Changeset View
Changeset View
Standalone View
Standalone View
lib/Transforms/Instrumentation/CFGMST.h
- This file was added.
//===-- CFGMST.h - Minimum Spanning Tree for CFG ----------------*- C++ -*-===// | |||||
// | |||||
// The LLVM Compiler Infrastructure | |||||
// | |||||
// This file is distributed under the University of Illinois Open Source | |||||
// License. See LICENSE.TXT for details. | |||||
// | |||||
//===----------------------------------------------------------------------===// | |||||
// | |||||
// This file implements a Union-find algorithm to compute Minimum Spanning Tree | |||||
// for a given CFG. | |||||
// | |||||
//===----------------------------------------------------------------------===// | |||||
#include "llvm/ADT/DenseMap.h" | |||||
#include "llvm/ADT/STLExtras.h" | |||||
#include "llvm/Analysis/BlockFrequencyInfo.h" | |||||
#include "llvm/Analysis/BranchProbabilityInfo.h" | |||||
#include "llvm/Analysis/CFG.h" | |||||
#include "llvm/Support/BranchProbability.h" | |||||
#include "llvm/Support/Debug.h" | |||||
#include "llvm/Support/raw_ostream.h" | |||||
#include "llvm/Transforms/Utils/BasicBlockUtils.h" | |||||
#include <string> | |||||
#include <utility> | |||||
#include <vector> | |||||
namespace llvm { | |||||
#define DEBUG_TYPE "cfgmst" | |||||
/// \brief An union-find based Minimum Spanning Tree for CFG | |||||
/// | |||||
/// Implements a Union-find algorithm to compute Minimum Spanning Tree | |||||
/// for a given CFG. | |||||
template <class Edge, class BBInfo> class CFGMST { | |||||
public: | |||||
Function &F; | |||||
// Store all the edges in CFG. It may contain some stale edges | |||||
silvas: Use a lambda. | |||||
// when Removed is set. | |||||
std::vector<std::unique_ptr<Edge>> AllEdges; | |||||
// This map records the auxiliary information for each BB. | |||||
DenseMap<const BasicBlock *, std::unique_ptr<BBInfo>> BBInfos; | |||||
// Find the root group of the G and compress the path from G to the root. | |||||
BBInfo *findAndCompressGroup(BBInfo *G) { | |||||
if (G->Group != G) | |||||
G->Group = findAndCompressGroup(static_cast<BBInfo *>(G->Group)); | |||||
return static_cast<BBInfo *>(G->Group); | |||||
} | |||||
// Union BB1 and BB2 into the same group and return true. | |||||
// Returns false if BB1 and BB2 are already in the same group. | |||||
bool unionGroups(const BasicBlock *BB1, const BasicBlock *BB2) { | |||||
BBInfo *BB1G = findAndCompressGroup(&getBBInfo(BB1)); | |||||
BBInfo *BB2G = findAndCompressGroup(&getBBInfo(BB2)); | |||||
if (BB1G == BB2G) | |||||
return false; | |||||
// Make the smaller rank tree a direct child or the root of high rank tree. | |||||
if (BB1G->Rank < BB2G->Rank) | |||||
BB1G->Group = BB2G; | |||||
else { | |||||
BB2G->Group = BB1G; | |||||
// If the ranks are the same, increment root of one tree by one. | |||||
if (BB1G->Rank == BB2G->Rank) | |||||
BB1G->Rank++; | |||||
} | |||||
return true; | |||||
} | |||||
// Give BB, return the auxiliary information. | |||||
BBInfo &getBBInfo(const BasicBlock *BB) const { | |||||
auto It = BBInfos.find(BB); | |||||
assert(It->second.get() != nullptr); | |||||
return *It->second.get(); | |||||
} | |||||
// Traverse the CFG using a stack. Find all the edges and assign the weight. | |||||
// Edges with large weight will be put into MST first so they are less likely | |||||
// to be instrumented. | |||||
void buildEdges() { | |||||
DEBUG(dbgs() << "Build Edge on " << F.getName() << "\n"); | |||||
const BasicBlock *BB = &(F.getEntryBlock()); | |||||
uint64_t EntryWeight = (BFI != nullptr ? BFI->getEntryFreq() : 2); | |||||
// Add a fake edge to the entry. | |||||
addEdge(nullptr, BB, EntryWeight); | |||||
// Special handling for single BB functions. | |||||
if (succ_empty(BB)) { | |||||
Use a real variable. silvas: Use a real variable. | |||||
addEdge(BB, nullptr, EntryWeight); | |||||
return; | |||||
} | |||||
static const uint32_t CriticalEdgeMultiplier = 1000; | |||||
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { | |||||
TerminatorInst *TI = BB->getTerminator(); | |||||
uint64_t BBWeight = | |||||
(BFI != nullptr ? BFI->getBlockFreq(&*BB).getFrequency() : 2); | |||||
uint64_t Weight = 2; | |||||
if (int successors = TI->getNumSuccessors()) { | |||||
for (int i = 0; i != successors; ++i) { | |||||
BasicBlock *TargetBB = TI->getSuccessor(i); | |||||
bool Critical = isCriticalEdge(TI, i); | |||||
uint64_t scaleFactor = BBWeight; | |||||
if (Critical) { | |||||
Move the declaration for bool Critical = false; down one line and simplify to bool Critical = isCriticalEdge(TI, i); silvas: Move the declaration for `bool Critical = false;` down one line and simplify to `bool Critical… | |||||
Not Done ReplyInline Actionsreorganized the code, also handles overflow. xur: reorganized the code, also handles overflow. | |||||
if (scaleFactor < UINT64_MAX / CriticalEdgeMultiplier) | |||||
scaleFactor *= CriticalEdgeMultiplier; | |||||
else | |||||
scaleFactor = UINT64_MAX; | |||||
} | |||||
if (BPI != nullptr) | |||||
Weight = BPI->getEdgeProbability(&*BB, TargetBB).scale(scaleFactor); | |||||
addEdge(&*BB, TargetBB, Weight).IsCritical = Critical; | |||||
DEBUG(dbgs() << " Edge: from " << BB->getName() << " to " | |||||
<< TargetBB->getName() << " w=" << Weight << "\n"); | |||||
} | |||||
} else { | |||||
addEdge(&*BB, nullptr, BBWeight); | |||||
DEBUG(dbgs() << " Edge: from " << BB->getName() << " to exit" | |||||
<< " w = " << BBWeight << "\n"); | |||||
} | |||||
} | |||||
} | |||||
Naming convention. silvas: Naming convention. | |||||
// Sort CFG edges based on its weight. | |||||
void sortEdgesByWeight() { | |||||
std::stable_sort(AllEdges.begin(), AllEdges.end(), | |||||
[](const std::unique_ptr<Edge> &Edge1, | |||||
const std::unique_ptr<Edge> &Edge2) { | |||||
return Edge1->Weight > Edge2->Weight; | |||||
}); | |||||
} | |||||
No need to mention clang here. Please file a bug report for this if there isn't one open already. silvas: No need to mention clang here. Please file a bug report for this if there isn't one open… | |||||
// Traverse all the edges and compute the Minimum Weight Spanning Tree | |||||
// using union-find algorithm. | |||||
void computeMinimumSpanningTree() { | |||||
// First, put all the critical edge with landing-pad as the Dest to MST. | |||||
// This works around the insufficient support of critical edges split | |||||
// when destination BB is a landing pad. | |||||
for (auto &Ei : AllEdges) { | |||||
if (Ei->Removed) | |||||
continue; | |||||
if (Ei->IsCritical) { | |||||
if (Ei->DestBB && Ei->DestBB->isLandingPad()) { | |||||
if (unionGroups(Ei->SrcBB, Ei->DestBB)) | |||||
Ei->InMST = true; | |||||
} | |||||
} | |||||
} | |||||
for (auto &Ei : AllEdges) { | |||||
if (Ei->Removed) | |||||
continue; | |||||
if (unionGroups(Ei->SrcBB, Ei->DestBB)) | |||||
Ei->InMST = true; | |||||
} | |||||
Factor the DEBUG macro usage into a single point of truth here. E.g. factor out a function printEdges(raw_ostream &OS, const StringRef Message). Then change this function to be simply DEBUG(dumpEdges(dbgs(), Message)). (this is similar to the pattern used by Value, for example). This will also give clang-format an easier time. silvas: Factor the DEBUG macro usage into a single point of truth here. E.g. factor out a function… | |||||
} | |||||
// Dump the Debug information about the instrumentation. | |||||
void dumpEdges(raw_ostream &OS, const Twine &Message) const { | |||||
if (!Message.str().empty()) | |||||
OS << Message << "\n"; | |||||
OS << " Number of Basic Blocks: " << BBInfos.size() << "\n"; | |||||
for (auto &BI : BBInfos) { | |||||
const BasicBlock *BB = BI.first; | |||||
OS << " BB: " << (BB == nullptr ? "FakeNode" : BB->getName()) << " " | |||||
<< BI.second->infoString() << "\n"; | |||||
} | |||||
OS << " Number of Edges: " << AllEdges.size() | |||||
<< " (*: Instrument, C: CriticalEdge, -: Removed)\n"; | |||||
uint32_t Count = 0; | |||||
for (auto &EI : AllEdges) | |||||
OS << " Edge " << Count++ << ": " << getBBInfo(EI->SrcBB).Index << "-->" | |||||
<< getBBInfo(EI->DestBB).Index << EI->infoString() << "\n"; | |||||
} | |||||
// Add an edge to AllEdges with weight W. | |||||
Edge &addEdge(const BasicBlock *Src, const BasicBlock *Dest, uint64_t W) { | |||||
uint32_t Index = BBInfos.size(); | |||||
auto Iter = BBInfos.end(); | |||||
Use std::tie silvas: Use std::tie | |||||
bool Inserted; | |||||
std::tie(Iter, Inserted) = BBInfos.insert(std::make_pair(Src, nullptr)); | |||||
if (Inserted) { | |||||
// Newly inserted, update the real info. | |||||
Iter->second = std::move(llvm::make_unique<BBInfo>(Index)); | |||||
llvm::make_unique silvas: llvm::make_unique | |||||
Index++; | |||||
} | |||||
return *AllEdges.back() silvas: `return *AllEdges.back()` | |||||
std::tie(Iter, Inserted) = BBInfos.insert(std::make_pair(Dest, nullptr)); | |||||
if (Inserted) | |||||
// Newly inserted, update the real info. | |||||
Iter->second = std::move(llvm::make_unique<BBInfo>(Index)); | |||||
AllEdges.emplace_back(new Edge(Src, Dest, W)); | |||||
return *AllEdges.back(); | |||||
} | |||||
BranchProbabilityInfo *BPI; | |||||
BlockFrequencyInfo *BFI; | |||||
public: | |||||
CFGMST(Function &Func, BranchProbabilityInfo *BPI_ = nullptr, | |||||
Avoid using reserved names. silvas: Avoid using reserved names. | |||||
BlockFrequencyInfo *BFI_ = nullptr) | |||||
: F(Func), BPI(BPI_), BFI(BFI_) { | |||||
buildEdges(); | |||||
sortEdgesByWeight(); | |||||
computeMinimumSpanningTree(); | |||||
} | |||||
}; | |||||
#undef DEBUG_TYPE // "cfgmst" | |||||
} // end namespace llvm |
Use a lambda.