diff --git a/llvm/lib/Transforms/Coroutines/CoroFrame.cpp b/llvm/lib/Transforms/Coroutines/CoroFrame.cpp index 705d0ed53daf..5fb713541812 100644 --- a/llvm/lib/Transforms/Coroutines/CoroFrame.cpp +++ b/llvm/lib/Transforms/Coroutines/CoroFrame.cpp @@ -1,2180 +1,2180 @@ //===- CoroFrame.cpp - Builds and manipulates coroutine frame -------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // This file contains classes used to discover if for a particular value // there from sue to definition that crosses a suspend block. // // Using the information discovered we form a Coroutine Frame structure to // contain those values. All uses of those values are replaced with appropriate // GEP + load from the coroutine frame. At the point of the definition we spill // the value into the coroutine frame. // // TODO: pack values tightly using liveness info. //===----------------------------------------------------------------------===// #include "CoroInternal.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/SmallString.h" #include "llvm/Analysis/PtrUseVisitor.h" #include "llvm/Analysis/StackLifetime.h" #include "llvm/Config/llvm-config.h" #include "llvm/IR/CFG.h" #include "llvm/IR/DIBuilder.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InstIterator.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/OptimizedStructLayout.h" #include "llvm/Support/circular_raw_ostream.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Utils/PromoteMemToReg.h" #include using namespace llvm; // The "coro-suspend-crossing" flag is very noisy. There is another debug type, // "coro-frame", which results in leaner debug spew. #define DEBUG_TYPE "coro-suspend-crossing" static cl::opt EnableReuseStorageInFrame( "reuse-storage-in-coroutine-frame", cl::Hidden, cl::desc( "Enable the optimization which would reuse the storage in the coroutine \ frame for allocas whose liferanges are not overlapped, for testing purposes"), llvm::cl::init(false)); enum { SmallVectorThreshold = 32 }; // Provides two way mapping between the blocks and numbers. namespace { class BlockToIndexMapping { SmallVector V; public: size_t size() const { return V.size(); } BlockToIndexMapping(Function &F) { for (BasicBlock &BB : F) V.push_back(&BB); llvm::sort(V); } size_t blockToIndex(BasicBlock *BB) const { auto *I = llvm::lower_bound(V, BB); assert(I != V.end() && *I == BB && "BasicBlockNumberng: Unknown block"); return I - V.begin(); } BasicBlock *indexToBlock(unsigned Index) const { return V[Index]; } }; } // end anonymous namespace // The SuspendCrossingInfo maintains data that allows to answer a question // whether given two BasicBlocks A and B there is a path from A to B that // passes through a suspend point. // // For every basic block 'i' it maintains a BlockData that consists of: // Consumes: a bit vector which contains a set of indices of blocks that can // reach block 'i' // Kills: a bit vector which contains a set of indices of blocks that can // reach block 'i', but one of the path will cross a suspend point // Suspend: a boolean indicating whether block 'i' contains a suspend point. // End: a boolean indicating whether block 'i' contains a coro.end intrinsic. // namespace { struct SuspendCrossingInfo { BlockToIndexMapping Mapping; struct BlockData { BitVector Consumes; BitVector Kills; bool Suspend = false; bool End = false; }; SmallVector Block; iterator_range successors(BlockData const &BD) const { BasicBlock *BB = Mapping.indexToBlock(&BD - &Block[0]); return llvm::successors(BB); } BlockData &getBlockData(BasicBlock *BB) { return Block[Mapping.blockToIndex(BB)]; } void dump() const; void dump(StringRef Label, BitVector const &BV) const; SuspendCrossingInfo(Function &F, coro::Shape &Shape); bool hasPathCrossingSuspendPoint(BasicBlock *DefBB, BasicBlock *UseBB) const { size_t const DefIndex = Mapping.blockToIndex(DefBB); size_t const UseIndex = Mapping.blockToIndex(UseBB); bool const Result = Block[UseIndex].Kills[DefIndex]; LLVM_DEBUG(dbgs() << UseBB->getName() << " => " << DefBB->getName() << " answer is " << Result << "\n"); return Result; } bool isDefinitionAcrossSuspend(BasicBlock *DefBB, User *U) const { auto *I = cast(U); // We rewrote PHINodes, so that only the ones with exactly one incoming // value need to be analyzed. if (auto *PN = dyn_cast(I)) if (PN->getNumIncomingValues() > 1) return false; BasicBlock *UseBB = I->getParent(); // As a special case, treat uses by an llvm.coro.suspend.retcon // as if they were uses in the suspend's single predecessor: the // uses conceptually occur before the suspend. if (isa(I)) { UseBB = UseBB->getSinglePredecessor(); assert(UseBB && "should have split coro.suspend into its own block"); } return hasPathCrossingSuspendPoint(DefBB, UseBB); } bool isDefinitionAcrossSuspend(Argument &A, User *U) const { return isDefinitionAcrossSuspend(&A.getParent()->getEntryBlock(), U); } bool isDefinitionAcrossSuspend(Instruction &I, User *U) const { auto *DefBB = I.getParent(); // As a special case, treat values produced by an llvm.coro.suspend.* // as if they were defined in the single successor: the uses // conceptually occur after the suspend. if (isa(I)) { DefBB = DefBB->getSingleSuccessor(); assert(DefBB && "should have split coro.suspend into its own block"); } return isDefinitionAcrossSuspend(DefBB, U); } }; } // end anonymous namespace #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) LLVM_DUMP_METHOD void SuspendCrossingInfo::dump(StringRef Label, BitVector const &BV) const { dbgs() << Label << ":"; for (size_t I = 0, N = BV.size(); I < N; ++I) if (BV[I]) dbgs() << " " << Mapping.indexToBlock(I)->getName(); dbgs() << "\n"; } LLVM_DUMP_METHOD void SuspendCrossingInfo::dump() const { for (size_t I = 0, N = Block.size(); I < N; ++I) { BasicBlock *const B = Mapping.indexToBlock(I); dbgs() << B->getName() << ":\n"; dump(" Consumes", Block[I].Consumes); dump(" Kills", Block[I].Kills); } dbgs() << "\n"; } #endif SuspendCrossingInfo::SuspendCrossingInfo(Function &F, coro::Shape &Shape) : Mapping(F) { const size_t N = Mapping.size(); Block.resize(N); // Initialize every block so that it consumes itself for (size_t I = 0; I < N; ++I) { auto &B = Block[I]; B.Consumes.resize(N); B.Kills.resize(N); B.Consumes.set(I); } // Mark all CoroEnd Blocks. We do not propagate Kills beyond coro.ends as // the code beyond coro.end is reachable during initial invocation of the // coroutine. for (auto *CE : Shape.CoroEnds) getBlockData(CE->getParent()).End = true; // Mark all suspend blocks and indicate that they kill everything they // consume. Note, that crossing coro.save also requires a spill, as any code // between coro.save and coro.suspend may resume the coroutine and all of the // state needs to be saved by that time. auto markSuspendBlock = [&](IntrinsicInst *BarrierInst) { BasicBlock *SuspendBlock = BarrierInst->getParent(); auto &B = getBlockData(SuspendBlock); B.Suspend = true; B.Kills |= B.Consumes; }; for (auto *CSI : Shape.CoroSuspends) { markSuspendBlock(CSI); if (auto *Save = CSI->getCoroSave()) markSuspendBlock(Save); } // Iterate propagating consumes and kills until they stop changing. int Iteration = 0; (void)Iteration; bool Changed; do { LLVM_DEBUG(dbgs() << "iteration " << ++Iteration); LLVM_DEBUG(dbgs() << "==============\n"); Changed = false; for (size_t I = 0; I < N; ++I) { auto &B = Block[I]; for (BasicBlock *SI : successors(B)) { auto SuccNo = Mapping.blockToIndex(SI); // Saved Consumes and Kills bitsets so that it is easy to see // if anything changed after propagation. auto &S = Block[SuccNo]; auto SavedConsumes = S.Consumes; auto SavedKills = S.Kills; // Propagate Kills and Consumes from block B into its successor S. S.Consumes |= B.Consumes; S.Kills |= B.Kills; // If block B is a suspend block, it should propagate kills into the // its successor for every block B consumes. if (B.Suspend) { S.Kills |= B.Consumes; } if (S.Suspend) { // If block S is a suspend block, it should kill all of the blocks it // consumes. S.Kills |= S.Consumes; } else if (S.End) { // If block S is an end block, it should not propagate kills as the // blocks following coro.end() are reached during initial invocation // of the coroutine while all the data are still available on the // stack or in the registers. S.Kills.reset(); } else { // This is reached when S block it not Suspend nor coro.end and it // need to make sure that it is not in the kill set. S.Kills.reset(SuccNo); } // See if anything changed. Changed |= (S.Kills != SavedKills) || (S.Consumes != SavedConsumes); if (S.Kills != SavedKills) { LLVM_DEBUG(dbgs() << "\nblock " << I << " follower " << SI->getName() << "\n"); LLVM_DEBUG(dump("S.Kills", S.Kills)); LLVM_DEBUG(dump("SavedKills", SavedKills)); } if (S.Consumes != SavedConsumes) { LLVM_DEBUG(dbgs() << "\nblock " << I << " follower " << SI << "\n"); LLVM_DEBUG(dump("S.Consume", S.Consumes)); LLVM_DEBUG(dump("SavedCons", SavedConsumes)); } } } } while (Changed); LLVM_DEBUG(dump()); } #undef DEBUG_TYPE // "coro-suspend-crossing" #define DEBUG_TYPE "coro-frame" namespace { class FrameTypeBuilder; // Mapping from the to-be-spilled value to all the users that need reload. using SpillInfo = SmallMapVector, 8>; struct AllocaInfo { AllocaInst *Alloca; DenseMap> Aliases; bool MayWriteBeforeCoroBegin; AllocaInfo(AllocaInst *Alloca, DenseMap> Aliases, bool MayWriteBeforeCoroBegin) : Alloca(Alloca), Aliases(std::move(Aliases)), MayWriteBeforeCoroBegin(MayWriteBeforeCoroBegin) {} }; struct FrameDataInfo { // All the values (that are not allocas) that needs to be spilled to the // frame. SpillInfo Spills; // Allocas contains all values defined as allocas that need to live in the // frame. SmallVector Allocas; SmallVector getAllDefs() const { SmallVector Defs; for (const auto &P : Spills) Defs.push_back(P.first); for (const auto &A : Allocas) Defs.push_back(A.Alloca); return Defs; } uint32_t getFieldIndex(Value *V) const { auto Itr = FieldIndexMap.find(V); assert(Itr != FieldIndexMap.end() && "Value does not have a frame field index"); return Itr->second; } void setFieldIndex(Value *V, uint32_t Index) { assert((LayoutIndexUpdateStarted || FieldIndexMap.count(V) == 0) && "Cannot set the index for the same field twice."); FieldIndexMap[V] = Index; } // Remap the index of every field in the frame, using the final layout index. void updateLayoutIndex(FrameTypeBuilder &B); private: // LayoutIndexUpdateStarted is used to avoid updating the index of any field // twice by mistake. bool LayoutIndexUpdateStarted = false; // Map from values to their slot indexes on the frame. They will be first set // with their original insertion field index. After the frame is built, their // indexes will be updated into the final layout index. DenseMap FieldIndexMap; }; } // namespace #ifndef NDEBUG static void dumpSpills(StringRef Title, const SpillInfo &Spills) { dbgs() << "------------- " << Title << "--------------\n"; for (const auto &E : Spills) { E.first->dump(); dbgs() << " user: "; for (auto *I : E.second) I->dump(); } } static void dumpAllocas(const SmallVectorImpl &Allocas) { dbgs() << "------------- Allocas --------------\n"; for (const auto &A : Allocas) { A.Alloca->dump(); } } #endif namespace { using FieldIDType = size_t; // We cannot rely solely on natural alignment of a type when building a // coroutine frame and if the alignment specified on the Alloca instruction // differs from the natural alignment of the alloca type we will need to insert // padding. class FrameTypeBuilder { private: struct Field { uint64_t Size; uint64_t Offset; Type *Ty; FieldIDType LayoutFieldIndex; Align Alignment; Align TyAlignment; }; const DataLayout &DL; LLVMContext &Context; uint64_t StructSize = 0; Align StructAlign; bool IsFinished = false; SmallVector Fields; DenseMap FieldIndexByKey; public: FrameTypeBuilder(LLVMContext &Context, DataLayout const &DL) : DL(DL), Context(Context) {} /// Add a field to this structure for the storage of an `alloca` /// instruction. LLVM_NODISCARD FieldIDType addFieldForAlloca(AllocaInst *AI, bool IsHeader = false) { Type *Ty = AI->getAllocatedType(); // Make an array type if this is a static array allocation. if (AI->isArrayAllocation()) { if (auto *CI = dyn_cast(AI->getArraySize())) Ty = ArrayType::get(Ty, CI->getValue().getZExtValue()); else report_fatal_error("Coroutines cannot handle non static allocas yet"); } return addField(Ty, AI->getAlign(), IsHeader); } /// We want to put the allocas whose lifetime-ranges are not overlapped /// into one slot of coroutine frame. /// Consider the example at:https://bugs.llvm.org/show_bug.cgi?id=45566 /// /// cppcoro::task alternative_paths(bool cond) { /// if (cond) { /// big_structure a; /// process(a); /// co_await something(); /// } else { /// big_structure b; /// process2(b); /// co_await something(); /// } /// } /// /// We want to put variable a and variable b in the same slot to /// reduce the size of coroutine frame. /// /// This function use StackLifetime algorithm to partition the AllocaInsts in /// Spills to non-overlapped sets in order to put Alloca in the same /// non-overlapped set into the same slot in the Coroutine Frame. Then add /// field for the allocas in the same non-overlapped set by using the largest /// type as the field type. /// /// Side Effects: Because We sort the allocas, the order of allocas in the /// frame may be different with the order in the source code. void addFieldForAllocas(const Function &F, FrameDataInfo &FrameData, coro::Shape &Shape); /// Add a field to this structure. LLVM_NODISCARD FieldIDType addField(Type *Ty, MaybeAlign FieldAlignment, bool IsHeader = false) { assert(!IsFinished && "adding fields to a finished builder"); assert(Ty && "must provide a type for a field"); // The field size is always the alloc size of the type. uint64_t FieldSize = DL.getTypeAllocSize(Ty); // The field alignment might not be the type alignment, but we need // to remember the type alignment anyway to build the type. Align TyAlignment = DL.getABITypeAlign(Ty); if (!FieldAlignment) FieldAlignment = TyAlignment; // Lay out header fields immediately. uint64_t Offset; if (IsHeader) { Offset = alignTo(StructSize, FieldAlignment); StructSize = Offset + FieldSize; // Everything else has a flexible offset. } else { Offset = OptimizedStructLayoutField::FlexibleOffset; } Fields.push_back({FieldSize, Offset, Ty, 0, *FieldAlignment, TyAlignment}); return Fields.size() - 1; } /// Finish the layout and set the body on the given type. void finish(StructType *Ty); uint64_t getStructSize() const { assert(IsFinished && "not yet finished!"); return StructSize; } Align getStructAlign() const { assert(IsFinished && "not yet finished!"); return StructAlign; } FieldIDType getLayoutFieldIndex(FieldIDType Id) const { assert(IsFinished && "not yet finished!"); return Fields[Id].LayoutFieldIndex; } }; } // namespace void FrameDataInfo::updateLayoutIndex(FrameTypeBuilder &B) { auto Updater = [&](Value *I) { setFieldIndex(I, B.getLayoutFieldIndex(getFieldIndex(I))); }; LayoutIndexUpdateStarted = true; for (auto &S : Spills) Updater(S.first); for (const auto &A : Allocas) Updater(A.Alloca); LayoutIndexUpdateStarted = false; } void FrameTypeBuilder::addFieldForAllocas(const Function &F, FrameDataInfo &FrameData, coro::Shape &Shape) { DenseMap AllocaIndex; using AllocaSetType = SmallVector; SmallVector NonOverlapedAllocas; // We need to add field for allocas at the end of this function. However, this // function has multiple exits, so we use this helper to avoid redundant code. struct RTTIHelper { std::function func; RTTIHelper(std::function &&func) : func(func) {} ~RTTIHelper() { func(); } } Helper([&]() { for (auto AllocaList : NonOverlapedAllocas) { auto *LargestAI = *AllocaList.begin(); FieldIDType Id = addFieldForAlloca(LargestAI); for (auto *Alloca : AllocaList) FrameData.setFieldIndex(Alloca, Id); } }); if (!Shape.ReuseFrameSlot && !EnableReuseStorageInFrame) { for (const auto &A : FrameData.Allocas) { AllocaInst *Alloca = A.Alloca; AllocaIndex[Alloca] = NonOverlapedAllocas.size(); NonOverlapedAllocas.emplace_back(AllocaSetType(1, Alloca)); } return; } // Because there are pathes from the lifetime.start to coro.end // for each alloca, the liferanges for every alloca is overlaped // in the blocks who contain coro.end and the successor blocks. // So we choose to skip there blocks when we calculates the liferange // for each alloca. It should be reasonable since there shouldn't be uses // in these blocks and the coroutine frame shouldn't be used outside the // coroutine body. // // Note that the user of coro.suspend may not be SwitchInst. However, this // case seems too complex to handle. And it is harmless to skip these // patterns since it just prevend putting the allocas to live in the same // slot. DenseMap DefaultSuspendDest; for (auto CoroSuspendInst : Shape.CoroSuspends) { for (auto U : CoroSuspendInst->users()) { if (auto *ConstSWI = dyn_cast(U)) { auto *SWI = const_cast(ConstSWI); DefaultSuspendDest[SWI] = SWI->getDefaultDest(); SWI->setDefaultDest(SWI->getSuccessor(1)); } } } auto ExtractAllocas = [&]() { AllocaSetType Allocas; Allocas.reserve(FrameData.Allocas.size()); for (const auto &A : FrameData.Allocas) Allocas.push_back(A.Alloca); return Allocas; }; StackLifetime StackLifetimeAnalyzer(F, ExtractAllocas(), StackLifetime::LivenessType::May); StackLifetimeAnalyzer.run(); auto IsAllocaInferenre = [&](const AllocaInst *AI1, const AllocaInst *AI2) { return StackLifetimeAnalyzer.getLiveRange(AI1).overlaps( StackLifetimeAnalyzer.getLiveRange(AI2)); }; auto GetAllocaSize = [&](const AllocaInfo &A) { Optional RetSize = A.Alloca->getAllocationSizeInBits(DL); assert(RetSize && "We can't handle scalable type now.\n"); return RetSize.getValue(); }; // Put larger allocas in the front. So the larger allocas have higher // priority to merge, which can save more space potentially. Also each // AllocaSet would be ordered. So we can get the largest Alloca in one // AllocaSet easily. sort(FrameData.Allocas, [&](const auto &Iter1, const auto &Iter2) { return GetAllocaSize(Iter1) > GetAllocaSize(Iter2); }); for (const auto &A : FrameData.Allocas) { AllocaInst *Alloca = A.Alloca; bool Merged = false; // Try to find if the Alloca is not inferenced with any existing // NonOverlappedAllocaSet. If it is true, insert the alloca to that // NonOverlappedAllocaSet. for (auto &AllocaSet : NonOverlapedAllocas) { assert(!AllocaSet.empty() && "Processing Alloca Set is not empty.\n"); bool CouldMerge = none_of(AllocaSet, [&](auto Iter) { return IsAllocaInferenre(Alloca, Iter); }); if (!CouldMerge) continue; AllocaIndex[Alloca] = AllocaIndex[*AllocaSet.begin()]; AllocaSet.push_back(Alloca); Merged = true; break; } if (!Merged) { AllocaIndex[Alloca] = NonOverlapedAllocas.size(); NonOverlapedAllocas.emplace_back(AllocaSetType(1, Alloca)); } } // Recover the default target destination for each Switch statement // reserved. for (auto SwitchAndDefaultDest : DefaultSuspendDest) { SwitchInst *SWI = SwitchAndDefaultDest.first; BasicBlock *DestBB = SwitchAndDefaultDest.second; SWI->setDefaultDest(DestBB); } // This Debug Info could tell us which allocas are merged into one slot. LLVM_DEBUG(for (auto &AllocaSet : NonOverlapedAllocas) { if (AllocaSet.size() > 1) { dbgs() << "In Function:" << F.getName() << "\n"; dbgs() << "Find Union Set " << "\n"; dbgs() << "\tAllocas are \n"; for (auto Alloca : AllocaSet) dbgs() << "\t\t" << *Alloca << "\n"; } }); } void FrameTypeBuilder::finish(StructType *Ty) { assert(!IsFinished && "already finished!"); // Prepare the optimal-layout field array. // The Id in the layout field is a pointer to our Field for it. SmallVector LayoutFields; LayoutFields.reserve(Fields.size()); for (auto &Field : Fields) { LayoutFields.emplace_back(&Field, Field.Size, Field.Alignment, Field.Offset); } // Perform layout. auto SizeAndAlign = performOptimizedStructLayout(LayoutFields); StructSize = SizeAndAlign.first; StructAlign = SizeAndAlign.second; auto getField = [](const OptimizedStructLayoutField &LayoutField) -> Field & { return *static_cast(const_cast(LayoutField.Id)); }; // We need to produce a packed struct type if there's a field whose // assigned offset isn't a multiple of its natural type alignment. bool Packed = [&] { for (auto &LayoutField : LayoutFields) { auto &F = getField(LayoutField); if (!isAligned(F.TyAlignment, LayoutField.Offset)) return true; } return false; }(); // Build the struct body. SmallVector FieldTypes; FieldTypes.reserve(LayoutFields.size() * 3 / 2); uint64_t LastOffset = 0; for (auto &LayoutField : LayoutFields) { auto &F = getField(LayoutField); auto Offset = LayoutField.Offset; // Add a padding field if there's a padding gap and we're either // building a packed struct or the padding gap is more than we'd // get from aligning to the field type's natural alignment. assert(Offset >= LastOffset); if (Offset != LastOffset) { if (Packed || alignTo(LastOffset, F.TyAlignment) != Offset) FieldTypes.push_back(ArrayType::get(Type::getInt8Ty(Context), Offset - LastOffset)); } F.Offset = Offset; F.LayoutFieldIndex = FieldTypes.size(); FieldTypes.push_back(F.Ty); LastOffset = Offset + F.Size; } Ty->setBody(FieldTypes, Packed); #ifndef NDEBUG // Check that the IR layout matches the offsets we expect. auto Layout = DL.getStructLayout(Ty); for (auto &F : Fields) { assert(Ty->getElementType(F.LayoutFieldIndex) == F.Ty); assert(Layout->getElementOffset(F.LayoutFieldIndex) == F.Offset); } #endif IsFinished = true; } // Build a struct that will keep state for an active coroutine. // struct f.frame { // ResumeFnTy ResumeFnAddr; // ResumeFnTy DestroyFnAddr; // int ResumeIndex; // ... promise (if present) ... // ... spills ... // }; static StructType *buildFrameType(Function &F, coro::Shape &Shape, FrameDataInfo &FrameData) { LLVMContext &C = F.getContext(); const DataLayout &DL = F.getParent()->getDataLayout(); StructType *FrameTy = [&] { SmallString<32> Name(F.getName()); Name.append(".Frame"); return StructType::create(C, Name); }(); FrameTypeBuilder B(C, DL); AllocaInst *PromiseAlloca = Shape.getPromiseAlloca(); Optional SwitchIndexFieldId; if (Shape.ABI == coro::ABI::Switch) { auto *FramePtrTy = FrameTy->getPointerTo(); auto *FnTy = FunctionType::get(Type::getVoidTy(C), FramePtrTy, /*IsVarArg=*/false); auto *FnPtrTy = FnTy->getPointerTo(); // Add header fields for the resume and destroy functions. // We can rely on these being perfectly packed. (void)B.addField(FnPtrTy, None, /*header*/ true); (void)B.addField(FnPtrTy, None, /*header*/ true); // PromiseAlloca field needs to be explicitly added here because it's // a header field with a fixed offset based on its alignment. Hence it // needs special handling and cannot be added to FrameData.Allocas. if (PromiseAlloca) FrameData.setFieldIndex( PromiseAlloca, B.addFieldForAlloca(PromiseAlloca, /*header*/ true)); // Add a field to store the suspend index. This doesn't need to // be in the header. unsigned IndexBits = std::max(1U, Log2_64_Ceil(Shape.CoroSuspends.size())); Type *IndexType = Type::getIntNTy(C, IndexBits); SwitchIndexFieldId = B.addField(IndexType, None); } else { assert(PromiseAlloca == nullptr && "lowering doesn't support promises"); } // Because multiple allocas may own the same field slot, // we add allocas to field here. B.addFieldForAllocas(F, FrameData, Shape); // Create an entry for every spilled value. for (auto &S : FrameData.Spills) { FieldIDType Id = B.addField(S.first->getType(), None); FrameData.setFieldIndex(S.first, Id); } B.finish(FrameTy); FrameData.updateLayoutIndex(B); Shape.FrameAlign = B.getStructAlign(); Shape.FrameSize = B.getStructSize(); switch (Shape.ABI) { case coro::ABI::Switch: // In the switch ABI, remember the switch-index field. Shape.SwitchLowering.IndexField = B.getLayoutFieldIndex(*SwitchIndexFieldId); // Also round the frame size up to a multiple of its alignment, as is // generally expected in C/C++. Shape.FrameSize = alignTo(Shape.FrameSize, Shape.FrameAlign); break; // In the retcon ABI, remember whether the frame is inline in the storage. case coro::ABI::Retcon: case coro::ABI::RetconOnce: { auto Id = Shape.getRetconCoroId(); Shape.RetconLowering.IsFrameInlineInStorage = (B.getStructSize() <= Id->getStorageSize() && B.getStructAlign() <= Id->getStorageAlignment()); break; } } return FrameTy; } // We use a pointer use visitor to track how an alloca is being used. // The goal is to be able to answer the following three questions: // 1. Should this alloca be allocated on the frame instead. // 2. Could the content of the alloca be modified prior to CoroBegn, which would // require copying the data from alloca to the frame after CoroBegin. // 3. Is there any alias created for this alloca prior to CoroBegin, but used // after CoroBegin. In that case, we will need to recreate the alias after // CoroBegin based off the frame. To answer question 1, we track two things: // a. List of all BasicBlocks that use this alloca or any of the aliases of // the alloca. In the end, we check if there exists any two basic blocks that // cross suspension points. If so, this alloca must be put on the frame. b. // Whether the alloca or any alias of the alloca is escaped at some point, // either by storing the address somewhere, or the address is used in a // function call that might capture. If it's ever escaped, this alloca must be // put on the frame conservatively. // To answer quetion 2, we track through the variable MayWriteBeforeCoroBegin. // Whenever a potential write happens, either through a store instruction, a // function call or any of the memory intrinsics, we check whether this // instruction is prior to CoroBegin. To answer question 3, we track the offsets // of all aliases created for the alloca prior to CoroBegin but used after // CoroBegin. llvm::Optional is used to be able to represent the case when the // offset is unknown (e.g. when you have a PHINode that takes in different // offset values). We cannot handle unknown offsets and will assert. This is the // potential issue left out. An ideal solution would likely require a // significant redesign. namespace { struct AllocaUseVisitor : PtrUseVisitor { using Base = PtrUseVisitor; AllocaUseVisitor(const DataLayout &DL, const DominatorTree &DT, const CoroBeginInst &CB, const SuspendCrossingInfo &Checker) : PtrUseVisitor(DL), DT(DT), CoroBegin(CB), Checker(Checker) {} void visit(Instruction &I) { UserBBs.insert(I.getParent()); Base::visit(I); // If the pointer is escaped prior to CoroBegin, we have to assume it would // be written into before CoroBegin as well. if (PI.isEscaped() && !DT.dominates(&CoroBegin, PI.getEscapingInst())) { MayWriteBeforeCoroBegin = true; } } // We need to provide this overload as PtrUseVisitor uses a pointer based // visiting function. void visit(Instruction *I) { return visit(*I); } void visitPHINode(PHINode &I) { enqueueUsers(I); handleAlias(I); } void visitSelectInst(SelectInst &I) { enqueueUsers(I); handleAlias(I); } void visitStoreInst(StoreInst &SI) { // Base visit function will handle escape setting. Base::visitStoreInst(SI); // Regardless whether the alias of the alloca is the value operand or the // pointer operand, we need to assume the alloca is been written. handleMayWrite(SI); } // All mem intrinsics modify the data. void visitMemIntrinsic(MemIntrinsic &MI) { handleMayWrite(MI); } void visitBitCastInst(BitCastInst &BC) { Base::visitBitCastInst(BC); handleAlias(BC); } void visitAddrSpaceCastInst(AddrSpaceCastInst &ASC) { Base::visitAddrSpaceCastInst(ASC); handleAlias(ASC); } void visitGetElementPtrInst(GetElementPtrInst &GEPI) { // The base visitor will adjust Offset accordingly. Base::visitGetElementPtrInst(GEPI); handleAlias(GEPI); } void visitCallBase(CallBase &CB) { for (unsigned Op = 0, OpCount = CB.getNumArgOperands(); Op < OpCount; ++Op) if (U->get() == CB.getArgOperand(Op) && !CB.doesNotCapture(Op)) PI.setEscaped(&CB); handleMayWrite(CB); } bool getShouldLiveOnFrame() const { if (!ShouldLiveOnFrame) ShouldLiveOnFrame = computeShouldLiveOnFrame(); return ShouldLiveOnFrame.getValue(); } bool getMayWriteBeforeCoroBegin() const { return MayWriteBeforeCoroBegin; } DenseMap> getAliasesCopy() const { assert(getShouldLiveOnFrame() && "This method should only be called if the " "alloca needs to live on the frame."); for (const auto &P : AliasOffetMap) if (!P.second) report_fatal_error("Unable to handle an alias with unknown offset " "created before CoroBegin."); return AliasOffetMap; } private: const DominatorTree &DT; const CoroBeginInst &CoroBegin; const SuspendCrossingInfo &Checker; // All alias to the original AllocaInst, created before CoroBegin and used // after CoroBegin. Each entry contains the instruction and the offset in the // original Alloca. They need to be recreated after CoroBegin off the frame. DenseMap> AliasOffetMap{}; SmallPtrSet UserBBs{}; bool MayWriteBeforeCoroBegin{false}; mutable llvm::Optional ShouldLiveOnFrame{}; bool computeShouldLiveOnFrame() const { if (PI.isEscaped()) return true; for (auto *BB1 : UserBBs) for (auto *BB2 : UserBBs) if (Checker.hasPathCrossingSuspendPoint(BB1, BB2)) return true; return false; } void handleMayWrite(const Instruction &I) { if (!DT.dominates(&CoroBegin, &I)) MayWriteBeforeCoroBegin = true; } bool usedAfterCoroBegin(Instruction &I) { for (auto &U : I.uses()) if (DT.dominates(&CoroBegin, U)) return true; return false; } void handleAlias(Instruction &I) { // We track all aliases created prior to CoroBegin but used after. // These aliases may need to be recreated after CoroBegin if the alloca // need to live on the frame. if (DT.dominates(&CoroBegin, &I) || !usedAfterCoroBegin(I)) return; if (!IsOffsetKnown) { - AliasOffetMap[&I] = {}; + AliasOffetMap[&I].reset(); } else { auto Itr = AliasOffetMap.find(&I); if (Itr == AliasOffetMap.end()) { AliasOffetMap[&I] = Offset; } else if (Itr->second.hasValue() && Itr->second.getValue() != Offset) { // If we have seen two different possible values for this alias, we set // it to empty. AliasOffetMap[&I].reset(); } } } }; } // namespace // We need to make room to insert a spill after initial PHIs, but before // catchswitch instruction. Placing it before violates the requirement that // catchswitch, like all other EHPads must be the first nonPHI in a block. // // Split away catchswitch into a separate block and insert in its place: // // cleanuppad cleanupret. // // cleanupret instruction will act as an insert point for the spill. static Instruction *splitBeforeCatchSwitch(CatchSwitchInst *CatchSwitch) { BasicBlock *CurrentBlock = CatchSwitch->getParent(); BasicBlock *NewBlock = CurrentBlock->splitBasicBlock(CatchSwitch); CurrentBlock->getTerminator()->eraseFromParent(); auto *CleanupPad = CleanupPadInst::Create(CatchSwitch->getParentPad(), {}, "", CurrentBlock); auto *CleanupRet = CleanupReturnInst::Create(CleanupPad, NewBlock, CurrentBlock); return CleanupRet; } // Replace all alloca and SSA values that are accessed across suspend points // with GetElementPointer from coroutine frame + loads and stores. Create an // AllocaSpillBB that will become the new entry block for the resume parts of // the coroutine: // // %hdl = coro.begin(...) // whatever // // becomes: // // %hdl = coro.begin(...) // %FramePtr = bitcast i8* hdl to %f.frame* // br label %AllocaSpillBB // // AllocaSpillBB: // ; geps corresponding to allocas that were moved to coroutine frame // br label PostSpill // // PostSpill: // whatever // // static Instruction *insertSpills(const FrameDataInfo &FrameData, coro::Shape &Shape) { auto *CB = Shape.CoroBegin; LLVMContext &C = CB->getContext(); IRBuilder<> Builder(CB->getNextNode()); StructType *FrameTy = Shape.FrameTy; PointerType *FramePtrTy = FrameTy->getPointerTo(); auto *FramePtr = cast(Builder.CreateBitCast(CB, FramePtrTy, "FramePtr")); DominatorTree DT(*CB->getFunction()); // Create a GEP with the given index into the coroutine frame for the original // value Orig. Appends an extra 0 index for array-allocas, preserving the // original type. auto GetFramePointer = [&](Value *Orig) -> Value * { FieldIDType Index = FrameData.getFieldIndex(Orig); SmallVector Indices = { ConstantInt::get(Type::getInt32Ty(C), 0), ConstantInt::get(Type::getInt32Ty(C), Index), }; if (auto *AI = dyn_cast(Orig)) { if (auto *CI = dyn_cast(AI->getArraySize())) { auto Count = CI->getValue().getZExtValue(); if (Count > 1) { Indices.push_back(ConstantInt::get(Type::getInt32Ty(C), 0)); } } else { report_fatal_error("Coroutines cannot handle non static allocas yet"); } } auto GEP = cast( Builder.CreateInBoundsGEP(FrameTy, FramePtr, Indices)); if (isa(Orig)) { // If the type of GEP is not equal to the type of AllocaInst, it implies // that the AllocaInst may be reused in the Frame slot of other // AllocaInst. So we cast the GEP to the type of AllocaInst. if (GEP->getResultElementType() != Orig->getType()) return Builder.CreateBitCast(GEP, Orig->getType(), Orig->getName() + Twine(".cast")); } return GEP; }; for (auto const &E : FrameData.Spills) { Value *Def = E.first; // Create a store instruction storing the value into the // coroutine frame. Instruction *InsertPt = nullptr; if (auto *Arg = dyn_cast(Def)) { // For arguments, we will place the store instruction right after // the coroutine frame pointer instruction, i.e. bitcast of // coro.begin from i8* to %f.frame*. InsertPt = FramePtr->getNextNode(); // If we're spilling an Argument, make sure we clear 'nocapture' // from the coroutine function. Arg->getParent()->removeParamAttr(Arg->getArgNo(), Attribute::NoCapture); } else if (auto *CSI = dyn_cast(Def)) { // Don't spill immediately after a suspend; splitting assumes // that the suspend will be followed by a branch. InsertPt = CSI->getParent()->getSingleSuccessor()->getFirstNonPHI(); } else { auto *I = cast(Def); if (!DT.dominates(CB, I)) { // If it is not dominated by CoroBegin, then spill should be // inserted immediately after CoroFrame is computed. InsertPt = FramePtr->getNextNode(); } else if (auto *II = dyn_cast(I)) { // If we are spilling the result of the invoke instruction, split // the normal edge and insert the spill in the new block. auto *NewBB = SplitEdge(II->getParent(), II->getNormalDest()); InsertPt = NewBB->getTerminator(); } else if (isa(I)) { // Skip the PHINodes and EH pads instructions. BasicBlock *DefBlock = I->getParent(); if (auto *CSI = dyn_cast(DefBlock->getTerminator())) InsertPt = splitBeforeCatchSwitch(CSI); else InsertPt = &*DefBlock->getFirstInsertionPt(); } else { assert(!I->isTerminator() && "unexpected terminator"); // For all other values, the spill is placed immediately after // the definition. InsertPt = I->getNextNode(); } } auto Index = FrameData.getFieldIndex(Def); Builder.SetInsertPoint(InsertPt); auto *G = Builder.CreateConstInBoundsGEP2_32( FrameTy, FramePtr, 0, Index, Def->getName() + Twine(".spill.addr")); Builder.CreateStore(Def, G); BasicBlock *CurrentBlock = nullptr; Value *CurrentReload = nullptr; for (auto *U : E.second) { // If we have not seen the use block, create a load instruction to reload // the spilled value from the coroutine frame. Populates the Value pointer // reference provided with the frame GEP. if (CurrentBlock != U->getParent()) { CurrentBlock = U->getParent(); Builder.SetInsertPoint(&*CurrentBlock->getFirstInsertionPt()); auto *GEP = GetFramePointer(E.first); GEP->setName(E.first->getName() + Twine(".reload.addr")); CurrentReload = Builder.CreateLoad( FrameTy->getElementType(FrameData.getFieldIndex(E.first)), GEP, E.first->getName() + Twine(".reload")); } // If we have a single edge PHINode, remove it and replace it with a // reload from the coroutine frame. (We already took care of multi edge // PHINodes by rewriting them in the rewritePHIs function). if (auto *PN = dyn_cast(U)) { assert(PN->getNumIncomingValues() == 1 && "unexpected number of incoming " "values in the PHINode"); PN->replaceAllUsesWith(CurrentReload); PN->eraseFromParent(); continue; } // Replace all uses of CurrentValue in the current instruction with // reload. U->replaceUsesOfWith(Def, CurrentReload); } } BasicBlock *FramePtrBB = FramePtr->getParent(); auto SpillBlock = FramePtrBB->splitBasicBlock(FramePtr->getNextNode(), "AllocaSpillBB"); SpillBlock->splitBasicBlock(&SpillBlock->front(), "PostSpill"); Shape.AllocaSpillBlock = SpillBlock; // retcon and retcon.once lowering assumes all uses have been sunk. if (Shape.ABI == coro::ABI::Retcon || Shape.ABI == coro::ABI::RetconOnce) { // If we found any allocas, replace all of their remaining uses with Geps. Builder.SetInsertPoint(&SpillBlock->front()); for (const auto &P : FrameData.Allocas) { AllocaInst *Alloca = P.Alloca; auto *G = GetFramePointer(Alloca); // We are not using ReplaceInstWithInst(P.first, cast(G)) // here, as we are changing location of the instruction. G->takeName(Alloca); Alloca->replaceAllUsesWith(G); Alloca->eraseFromParent(); } return FramePtr; } // If we found any alloca, replace all of their remaining uses with GEP // instructions. Because new dbg.declare have been created for these alloca, // we also delete the original dbg.declare and replace other uses with undef. // Note: We cannot replace the alloca with GEP instructions indiscriminately, // as some of the uses may not be dominated by CoroBegin. Builder.SetInsertPoint(&Shape.AllocaSpillBlock->front()); SmallVector UsersToUpdate; for (const auto &A : FrameData.Allocas) { AllocaInst *Alloca = A.Alloca; UsersToUpdate.clear(); for (User *U : Alloca->users()) { auto *I = cast(U); if (DT.dominates(CB, I)) UsersToUpdate.push_back(I); } if (UsersToUpdate.empty()) continue; auto *G = GetFramePointer(Alloca); G->setName(Alloca->getName() + Twine(".reload.addr")); TinyPtrVector DIs = FindDbgDeclareUses(Alloca); if (!DIs.empty()) DIBuilder(*Alloca->getModule(), /*AllowUnresolved*/ false) .insertDeclare(G, DIs.front()->getVariable(), DIs.front()->getExpression(), DIs.front()->getDebugLoc(), DIs.front()); for (auto *DI : FindDbgDeclareUses(Alloca)) DI->eraseFromParent(); replaceDbgUsesWithUndef(Alloca); for (Instruction *I : UsersToUpdate) I->replaceUsesOfWith(Alloca, G); } Builder.SetInsertPoint(FramePtr->getNextNode()); for (const auto &A : FrameData.Allocas) { AllocaInst *Alloca = A.Alloca; if (A.MayWriteBeforeCoroBegin) { // isEscaped really means potentially modified before CoroBegin. if (Alloca->isArrayAllocation()) report_fatal_error( "Coroutines cannot handle copying of array allocas yet"); auto *G = GetFramePointer(Alloca); auto *Value = Builder.CreateLoad(Alloca->getAllocatedType(), Alloca); Builder.CreateStore(Value, G); } // For each alias to Alloca created before CoroBegin but used after // CoroBegin, we recreate them after CoroBegin by appplying the offset // to the pointer in the frame. for (const auto &Alias : A.Aliases) { auto *FramePtr = GetFramePointer(Alloca); auto *FramePtrRaw = Builder.CreateBitCast(FramePtr, Type::getInt8PtrTy(C)); auto *AliasPtr = Builder.CreateGEP( FramePtrRaw, ConstantInt::get(Type::getInt64Ty(C), Alias.second.getValue())); auto *AliasPtrTyped = Builder.CreateBitCast(AliasPtr, Alias.first->getType()); Alias.first->replaceUsesWithIf( AliasPtrTyped, [&](Use &U) { return DT.dominates(CB, U); }); } } return FramePtr; } // Sets the unwind edge of an instruction to a particular successor. static void setUnwindEdgeTo(Instruction *TI, BasicBlock *Succ) { if (auto *II = dyn_cast(TI)) II->setUnwindDest(Succ); else if (auto *CS = dyn_cast(TI)) CS->setUnwindDest(Succ); else if (auto *CR = dyn_cast(TI)) CR->setUnwindDest(Succ); else llvm_unreachable("unexpected terminator instruction"); } // Replaces all uses of OldPred with the NewPred block in all PHINodes in a // block. static void updatePhiNodes(BasicBlock *DestBB, BasicBlock *OldPred, BasicBlock *NewPred, PHINode *Until = nullptr) { unsigned BBIdx = 0; for (BasicBlock::iterator I = DestBB->begin(); isa(I); ++I) { PHINode *PN = cast(I); // We manually update the LandingPadReplacement PHINode and it is the last // PHI Node. So, if we find it, we are done. if (Until == PN) break; // Reuse the previous value of BBIdx if it lines up. In cases where we // have multiple phi nodes with *lots* of predecessors, this is a speed // win because we don't have to scan the PHI looking for TIBB. This // happens because the BB list of PHI nodes are usually in the same // order. if (PN->getIncomingBlock(BBIdx) != OldPred) BBIdx = PN->getBasicBlockIndex(OldPred); assert(BBIdx != (unsigned)-1 && "Invalid PHI Index!"); PN->setIncomingBlock(BBIdx, NewPred); } } // Uses SplitEdge unless the successor block is an EHPad, in which case do EH // specific handling. static BasicBlock *ehAwareSplitEdge(BasicBlock *BB, BasicBlock *Succ, LandingPadInst *OriginalPad, PHINode *LandingPadReplacement) { auto *PadInst = Succ->getFirstNonPHI(); if (!LandingPadReplacement && !PadInst->isEHPad()) return SplitEdge(BB, Succ); auto *NewBB = BasicBlock::Create(BB->getContext(), "", BB->getParent(), Succ); setUnwindEdgeTo(BB->getTerminator(), NewBB); updatePhiNodes(Succ, BB, NewBB, LandingPadReplacement); if (LandingPadReplacement) { auto *NewLP = OriginalPad->clone(); auto *Terminator = BranchInst::Create(Succ, NewBB); NewLP->insertBefore(Terminator); LandingPadReplacement->addIncoming(NewLP, NewBB); return NewBB; } Value *ParentPad = nullptr; if (auto *FuncletPad = dyn_cast(PadInst)) ParentPad = FuncletPad->getParentPad(); else if (auto *CatchSwitch = dyn_cast(PadInst)) ParentPad = CatchSwitch->getParentPad(); else llvm_unreachable("handling for other EHPads not implemented yet"); auto *NewCleanupPad = CleanupPadInst::Create(ParentPad, {}, "", NewBB); CleanupReturnInst::Create(NewCleanupPad, Succ, NewBB); return NewBB; } // Moves the values in the PHIs in SuccBB that correspong to PredBB into a new // PHI in InsertedBB. static void movePHIValuesToInsertedBlock(BasicBlock *SuccBB, BasicBlock *InsertedBB, BasicBlock *PredBB, PHINode *UntilPHI = nullptr) { auto *PN = cast(&SuccBB->front()); do { int Index = PN->getBasicBlockIndex(InsertedBB); Value *V = PN->getIncomingValue(Index); PHINode *InputV = PHINode::Create( V->getType(), 1, V->getName() + Twine(".") + SuccBB->getName(), &InsertedBB->front()); InputV->addIncoming(V, PredBB); PN->setIncomingValue(Index, InputV); PN = dyn_cast(PN->getNextNode()); } while (PN != UntilPHI); } // Rewrites the PHI Nodes in a cleanuppad. static void rewritePHIsForCleanupPad(BasicBlock *CleanupPadBB, CleanupPadInst *CleanupPad) { // For every incoming edge to a CleanupPad we will create a new block holding // all incoming values in single-value PHI nodes. We will then create another // block to act as a dispather (as all unwind edges for related EH blocks // must be the same). // // cleanuppad: // %2 = phi i32[%0, %catchswitch], [%1, %catch.1] // %3 = cleanuppad within none [] // // It will create: // // cleanuppad.corodispatch // %2 = phi i8[0, %catchswitch], [1, %catch.1] // %3 = cleanuppad within none [] // switch i8 % 2, label %unreachable // [i8 0, label %cleanuppad.from.catchswitch // i8 1, label %cleanuppad.from.catch.1] // cleanuppad.from.catchswitch: // %4 = phi i32 [%0, %catchswitch] // br %label cleanuppad // cleanuppad.from.catch.1: // %6 = phi i32 [%1, %catch.1] // br %label cleanuppad // cleanuppad: // %8 = phi i32 [%4, %cleanuppad.from.catchswitch], // [%6, %cleanuppad.from.catch.1] // Unreachable BB, in case switching on an invalid value in the dispatcher. auto *UnreachBB = BasicBlock::Create( CleanupPadBB->getContext(), "unreachable", CleanupPadBB->getParent()); IRBuilder<> Builder(UnreachBB); Builder.CreateUnreachable(); // Create a new cleanuppad which will be the dispatcher. auto *NewCleanupPadBB = BasicBlock::Create(CleanupPadBB->getContext(), CleanupPadBB->getName() + Twine(".corodispatch"), CleanupPadBB->getParent(), CleanupPadBB); Builder.SetInsertPoint(NewCleanupPadBB); auto *SwitchType = Builder.getInt8Ty(); auto *SetDispatchValuePN = Builder.CreatePHI(SwitchType, pred_size(CleanupPadBB)); CleanupPad->removeFromParent(); CleanupPad->insertAfter(SetDispatchValuePN); auto *SwitchOnDispatch = Builder.CreateSwitch(SetDispatchValuePN, UnreachBB, pred_size(CleanupPadBB)); int SwitchIndex = 0; SmallVector Preds(pred_begin(CleanupPadBB), pred_end(CleanupPadBB)); for (BasicBlock *Pred : Preds) { // Create a new cleanuppad and move the PHI values to there. auto *CaseBB = BasicBlock::Create(CleanupPadBB->getContext(), CleanupPadBB->getName() + Twine(".from.") + Pred->getName(), CleanupPadBB->getParent(), CleanupPadBB); updatePhiNodes(CleanupPadBB, Pred, CaseBB); CaseBB->setName(CleanupPadBB->getName() + Twine(".from.") + Pred->getName()); Builder.SetInsertPoint(CaseBB); Builder.CreateBr(CleanupPadBB); movePHIValuesToInsertedBlock(CleanupPadBB, CaseBB, NewCleanupPadBB); // Update this Pred to the new unwind point. setUnwindEdgeTo(Pred->getTerminator(), NewCleanupPadBB); // Setup the switch in the dispatcher. auto *SwitchConstant = ConstantInt::get(SwitchType, SwitchIndex); SetDispatchValuePN->addIncoming(SwitchConstant, Pred); SwitchOnDispatch->addCase(SwitchConstant, CaseBB); SwitchIndex++; } } static void rewritePHIs(BasicBlock &BB) { // For every incoming edge we will create a block holding all // incoming values in a single PHI nodes. // // loop: // %n.val = phi i32[%n, %entry], [%inc, %loop] // // It will create: // // loop.from.entry: // %n.loop.pre = phi i32 [%n, %entry] // br %label loop // loop.from.loop: // %inc.loop.pre = phi i32 [%inc, %loop] // br %label loop // // After this rewrite, further analysis will ignore any phi nodes with more // than one incoming edge. // TODO: Simplify PHINodes in the basic block to remove duplicate // predecessors. // Special case for CleanupPad: all EH blocks must have the same unwind edge // so we need to create an additional "dispatcher" block. if (auto *CleanupPad = dyn_cast_or_null(BB.getFirstNonPHI())) { SmallVector Preds(pred_begin(&BB), pred_end(&BB)); for (BasicBlock *Pred : Preds) { if (CatchSwitchInst *CS = dyn_cast(Pred->getTerminator())) { // CleanupPad with a CatchSwitch predecessor: therefore this is an // unwind destination that needs to be handle specially. assert(CS->getUnwindDest() == &BB); rewritePHIsForCleanupPad(&BB, CleanupPad); return; } } } LandingPadInst *LandingPad = nullptr; PHINode *ReplPHI = nullptr; if ((LandingPad = dyn_cast_or_null(BB.getFirstNonPHI()))) { // ehAwareSplitEdge will clone the LandingPad in all the edge blocks. // We replace the original landing pad with a PHINode that will collect the // results from all of them. ReplPHI = PHINode::Create(LandingPad->getType(), 1, "", LandingPad); ReplPHI->takeName(LandingPad); LandingPad->replaceAllUsesWith(ReplPHI); // We will erase the original landing pad at the end of this function after // ehAwareSplitEdge cloned it in the transition blocks. } SmallVector Preds(pred_begin(&BB), pred_end(&BB)); for (BasicBlock *Pred : Preds) { auto *IncomingBB = ehAwareSplitEdge(Pred, &BB, LandingPad, ReplPHI); IncomingBB->setName(BB.getName() + Twine(".from.") + Pred->getName()); // Stop the moving of values at ReplPHI, as this is either null or the PHI // that replaced the landing pad. movePHIValuesToInsertedBlock(&BB, IncomingBB, Pred, ReplPHI); } if (LandingPad) { // Calls to ehAwareSplitEdge function cloned the original lading pad. // No longer need it. LandingPad->eraseFromParent(); } } static void rewritePHIs(Function &F) { SmallVector WorkList; for (BasicBlock &BB : F) if (auto *PN = dyn_cast(&BB.front())) if (PN->getNumIncomingValues() > 1) WorkList.push_back(&BB); for (BasicBlock *BB : WorkList) rewritePHIs(*BB); } // Check for instructions that we can recreate on resume as opposed to spill // the result into a coroutine frame. static bool materializable(Instruction &V) { return isa(&V) || isa(&V) || isa(&V) || isa(&V) || isa(&V); } // Check for structural coroutine intrinsics that should not be spilled into // the coroutine frame. static bool isCoroutineStructureIntrinsic(Instruction &I) { return isa(&I) || isa(&I) || isa(&I); } // For every use of the value that is across suspend point, recreate that value // after a suspend point. static void rewriteMaterializableInstructions(IRBuilder<> &IRB, const SpillInfo &Spills) { for (const auto &E : Spills) { Value *Def = E.first; BasicBlock *CurrentBlock = nullptr; Instruction *CurrentMaterialization = nullptr; for (Instruction *U : E.second) { // If we have not seen this block, materialize the value. if (CurrentBlock != U->getParent()) { CurrentBlock = U->getParent(); CurrentMaterialization = cast(Def)->clone(); CurrentMaterialization->setName(Def->getName()); CurrentMaterialization->insertBefore( &*CurrentBlock->getFirstInsertionPt()); } if (auto *PN = dyn_cast(U)) { assert(PN->getNumIncomingValues() == 1 && "unexpected number of incoming " "values in the PHINode"); PN->replaceAllUsesWith(CurrentMaterialization); PN->eraseFromParent(); continue; } // Replace all uses of Def in the current instruction with the // CurrentMaterialization for the block. U->replaceUsesOfWith(Def, CurrentMaterialization); } } } // Splits the block at a particular instruction unless it is the first // instruction in the block with a single predecessor. static BasicBlock *splitBlockIfNotFirst(Instruction *I, const Twine &Name) { auto *BB = I->getParent(); if (&BB->front() == I) { if (BB->getSinglePredecessor()) { BB->setName(Name); return BB; } } return BB->splitBasicBlock(I, Name); } // Split above and below a particular instruction so that it // will be all alone by itself in a block. static void splitAround(Instruction *I, const Twine &Name) { splitBlockIfNotFirst(I, Name); splitBlockIfNotFirst(I->getNextNode(), "After" + Name); } static bool isSuspendBlock(BasicBlock *BB) { return isa(BB->front()); } typedef SmallPtrSet VisitedBlocksSet; /// Does control flow starting at the given block ever reach a suspend /// instruction before reaching a block in VisitedOrFreeBBs? static bool isSuspendReachableFrom(BasicBlock *From, VisitedBlocksSet &VisitedOrFreeBBs) { // Eagerly try to add this block to the visited set. If it's already // there, stop recursing; this path doesn't reach a suspend before // either looping or reaching a freeing block. if (!VisitedOrFreeBBs.insert(From).second) return false; // We assume that we'll already have split suspends into their own blocks. if (isSuspendBlock(From)) return true; // Recurse on the successors. for (auto Succ : successors(From)) { if (isSuspendReachableFrom(Succ, VisitedOrFreeBBs)) return true; } return false; } /// Is the given alloca "local", i.e. bounded in lifetime to not cross a /// suspend point? static bool isLocalAlloca(CoroAllocaAllocInst *AI) { // Seed the visited set with all the basic blocks containing a free // so that we won't pass them up. VisitedBlocksSet VisitedOrFreeBBs; for (auto User : AI->users()) { if (auto FI = dyn_cast(User)) VisitedOrFreeBBs.insert(FI->getParent()); } return !isSuspendReachableFrom(AI->getParent(), VisitedOrFreeBBs); } /// After we split the coroutine, will the given basic block be along /// an obvious exit path for the resumption function? static bool willLeaveFunctionImmediatelyAfter(BasicBlock *BB, unsigned depth = 3) { // If we've bottomed out our depth count, stop searching and assume // that the path might loop back. if (depth == 0) return false; // If this is a suspend block, we're about to exit the resumption function. if (isSuspendBlock(BB)) return true; // Recurse into the successors. for (auto Succ : successors(BB)) { if (!willLeaveFunctionImmediatelyAfter(Succ, depth - 1)) return false; } // If none of the successors leads back in a loop, we're on an exit/abort. return true; } static bool localAllocaNeedsStackSave(CoroAllocaAllocInst *AI) { // Look for a free that isn't sufficiently obviously followed by // either a suspend or a termination, i.e. something that will leave // the coro resumption frame. for (auto U : AI->users()) { auto FI = dyn_cast(U); if (!FI) continue; if (!willLeaveFunctionImmediatelyAfter(FI->getParent())) return true; } // If we never found one, we don't need a stack save. return false; } /// Turn each of the given local allocas into a normal (dynamic) alloca /// instruction. static void lowerLocalAllocas(ArrayRef LocalAllocas, SmallVectorImpl &DeadInsts) { for (auto AI : LocalAllocas) { auto M = AI->getModule(); IRBuilder<> Builder(AI); // Save the stack depth. Try to avoid doing this if the stackrestore // is going to immediately precede a return or something. Value *StackSave = nullptr; if (localAllocaNeedsStackSave(AI)) StackSave = Builder.CreateCall( Intrinsic::getDeclaration(M, Intrinsic::stacksave)); // Allocate memory. auto Alloca = Builder.CreateAlloca(Builder.getInt8Ty(), AI->getSize()); Alloca->setAlignment(Align(AI->getAlignment())); for (auto U : AI->users()) { // Replace gets with the allocation. if (isa(U)) { U->replaceAllUsesWith(Alloca); // Replace frees with stackrestores. This is safe because // alloca.alloc is required to obey a stack discipline, although we // don't enforce that structurally. } else { auto FI = cast(U); if (StackSave) { Builder.SetInsertPoint(FI); Builder.CreateCall( Intrinsic::getDeclaration(M, Intrinsic::stackrestore), StackSave); } } DeadInsts.push_back(cast(U)); } DeadInsts.push_back(AI); } } /// Turn the given coro.alloca.alloc call into a dynamic allocation. /// This happens during the all-instructions iteration, so it must not /// delete the call. static Instruction *lowerNonLocalAlloca(CoroAllocaAllocInst *AI, coro::Shape &Shape, SmallVectorImpl &DeadInsts) { IRBuilder<> Builder(AI); auto Alloc = Shape.emitAlloc(Builder, AI->getSize(), nullptr); for (User *U : AI->users()) { if (isa(U)) { U->replaceAllUsesWith(Alloc); } else { auto FI = cast(U); Builder.SetInsertPoint(FI); Shape.emitDealloc(Builder, Alloc, nullptr); } DeadInsts.push_back(cast(U)); } // Push this on last so that it gets deleted after all the others. DeadInsts.push_back(AI); // Return the new allocation value so that we can check for needed spills. return cast(Alloc); } /// Get the current swifterror value. static Value *emitGetSwiftErrorValue(IRBuilder<> &Builder, Type *ValueTy, coro::Shape &Shape) { // Make a fake function pointer as a sort of intrinsic. auto FnTy = FunctionType::get(ValueTy, {}, false); auto Fn = ConstantPointerNull::get(FnTy->getPointerTo()); auto Call = Builder.CreateCall(FnTy, Fn, {}); Shape.SwiftErrorOps.push_back(Call); return Call; } /// Set the given value as the current swifterror value. /// /// Returns a slot that can be used as a swifterror slot. static Value *emitSetSwiftErrorValue(IRBuilder<> &Builder, Value *V, coro::Shape &Shape) { // Make a fake function pointer as a sort of intrinsic. auto FnTy = FunctionType::get(V->getType()->getPointerTo(), {V->getType()}, false); auto Fn = ConstantPointerNull::get(FnTy->getPointerTo()); auto Call = Builder.CreateCall(FnTy, Fn, { V }); Shape.SwiftErrorOps.push_back(Call); return Call; } /// Set the swifterror value from the given alloca before a call, /// then put in back in the alloca afterwards. /// /// Returns an address that will stand in for the swifterror slot /// until splitting. static Value *emitSetAndGetSwiftErrorValueAround(Instruction *Call, AllocaInst *Alloca, coro::Shape &Shape) { auto ValueTy = Alloca->getAllocatedType(); IRBuilder<> Builder(Call); // Load the current value from the alloca and set it as the // swifterror value. auto ValueBeforeCall = Builder.CreateLoad(ValueTy, Alloca); auto Addr = emitSetSwiftErrorValue(Builder, ValueBeforeCall, Shape); // Move to after the call. Since swifterror only has a guaranteed // value on normal exits, we can ignore implicit and explicit unwind // edges. if (isa(Call)) { Builder.SetInsertPoint(Call->getNextNode()); } else { auto Invoke = cast(Call); Builder.SetInsertPoint(Invoke->getNormalDest()->getFirstNonPHIOrDbg()); } // Get the current swifterror value and store it to the alloca. auto ValueAfterCall = emitGetSwiftErrorValue(Builder, ValueTy, Shape); Builder.CreateStore(ValueAfterCall, Alloca); return Addr; } /// Eliminate a formerly-swifterror alloca by inserting the get/set /// intrinsics and attempting to MemToReg the alloca away. static void eliminateSwiftErrorAlloca(Function &F, AllocaInst *Alloca, coro::Shape &Shape) { for (auto UI = Alloca->use_begin(), UE = Alloca->use_end(); UI != UE; ) { // We're likely changing the use list, so use a mutation-safe // iteration pattern. auto &Use = *UI; ++UI; // swifterror values can only be used in very specific ways. // We take advantage of that here. auto User = Use.getUser(); if (isa(User) || isa(User)) continue; assert(isa(User) || isa(User)); auto Call = cast(User); auto Addr = emitSetAndGetSwiftErrorValueAround(Call, Alloca, Shape); // Use the returned slot address as the call argument. Use.set(Addr); } // All the uses should be loads and stores now. assert(isAllocaPromotable(Alloca)); } /// "Eliminate" a swifterror argument by reducing it to the alloca case /// and then loading and storing in the prologue and epilog. /// /// The argument keeps the swifterror flag. static void eliminateSwiftErrorArgument(Function &F, Argument &Arg, coro::Shape &Shape, SmallVectorImpl &AllocasToPromote) { IRBuilder<> Builder(F.getEntryBlock().getFirstNonPHIOrDbg()); auto ArgTy = cast(Arg.getType()); auto ValueTy = ArgTy->getElementType(); // Reduce to the alloca case: // Create an alloca and replace all uses of the arg with it. auto Alloca = Builder.CreateAlloca(ValueTy, ArgTy->getAddressSpace()); Arg.replaceAllUsesWith(Alloca); // Set an initial value in the alloca. swifterror is always null on entry. auto InitialValue = Constant::getNullValue(ValueTy); Builder.CreateStore(InitialValue, Alloca); // Find all the suspends in the function and save and restore around them. for (auto Suspend : Shape.CoroSuspends) { (void) emitSetAndGetSwiftErrorValueAround(Suspend, Alloca, Shape); } // Find all the coro.ends in the function and restore the error value. for (auto End : Shape.CoroEnds) { Builder.SetInsertPoint(End); auto FinalValue = Builder.CreateLoad(ValueTy, Alloca); (void) emitSetSwiftErrorValue(Builder, FinalValue, Shape); } // Now we can use the alloca logic. AllocasToPromote.push_back(Alloca); eliminateSwiftErrorAlloca(F, Alloca, Shape); } /// Eliminate all problematic uses of swifterror arguments and allocas /// from the function. We'll fix them up later when splitting the function. static void eliminateSwiftError(Function &F, coro::Shape &Shape) { SmallVector AllocasToPromote; // Look for a swifterror argument. for (auto &Arg : F.args()) { if (!Arg.hasSwiftErrorAttr()) continue; eliminateSwiftErrorArgument(F, Arg, Shape, AllocasToPromote); break; } // Look for swifterror allocas. for (auto &Inst : F.getEntryBlock()) { auto Alloca = dyn_cast(&Inst); if (!Alloca || !Alloca->isSwiftError()) continue; // Clear the swifterror flag. Alloca->setSwiftError(false); AllocasToPromote.push_back(Alloca); eliminateSwiftErrorAlloca(F, Alloca, Shape); } // If we have any allocas to promote, compute a dominator tree and // promote them en masse. if (!AllocasToPromote.empty()) { DominatorTree DT(F); PromoteMemToReg(AllocasToPromote, DT); } } /// retcon and retcon.once conventions assume that all spill uses can be sunk /// after the coro.begin intrinsic. static void sinkSpillUsesAfterCoroBegin(Function &F, const FrameDataInfo &FrameData, CoroBeginInst *CoroBegin) { DominatorTree Dom(F); SmallSetVector ToMove; SmallVector Worklist; // Collect all users that precede coro.begin. for (auto *Def : FrameData.getAllDefs()) { for (User *U : Def->users()) { auto Inst = cast(U); if (Inst->getParent() != CoroBegin->getParent() || Dom.dominates(CoroBegin, Inst)) continue; if (ToMove.insert(Inst)) Worklist.push_back(Inst); } } // Recursively collect users before coro.begin. while (!Worklist.empty()) { auto *Def = Worklist.back(); Worklist.pop_back(); for (User *U : Def->users()) { auto Inst = cast(U); if (Dom.dominates(CoroBegin, Inst)) continue; if (ToMove.insert(Inst)) Worklist.push_back(Inst); } } // Sort by dominance. SmallVector InsertionList(ToMove.begin(), ToMove.end()); std::sort(InsertionList.begin(), InsertionList.end(), [&Dom](Instruction *A, Instruction *B) -> bool { // If a dominates b it should preceed (<) b. return Dom.dominates(A, B); }); Instruction *InsertPt = CoroBegin->getNextNode(); for (Instruction *Inst : InsertionList) Inst->moveBefore(InsertPt); return; } /// For each local variable that all of its user are only used inside one of /// suspended region, we sink their lifetime.start markers to the place where /// after the suspend block. Doing so minimizes the lifetime of each variable, /// hence minimizing the amount of data we end up putting on the frame. static void sinkLifetimeStartMarkers(Function &F, coro::Shape &Shape, SuspendCrossingInfo &Checker) { DominatorTree DT(F); // Collect all possible basic blocks which may dominate all uses of allocas. SmallPtrSet DomSet; DomSet.insert(&F.getEntryBlock()); for (auto *CSI : Shape.CoroSuspends) { BasicBlock *SuspendBlock = CSI->getParent(); assert(isSuspendBlock(SuspendBlock) && SuspendBlock->getSingleSuccessor() && "should have split coro.suspend into its own block"); DomSet.insert(SuspendBlock->getSingleSuccessor()); } for (Instruction &I : instructions(F)) { AllocaInst* AI = dyn_cast(&I); if (!AI) continue; for (BasicBlock *DomBB : DomSet) { bool Valid = true; SmallVector Lifetimes; auto isLifetimeStart = [](Instruction* I) { if (auto* II = dyn_cast(I)) return II->getIntrinsicID() == Intrinsic::lifetime_start; return false; }; auto collectLifetimeStart = [&](Instruction *U, AllocaInst *AI) { if (isLifetimeStart(U)) { Lifetimes.push_back(U); return true; } if (!U->hasOneUse() || U->stripPointerCasts() != AI) return false; if (isLifetimeStart(U->user_back())) { Lifetimes.push_back(U->user_back()); return true; } return false; }; for (User *U : AI->users()) { Instruction *UI = cast(U); // For all users except lifetime.start markers, if they are all // dominated by one of the basic blocks and do not cross // suspend points as well, then there is no need to spill the // instruction. if (!DT.dominates(DomBB, UI->getParent()) || Checker.isDefinitionAcrossSuspend(DomBB, UI)) { // Skip lifetime.start, GEP and bitcast used by lifetime.start // markers. if (collectLifetimeStart(UI, AI)) continue; Valid = false; break; } } // Sink lifetime.start markers to dominate block when they are // only used outside the region. if (Valid && Lifetimes.size() != 0) { // May be AI itself, when the type of AI is i8* auto *NewBitCast = [&](AllocaInst *AI) -> Value* { if (isa(Lifetimes[0]->getOperand(1))) return AI; auto *Int8PtrTy = Type::getInt8PtrTy(F.getContext()); return CastInst::Create(Instruction::BitCast, AI, Int8PtrTy, "", DomBB->getTerminator()); }(AI); auto *NewLifetime = Lifetimes[0]->clone(); NewLifetime->replaceUsesOfWith(NewLifetime->getOperand(1), NewBitCast); NewLifetime->insertBefore(DomBB->getTerminator()); // All the outsided lifetime.start markers are no longer necessary. for (Instruction *S : Lifetimes) S->eraseFromParent(); break; } } } } static void collectFrameAllocas(Function &F, coro::Shape &Shape, const SuspendCrossingInfo &Checker, SmallVectorImpl &Allocas) { // Collect lifetime.start info for each alloca. using LifetimeStart = SmallPtrSet; llvm::DenseMap> LifetimeMap; for (Instruction &I : instructions(F)) { auto *II = dyn_cast(&I); if (!II || II->getIntrinsicID() != Intrinsic::lifetime_start) continue; if (auto *OpInst = dyn_cast(II->getOperand(1))) { if (auto *AI = dyn_cast(OpInst->stripPointerCasts())) { if (LifetimeMap.find(AI) == LifetimeMap.end()) LifetimeMap[AI] = std::make_unique(); LifetimeMap[AI]->insert(isa(OpInst) ? II : OpInst); } } } for (Instruction &I : instructions(F)) { auto *AI = dyn_cast(&I); if (!AI) continue; // The PromiseAlloca will be specially handled since it needs to be in a // fixed position in the frame. if (AI == Shape.SwitchLowering.PromiseAlloca) { continue; } bool ShouldLiveOnFrame = false; auto Iter = LifetimeMap.find(AI); if (Iter != LifetimeMap.end()) { // Check against lifetime.start if the instruction has the info. for (User *U : I.users()) { for (auto *S : *Iter->second) if ((ShouldLiveOnFrame = Checker.isDefinitionAcrossSuspend(*S, U))) break; if (ShouldLiveOnFrame) break; } if (!ShouldLiveOnFrame) continue; } // At this point, either ShouldLiveOnFrame is true or we didn't have // lifetime information. We will need to rely on more precise pointer // tracking. DominatorTree DT(F); AllocaUseVisitor Visitor{F.getParent()->getDataLayout(), DT, *Shape.CoroBegin, Checker}; Visitor.visitPtr(*AI); if (!Visitor.getShouldLiveOnFrame()) continue; Allocas.emplace_back(AI, Visitor.getAliasesCopy(), Visitor.getMayWriteBeforeCoroBegin()); } } void coro::buildCoroutineFrame(Function &F, Shape &Shape) { eliminateSwiftError(F, Shape); if (Shape.ABI == coro::ABI::Switch && Shape.SwitchLowering.PromiseAlloca) { Shape.getSwitchCoroId()->clearPromise(); } // Make sure that all coro.save, coro.suspend and the fallthrough coro.end // intrinsics are in their own blocks to simplify the logic of building up // SuspendCrossing data. for (auto *CSI : Shape.CoroSuspends) { if (auto *Save = CSI->getCoroSave()) splitAround(Save, "CoroSave"); splitAround(CSI, "CoroSuspend"); } // Put CoroEnds into their own blocks. for (CoroEndInst *CE : Shape.CoroEnds) splitAround(CE, "CoroEnd"); // Transforms multi-edge PHI Nodes, so that any value feeding into a PHI will // never has its definition separated from the PHI by the suspend point. rewritePHIs(F); // Build suspend crossing info. SuspendCrossingInfo Checker(F, Shape); IRBuilder<> Builder(F.getContext()); FrameDataInfo FrameData; SmallVector LocalAllocas; SmallVector DeadInstructions; { SpillInfo Spills; for (int Repeat = 0; Repeat < 4; ++Repeat) { // See if there are materializable instructions across suspend points. for (Instruction &I : instructions(F)) if (materializable(I)) for (User *U : I.users()) if (Checker.isDefinitionAcrossSuspend(I, U)) Spills[&I].push_back(cast(U)); if (Spills.empty()) break; // Rewrite materializable instructions to be materialized at the use // point. LLVM_DEBUG(dumpSpills("Materializations", Spills)); rewriteMaterializableInstructions(Builder, Spills); Spills.clear(); } } sinkLifetimeStartMarkers(F, Shape, Checker); collectFrameAllocas(F, Shape, Checker, FrameData.Allocas); LLVM_DEBUG(dumpAllocas(FrameData.Allocas)); // Collect the spills for arguments and other not-materializable values. for (Argument &A : F.args()) for (User *U : A.users()) if (Checker.isDefinitionAcrossSuspend(A, U)) FrameData.Spills[&A].push_back(cast(U)); for (Instruction &I : instructions(F)) { // Values returned from coroutine structure intrinsics should not be part // of the Coroutine Frame. if (isCoroutineStructureIntrinsic(I) || &I == Shape.CoroBegin) continue; // The Coroutine Promise always included into coroutine frame, no need to // check for suspend crossing. if (Shape.ABI == coro::ABI::Switch && Shape.SwitchLowering.PromiseAlloca == &I) continue; // Handle alloca.alloc specially here. if (auto AI = dyn_cast(&I)) { // Check whether the alloca's lifetime is bounded by suspend points. if (isLocalAlloca(AI)) { LocalAllocas.push_back(AI); continue; } // If not, do a quick rewrite of the alloca and then add spills of // the rewritten value. The rewrite doesn't invalidate anything in // Spills because the other alloca intrinsics have no other operands // besides AI, and it doesn't invalidate the iteration because we delay // erasing AI. auto Alloc = lowerNonLocalAlloca(AI, Shape, DeadInstructions); for (User *U : Alloc->users()) { if (Checker.isDefinitionAcrossSuspend(*Alloc, U)) FrameData.Spills[Alloc].push_back(cast(U)); } continue; } // Ignore alloca.get; we process this as part of coro.alloca.alloc. if (isa(I)) continue; if (isa(I)) continue; for (User *U : I.users()) if (Checker.isDefinitionAcrossSuspend(I, U)) { // We cannot spill a token. if (I.getType()->isTokenTy()) report_fatal_error( "token definition is separated from the use by a suspend point"); FrameData.Spills[&I].push_back(cast(U)); } } LLVM_DEBUG(dumpSpills("Spills", FrameData.Spills)); if (Shape.ABI == coro::ABI::Retcon || Shape.ABI == coro::ABI::RetconOnce) sinkSpillUsesAfterCoroBegin(F, FrameData, Shape.CoroBegin); Shape.FrameTy = buildFrameType(F, Shape, FrameData); // Add PromiseAlloca to Allocas list so that it is processed in insertSpills. if (Shape.ABI == coro::ABI::Switch && Shape.SwitchLowering.PromiseAlloca) // We assume that the promise alloca won't be modified before // CoroBegin and no alias will be create before CoroBegin. FrameData.Allocas.emplace_back( Shape.SwitchLowering.PromiseAlloca, DenseMap>{}, false); Shape.FramePtr = insertSpills(FrameData, Shape); lowerLocalAllocas(LocalAllocas, DeadInstructions); for (auto I : DeadInstructions) I->eraseFromParent(); }