diff --git a/llvm/test/Transforms/IndVarSimplify/lftr-multi-exit.ll b/llvm/test/Transforms/IndVarSimplify/lftr-multi-exit.ll index 037909accbc6..a45f26b88a95 100644 --- a/llvm/test/Transforms/IndVarSimplify/lftr-multi-exit.ll +++ b/llvm/test/Transforms/IndVarSimplify/lftr-multi-exit.ll @@ -1,276 +1,434 @@ ; NOTE: Assertions have been autogenerated by utils/update_test_checks.py ; RUN: opt < %s -indvars -S | FileCheck %s ; This is a collection of tests specifically for LFTR of multiple exit loops. ; The actual LFTR performed is trivial so as to focus on the loop structure ; aspects. ; Provide legal integer types. target datalayout = "n8:16:32:64" @A = external global i32 define void @analyzeable_early_exit(i32 %n) { ; CHECK-LABEL: @analyzeable_early_exit( ; CHECK-NEXT: entry: ; CHECK-NEXT: br label [[LOOP:%.*]] ; CHECK: loop: ; CHECK-NEXT: [[IV:%.*]] = phi i32 [ 0, [[ENTRY:%.*]] ], [ [[IV_NEXT:%.*]], [[LATCH:%.*]] ] ; CHECK-NEXT: [[EARLYCND:%.*]] = icmp ult i32 [[IV]], [[N:%.*]] ; CHECK-NEXT: br i1 [[EARLYCND]], label [[LATCH]], label [[EXIT:%.*]] ; CHECK: latch: ; CHECK-NEXT: [[IV_NEXT]] = add nuw nsw i32 [[IV]], 1 ; CHECK-NEXT: store i32 [[IV]], i32* @A ; CHECK-NEXT: [[C:%.*]] = icmp ult i32 [[IV_NEXT]], 1000 ; CHECK-NEXT: br i1 [[C]], label [[LOOP]], label [[EXIT]] ; CHECK: exit: ; CHECK-NEXT: ret void ; entry: br label %loop loop: %iv = phi i32 [ 0, %entry], [ %iv.next, %latch] %earlycnd = icmp ult i32 %iv, %n br i1 %earlycnd, label %latch, label %exit latch: %iv.next = add i32 %iv, 1 store i32 %iv, i32* @A %c = icmp ult i32 %iv.next, 1000 br i1 %c, label %loop, label %exit exit: ret void } define void @unanalyzeable_early_exit() { ; CHECK-LABEL: @unanalyzeable_early_exit( ; CHECK-NEXT: entry: ; CHECK-NEXT: br label [[LOOP:%.*]] ; CHECK: loop: ; CHECK-NEXT: [[IV:%.*]] = phi i32 [ 0, [[ENTRY:%.*]] ], [ [[IV_NEXT:%.*]], [[LATCH:%.*]] ] ; CHECK-NEXT: [[VOL:%.*]] = load volatile i32, i32* @A ; CHECK-NEXT: [[EARLYCND:%.*]] = icmp ne i32 [[VOL]], 0 ; CHECK-NEXT: br i1 [[EARLYCND]], label [[LATCH]], label [[EXIT:%.*]] ; CHECK: latch: ; CHECK-NEXT: [[IV_NEXT]] = add nuw nsw i32 [[IV]], 1 ; CHECK-NEXT: store i32 [[IV]], i32* @A ; CHECK-NEXT: [[C:%.*]] = icmp ult i32 [[IV_NEXT]], 1000 ; CHECK-NEXT: br i1 [[C]], label [[LOOP]], label [[EXIT]] ; CHECK: exit: ; CHECK-NEXT: ret void ; entry: br label %loop loop: %iv = phi i32 [ 0, %entry], [ %iv.next, %latch] %vol = load volatile i32, i32* @A %earlycnd = icmp ne i32 %vol, 0 br i1 %earlycnd, label %latch, label %exit latch: %iv.next = add i32 %iv, 1 store i32 %iv, i32* @A %c = icmp ult i32 %iv.next, 1000 br i1 %c, label %loop, label %exit exit: ret void } define void @multiple_early_exits(i32 %n, i32 %m) { ; CHECK-LABEL: @multiple_early_exits( ; CHECK-NEXT: entry: ; CHECK-NEXT: br label [[LOOP:%.*]] ; CHECK: loop: ; CHECK-NEXT: [[IV:%.*]] = phi i32 [ 0, [[ENTRY:%.*]] ], [ [[IV_NEXT:%.*]], [[LATCH:%.*]] ] ; CHECK-NEXT: [[EARLYCND:%.*]] = icmp ult i32 [[IV]], [[N:%.*]] ; CHECK-NEXT: br i1 [[EARLYCND]], label [[CONTINUE:%.*]], label [[EXIT:%.*]] ; CHECK: continue: ; CHECK-NEXT: store volatile i32 [[IV]], i32* @A ; CHECK-NEXT: [[EARLYCND2:%.*]] = icmp ult i32 [[IV]], [[M:%.*]] ; CHECK-NEXT: br i1 [[EARLYCND2]], label [[LATCH]], label [[EXIT]] ; CHECK: latch: ; CHECK-NEXT: [[IV_NEXT]] = add nuw nsw i32 [[IV]], 1 ; CHECK-NEXT: store volatile i32 [[IV]], i32* @A ; CHECK-NEXT: [[C:%.*]] = icmp ult i32 [[IV_NEXT]], 1000 ; CHECK-NEXT: br i1 [[C]], label [[LOOP]], label [[EXIT]] ; CHECK: exit: ; CHECK-NEXT: ret void ; entry: br label %loop loop: %iv = phi i32 [ 0, %entry], [ %iv.next, %latch] %earlycnd = icmp ult i32 %iv, %n br i1 %earlycnd, label %continue, label %exit continue: store volatile i32 %iv, i32* @A %earlycnd2 = icmp ult i32 %iv, %m br i1 %earlycnd2, label %latch, label %exit latch: %iv.next = add i32 %iv, 1 store volatile i32 %iv, i32* @A %c = icmp ult i32 %iv.next, 1000 br i1 %c, label %loop, label %exit exit: ret void } ; Note: This slightly odd form is what indvars itself produces for multiple ; exits without a side effect between them. define void @compound_early_exit(i32 %n, i32 %m) { ; CHECK-LABEL: @compound_early_exit( ; CHECK-NEXT: entry: ; CHECK-NEXT: br label [[LOOP:%.*]] ; CHECK: loop: ; CHECK-NEXT: [[IV:%.*]] = phi i32 [ 0, [[ENTRY:%.*]] ], [ [[IV_NEXT:%.*]], [[LATCH:%.*]] ] ; CHECK-NEXT: [[EARLYCND:%.*]] = icmp ult i32 [[IV]], [[N:%.*]] ; CHECK-NEXT: [[EARLYCND2:%.*]] = icmp ult i32 [[IV]], [[M:%.*]] ; CHECK-NEXT: [[AND:%.*]] = and i1 [[EARLYCND]], [[EARLYCND2]] ; CHECK-NEXT: br i1 [[AND]], label [[LATCH]], label [[EXIT:%.*]] ; CHECK: latch: ; CHECK-NEXT: [[IV_NEXT]] = add nuw nsw i32 [[IV]], 1 ; CHECK-NEXT: store volatile i32 [[IV]], i32* @A ; CHECK-NEXT: [[C:%.*]] = icmp ult i32 [[IV_NEXT]], 1000 ; CHECK-NEXT: br i1 [[C]], label [[LOOP]], label [[EXIT]] ; CHECK: exit: ; CHECK-NEXT: ret void ; entry: br label %loop loop: %iv = phi i32 [ 0, %entry], [ %iv.next, %latch] %earlycnd = icmp ult i32 %iv, %n %earlycnd2 = icmp ult i32 %iv, %m %and = and i1 %earlycnd, %earlycnd2 br i1 %and, label %latch, label %exit latch: %iv.next = add i32 %iv, 1 store volatile i32 %iv, i32* @A %c = icmp ult i32 %iv.next, 1000 br i1 %c, label %loop, label %exit exit: ret void } define void @unanalyzeable_latch(i32 %n) { ; CHECK-LABEL: @unanalyzeable_latch( ; CHECK-NEXT: entry: ; CHECK-NEXT: br label [[LOOP:%.*]] ; CHECK: loop: ; CHECK-NEXT: [[IV:%.*]] = phi i32 [ 0, [[ENTRY:%.*]] ], [ [[IV_NEXT:%.*]], [[LATCH:%.*]] ] ; CHECK-NEXT: [[EARLYCND:%.*]] = icmp ult i32 [[IV]], [[N:%.*]] ; CHECK-NEXT: br i1 [[EARLYCND]], label [[LATCH]], label [[EXIT:%.*]] ; CHECK: latch: ; CHECK-NEXT: [[IV_NEXT]] = add i32 [[IV]], 1 ; CHECK-NEXT: store i32 [[IV]], i32* @A ; CHECK-NEXT: [[VOL:%.*]] = load volatile i32, i32* @A ; CHECK-NEXT: [[C:%.*]] = icmp ult i32 [[VOL]], 1000 ; CHECK-NEXT: br i1 [[C]], label [[LOOP]], label [[EXIT]] ; CHECK: exit: ; CHECK-NEXT: ret void ; entry: br label %loop loop: %iv = phi i32 [ 0, %entry], [ %iv.next, %latch] %earlycnd = icmp ult i32 %iv, %n br i1 %earlycnd, label %latch, label %exit latch: %iv.next = add i32 %iv, 1 store i32 %iv, i32* @A %vol = load volatile i32, i32* @A %c = icmp ult i32 %vol, 1000 br i1 %c, label %loop, label %exit exit: ret void } define void @single_exit_no_latch(i32 %n) { ; CHECK-LABEL: @single_exit_no_latch( ; CHECK-NEXT: entry: ; CHECK-NEXT: br label [[LOOP:%.*]] ; CHECK: loop: ; CHECK-NEXT: [[IV:%.*]] = phi i32 [ 0, [[ENTRY:%.*]] ], [ [[IV_NEXT:%.*]], [[LATCH:%.*]] ] ; CHECK-NEXT: [[EXITCOND:%.*]] = icmp ne i32 [[IV]], [[N:%.*]] ; CHECK-NEXT: br i1 [[EXITCOND]], label [[LATCH]], label [[EXIT:%.*]] ; CHECK: latch: ; CHECK-NEXT: [[IV_NEXT]] = add i32 [[IV]], 1 ; CHECK-NEXT: store i32 [[IV]], i32* @A ; CHECK-NEXT: br label [[LOOP]] ; CHECK: exit: ; CHECK-NEXT: ret void ; entry: br label %loop loop: %iv = phi i32 [ 0, %entry], [ %iv.next, %latch] %earlycnd = icmp ult i32 %iv, %n br i1 %earlycnd, label %latch, label %exit latch: %iv.next = add i32 %iv, 1 store i32 %iv, i32* @A br label %loop exit: ret void } ; Multiple exits which could be LFTRed, but the latch itself is not an ; exiting block. define void @no_latch_exit(i32 %n, i32 %m) { ; CHECK-LABEL: @no_latch_exit( ; CHECK-NEXT: entry: ; CHECK-NEXT: br label [[LOOP:%.*]] ; CHECK: loop: ; CHECK-NEXT: [[IV:%.*]] = phi i32 [ 0, [[ENTRY:%.*]] ], [ [[IV_NEXT:%.*]], [[LATCH:%.*]] ] ; CHECK-NEXT: [[EARLYCND:%.*]] = icmp ult i32 [[IV]], [[N:%.*]] ; CHECK-NEXT: br i1 [[EARLYCND]], label [[CONTINUE:%.*]], label [[EXIT:%.*]] ; CHECK: continue: ; CHECK-NEXT: store volatile i32 [[IV]], i32* @A ; CHECK-NEXT: [[EARLYCND2:%.*]] = icmp ult i32 [[IV]], [[M:%.*]] ; CHECK-NEXT: br i1 [[EARLYCND2]], label [[LATCH]], label [[EXIT]] ; CHECK: latch: ; CHECK-NEXT: store volatile i32 [[IV]], i32* @A ; CHECK-NEXT: [[IV_NEXT]] = add i32 [[IV]], 1 ; CHECK-NEXT: br label [[LOOP]] ; CHECK: exit: ; CHECK-NEXT: ret void ; entry: br label %loop loop: %iv = phi i32 [ 0, %entry], [ %iv.next, %latch] %earlycnd = icmp ult i32 %iv, %n br i1 %earlycnd, label %continue, label %exit continue: store volatile i32 %iv, i32* @A %earlycnd2 = icmp ult i32 %iv, %m br i1 %earlycnd2, label %latch, label %exit latch: store volatile i32 %iv, i32* @A %iv.next = add i32 %iv, 1 br label %loop exit: ret void } + +;; Show the value of multiple exit LFTR (being able to eliminate all but +;; one IV when exit tests involve multiple IVs). +define void @combine_ivs(i32 %n) { +; CHECK-LABEL: @combine_ivs( +; CHECK-NEXT: entry: +; CHECK-NEXT: br label [[LOOP:%.*]] +; CHECK: loop: +; CHECK-NEXT: [[IV:%.*]] = phi i32 [ 0, [[ENTRY:%.*]] ], [ [[IV_NEXT:%.*]], [[LATCH:%.*]] ] +; CHECK-NEXT: [[IV2:%.*]] = phi i32 [ 1, [[ENTRY]] ], [ [[IV2_NEXT:%.*]], [[LATCH]] ] +; CHECK-NEXT: [[EARLYCND:%.*]] = icmp ult i32 [[IV]], [[N:%.*]] +; CHECK-NEXT: br i1 [[EARLYCND]], label [[LATCH]], label [[EXIT:%.*]] +; CHECK: latch: +; CHECK-NEXT: [[IV_NEXT]] = add nuw nsw i32 [[IV]], 1 +; CHECK-NEXT: [[IV2_NEXT]] = add nuw nsw i32 [[IV2]], 1 +; CHECK-NEXT: store volatile i32 [[IV]], i32* @A +; CHECK-NEXT: [[C:%.*]] = icmp ult i32 [[IV2_NEXT]], 1000 +; CHECK-NEXT: br i1 [[C]], label [[LOOP]], label [[EXIT]] +; CHECK: exit: +; CHECK-NEXT: ret void +; +entry: + br label %loop + +loop: + %iv = phi i32 [ 0, %entry], [ %iv.next, %latch] + %iv2 = phi i32 [ 1, %entry], [ %iv2.next, %latch] + %earlycnd = icmp ult i32 %iv, %n + br i1 %earlycnd, label %latch, label %exit + +latch: + %iv.next = add i32 %iv, 1 + %iv2.next = add i32 %iv2, 1 + store volatile i32 %iv, i32* @A + %c = icmp ult i32 %iv2.next, 1000 + br i1 %c, label %loop, label %exit + +exit: + ret void +} + +; We can remove the decrementing IV entirely +define void @combine_ivs2(i32 %n) { +; CHECK-LABEL: @combine_ivs2( +; CHECK-NEXT: entry: +; CHECK-NEXT: br label [[LOOP:%.*]] +; CHECK: loop: +; CHECK-NEXT: [[IV:%.*]] = phi i32 [ 0, [[ENTRY:%.*]] ], [ [[IV_NEXT:%.*]], [[LATCH:%.*]] ] +; CHECK-NEXT: [[IV2:%.*]] = phi i32 [ 1000, [[ENTRY]] ], [ [[IV2_NEXT:%.*]], [[LATCH]] ] +; CHECK-NEXT: [[EARLYCND:%.*]] = icmp ult i32 [[IV]], [[N:%.*]] +; CHECK-NEXT: br i1 [[EARLYCND]], label [[LATCH]], label [[EXIT:%.*]] +; CHECK: latch: +; CHECK-NEXT: [[IV_NEXT]] = add nuw nsw i32 [[IV]], 1 +; CHECK-NEXT: [[IV2_NEXT]] = sub nuw nsw i32 [[IV2]], 1 +; CHECK-NEXT: store volatile i32 [[IV]], i32* @A +; CHECK-NEXT: [[C:%.*]] = icmp ugt i32 [[IV2_NEXT]], 0 +; CHECK-NEXT: br i1 [[C]], label [[LOOP]], label [[EXIT]] +; CHECK: exit: +; CHECK-NEXT: ret void +; +entry: + br label %loop + +loop: + %iv = phi i32 [ 0, %entry], [ %iv.next, %latch] + %iv2 = phi i32 [ 1000, %entry], [ %iv2.next, %latch] + %earlycnd = icmp ult i32 %iv, %n + br i1 %earlycnd, label %latch, label %exit + +latch: + %iv.next = add i32 %iv, 1 + %iv2.next = sub i32 %iv2, 1 + store volatile i32 %iv, i32* @A + %c = icmp ugt i32 %iv2.next, 0 + br i1 %c, label %loop, label %exit + +exit: + ret void +} + +; An example where we can eliminate an f(i) computation entirely +; from a multiple exit loop with LFTR. +define void @simplify_exit_test(i32 %n) { +; CHECK-LABEL: @simplify_exit_test( +; CHECK-NEXT: entry: +; CHECK-NEXT: br label [[LOOP:%.*]] +; CHECK: loop: +; CHECK-NEXT: [[IV:%.*]] = phi i32 [ 0, [[ENTRY:%.*]] ], [ [[IV_NEXT:%.*]], [[LATCH:%.*]] ] +; CHECK-NEXT: [[EARLYCND:%.*]] = icmp ult i32 [[IV]], [[N:%.*]] +; CHECK-NEXT: br i1 [[EARLYCND]], label [[LATCH]], label [[EXIT:%.*]] +; CHECK: latch: +; CHECK-NEXT: [[IV_NEXT]] = add nuw nsw i32 [[IV]], 1 +; CHECK-NEXT: [[FX:%.*]] = shl i32 [[IV]], 4 +; CHECK-NEXT: store volatile i32 [[IV]], i32* @A +; CHECK-NEXT: [[C:%.*]] = icmp ult i32 [[FX]], 1024 +; CHECK-NEXT: br i1 [[C]], label [[LOOP]], label [[EXIT]] +; CHECK: exit: +; CHECK-NEXT: ret void +; +entry: + br label %loop + +loop: + %iv = phi i32 [ 0, %entry], [ %iv.next, %latch] + %earlycnd = icmp ult i32 %iv, %n + br i1 %earlycnd, label %latch, label %exit + +latch: + %iv.next = add i32 %iv, 1 + %fx = shl i32 %iv, 4 + store volatile i32 %iv, i32* @A + %c = icmp ult i32 %fx, 1024 + br i1 %c, label %loop, label %exit + +exit: + ret void +} + + +; Another example where we can remove an f(i) type computation, but this +; time in a loop w/o a statically computable exit count. +define void @simplify_exit_test2(i32 %n) { +; CHECK-LABEL: @simplify_exit_test2( +; CHECK-NEXT: entry: +; CHECK-NEXT: br label [[LOOP:%.*]] +; CHECK: loop: +; CHECK-NEXT: [[IV:%.*]] = phi i32 [ 0, [[ENTRY:%.*]] ], [ [[IV_NEXT:%.*]], [[LATCH:%.*]] ] +; CHECK-NEXT: [[VOL:%.*]] = load volatile i32, i32* @A +; CHECK-NEXT: [[EARLYCND:%.*]] = icmp ne i32 [[VOL]], 0 +; CHECK-NEXT: br i1 [[EARLYCND]], label [[LATCH]], label [[EXIT:%.*]] +; CHECK: latch: +; CHECK-NEXT: [[IV_NEXT]] = add i32 [[IV]], 1 +; CHECK-NEXT: [[FX:%.*]] = udiv i32 [[IV]], 4 +; CHECK-NEXT: store volatile i32 [[IV]], i32* @A +; CHECK-NEXT: [[C:%.*]] = icmp ult i32 [[FX]], 1024 +; CHECK-NEXT: br i1 [[C]], label [[LOOP]], label [[EXIT]] +; CHECK: exit: +; CHECK-NEXT: ret void +; +entry: + br label %loop + +loop: + %iv = phi i32 [ 0, %entry], [ %iv.next, %latch] + %vol = load volatile i32, i32* @A + %earlycnd = icmp ne i32 %vol, 0 + br i1 %earlycnd, label %latch, label %exit + +latch: + %iv.next = add i32 %iv, 1 + %fx = udiv i32 %iv, 4 + store volatile i32 %iv, i32* @A + %c = icmp ult i32 %fx, 1024 + br i1 %c, label %loop, label %exit + +exit: + ret void +}