Changeset View
Changeset View
Standalone View
Standalone View
test/Transforms/InstCombine/distribute.ll
; RUN: opt < %s -instcombine -S | FileCheck %s | |||||
define i32 @factorize(i32 %x, i32 %y) { | |||||
; CHECK-LABEL: @factorize( | |||||
; (X | 1) & (X | 2) -> X | (1 & 2) -> X | |||||
%l = or i32 %x, 1 | |||||
%r = or i32 %x, 2 | |||||
%z = and i32 %l, %r | |||||
ret i32 %z | |||||
; CHECK: ret i32 %x | |||||
} | |||||
define i32 @factorize2(i32 %x) { | |||||
; CHECK-LABEL: @factorize2( | |||||
; 3*X - 2*X -> X | |||||
%l = mul i32 3, %x | |||||
%r = mul i32 2, %x | |||||
%z = sub i32 %l, %r | |||||
ret i32 %z | |||||
; CHECK: ret i32 %x | |||||
} | |||||
define i32 @factorize3(i32 %x, i32 %a, i32 %b) { | |||||
; CHECK-LABEL: @factorize3( | |||||
; (X | (A|B)) & (X | B) -> X | ((A|B) & B) -> X | B | |||||
%aORb = or i32 %a, %b | |||||
%l = or i32 %x, %aORb | |||||
%r = or i32 %x, %b | |||||
%z = and i32 %l, %r | |||||
ret i32 %z | |||||
; CHECK: %z = or i32 %b, %x | |||||
; CHECK: ret i32 %z | |||||
} | |||||
define i32 @factorize4(i32 %x, i32 %y) { | |||||
; CHECK-LABEL: @factorize4( | |||||
jingyue: Could you add a comment that translates the IR into math expressions? Just as what you did for… | |||||
dinesh.dAuthorUnsubmitted Not Done ReplyInline Actionsupdated. dinesh.d: updated. | |||||
%sh = shl i32 %y, 1 | |||||
%ml = mul i32 %sh, %x | |||||
%mr = mul i32 %x, %y | |||||
%s = sub i32 %ml, %mr | |||||
ret i32 %s | |||||
; CHECK: %s = mul i32 %y, %x | |||||
; CHECK: ret i32 %s | |||||
} | |||||
define i32 @factorize5(i32 %x, i32 %y) { | |||||
; CHECK-LABEL: @factorize5( | |||||
%sh = mul i32 %y, 2 | |||||
jingyueUnsubmitted Not Done ReplyInline Actionsditto jingyue: ditto | |||||
dinesh.dAuthorUnsubmitted Not Done ReplyInline Actionsupdated. dinesh.d: updated. | |||||
%ml = mul i32 %sh, %x | |||||
%mr = mul i32 %x, %y | |||||
%s = sub i32 %ml, %mr | |||||
ret i32 %s | |||||
; CHECK: %s = mul i32 %y, %x | |||||
; CHECK: ret i32 %s | |||||
} | |||||
define i32 @expand(i32 %x) { | |||||
; CHECK-LABEL: @expand( | |||||
; ((X & 1) | 2) & 1 -> ((X & 1) & 1) | (2 & 1) -> (X & 1) | 0 -> X & 1 | |||||
%a = and i32 %x, 1 | |||||
%b = or i32 %a, 2 | |||||
%c = and i32 %b, 1 | |||||
ret i32 %c | |||||
; CHECK: %a = and i32 %x, 1 | |||||
; CHECK: ret i32 %a | |||||
} |
Could you add a comment that translates the IR into math expressions? Just as what you did for factorize1|2|3. It would be much easier to follow. Thanks!