invalid EntityKind!")::llvm::llvm_unreachable_internal("Invalid EntityKind!", "/Users/adergachev/svn/llvm/tools/clang/lib/Sema/SemaInit.cpp"
, 5809)
;
5810}
5811
5812/// Whether we should bind a created object as a temporary when
5813/// initializing the given entity.
5814static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
5815 switch (Entity.getKind()) {
5816 case InitializedEntity::EK_ArrayElement:
5817 case InitializedEntity::EK_Member:
5818 case InitializedEntity::EK_Result:
5819 case InitializedEntity::EK_StmtExprResult:
5820 case InitializedEntity::EK_New:
5821 case InitializedEntity::EK_Variable:
5822 case InitializedEntity::EK_Base:
5823 case InitializedEntity::EK_Delegating:
5824 case InitializedEntity::EK_VectorElement:
5825 case InitializedEntity::EK_ComplexElement:
5826 case InitializedEntity::EK_Exception:
5827 case InitializedEntity::EK_BlockElement:
5828 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
5829 case InitializedEntity::EK_LambdaCapture:
5830 case InitializedEntity::EK_CompoundLiteralInit:
5831 return false;
5832
5833 case InitializedEntity::EK_Parameter:
5834 case InitializedEntity::EK_Parameter_CF_Audited:
5835 case InitializedEntity::EK_Temporary:
5836 case InitializedEntity::EK_RelatedResult:
5837 case InitializedEntity::EK_Binding:
5838 return true;
5839 }
5840
5841 llvm_unreachable("missed an InitializedEntity kind?")::llvm::llvm_unreachable_internal("missed an InitializedEntity kind?"
, "/Users/adergachev/svn/llvm/tools/clang/lib/Sema/SemaInit.cpp"
, 5841)
;
5842}
5843
5844/// Whether the given entity, when initialized with an object
5845/// created for that initialization, requires destruction.
5846static bool shouldDestroyEntity(const InitializedEntity &Entity) {
5847 switch (Entity.getKind()) {
5848 case InitializedEntity::EK_Result:
5849 case InitializedEntity::EK_StmtExprResult:
5850 case InitializedEntity::EK_New:
5851 case InitializedEntity::EK_Base:
5852 case InitializedEntity::EK_Delegating:
5853 case InitializedEntity::EK_VectorElement:
5854 case InitializedEntity::EK_ComplexElement:
5855 case InitializedEntity::EK_BlockElement:
5856 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
5857 case InitializedEntity::EK_LambdaCapture:
5858 return false;
5859
5860 case InitializedEntity::EK_Member:
5861 case InitializedEntity::EK_Binding:
5862 case InitializedEntity::EK_Variable:
5863 case InitializedEntity::EK_Parameter:
5864 case InitializedEntity::EK_Parameter_CF_Audited:
5865 case InitializedEntity::EK_Temporary:
5866 case InitializedEntity::EK_ArrayElement:
5867 case InitializedEntity::EK_Exception:
5868 case InitializedEntity::EK_CompoundLiteralInit:
5869 case InitializedEntity::EK_RelatedResult:
5870 return true;
5871 }
5872
5873 llvm_unreachable("missed an InitializedEntity kind?")::llvm::llvm_unreachable_internal("missed an InitializedEntity kind?"
, "/Users/adergachev/svn/llvm/tools/clang/lib/Sema/SemaInit.cpp"
, 5873)
;
5874}
5875
5876/// Get the location at which initialization diagnostics should appear.
5877static SourceLocation getInitializationLoc(const InitializedEntity &Entity,
5878 Expr *Initializer) {
5879 switch (Entity.getKind()) {
5880 case InitializedEntity::EK_Result:
5881 case InitializedEntity::EK_StmtExprResult:
5882 return Entity.getReturnLoc();
5883
5884 case InitializedEntity::EK_Exception:
5885 return Entity.getThrowLoc();
5886
5887 case InitializedEntity::EK_Variable:
5888 case InitializedEntity::EK_Binding:
5889 return Entity.getDecl()->getLocation();
5890
5891 case InitializedEntity::EK_LambdaCapture:
5892 return Entity.getCaptureLoc();
5893
5894 case InitializedEntity::EK_ArrayElement:
5895 case InitializedEntity::EK_Member:
5896 case InitializedEntity::EK_Parameter:
5897 case InitializedEntity::EK_Parameter_CF_Audited:
5898 case InitializedEntity::EK_Temporary:
5899 case InitializedEntity::EK_New:
5900 case InitializedEntity::EK_Base:
5901 case InitializedEntity::EK_Delegating:
5902 case InitializedEntity::EK_VectorElement:
5903 case InitializedEntity::EK_ComplexElement:
5904 case InitializedEntity::EK_BlockElement:
5905 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
5906 case InitializedEntity::EK_CompoundLiteralInit:
5907 case InitializedEntity::EK_RelatedResult:
5908 return Initializer->getBeginLoc();
5909 }
5910 llvm_unreachable("missed an InitializedEntity kind?")::llvm::llvm_unreachable_internal("missed an InitializedEntity kind?"
, "/Users/adergachev/svn/llvm/tools/clang/lib/Sema/SemaInit.cpp"
, 5910)
;
5911}
5912
5913/// Make a (potentially elidable) temporary copy of the object
5914/// provided by the given initializer by calling the appropriate copy
5915/// constructor.
5916///
5917/// \param S The Sema object used for type-checking.
5918///
5919/// \param T The type of the temporary object, which must either be
5920/// the type of the initializer expression or a superclass thereof.
5921///
5922/// \param Entity The entity being initialized.
5923///