diff --git a/llvm/include/llvm/ADT/SmallVector.h b/llvm/include/llvm/ADT/SmallVector.h index f5293970aa9f..803588143d81 100644 --- a/llvm/include/llvm/ADT/SmallVector.h +++ b/llvm/include/llvm/ADT/SmallVector.h @@ -1,1241 +1,1157 @@ //===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines the SmallVector class. // //===----------------------------------------------------------------------===// #ifndef LLVM_ADT_SMALLVECTOR_H #define LLVM_ADT_SMALLVECTOR_H #include "llvm/ADT/iterator_range.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/MemAlloc.h" #include "llvm/Support/type_traits.h" #include #include #include #include #include #include #include #include #include #include #include #include namespace llvm { /// This is all the stuff common to all SmallVectors. /// /// The template parameter specifies the type which should be used to hold the /// Size and Capacity of the SmallVector, so it can be adjusted. /// Using 32 bit size is desirable to shrink the size of the SmallVector. /// Using 64 bit size is desirable for cases like SmallVector, where a /// 32 bit size would limit the vector to ~4GB. SmallVectors are used for /// buffering bitcode output - which can exceed 4GB. template class SmallVectorBase { protected: void *BeginX; Size_T Size = 0, Capacity; /// The maximum value of the Size_T used. static constexpr size_t SizeTypeMax() { return std::numeric_limits::max(); } SmallVectorBase() = delete; SmallVectorBase(void *FirstEl, size_t TotalCapacity) : BeginX(FirstEl), Capacity(TotalCapacity) {} /// This is an implementation of the grow() method which only works /// on POD-like data types and is out of line to reduce code duplication. /// This function will report a fatal error if it cannot increase capacity. void grow_pod(void *FirstEl, size_t MinSize, size_t TSize); /// Report that MinSize doesn't fit into this vector's size type. Throws /// std::length_error or calls report_fatal_error. LLVM_ATTRIBUTE_NORETURN static void report_size_overflow(size_t MinSize); /// Report that this vector is already at maximum capacity. Throws /// std::length_error or calls report_fatal_error. LLVM_ATTRIBUTE_NORETURN static void report_at_maximum_capacity(); public: size_t size() const { return Size; } size_t capacity() const { return Capacity; } LLVM_NODISCARD bool empty() const { return !Size; } /// Set the array size to \p N, which the current array must have enough /// capacity for. /// /// This does not construct or destroy any elements in the vector. /// /// Clients can use this in conjunction with capacity() to write past the end /// of the buffer when they know that more elements are available, and only /// update the size later. This avoids the cost of value initializing elements /// which will only be overwritten. void set_size(size_t N) { assert(N <= capacity()); Size = N; } }; template using SmallVectorSizeType = typename std::conditional= 8, uint64_t, uint32_t>::type; /// Figure out the offset of the first element. template struct SmallVectorAlignmentAndSize { alignas(SmallVectorBase>) char Base[sizeof( SmallVectorBase>)]; alignas(T) char FirstEl[sizeof(T)]; }; /// This is the part of SmallVectorTemplateBase which does not depend on whether /// the type T is a POD. The extra dummy template argument is used by ArrayRef /// to avoid unnecessarily requiring T to be complete. template class SmallVectorTemplateCommon : public SmallVectorBase> { using Base = SmallVectorBase>; /// Find the address of the first element. For this pointer math to be valid /// with small-size of 0 for T with lots of alignment, it's important that /// SmallVectorStorage is properly-aligned even for small-size of 0. void *getFirstEl() const { return const_cast(reinterpret_cast( reinterpret_cast(this) + offsetof(SmallVectorAlignmentAndSize, FirstEl))); } // Space after 'FirstEl' is clobbered, do not add any instance vars after it. protected: SmallVectorTemplateCommon(size_t Size) : Base(getFirstEl(), Size) {} void grow_pod(size_t MinSize, size_t TSize) { Base::grow_pod(getFirstEl(), MinSize, TSize); } /// Return true if this is a smallvector which has not had dynamic /// memory allocated for it. bool isSmall() const { return this->BeginX == getFirstEl(); } /// Put this vector in a state of being small. void resetToSmall() { this->BeginX = getFirstEl(); this->Size = this->Capacity = 0; // FIXME: Setting Capacity to 0 is suspect. } /// Return true if V is an internal reference to the given range. bool isReferenceToRange(const void *V, const void *First, const void *Last) const { // Use std::less to avoid UB. std::less<> LessThan; return !LessThan(V, First) && LessThan(V, Last); } /// Return true if V is an internal reference to this vector. bool isReferenceToStorage(const void *V) const { return isReferenceToRange(V, this->begin(), this->end()); } /// Return true if First and Last form a valid (possibly empty) range in this /// vector's storage. bool isRangeInStorage(const void *First, const void *Last) const { // Use std::less to avoid UB. std::less<> LessThan; return !LessThan(First, this->begin()) && !LessThan(Last, First) && !LessThan(this->end(), Last); } /// Return true unless Elt will be invalidated by resizing the vector to /// NewSize. bool isSafeToReferenceAfterResize(const void *Elt, size_t NewSize) { // Past the end. if (LLVM_LIKELY(!isReferenceToStorage(Elt))) return true; // Return false if Elt will be destroyed by shrinking. if (NewSize <= this->size()) return Elt < this->begin() + NewSize; // Return false if we need to grow. return NewSize <= this->capacity(); } /// Check whether Elt will be invalidated by resizing the vector to NewSize. void assertSafeToReferenceAfterResize(const void *Elt, size_t NewSize) { assert(isSafeToReferenceAfterResize(Elt, NewSize) && "Attempting to reference an element of the vector in an operation " "that invalidates it"); } /// Check whether Elt will be invalidated by increasing the size of the /// vector by N. void assertSafeToAdd(const void *Elt, size_t N = 1) { this->assertSafeToReferenceAfterResize(Elt, this->size() + N); } /// Check whether any part of the range will be invalidated by clearing. void assertSafeToReferenceAfterClear(const T *From, const T *To) { if (From == To) return; this->assertSafeToReferenceAfterResize(From, 0); this->assertSafeToReferenceAfterResize(To - 1, 0); } template < class ItTy, std::enable_if_t, T *>::value, bool> = false> void assertSafeToReferenceAfterClear(ItTy, ItTy) {} /// Check whether any part of the range will be invalidated by growing. void assertSafeToAddRange(const T *From, const T *To) { if (From == To) return; this->assertSafeToAdd(From, To - From); this->assertSafeToAdd(To - 1, To - From); } template < class ItTy, std::enable_if_t, T *>::value, bool> = false> void assertSafeToAddRange(ItTy, ItTy) {} /// Check whether any argument will be invalidated by growing for /// emplace_back. template void assertSafeToEmplace(ArgType1 &Arg1, ArgTypes &... Args) { this->assertSafeToAdd(&Arg1); this->assertSafeToEmplace(Args...); } void assertSafeToEmplace() {} - /// Reserve enough space to add one element, and return the updated element - /// pointer in case it was a reference to the storage. - template - static const T *reserveForAndGetAddressImpl(U *This, const T &Elt) { - if (LLVM_LIKELY(This->size() < This->capacity())) - return &Elt; - - bool ReferencesStorage = false; - int64_t Index = -1; - if (LLVM_UNLIKELY(This->isReferenceToStorage(&Elt))) { - ReferencesStorage = true; - Index = &Elt - This->begin(); - } - This->grow(); - return ReferencesStorage ? This->begin() + Index : &Elt; - } - public: using size_type = size_t; using difference_type = ptrdiff_t; using value_type = T; using iterator = T *; using const_iterator = const T *; using const_reverse_iterator = std::reverse_iterator; using reverse_iterator = std::reverse_iterator; using reference = T &; using const_reference = const T &; using pointer = T *; using const_pointer = const T *; using Base::capacity; using Base::empty; using Base::size; // forward iterator creation methods. iterator begin() { return (iterator)this->BeginX; } const_iterator begin() const { return (const_iterator)this->BeginX; } iterator end() { return begin() + size(); } const_iterator end() const { return begin() + size(); } // reverse iterator creation methods. reverse_iterator rbegin() { return reverse_iterator(end()); } const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); } reverse_iterator rend() { return reverse_iterator(begin()); } const_reverse_iterator rend() const { return const_reverse_iterator(begin());} size_type size_in_bytes() const { return size() * sizeof(T); } size_type max_size() const { return std::min(this->SizeTypeMax(), size_type(-1) / sizeof(T)); } size_t capacity_in_bytes() const { return capacity() * sizeof(T); } /// Return a pointer to the vector's buffer, even if empty(). pointer data() { return pointer(begin()); } /// Return a pointer to the vector's buffer, even if empty(). const_pointer data() const { return const_pointer(begin()); } reference operator[](size_type idx) { assert(idx < size()); return begin()[idx]; } const_reference operator[](size_type idx) const { assert(idx < size()); return begin()[idx]; } reference front() { assert(!empty()); return begin()[0]; } const_reference front() const { assert(!empty()); return begin()[0]; } reference back() { assert(!empty()); return end()[-1]; } const_reference back() const { assert(!empty()); return end()[-1]; } }; /// SmallVectorTemplateBase - This is where we put /// method implementations that are designed to work with non-trivial T's. /// /// We approximate is_trivially_copyable with trivial move/copy construction and /// trivial destruction. While the standard doesn't specify that you're allowed /// copy these types with memcpy, there is no way for the type to observe this. /// This catches the important case of std::pair, which is not /// trivially assignable. template ::value) && (is_trivially_move_constructible::value) && std::is_trivially_destructible::value> class SmallVectorTemplateBase : public SmallVectorTemplateCommon { - friend class SmallVectorTemplateCommon; - protected: - static constexpr bool TakesParamByValue = false; - using ValueParamT = const T &; - SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon(Size) {} static void destroy_range(T *S, T *E) { while (S != E) { --E; E->~T(); } } /// Move the range [I, E) into the uninitialized memory starting with "Dest", /// constructing elements as needed. template static void uninitialized_move(It1 I, It1 E, It2 Dest) { std::uninitialized_copy(std::make_move_iterator(I), std::make_move_iterator(E), Dest); } /// Copy the range [I, E) onto the uninitialized memory starting with "Dest", /// constructing elements as needed. template static void uninitialized_copy(It1 I, It1 E, It2 Dest) { std::uninitialized_copy(I, E, Dest); } /// Grow the allocated memory (without initializing new elements), doubling /// the size of the allocated memory. Guarantees space for at least one more /// element, or MinSize more elements if specified. void grow(size_t MinSize = 0); - /// Reserve enough space to add one element, and return the updated element - /// pointer in case it was a reference to the storage. - const T *reserveForAndGetAddress(const T &Elt) { - return this->reserveForAndGetAddressImpl(this, Elt); - } - - /// Reserve enough space to add one element, and return the updated element - /// pointer in case it was a reference to the storage. - T *reserveForAndGetAddress(T &Elt) { - return const_cast(this->reserveForAndGetAddressImpl(this, Elt)); - } - public: void push_back(const T &Elt) { - const T *EltPtr = reserveForAndGetAddress(Elt); - ::new ((void *)this->end()) T(*EltPtr); + this->assertSafeToAdd(&Elt); + if (LLVM_UNLIKELY(this->size() >= this->capacity())) + this->grow(); + ::new ((void*) this->end()) T(Elt); this->set_size(this->size() + 1); } void push_back(T &&Elt) { - T *EltPtr = reserveForAndGetAddress(Elt); - ::new ((void *)this->end()) T(::std::move(*EltPtr)); + this->assertSafeToAdd(&Elt); + if (LLVM_UNLIKELY(this->size() >= this->capacity())) + this->grow(); + ::new ((void*) this->end()) T(::std::move(Elt)); this->set_size(this->size() + 1); } void pop_back() { this->set_size(this->size() - 1); this->end()->~T(); } }; // Define this out-of-line to dissuade the C++ compiler from inlining it. template void SmallVectorTemplateBase::grow(size_t MinSize) { // Ensure we can fit the new capacity. // This is only going to be applicable when the capacity is 32 bit. if (MinSize > this->SizeTypeMax()) this->report_size_overflow(MinSize); // Ensure we can meet the guarantee of space for at least one more element. // The above check alone will not catch the case where grow is called with a // default MinSize of 0, but the current capacity cannot be increased. // This is only going to be applicable when the capacity is 32 bit. if (this->capacity() == this->SizeTypeMax()) this->report_at_maximum_capacity(); // Always grow, even from zero. size_t NewCapacity = size_t(NextPowerOf2(this->capacity() + 2)); NewCapacity = std::min(std::max(NewCapacity, MinSize), this->SizeTypeMax()); T *NewElts = static_cast(llvm::safe_malloc(NewCapacity*sizeof(T))); // Move the elements over. this->uninitialized_move(this->begin(), this->end(), NewElts); // Destroy the original elements. destroy_range(this->begin(), this->end()); // If this wasn't grown from the inline copy, deallocate the old space. if (!this->isSmall()) free(this->begin()); this->BeginX = NewElts; this->Capacity = NewCapacity; } /// SmallVectorTemplateBase - This is where we put /// method implementations that are designed to work with trivially copyable /// T's. This allows using memcpy in place of copy/move construction and /// skipping destruction. template class SmallVectorTemplateBase : public SmallVectorTemplateCommon { - friend class SmallVectorTemplateCommon; - protected: - /// True if it's cheap enough to take parameters by value. Doing so avoids - /// overhead related to mitigations for reference invalidation. - static constexpr bool TakesParamByValue = sizeof(T) <= 2 * sizeof(void *); - - /// Either const T& or T, depending on whether it's cheap enough to take - /// parameters by value. - using ValueParamT = - typename std::conditional::type; - SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon(Size) {} // No need to do a destroy loop for POD's. static void destroy_range(T *, T *) {} /// Move the range [I, E) onto the uninitialized memory /// starting with "Dest", constructing elements into it as needed. template static void uninitialized_move(It1 I, It1 E, It2 Dest) { // Just do a copy. uninitialized_copy(I, E, Dest); } /// Copy the range [I, E) onto the uninitialized memory /// starting with "Dest", constructing elements into it as needed. template static void uninitialized_copy(It1 I, It1 E, It2 Dest) { // Arbitrary iterator types; just use the basic implementation. std::uninitialized_copy(I, E, Dest); } /// Copy the range [I, E) onto the uninitialized memory /// starting with "Dest", constructing elements into it as needed. template static void uninitialized_copy( T1 *I, T1 *E, T2 *Dest, std::enable_if_t::type, T2>::value> * = nullptr) { // Use memcpy for PODs iterated by pointers (which includes SmallVector // iterators): std::uninitialized_copy optimizes to memmove, but we can // use memcpy here. Note that I and E are iterators and thus might be // invalid for memcpy if they are equal. if (I != E) memcpy(reinterpret_cast(Dest), I, (E - I) * sizeof(T)); } /// Double the size of the allocated memory, guaranteeing space for at /// least one more element or MinSize if specified. void grow(size_t MinSize = 0) { this->grow_pod(MinSize, sizeof(T)); } - /// Reserve enough space to add one element, and return the updated element - /// pointer in case it was a reference to the storage. - const T *reserveForAndGetAddress(const T &Elt) { - return this->reserveForAndGetAddressImpl(this, Elt); - } - - /// Reserve enough space to add one element, and return the updated element - /// pointer in case it was a reference to the storage. - T *reserveForAndGetAddress(T &Elt) { - return const_cast(this->reserveForAndGetAddressImpl(this, Elt)); - } - public: - void push_back(ValueParamT Elt) { - const T *EltPtr = reserveForAndGetAddress(Elt); - memcpy(reinterpret_cast(this->end()), EltPtr, sizeof(T)); + void push_back(const T &Elt) { + this->assertSafeToAdd(&Elt); + if (LLVM_UNLIKELY(this->size() >= this->capacity())) + this->grow(); + memcpy(reinterpret_cast(this->end()), &Elt, sizeof(T)); this->set_size(this->size() + 1); } void pop_back() { this->set_size(this->size() - 1); } }; /// This class consists of common code factored out of the SmallVector class to /// reduce code duplication based on the SmallVector 'N' template parameter. template class SmallVectorImpl : public SmallVectorTemplateBase { using SuperClass = SmallVectorTemplateBase; public: using iterator = typename SuperClass::iterator; using const_iterator = typename SuperClass::const_iterator; using reference = typename SuperClass::reference; using size_type = typename SuperClass::size_type; protected: - using SmallVectorTemplateBase::TakesParamByValue; - using ValueParamT = typename SuperClass::ValueParamT; - // Default ctor - Initialize to empty. explicit SmallVectorImpl(unsigned N) : SmallVectorTemplateBase(N) {} public: SmallVectorImpl(const SmallVectorImpl &) = delete; ~SmallVectorImpl() { // Subclass has already destructed this vector's elements. // If this wasn't grown from the inline copy, deallocate the old space. if (!this->isSmall()) free(this->begin()); } void clear() { this->destroy_range(this->begin(), this->end()); this->Size = 0; } private: template void resizeImpl(size_type N) { if (N < this->size()) { this->destroy_range(this->begin()+N, this->end()); this->set_size(N); } else if (N > this->size()) { if (this->capacity() < N) this->grow(N); for (auto I = this->end(), E = this->begin() + N; I != E; ++I) if (ForOverwrite) new (&*I) T; else new (&*I) T(); this->set_size(N); } } public: void resize(size_type N) { resizeImpl(N); } /// Like resize, but \ref T is POD, the new values won't be initialized. void resize_for_overwrite(size_type N) { resizeImpl(N); } void resize(size_type N, const T &NV) { if (N == this->size()) return; if (N < this->size()) { this->destroy_range(this->begin()+N, this->end()); this->set_size(N); return; } this->assertSafeToReferenceAfterResize(&NV, N); if (this->capacity() < N) this->grow(N); std::uninitialized_fill(this->end(), this->begin() + N, NV); this->set_size(N); } void reserve(size_type N) { if (this->capacity() < N) this->grow(N); } void pop_back_n(size_type NumItems) { assert(this->size() >= NumItems); this->destroy_range(this->end() - NumItems, this->end()); this->set_size(this->size() - NumItems); } LLVM_NODISCARD T pop_back_val() { T Result = ::std::move(this->back()); this->pop_back(); return Result; } void swap(SmallVectorImpl &RHS); /// Add the specified range to the end of the SmallVector. template ::iterator_category, std::input_iterator_tag>::value>> void append(in_iter in_start, in_iter in_end) { this->assertSafeToAddRange(in_start, in_end); size_type NumInputs = std::distance(in_start, in_end); if (NumInputs > this->capacity() - this->size()) this->grow(this->size()+NumInputs); this->uninitialized_copy(in_start, in_end, this->end()); this->set_size(this->size() + NumInputs); } /// Append \p NumInputs copies of \p Elt to the end. void append(size_type NumInputs, const T &Elt) { this->assertSafeToAdd(&Elt, NumInputs); if (NumInputs > this->capacity() - this->size()) this->grow(this->size()+NumInputs); std::uninitialized_fill_n(this->end(), NumInputs, Elt); this->set_size(this->size() + NumInputs); } void append(std::initializer_list IL) { append(IL.begin(), IL.end()); } // FIXME: Consider assigning over existing elements, rather than clearing & // re-initializing them - for all assign(...) variants. void assign(size_type NumElts, const T &Elt) { this->assertSafeToReferenceAfterResize(&Elt, 0); clear(); if (this->capacity() < NumElts) this->grow(NumElts); this->set_size(NumElts); std::uninitialized_fill(this->begin(), this->end(), Elt); } template ::iterator_category, std::input_iterator_tag>::value>> void assign(in_iter in_start, in_iter in_end) { this->assertSafeToReferenceAfterClear(in_start, in_end); clear(); append(in_start, in_end); } void assign(std::initializer_list IL) { clear(); append(IL); } iterator erase(const_iterator CI) { // Just cast away constness because this is a non-const member function. iterator I = const_cast(CI); assert(this->isReferenceToStorage(CI) && "Iterator to erase is out of bounds."); iterator N = I; // Shift all elts down one. std::move(I+1, this->end(), I); // Drop the last elt. this->pop_back(); return(N); } iterator erase(const_iterator CS, const_iterator CE) { // Just cast away constness because this is a non-const member function. iterator S = const_cast(CS); iterator E = const_cast(CE); assert(this->isRangeInStorage(S, E) && "Range to erase is out of bounds."); iterator N = S; // Shift all elts down. iterator I = std::move(E, this->end(), S); // Drop the last elts. this->destroy_range(I, this->end()); this->set_size(I - this->begin()); return(N); } private: template iterator insert_one_impl(iterator I, ArgType &&Elt) { - // Callers ensure that ArgType is derived from T. - static_assert( - std::is_same>, - T>::value, - "ArgType must be derived from T!"); - if (I == this->end()) { // Important special case for empty vector. this->push_back(::std::forward(Elt)); return this->end()-1; } assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds."); - // Grow if necessary. - size_t Index = I - this->begin(); - std::remove_reference_t *EltPtr = - this->reserveForAndGetAddress(Elt); - I = this->begin() + Index; + // Check that adding an element won't invalidate Elt. + this->assertSafeToAdd(&Elt); + + if (this->size() >= this->capacity()) { + size_t EltNo = I-this->begin(); + this->grow(); + I = this->begin()+EltNo; + } ::new ((void*) this->end()) T(::std::move(this->back())); // Push everything else over. std::move_backward(I, this->end()-1, this->end()); this->set_size(this->size() + 1); // If we just moved the element we're inserting, be sure to update - // the reference (never happens if TakesParamByValue). - static_assert(!TakesParamByValue || std::is_same::value, - "ArgType must be 'T' when taking by value!"); - if (!TakesParamByValue && this->isReferenceToRange(EltPtr, I, this->end())) + // the reference. + std::remove_reference_t *EltPtr = &Elt; + if (this->isReferenceToRange(EltPtr, I, this->end())) ++EltPtr; *I = ::std::forward(*EltPtr); return I; } - template < - class ArgType, - std::enable_if_t< - std::is_same>, - T>::value && - !TakesParamByValue, - bool> = false> - iterator insert_one_maybe_copy(iterator I, ArgType &&Elt) { - return insert_one_impl(I, std::forward(Elt)); - } - - template < - class ArgType, - std::enable_if_t< - std::is_same>, - T>::value && - TakesParamByValue, - bool> = false> - iterator insert_one_maybe_copy(iterator I, ArgType &&Elt) { - // Copy Elt in order to mitigate reference invalidation without needing to - // update the pointer values in insert_one_impl. - return insert_one_impl(I, T(Elt)); - } - public: iterator insert(iterator I, T &&Elt) { - return insert_one_maybe_copy(I, std::move(Elt)); + return insert_one_impl(I, std::move(Elt)); } - iterator insert(iterator I, const T &Elt) { - return insert_one_maybe_copy(I, Elt); - } + iterator insert(iterator I, const T &Elt) { return insert_one_impl(I, Elt); } iterator insert(iterator I, size_type NumToInsert, const T &Elt) { // Convert iterator to elt# to avoid invalidating iterator when we reserve() size_t InsertElt = I - this->begin(); if (I == this->end()) { // Important special case for empty vector. append(NumToInsert, Elt); return this->begin()+InsertElt; } assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds."); // Check that adding NumToInsert elements won't invalidate Elt. this->assertSafeToAdd(&Elt, NumToInsert); // Ensure there is enough space. reserve(this->size() + NumToInsert); // Uninvalidate the iterator. I = this->begin()+InsertElt; // If there are more elements between the insertion point and the end of the // range than there are being inserted, we can use a simple approach to // insertion. Since we already reserved space, we know that this won't // reallocate the vector. if (size_t(this->end()-I) >= NumToInsert) { T *OldEnd = this->end(); append(std::move_iterator(this->end() - NumToInsert), std::move_iterator(this->end())); // Copy the existing elements that get replaced. std::move_backward(I, OldEnd-NumToInsert, OldEnd); std::fill_n(I, NumToInsert, Elt); return I; } // Otherwise, we're inserting more elements than exist already, and we're // not inserting at the end. // Move over the elements that we're about to overwrite. T *OldEnd = this->end(); this->set_size(this->size() + NumToInsert); size_t NumOverwritten = OldEnd-I; this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten); // Replace the overwritten part. std::fill_n(I, NumOverwritten, Elt); // Insert the non-overwritten middle part. std::uninitialized_fill_n(OldEnd, NumToInsert-NumOverwritten, Elt); return I; } template ::iterator_category, std::input_iterator_tag>::value>> iterator insert(iterator I, ItTy From, ItTy To) { // Convert iterator to elt# to avoid invalidating iterator when we reserve() size_t InsertElt = I - this->begin(); if (I == this->end()) { // Important special case for empty vector. append(From, To); return this->begin()+InsertElt; } assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds."); // Check that the reserve that follows doesn't invalidate the iterators. this->assertSafeToAddRange(From, To); size_t NumToInsert = std::distance(From, To); // Ensure there is enough space. reserve(this->size() + NumToInsert); // Uninvalidate the iterator. I = this->begin()+InsertElt; // If there are more elements between the insertion point and the end of the // range than there are being inserted, we can use a simple approach to // insertion. Since we already reserved space, we know that this won't // reallocate the vector. if (size_t(this->end()-I) >= NumToInsert) { T *OldEnd = this->end(); append(std::move_iterator(this->end() - NumToInsert), std::move_iterator(this->end())); // Copy the existing elements that get replaced. std::move_backward(I, OldEnd-NumToInsert, OldEnd); std::copy(From, To, I); return I; } // Otherwise, we're inserting more elements than exist already, and we're // not inserting at the end. // Move over the elements that we're about to overwrite. T *OldEnd = this->end(); this->set_size(this->size() + NumToInsert); size_t NumOverwritten = OldEnd-I; this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten); // Replace the overwritten part. for (T *J = I; NumOverwritten > 0; --NumOverwritten) { *J = *From; ++J; ++From; } // Insert the non-overwritten middle part. this->uninitialized_copy(From, To, OldEnd); return I; } void insert(iterator I, std::initializer_list IL) { insert(I, IL.begin(), IL.end()); } template reference emplace_back(ArgTypes &&... Args) { this->assertSafeToEmplace(Args...); if (LLVM_UNLIKELY(this->size() >= this->capacity())) this->grow(); ::new ((void *)this->end()) T(std::forward(Args)...); this->set_size(this->size() + 1); return this->back(); } SmallVectorImpl &operator=(const SmallVectorImpl &RHS); SmallVectorImpl &operator=(SmallVectorImpl &&RHS); bool operator==(const SmallVectorImpl &RHS) const { if (this->size() != RHS.size()) return false; return std::equal(this->begin(), this->end(), RHS.begin()); } bool operator!=(const SmallVectorImpl &RHS) const { return !(*this == RHS); } bool operator<(const SmallVectorImpl &RHS) const { return std::lexicographical_compare(this->begin(), this->end(), RHS.begin(), RHS.end()); } }; template void SmallVectorImpl::swap(SmallVectorImpl &RHS) { if (this == &RHS) return; // We can only avoid copying elements if neither vector is small. if (!this->isSmall() && !RHS.isSmall()) { std::swap(this->BeginX, RHS.BeginX); std::swap(this->Size, RHS.Size); std::swap(this->Capacity, RHS.Capacity); return; } if (RHS.size() > this->capacity()) this->grow(RHS.size()); if (this->size() > RHS.capacity()) RHS.grow(this->size()); // Swap the shared elements. size_t NumShared = this->size(); if (NumShared > RHS.size()) NumShared = RHS.size(); for (size_type i = 0; i != NumShared; ++i) std::swap((*this)[i], RHS[i]); // Copy over the extra elts. if (this->size() > RHS.size()) { size_t EltDiff = this->size() - RHS.size(); this->uninitialized_copy(this->begin()+NumShared, this->end(), RHS.end()); RHS.set_size(RHS.size() + EltDiff); this->destroy_range(this->begin()+NumShared, this->end()); this->set_size(NumShared); } else if (RHS.size() > this->size()) { size_t EltDiff = RHS.size() - this->size(); this->uninitialized_copy(RHS.begin()+NumShared, RHS.end(), this->end()); this->set_size(this->size() + EltDiff); this->destroy_range(RHS.begin()+NumShared, RHS.end()); RHS.set_size(NumShared); } } template SmallVectorImpl &SmallVectorImpl:: operator=(const SmallVectorImpl &RHS) { // Avoid self-assignment. if (this == &RHS) return *this; // If we already have sufficient space, assign the common elements, then // destroy any excess. size_t RHSSize = RHS.size(); size_t CurSize = this->size(); if (CurSize >= RHSSize) { // Assign common elements. iterator NewEnd; if (RHSSize) NewEnd = std::copy(RHS.begin(), RHS.begin()+RHSSize, this->begin()); else NewEnd = this->begin(); // Destroy excess elements. this->destroy_range(NewEnd, this->end()); // Trim. this->set_size(RHSSize); return *this; } // If we have to grow to have enough elements, destroy the current elements. // This allows us to avoid copying them during the grow. // FIXME: don't do this if they're efficiently moveable. if (this->capacity() < RHSSize) { // Destroy current elements. this->destroy_range(this->begin(), this->end()); this->set_size(0); CurSize = 0; this->grow(RHSSize); } else if (CurSize) { // Otherwise, use assignment for the already-constructed elements. std::copy(RHS.begin(), RHS.begin()+CurSize, this->begin()); } // Copy construct the new elements in place. this->uninitialized_copy(RHS.begin()+CurSize, RHS.end(), this->begin()+CurSize); // Set end. this->set_size(RHSSize); return *this; } template SmallVectorImpl &SmallVectorImpl::operator=(SmallVectorImpl &&RHS) { // Avoid self-assignment. if (this == &RHS) return *this; // If the RHS isn't small, clear this vector and then steal its buffer. if (!RHS.isSmall()) { this->destroy_range(this->begin(), this->end()); if (!this->isSmall()) free(this->begin()); this->BeginX = RHS.BeginX; this->Size = RHS.Size; this->Capacity = RHS.Capacity; RHS.resetToSmall(); return *this; } // If we already have sufficient space, assign the common elements, then // destroy any excess. size_t RHSSize = RHS.size(); size_t CurSize = this->size(); if (CurSize >= RHSSize) { // Assign common elements. iterator NewEnd = this->begin(); if (RHSSize) NewEnd = std::move(RHS.begin(), RHS.end(), NewEnd); // Destroy excess elements and trim the bounds. this->destroy_range(NewEnd, this->end()); this->set_size(RHSSize); // Clear the RHS. RHS.clear(); return *this; } // If we have to grow to have enough elements, destroy the current elements. // This allows us to avoid copying them during the grow. // FIXME: this may not actually make any sense if we can efficiently move // elements. if (this->capacity() < RHSSize) { // Destroy current elements. this->destroy_range(this->begin(), this->end()); this->set_size(0); CurSize = 0; this->grow(RHSSize); } else if (CurSize) { // Otherwise, use assignment for the already-constructed elements. std::move(RHS.begin(), RHS.begin()+CurSize, this->begin()); } // Move-construct the new elements in place. this->uninitialized_move(RHS.begin()+CurSize, RHS.end(), this->begin()+CurSize); // Set end. this->set_size(RHSSize); RHS.clear(); return *this; } /// Storage for the SmallVector elements. This is specialized for the N=0 case /// to avoid allocating unnecessary storage. template struct SmallVectorStorage { alignas(T) char InlineElts[N * sizeof(T)]; }; /// We need the storage to be properly aligned even for small-size of 0 so that /// the pointer math in \a SmallVectorTemplateCommon::getFirstEl() is /// well-defined. template struct alignas(T) SmallVectorStorage {}; /// Forward declaration of SmallVector so that /// calculateSmallVectorDefaultInlinedElements can reference /// `sizeof(SmallVector)`. template class LLVM_GSL_OWNER SmallVector; /// Helper class for calculating the default number of inline elements for /// `SmallVector`. /// /// This should be migrated to a constexpr function when our minimum /// compiler support is enough for multi-statement constexpr functions. template struct CalculateSmallVectorDefaultInlinedElements { // Parameter controlling the default number of inlined elements // for `SmallVector`. // // The default number of inlined elements ensures that // 1. There is at least one inlined element. // 2. `sizeof(SmallVector) <= kPreferredSmallVectorSizeof` unless // it contradicts 1. static constexpr size_t kPreferredSmallVectorSizeof = 64; // static_assert that sizeof(T) is not "too big". // // Because our policy guarantees at least one inlined element, it is possible // for an arbitrarily large inlined element to allocate an arbitrarily large // amount of inline storage. We generally consider it an antipattern for a // SmallVector to allocate an excessive amount of inline storage, so we want // to call attention to these cases and make sure that users are making an // intentional decision if they request a lot of inline storage. // // We want this assertion to trigger in pathological cases, but otherwise // not be too easy to hit. To accomplish that, the cutoff is actually somewhat // larger than kPreferredSmallVectorSizeof (otherwise, // `SmallVector>` would be one easy way to trip it, and that // pattern seems useful in practice). // // One wrinkle is that this assertion is in theory non-portable, since // sizeof(T) is in general platform-dependent. However, we don't expect this // to be much of an issue, because most LLVM development happens on 64-bit // hosts, and therefore sizeof(T) is expected to *decrease* when compiled for // 32-bit hosts, dodging the issue. The reverse situation, where development // happens on a 32-bit host and then fails due to sizeof(T) *increasing* on a // 64-bit host, is expected to be very rare. static_assert( sizeof(T) <= 256, "You are trying to use a default number of inlined elements for " "`SmallVector` but `sizeof(T)` is really big! Please use an " "explicit number of inlined elements with `SmallVector` to make " "sure you really want that much inline storage."); // Discount the size of the header itself when calculating the maximum inline // bytes. static constexpr size_t PreferredInlineBytes = kPreferredSmallVectorSizeof - sizeof(SmallVector); static constexpr size_t NumElementsThatFit = PreferredInlineBytes / sizeof(T); static constexpr size_t value = NumElementsThatFit == 0 ? 1 : NumElementsThatFit; }; /// This is a 'vector' (really, a variable-sized array), optimized /// for the case when the array is small. It contains some number of elements /// in-place, which allows it to avoid heap allocation when the actual number of /// elements is below that threshold. This allows normal "small" cases to be /// fast without losing generality for large inputs. /// /// \note /// In the absence of a well-motivated choice for the number of inlined /// elements \p N, it is recommended to use \c SmallVector (that is, /// omitting the \p N). This will choose a default number of inlined elements /// reasonable for allocation on the stack (for example, trying to keep \c /// sizeof(SmallVector) around 64 bytes). /// /// \warning This does not attempt to be exception safe. /// /// \see https://llvm.org/docs/ProgrammersManual.html#llvm-adt-smallvector-h template ::value> class LLVM_GSL_OWNER SmallVector : public SmallVectorImpl, SmallVectorStorage { public: SmallVector() : SmallVectorImpl(N) {} ~SmallVector() { // Destroy the constructed elements in the vector. this->destroy_range(this->begin(), this->end()); } explicit SmallVector(size_t Size, const T &Value = T()) : SmallVectorImpl(N) { this->assign(Size, Value); } template ::iterator_category, std::input_iterator_tag>::value>> SmallVector(ItTy S, ItTy E) : SmallVectorImpl(N) { this->append(S, E); } template explicit SmallVector(const iterator_range &R) : SmallVectorImpl(N) { this->append(R.begin(), R.end()); } SmallVector(std::initializer_list IL) : SmallVectorImpl(N) { this->assign(IL); } SmallVector(const SmallVector &RHS) : SmallVectorImpl(N) { if (!RHS.empty()) SmallVectorImpl::operator=(RHS); } SmallVector &operator=(const SmallVector &RHS) { SmallVectorImpl::operator=(RHS); return *this; } SmallVector(SmallVector &&RHS) : SmallVectorImpl(N) { if (!RHS.empty()) SmallVectorImpl::operator=(::std::move(RHS)); } SmallVector(SmallVectorImpl &&RHS) : SmallVectorImpl(N) { if (!RHS.empty()) SmallVectorImpl::operator=(::std::move(RHS)); } SmallVector &operator=(SmallVector &&RHS) { SmallVectorImpl::operator=(::std::move(RHS)); return *this; } SmallVector &operator=(SmallVectorImpl &&RHS) { SmallVectorImpl::operator=(::std::move(RHS)); return *this; } SmallVector &operator=(std::initializer_list IL) { this->assign(IL); return *this; } }; template inline size_t capacity_in_bytes(const SmallVector &X) { return X.capacity_in_bytes(); } /// Given a range of type R, iterate the entire range and return a /// SmallVector with elements of the vector. This is useful, for example, /// when you want to iterate a range and then sort the results. template SmallVector()))>::type>::type, Size> to_vector(R &&Range) { return {std::begin(Range), std::end(Range)}; } } // end namespace llvm namespace std { /// Implement std::swap in terms of SmallVector swap. template inline void swap(llvm::SmallVectorImpl &LHS, llvm::SmallVectorImpl &RHS) { LHS.swap(RHS); } /// Implement std::swap in terms of SmallVector swap. template inline void swap(llvm::SmallVector &LHS, llvm::SmallVector &RHS) { LHS.swap(RHS); } } // end namespace std #endif // LLVM_ADT_SMALLVECTOR_H diff --git a/llvm/unittests/ADT/SmallVectorTest.cpp b/llvm/unittests/ADT/SmallVectorTest.cpp index c880a6b6c543..d97ab577524f 100644 --- a/llvm/unittests/ADT/SmallVectorTest.cpp +++ b/llvm/unittests/ADT/SmallVectorTest.cpp @@ -1,1318 +1,1243 @@ //===- llvm/unittest/ADT/SmallVectorTest.cpp ------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // SmallVector unit tests. // //===----------------------------------------------------------------------===// #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/Support/Compiler.h" #include "gtest/gtest.h" #include #include using namespace llvm; namespace { /// A helper class that counts the total number of constructor and /// destructor calls. class Constructable { private: static int numConstructorCalls; static int numMoveConstructorCalls; static int numCopyConstructorCalls; static int numDestructorCalls; static int numAssignmentCalls; static int numMoveAssignmentCalls; static int numCopyAssignmentCalls; bool constructed; int value; public: Constructable() : constructed(true), value(0) { ++numConstructorCalls; } Constructable(int val) : constructed(true), value(val) { ++numConstructorCalls; } Constructable(const Constructable & src) : constructed(true) { value = src.value; ++numConstructorCalls; ++numCopyConstructorCalls; } Constructable(Constructable && src) : constructed(true) { value = src.value; - src.value = 0; ++numConstructorCalls; ++numMoveConstructorCalls; } ~Constructable() { EXPECT_TRUE(constructed); ++numDestructorCalls; constructed = false; } Constructable & operator=(const Constructable & src) { EXPECT_TRUE(constructed); value = src.value; ++numAssignmentCalls; ++numCopyAssignmentCalls; return *this; } Constructable & operator=(Constructable && src) { EXPECT_TRUE(constructed); value = src.value; - src.value = 0; ++numAssignmentCalls; ++numMoveAssignmentCalls; return *this; } int getValue() const { return abs(value); } static void reset() { numConstructorCalls = 0; numMoveConstructorCalls = 0; numCopyConstructorCalls = 0; numDestructorCalls = 0; numAssignmentCalls = 0; numMoveAssignmentCalls = 0; numCopyAssignmentCalls = 0; } static int getNumConstructorCalls() { return numConstructorCalls; } static int getNumMoveConstructorCalls() { return numMoveConstructorCalls; } static int getNumCopyConstructorCalls() { return numCopyConstructorCalls; } static int getNumDestructorCalls() { return numDestructorCalls; } static int getNumAssignmentCalls() { return numAssignmentCalls; } static int getNumMoveAssignmentCalls() { return numMoveAssignmentCalls; } static int getNumCopyAssignmentCalls() { return numCopyAssignmentCalls; } friend bool operator==(const Constructable & c0, const Constructable & c1) { return c0.getValue() == c1.getValue(); } friend bool LLVM_ATTRIBUTE_UNUSED operator!=(const Constructable & c0, const Constructable & c1) { return c0.getValue() != c1.getValue(); } }; int Constructable::numConstructorCalls; int Constructable::numCopyConstructorCalls; int Constructable::numMoveConstructorCalls; int Constructable::numDestructorCalls; int Constructable::numAssignmentCalls; int Constructable::numCopyAssignmentCalls; int Constructable::numMoveAssignmentCalls; struct NonCopyable { NonCopyable() {} NonCopyable(NonCopyable &&) {} NonCopyable &operator=(NonCopyable &&) { return *this; } private: NonCopyable(const NonCopyable &) = delete; NonCopyable &operator=(const NonCopyable &) = delete; }; LLVM_ATTRIBUTE_USED void CompileTest() { SmallVector V; V.resize(42); } class SmallVectorTestBase : public testing::Test { protected: void SetUp() override { Constructable::reset(); } template void assertEmpty(VectorT & v) { // Size tests EXPECT_EQ(0u, v.size()); EXPECT_TRUE(v.empty()); // Iterator tests EXPECT_TRUE(v.begin() == v.end()); } // Assert that v contains the specified values, in order. template void assertValuesInOrder(VectorT & v, size_t size, ...) { EXPECT_EQ(size, v.size()); va_list ap; va_start(ap, size); for (size_t i = 0; i < size; ++i) { int value = va_arg(ap, int); EXPECT_EQ(value, v[i].getValue()); } va_end(ap); } // Generate a sequence of values to initialize the vector. template void makeSequence(VectorT & v, int start, int end) { for (int i = start; i <= end; ++i) { v.push_back(Constructable(i)); } } }; // Test fixture class template class SmallVectorTest : public SmallVectorTestBase { protected: VectorT theVector; VectorT otherVector; }; typedef ::testing::Types, SmallVector, SmallVector, SmallVector, SmallVector > SmallVectorTestTypes; TYPED_TEST_CASE(SmallVectorTest, SmallVectorTestTypes); // Constructor test. TYPED_TEST(SmallVectorTest, ConstructorNonIterTest) { SCOPED_TRACE("ConstructorTest"); this->theVector = SmallVector(2, 2); this->assertValuesInOrder(this->theVector, 2u, 2, 2); } // Constructor test. TYPED_TEST(SmallVectorTest, ConstructorIterTest) { SCOPED_TRACE("ConstructorTest"); int arr[] = {1, 2, 3}; this->theVector = SmallVector(std::begin(arr), std::end(arr)); this->assertValuesInOrder(this->theVector, 3u, 1, 2, 3); } // New vector test. TYPED_TEST(SmallVectorTest, EmptyVectorTest) { SCOPED_TRACE("EmptyVectorTest"); this->assertEmpty(this->theVector); EXPECT_TRUE(this->theVector.rbegin() == this->theVector.rend()); EXPECT_EQ(0, Constructable::getNumConstructorCalls()); EXPECT_EQ(0, Constructable::getNumDestructorCalls()); } // Simple insertions and deletions. TYPED_TEST(SmallVectorTest, PushPopTest) { SCOPED_TRACE("PushPopTest"); // Track whether the vector will potentially have to grow. bool RequiresGrowth = this->theVector.capacity() < 3; // Push an element this->theVector.push_back(Constructable(1)); // Size tests this->assertValuesInOrder(this->theVector, 1u, 1); EXPECT_FALSE(this->theVector.begin() == this->theVector.end()); EXPECT_FALSE(this->theVector.empty()); // Push another element this->theVector.push_back(Constructable(2)); this->assertValuesInOrder(this->theVector, 2u, 1, 2); // Insert at beginning. Reserve space to avoid reference invalidation from // this->theVector[1]. this->theVector.reserve(this->theVector.size() + 1); this->theVector.insert(this->theVector.begin(), this->theVector[1]); this->assertValuesInOrder(this->theVector, 3u, 2, 1, 2); // Pop one element this->theVector.pop_back(); this->assertValuesInOrder(this->theVector, 2u, 2, 1); // Pop remaining elements this->theVector.pop_back_n(2); this->assertEmpty(this->theVector); // Check number of constructor calls. Should be 2 for each list element, // one for the argument to push_back, one for the argument to insert, // and one for the list element itself. if (!RequiresGrowth) { EXPECT_EQ(5, Constructable::getNumConstructorCalls()); EXPECT_EQ(5, Constructable::getNumDestructorCalls()); } else { // If we had to grow the vector, these only have a lower bound, but should // always be equal. EXPECT_LE(5, Constructable::getNumConstructorCalls()); EXPECT_EQ(Constructable::getNumConstructorCalls(), Constructable::getNumDestructorCalls()); } } // Clear test. TYPED_TEST(SmallVectorTest, ClearTest) { SCOPED_TRACE("ClearTest"); this->theVector.reserve(2); this->makeSequence(this->theVector, 1, 2); this->theVector.clear(); this->assertEmpty(this->theVector); EXPECT_EQ(4, Constructable::getNumConstructorCalls()); EXPECT_EQ(4, Constructable::getNumDestructorCalls()); } // Resize smaller test. TYPED_TEST(SmallVectorTest, ResizeShrinkTest) { SCOPED_TRACE("ResizeShrinkTest"); this->theVector.reserve(3); this->makeSequence(this->theVector, 1, 3); this->theVector.resize(1); this->assertValuesInOrder(this->theVector, 1u, 1); EXPECT_EQ(6, Constructable::getNumConstructorCalls()); EXPECT_EQ(5, Constructable::getNumDestructorCalls()); } // Resize bigger test. TYPED_TEST(SmallVectorTest, ResizeGrowTest) { SCOPED_TRACE("ResizeGrowTest"); this->theVector.resize(2); EXPECT_EQ(2, Constructable::getNumConstructorCalls()); EXPECT_EQ(0, Constructable::getNumDestructorCalls()); EXPECT_EQ(2u, this->theVector.size()); } TYPED_TEST(SmallVectorTest, ResizeWithElementsTest) { this->theVector.resize(2); Constructable::reset(); this->theVector.resize(4); size_t Ctors = Constructable::getNumConstructorCalls(); EXPECT_TRUE(Ctors == 2 || Ctors == 4); size_t MoveCtors = Constructable::getNumMoveConstructorCalls(); EXPECT_TRUE(MoveCtors == 0 || MoveCtors == 2); size_t Dtors = Constructable::getNumDestructorCalls(); EXPECT_TRUE(Dtors == 0 || Dtors == 2); } // Resize with fill value. TYPED_TEST(SmallVectorTest, ResizeFillTest) { SCOPED_TRACE("ResizeFillTest"); this->theVector.resize(3, Constructable(77)); this->assertValuesInOrder(this->theVector, 3u, 77, 77, 77); } TEST(SmallVectorTest, ResizeForOverwrite) { { // Heap allocated storage. SmallVector V; V.push_back(5U); V.pop_back(); V.resize_for_overwrite(V.size() + 1U); EXPECT_EQ(5U, V.back()); V.pop_back(); V.resize(V.size() + 1); EXPECT_EQ(0U, V.back()); } { // Inline storage. SmallVector V; V.push_back(5U); V.pop_back(); V.resize_for_overwrite(V.size() + 1U); EXPECT_EQ(5U, V.back()); V.pop_back(); V.resize(V.size() + 1); EXPECT_EQ(0U, V.back()); } } // Overflow past fixed size. TYPED_TEST(SmallVectorTest, OverflowTest) { SCOPED_TRACE("OverflowTest"); // Push more elements than the fixed size. this->makeSequence(this->theVector, 1, 10); // Test size and values. EXPECT_EQ(10u, this->theVector.size()); for (int i = 0; i < 10; ++i) { EXPECT_EQ(i+1, this->theVector[i].getValue()); } // Now resize back to fixed size. this->theVector.resize(1); this->assertValuesInOrder(this->theVector, 1u, 1); } // Iteration tests. TYPED_TEST(SmallVectorTest, IterationTest) { this->makeSequence(this->theVector, 1, 2); // Forward Iteration typename TypeParam::iterator it = this->theVector.begin(); EXPECT_TRUE(*it == this->theVector.front()); EXPECT_TRUE(*it == this->theVector[0]); EXPECT_EQ(1, it->getValue()); ++it; EXPECT_TRUE(*it == this->theVector[1]); EXPECT_TRUE(*it == this->theVector.back()); EXPECT_EQ(2, it->getValue()); ++it; EXPECT_TRUE(it == this->theVector.end()); --it; EXPECT_TRUE(*it == this->theVector[1]); EXPECT_EQ(2, it->getValue()); --it; EXPECT_TRUE(*it == this->theVector[0]); EXPECT_EQ(1, it->getValue()); // Reverse Iteration typename TypeParam::reverse_iterator rit = this->theVector.rbegin(); EXPECT_TRUE(*rit == this->theVector[1]); EXPECT_EQ(2, rit->getValue()); ++rit; EXPECT_TRUE(*rit == this->theVector[0]); EXPECT_EQ(1, rit->getValue()); ++rit; EXPECT_TRUE(rit == this->theVector.rend()); --rit; EXPECT_TRUE(*rit == this->theVector[0]); EXPECT_EQ(1, rit->getValue()); --rit; EXPECT_TRUE(*rit == this->theVector[1]); EXPECT_EQ(2, rit->getValue()); } // Swap test. TYPED_TEST(SmallVectorTest, SwapTest) { SCOPED_TRACE("SwapTest"); this->makeSequence(this->theVector, 1, 2); std::swap(this->theVector, this->otherVector); this->assertEmpty(this->theVector); this->assertValuesInOrder(this->otherVector, 2u, 1, 2); } // Append test TYPED_TEST(SmallVectorTest, AppendTest) { SCOPED_TRACE("AppendTest"); this->makeSequence(this->otherVector, 2, 3); this->theVector.push_back(Constructable(1)); this->theVector.append(this->otherVector.begin(), this->otherVector.end()); this->assertValuesInOrder(this->theVector, 3u, 1, 2, 3); } // Append repeated test TYPED_TEST(SmallVectorTest, AppendRepeatedTest) { SCOPED_TRACE("AppendRepeatedTest"); this->theVector.push_back(Constructable(1)); this->theVector.append(2, Constructable(77)); this->assertValuesInOrder(this->theVector, 3u, 1, 77, 77); } // Append test TYPED_TEST(SmallVectorTest, AppendNonIterTest) { SCOPED_TRACE("AppendRepeatedTest"); this->theVector.push_back(Constructable(1)); this->theVector.append(2, 7); this->assertValuesInOrder(this->theVector, 3u, 1, 7, 7); } struct output_iterator { typedef std::output_iterator_tag iterator_category; typedef int value_type; typedef int difference_type; typedef value_type *pointer; typedef value_type &reference; operator int() { return 2; } operator Constructable() { return 7; } }; TYPED_TEST(SmallVectorTest, AppendRepeatedNonForwardIterator) { SCOPED_TRACE("AppendRepeatedTest"); this->theVector.push_back(Constructable(1)); this->theVector.append(output_iterator(), output_iterator()); this->assertValuesInOrder(this->theVector, 3u, 1, 7, 7); } // Assign test TYPED_TEST(SmallVectorTest, AssignTest) { SCOPED_TRACE("AssignTest"); this->theVector.push_back(Constructable(1)); this->theVector.assign(2, Constructable(77)); this->assertValuesInOrder(this->theVector, 2u, 77, 77); } // Assign test TYPED_TEST(SmallVectorTest, AssignRangeTest) { SCOPED_TRACE("AssignTest"); this->theVector.push_back(Constructable(1)); int arr[] = {1, 2, 3}; this->theVector.assign(std::begin(arr), std::end(arr)); this->assertValuesInOrder(this->theVector, 3u, 1, 2, 3); } // Assign test TYPED_TEST(SmallVectorTest, AssignNonIterTest) { SCOPED_TRACE("AssignTest"); this->theVector.push_back(Constructable(1)); this->theVector.assign(2, 7); this->assertValuesInOrder(this->theVector, 2u, 7, 7); } // Move-assign test TYPED_TEST(SmallVectorTest, MoveAssignTest) { SCOPED_TRACE("MoveAssignTest"); // Set up our vector with a single element, but enough capacity for 4. this->theVector.reserve(4); this->theVector.push_back(Constructable(1)); // Set up the other vector with 2 elements. this->otherVector.push_back(Constructable(2)); this->otherVector.push_back(Constructable(3)); // Move-assign from the other vector. this->theVector = std::move(this->otherVector); // Make sure we have the right result. this->assertValuesInOrder(this->theVector, 2u, 2, 3); // Make sure the # of constructor/destructor calls line up. There // are two live objects after clearing the other vector. this->otherVector.clear(); EXPECT_EQ(Constructable::getNumConstructorCalls()-2, Constructable::getNumDestructorCalls()); // There shouldn't be any live objects any more. this->theVector.clear(); EXPECT_EQ(Constructable::getNumConstructorCalls(), Constructable::getNumDestructorCalls()); } // Erase a single element TYPED_TEST(SmallVectorTest, EraseTest) { SCOPED_TRACE("EraseTest"); this->makeSequence(this->theVector, 1, 3); const auto &theConstVector = this->theVector; this->theVector.erase(theConstVector.begin()); this->assertValuesInOrder(this->theVector, 2u, 2, 3); } // Erase a range of elements TYPED_TEST(SmallVectorTest, EraseRangeTest) { SCOPED_TRACE("EraseRangeTest"); this->makeSequence(this->theVector, 1, 3); const auto &theConstVector = this->theVector; this->theVector.erase(theConstVector.begin(), theConstVector.begin() + 2); this->assertValuesInOrder(this->theVector, 1u, 3); } // Insert a single element. TYPED_TEST(SmallVectorTest, InsertTest) { SCOPED_TRACE("InsertTest"); this->makeSequence(this->theVector, 1, 3); typename TypeParam::iterator I = this->theVector.insert(this->theVector.begin() + 1, Constructable(77)); EXPECT_EQ(this->theVector.begin() + 1, I); this->assertValuesInOrder(this->theVector, 4u, 1, 77, 2, 3); } // Insert a copy of a single element. TYPED_TEST(SmallVectorTest, InsertCopy) { SCOPED_TRACE("InsertTest"); this->makeSequence(this->theVector, 1, 3); Constructable C(77); typename TypeParam::iterator I = this->theVector.insert(this->theVector.begin() + 1, C); EXPECT_EQ(this->theVector.begin() + 1, I); this->assertValuesInOrder(this->theVector, 4u, 1, 77, 2, 3); } // Insert repeated elements. TYPED_TEST(SmallVectorTest, InsertRepeatedTest) { SCOPED_TRACE("InsertRepeatedTest"); this->makeSequence(this->theVector, 1, 4); Constructable::reset(); auto I = this->theVector.insert(this->theVector.begin() + 1, 2, Constructable(16)); // Move construct the top element into newly allocated space, and optionally // reallocate the whole buffer, move constructing into it. // FIXME: This is inefficient, we shouldn't move things into newly allocated // space, then move them up/around, there should only be 2 or 4 move // constructions here. EXPECT_TRUE(Constructable::getNumMoveConstructorCalls() == 2 || Constructable::getNumMoveConstructorCalls() == 6); // Move assign the next two to shift them up and make a gap. EXPECT_EQ(1, Constructable::getNumMoveAssignmentCalls()); // Copy construct the two new elements from the parameter. EXPECT_EQ(2, Constructable::getNumCopyAssignmentCalls()); // All without any copy construction. EXPECT_EQ(0, Constructable::getNumCopyConstructorCalls()); EXPECT_EQ(this->theVector.begin() + 1, I); this->assertValuesInOrder(this->theVector, 6u, 1, 16, 16, 2, 3, 4); } TYPED_TEST(SmallVectorTest, InsertRepeatedNonIterTest) { SCOPED_TRACE("InsertRepeatedTest"); this->makeSequence(this->theVector, 1, 4); Constructable::reset(); auto I = this->theVector.insert(this->theVector.begin() + 1, 2, 7); EXPECT_EQ(this->theVector.begin() + 1, I); this->assertValuesInOrder(this->theVector, 6u, 1, 7, 7, 2, 3, 4); } TYPED_TEST(SmallVectorTest, InsertRepeatedAtEndTest) { SCOPED_TRACE("InsertRepeatedTest"); this->makeSequence(this->theVector, 1, 4); Constructable::reset(); auto I = this->theVector.insert(this->theVector.end(), 2, Constructable(16)); // Just copy construct them into newly allocated space EXPECT_EQ(2, Constructable::getNumCopyConstructorCalls()); // Move everything across if reallocation is needed. EXPECT_TRUE(Constructable::getNumMoveConstructorCalls() == 0 || Constructable::getNumMoveConstructorCalls() == 4); // Without ever moving or copying anything else. EXPECT_EQ(0, Constructable::getNumCopyAssignmentCalls()); EXPECT_EQ(0, Constructable::getNumMoveAssignmentCalls()); EXPECT_EQ(this->theVector.begin() + 4, I); this->assertValuesInOrder(this->theVector, 6u, 1, 2, 3, 4, 16, 16); } TYPED_TEST(SmallVectorTest, InsertRepeatedEmptyTest) { SCOPED_TRACE("InsertRepeatedTest"); this->makeSequence(this->theVector, 10, 15); // Empty insert. EXPECT_EQ(this->theVector.end(), this->theVector.insert(this->theVector.end(), 0, Constructable(42))); EXPECT_EQ(this->theVector.begin() + 1, this->theVector.insert(this->theVector.begin() + 1, 0, Constructable(42))); } // Insert range. TYPED_TEST(SmallVectorTest, InsertRangeTest) { SCOPED_TRACE("InsertRangeTest"); Constructable Arr[3] = { Constructable(77), Constructable(77), Constructable(77) }; this->makeSequence(this->theVector, 1, 3); Constructable::reset(); auto I = this->theVector.insert(this->theVector.begin() + 1, Arr, Arr + 3); // Move construct the top 3 elements into newly allocated space. // Possibly move the whole sequence into new space first. // FIXME: This is inefficient, we shouldn't move things into newly allocated // space, then move them up/around, there should only be 2 or 3 move // constructions here. EXPECT_TRUE(Constructable::getNumMoveConstructorCalls() == 2 || Constructable::getNumMoveConstructorCalls() == 5); // Copy assign the lower 2 new elements into existing space. EXPECT_EQ(2, Constructable::getNumCopyAssignmentCalls()); // Copy construct the third element into newly allocated space. EXPECT_EQ(1, Constructable::getNumCopyConstructorCalls()); EXPECT_EQ(this->theVector.begin() + 1, I); this->assertValuesInOrder(this->theVector, 6u, 1, 77, 77, 77, 2, 3); } TYPED_TEST(SmallVectorTest, InsertRangeAtEndTest) { SCOPED_TRACE("InsertRangeTest"); Constructable Arr[3] = { Constructable(77), Constructable(77), Constructable(77) }; this->makeSequence(this->theVector, 1, 3); // Insert at end. Constructable::reset(); auto I = this->theVector.insert(this->theVector.end(), Arr, Arr+3); // Copy construct the 3 elements into new space at the top. EXPECT_EQ(3, Constructable::getNumCopyConstructorCalls()); // Don't copy/move anything else. EXPECT_EQ(0, Constructable::getNumCopyAssignmentCalls()); // Reallocation might occur, causing all elements to be moved into the new // buffer. EXPECT_TRUE(Constructable::getNumMoveConstructorCalls() == 0 || Constructable::getNumMoveConstructorCalls() == 3); EXPECT_EQ(0, Constructable::getNumMoveAssignmentCalls()); EXPECT_EQ(this->theVector.begin() + 3, I); this->assertValuesInOrder(this->theVector, 6u, 1, 2, 3, 77, 77, 77); } TYPED_TEST(SmallVectorTest, InsertEmptyRangeTest) { SCOPED_TRACE("InsertRangeTest"); this->makeSequence(this->theVector, 1, 3); // Empty insert. EXPECT_EQ(this->theVector.end(), this->theVector.insert(this->theVector.end(), this->theVector.begin(), this->theVector.begin())); EXPECT_EQ(this->theVector.begin() + 1, this->theVector.insert(this->theVector.begin() + 1, this->theVector.begin(), this->theVector.begin())); } // Comparison tests. TYPED_TEST(SmallVectorTest, ComparisonTest) { SCOPED_TRACE("ComparisonTest"); this->makeSequence(this->theVector, 1, 3); this->makeSequence(this->otherVector, 1, 3); EXPECT_TRUE(this->theVector == this->otherVector); EXPECT_FALSE(this->theVector != this->otherVector); this->otherVector.clear(); this->makeSequence(this->otherVector, 2, 4); EXPECT_FALSE(this->theVector == this->otherVector); EXPECT_TRUE(this->theVector != this->otherVector); } // Constant vector tests. TYPED_TEST(SmallVectorTest, ConstVectorTest) { const TypeParam constVector; EXPECT_EQ(0u, constVector.size()); EXPECT_TRUE(constVector.empty()); EXPECT_TRUE(constVector.begin() == constVector.end()); } // Direct array access. TYPED_TEST(SmallVectorTest, DirectVectorTest) { EXPECT_EQ(0u, this->theVector.size()); this->theVector.reserve(4); EXPECT_LE(4u, this->theVector.capacity()); EXPECT_EQ(0, Constructable::getNumConstructorCalls()); this->theVector.push_back(1); this->theVector.push_back(2); this->theVector.push_back(3); this->theVector.push_back(4); EXPECT_EQ(4u, this->theVector.size()); EXPECT_EQ(8, Constructable::getNumConstructorCalls()); EXPECT_EQ(1, this->theVector[0].getValue()); EXPECT_EQ(2, this->theVector[1].getValue()); EXPECT_EQ(3, this->theVector[2].getValue()); EXPECT_EQ(4, this->theVector[3].getValue()); } TYPED_TEST(SmallVectorTest, IteratorTest) { std::list L; this->theVector.insert(this->theVector.end(), L.begin(), L.end()); } template class DualSmallVectorsTest; template class DualSmallVectorsTest> : public SmallVectorTestBase { protected: VectorT1 theVector; VectorT2 otherVector; template static unsigned NumBuiltinElts(const SmallVector&) { return N; } }; typedef ::testing::Types< // Small mode -> Small mode. std::pair, SmallVector>, // Small mode -> Big mode. std::pair, SmallVector>, // Big mode -> Small mode. std::pair, SmallVector>, // Big mode -> Big mode. std::pair, SmallVector> > DualSmallVectorTestTypes; TYPED_TEST_CASE(DualSmallVectorsTest, DualSmallVectorTestTypes); TYPED_TEST(DualSmallVectorsTest, MoveAssignment) { SCOPED_TRACE("MoveAssignTest-DualVectorTypes"); // Set up our vector with four elements. for (unsigned I = 0; I < 4; ++I) this->otherVector.push_back(Constructable(I)); const Constructable *OrigDataPtr = this->otherVector.data(); // Move-assign from the other vector. this->theVector = std::move(static_cast&>(this->otherVector)); // Make sure we have the right result. this->assertValuesInOrder(this->theVector, 4u, 0, 1, 2, 3); // Make sure the # of constructor/destructor calls line up. There // are two live objects after clearing the other vector. this->otherVector.clear(); EXPECT_EQ(Constructable::getNumConstructorCalls()-4, Constructable::getNumDestructorCalls()); // If the source vector (otherVector) was in small-mode, assert that we just // moved the data pointer over. EXPECT_TRUE(this->NumBuiltinElts(this->otherVector) == 4 || this->theVector.data() == OrigDataPtr); // There shouldn't be any live objects any more. this->theVector.clear(); EXPECT_EQ(Constructable::getNumConstructorCalls(), Constructable::getNumDestructorCalls()); // We shouldn't have copied anything in this whole process. EXPECT_EQ(Constructable::getNumCopyConstructorCalls(), 0); } struct notassignable { int &x; notassignable(int &x) : x(x) {} }; TEST(SmallVectorCustomTest, NoAssignTest) { int x = 0; SmallVector vec; vec.push_back(notassignable(x)); x = 42; EXPECT_EQ(42, vec.pop_back_val().x); } struct MovedFrom { bool hasValue; MovedFrom() : hasValue(true) { } MovedFrom(MovedFrom&& m) : hasValue(m.hasValue) { m.hasValue = false; } MovedFrom &operator=(MovedFrom&& m) { hasValue = m.hasValue; m.hasValue = false; return *this; } }; TEST(SmallVectorTest, MidInsert) { SmallVector v; v.push_back(MovedFrom()); v.insert(v.begin(), MovedFrom()); for (MovedFrom &m : v) EXPECT_TRUE(m.hasValue); } enum EmplaceableArgState { EAS_Defaulted, EAS_Arg, EAS_LValue, EAS_RValue, EAS_Failure }; template struct EmplaceableArg { EmplaceableArgState State; EmplaceableArg() : State(EAS_Defaulted) {} EmplaceableArg(EmplaceableArg &&X) : State(X.State == EAS_Arg ? EAS_RValue : EAS_Failure) {} EmplaceableArg(EmplaceableArg &X) : State(X.State == EAS_Arg ? EAS_LValue : EAS_Failure) {} explicit EmplaceableArg(bool) : State(EAS_Arg) {} private: EmplaceableArg &operator=(EmplaceableArg &&) = delete; EmplaceableArg &operator=(const EmplaceableArg &) = delete; }; enum EmplaceableState { ES_Emplaced, ES_Moved }; struct Emplaceable { EmplaceableArg<0> A0; EmplaceableArg<1> A1; EmplaceableArg<2> A2; EmplaceableArg<3> A3; EmplaceableState State; Emplaceable() : State(ES_Emplaced) {} template explicit Emplaceable(A0Ty &&A0) : A0(std::forward(A0)), State(ES_Emplaced) {} template Emplaceable(A0Ty &&A0, A1Ty &&A1) : A0(std::forward(A0)), A1(std::forward(A1)), State(ES_Emplaced) {} template Emplaceable(A0Ty &&A0, A1Ty &&A1, A2Ty &&A2) : A0(std::forward(A0)), A1(std::forward(A1)), A2(std::forward(A2)), State(ES_Emplaced) {} template Emplaceable(A0Ty &&A0, A1Ty &&A1, A2Ty &&A2, A3Ty &&A3) : A0(std::forward(A0)), A1(std::forward(A1)), A2(std::forward(A2)), A3(std::forward(A3)), State(ES_Emplaced) {} Emplaceable(Emplaceable &&) : State(ES_Moved) {} Emplaceable &operator=(Emplaceable &&) { State = ES_Moved; return *this; } private: Emplaceable(const Emplaceable &) = delete; Emplaceable &operator=(const Emplaceable &) = delete; }; TEST(SmallVectorTest, EmplaceBack) { EmplaceableArg<0> A0(true); EmplaceableArg<1> A1(true); EmplaceableArg<2> A2(true); EmplaceableArg<3> A3(true); { SmallVector V; Emplaceable &back = V.emplace_back(); EXPECT_TRUE(&back == &V.back()); EXPECT_TRUE(V.size() == 1); EXPECT_TRUE(back.State == ES_Emplaced); EXPECT_TRUE(back.A0.State == EAS_Defaulted); EXPECT_TRUE(back.A1.State == EAS_Defaulted); EXPECT_TRUE(back.A2.State == EAS_Defaulted); EXPECT_TRUE(back.A3.State == EAS_Defaulted); } { SmallVector V; Emplaceable &back = V.emplace_back(std::move(A0)); EXPECT_TRUE(&back == &V.back()); EXPECT_TRUE(V.size() == 1); EXPECT_TRUE(back.State == ES_Emplaced); EXPECT_TRUE(back.A0.State == EAS_RValue); EXPECT_TRUE(back.A1.State == EAS_Defaulted); EXPECT_TRUE(back.A2.State == EAS_Defaulted); EXPECT_TRUE(back.A3.State == EAS_Defaulted); } { SmallVector V; Emplaceable &back = V.emplace_back(A0); EXPECT_TRUE(&back == &V.back()); EXPECT_TRUE(V.size() == 1); EXPECT_TRUE(back.State == ES_Emplaced); EXPECT_TRUE(back.A0.State == EAS_LValue); EXPECT_TRUE(back.A1.State == EAS_Defaulted); EXPECT_TRUE(back.A2.State == EAS_Defaulted); EXPECT_TRUE(back.A3.State == EAS_Defaulted); } { SmallVector V; Emplaceable &back = V.emplace_back(A0, A1); EXPECT_TRUE(&back == &V.back()); EXPECT_TRUE(V.size() == 1); EXPECT_TRUE(back.State == ES_Emplaced); EXPECT_TRUE(back.A0.State == EAS_LValue); EXPECT_TRUE(back.A1.State == EAS_LValue); EXPECT_TRUE(back.A2.State == EAS_Defaulted); EXPECT_TRUE(back.A3.State == EAS_Defaulted); } { SmallVector V; Emplaceable &back = V.emplace_back(std::move(A0), std::move(A1)); EXPECT_TRUE(&back == &V.back()); EXPECT_TRUE(V.size() == 1); EXPECT_TRUE(back.State == ES_Emplaced); EXPECT_TRUE(back.A0.State == EAS_RValue); EXPECT_TRUE(back.A1.State == EAS_RValue); EXPECT_TRUE(back.A2.State == EAS_Defaulted); EXPECT_TRUE(back.A3.State == EAS_Defaulted); } { SmallVector V; Emplaceable &back = V.emplace_back(std::move(A0), A1, std::move(A2), A3); EXPECT_TRUE(&back == &V.back()); EXPECT_TRUE(V.size() == 1); EXPECT_TRUE(back.State == ES_Emplaced); EXPECT_TRUE(back.A0.State == EAS_RValue); EXPECT_TRUE(back.A1.State == EAS_LValue); EXPECT_TRUE(back.A2.State == EAS_RValue); EXPECT_TRUE(back.A3.State == EAS_LValue); } { SmallVector V; V.emplace_back(); V.emplace_back(42); EXPECT_EQ(2U, V.size()); EXPECT_EQ(0, V[0]); EXPECT_EQ(42, V[1]); } } TEST(SmallVectorTest, DefaultInlinedElements) { SmallVector V; EXPECT_TRUE(V.empty()); V.push_back(7); EXPECT_EQ(V[0], 7); // Check that at least a couple layers of nested SmallVector's are allowed // by the default inline elements policy. This pattern happens in practice // with some frequency, and it seems fairly harmless even though each layer of // SmallVector's will grow the total sizeof by a vector header beyond the // "preferred" maximum sizeof. SmallVector>> NestedV; NestedV.emplace_back().emplace_back().emplace_back(42); EXPECT_EQ(NestedV[0][0][0], 42); } TEST(SmallVectorTest, InitializerList) { SmallVector V1 = {}; EXPECT_TRUE(V1.empty()); V1 = {0, 0}; EXPECT_TRUE(makeArrayRef(V1).equals({0, 0})); V1 = {-1, -1}; EXPECT_TRUE(makeArrayRef(V1).equals({-1, -1})); SmallVector V2 = {1, 2, 3, 4}; EXPECT_TRUE(makeArrayRef(V2).equals({1, 2, 3, 4})); V2.assign({4}); EXPECT_TRUE(makeArrayRef(V2).equals({4})); V2.append({3, 2}); EXPECT_TRUE(makeArrayRef(V2).equals({4, 3, 2})); V2.insert(V2.begin() + 1, 5); EXPECT_TRUE(makeArrayRef(V2).equals({4, 5, 3, 2})); } template class SmallVectorReferenceInvalidationTest : public SmallVectorTestBase { protected: const char *AssertionMessage = "Attempting to reference an element of the vector in an operation \" " "\"that invalidates it"; VectorT V; template static unsigned NumBuiltinElts(const SmallVector &) { return N; } - template static bool isValueType() { - return std::is_same::value; - } - void SetUp() override { SmallVectorTestBase::SetUp(); // Fill up the small size so that insertions move the elements. - for (int I = 0, E = NumBuiltinElts(V); I != E; ++I) - V.emplace_back(I + 1); + V.append({0, 0, 0}); } }; // Test one type that's trivially copyable (int) and one that isn't // (Constructable) since reference invalidation may be fixed differently for // each. using SmallVectorReferenceInvalidationTestTypes = ::testing::Types, SmallVector>; TYPED_TEST_CASE(SmallVectorReferenceInvalidationTest, SmallVectorReferenceInvalidationTestTypes); TYPED_TEST(SmallVectorReferenceInvalidationTest, PushBack) { - // Note: setup adds [1, 2, ...] to V until it's at capacity in small mode. auto &V = this->V; - int N = this->NumBuiltinElts(V); - - // Push back a reference to last element when growing from small storage. - V.push_back(V.back()); - EXPECT_EQ(N, V.back()); - - // Check that the old value is still there (not moved away). - EXPECT_EQ(N, V[V.size() - 2]); - - // Fill storage again. - V.back() = V.size(); - while (V.size() < V.capacity()) - V.push_back(V.size() + 1); - - // Push back a reference to last element when growing from large storage. - V.push_back(V.back()); - EXPECT_EQ(int(V.size()) - 1, V.back()); + (void)V; +#if !defined(NDEBUG) && GTEST_HAS_DEATH_TEST + EXPECT_DEATH(V.push_back(V.back()), this->AssertionMessage); +#endif } TYPED_TEST(SmallVectorReferenceInvalidationTest, PushBackMoved) { - // Note: setup adds [1, 2, ...] to V until it's at capacity in small mode. auto &V = this->V; - int N = this->NumBuiltinElts(V); - - // Push back a reference to last element when growing from small storage. - V.push_back(std::move(V.back())); - EXPECT_EQ(N, V.back()); - if (this->template isValueType()) { - // Check that the value was moved (not copied). - EXPECT_EQ(0, V[V.size() - 2]); - } - - // Fill storage again. - V.back() = V.size(); - while (V.size() < V.capacity()) - V.push_back(V.size() + 1); - - // Push back a reference to last element when growing from large storage. - V.push_back(std::move(V.back())); - - // Check the values. - EXPECT_EQ(int(V.size()) - 1, V.back()); - if (this->template isValueType()) { - // Check the value got moved out. - EXPECT_EQ(0, V[V.size() - 2]); - } + (void)V; +#if !defined(NDEBUG) && GTEST_HAS_DEATH_TEST + EXPECT_DEATH(V.push_back(std::move(V.back())), this->AssertionMessage); +#endif } TYPED_TEST(SmallVectorReferenceInvalidationTest, Resize) { auto &V = this->V; (void)V; int N = this->NumBuiltinElts(V); #if !defined(NDEBUG) && GTEST_HAS_DEATH_TEST EXPECT_DEATH(V.resize(N + 1, V.back()), this->AssertionMessage); #endif // No assertion when shrinking, since the parameter isn't accessed. V.resize(N - 1, V.back()); } TYPED_TEST(SmallVectorReferenceInvalidationTest, Append) { auto &V = this->V; (void)V; #if !defined(NDEBUG) && GTEST_HAS_DEATH_TEST EXPECT_DEATH(V.append(1, V.back()), this->AssertionMessage); #endif } TYPED_TEST(SmallVectorReferenceInvalidationTest, AppendRange) { auto &V = this->V; (void)V; #if !defined(NDEBUG) && GTEST_HAS_DEATH_TEST EXPECT_DEATH(V.append(V.begin(), V.begin() + 1), this->AssertionMessage); ASSERT_EQ(3u, this->NumBuiltinElts(V)); ASSERT_EQ(3u, V.size()); V.pop_back(); ASSERT_EQ(2u, V.size()); // Confirm this checks for growth when there's more than one element // appended. EXPECT_DEATH(V.append(V.begin(), V.end()), this->AssertionMessage); #endif } TYPED_TEST(SmallVectorReferenceInvalidationTest, Assign) { auto &V = this->V; (void)V; #if !defined(NDEBUG) && GTEST_HAS_DEATH_TEST // Regardless of capacity, assign should never reference an internal element. EXPECT_DEATH(V.assign(1, V.back()), this->AssertionMessage); EXPECT_DEATH(V.assign(this->NumBuiltinElts(V), V.back()), this->AssertionMessage); EXPECT_DEATH(V.assign(this->NumBuiltinElts(V) + 1, V.back()), this->AssertionMessage); #endif } TYPED_TEST(SmallVectorReferenceInvalidationTest, AssignRange) { auto &V = this->V; #if !defined(NDEBUG) && GTEST_HAS_DEATH_TEST EXPECT_DEATH(V.assign(V.begin(), V.end()), this->AssertionMessage); EXPECT_DEATH(V.assign(V.begin(), V.end() - 1), this->AssertionMessage); #endif V.assign(V.begin(), V.begin()); EXPECT_TRUE(V.empty()); } TYPED_TEST(SmallVectorReferenceInvalidationTest, Insert) { - // Note: setup adds [1, 2, ...] to V until it's at capacity in small mode. auto &V = this->V; (void)V; - - // Insert a reference to the back (not at end() or else insert delegates to - // push_back()), growing out of small mode. Confirm the value was copied out - // (moving out Constructable sets it to 0). - V.insert(V.begin(), V.back()); - EXPECT_EQ(int(V.size() - 1), V.front()); - EXPECT_EQ(int(V.size() - 1), V.back()); - - // Fill up the vector again. - while (V.size() < V.capacity()) - V.push_back(V.size() + 1); - - // Grow again from large storage to large storage. - V.insert(V.begin(), V.back()); - EXPECT_EQ(int(V.size() - 1), V.front()); - EXPECT_EQ(int(V.size() - 1), V.back()); +#if !defined(NDEBUG) && GTEST_HAS_DEATH_TEST + EXPECT_DEATH(V.insert(V.begin(), V.back()), this->AssertionMessage); +#endif } TYPED_TEST(SmallVectorReferenceInvalidationTest, InsertMoved) { - // Note: setup adds [1, 2, ...] to V until it's at capacity in small mode. auto &V = this->V; (void)V; - - // Insert a reference to the back (not at end() or else insert delegates to - // push_back()), growing out of small mode. Confirm the value was copied out - // (moving out Constructable sets it to 0). - V.insert(V.begin(), std::move(V.back())); - EXPECT_EQ(int(V.size() - 1), V.front()); - if (this->template isValueType()) { - // Check the value got moved out. - EXPECT_EQ(0, V.back()); - } - - // Fill up the vector again. - while (V.size() < V.capacity()) - V.push_back(V.size() + 1); - - // Grow again from large storage to large storage. - V.insert(V.begin(), std::move(V.back())); - EXPECT_EQ(int(V.size() - 1), V.front()); - if (this->template isValueType()) { - // Check the value got moved out. - EXPECT_EQ(0, V.back()); - } +#if !defined(NDEBUG) && GTEST_HAS_DEATH_TEST + EXPECT_DEATH(V.insert(V.begin(), std::move(V.back())), + this->AssertionMessage); +#endif } TYPED_TEST(SmallVectorReferenceInvalidationTest, InsertN) { auto &V = this->V; (void)V; #if !defined(NDEBUG) && GTEST_HAS_DEATH_TEST EXPECT_DEATH(V.insert(V.begin(), 2, V.back()), this->AssertionMessage); #endif } TYPED_TEST(SmallVectorReferenceInvalidationTest, InsertRange) { auto &V = this->V; (void)V; #if !defined(NDEBUG) && GTEST_HAS_DEATH_TEST EXPECT_DEATH(V.insert(V.begin(), V.begin(), V.begin() + 1), this->AssertionMessage); ASSERT_EQ(3u, this->NumBuiltinElts(V)); ASSERT_EQ(3u, V.size()); V.pop_back(); ASSERT_EQ(2u, V.size()); // Confirm this checks for growth when there's more than one element // inserted. EXPECT_DEATH(V.insert(V.begin(), V.begin(), V.end()), this->AssertionMessage); #endif } TYPED_TEST(SmallVectorReferenceInvalidationTest, EmplaceBack) { auto &V = this->V; (void)V; #if !defined(NDEBUG) && GTEST_HAS_DEATH_TEST EXPECT_DEATH(V.emplace_back(V.back()), this->AssertionMessage); #endif } template class SmallVectorInternalReferenceInvalidationTest : public SmallVectorTestBase { protected: const char *AssertionMessage = "Attempting to reference an element of the vector in an operation \" " "\"that invalidates it"; VectorT V; template static unsigned NumBuiltinElts(const SmallVector &) { return N; } void SetUp() override { SmallVectorTestBase::SetUp(); // Fill up the small size so that insertions move the elements. V.push_back(std::make_pair(0, 0)); } }; // Test pairs of the same types from SmallVectorReferenceInvalidationTestTypes. using SmallVectorInternalReferenceInvalidationTestTypes = ::testing::Types, 1>, SmallVector, 1>>; TYPED_TEST_CASE(SmallVectorInternalReferenceInvalidationTest, SmallVectorInternalReferenceInvalidationTestTypes); TYPED_TEST(SmallVectorInternalReferenceInvalidationTest, EmplaceBack) { auto &V = this->V; (void)V; #if !defined(NDEBUG) && GTEST_HAS_DEATH_TEST EXPECT_DEATH(V.emplace_back(V.back().first, 0), this->AssertionMessage); EXPECT_DEATH(V.emplace_back(0, V.back().second), this->AssertionMessage); #endif } } // end namespace