Page MenuHomePhabricator

No OneTemporary

This file is larger than 256 KB, so syntax highlighting was skipped.
diff --git a/clang/include/clang/AST/DeclBase.h b/clang/include/clang/AST/DeclBase.h
index 5869ec0bbf6c..9117f53487d6 100644
--- a/clang/include/clang/AST/DeclBase.h
+++ b/clang/include/clang/AST/DeclBase.h
@@ -1,2525 +1,2529 @@
//===- DeclBase.h - Base Classes for representing declarations --*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the Decl and DeclContext interfaces.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_DECLBASE_H
#define LLVM_CLANG_AST_DECLBASE_H
#include "clang/AST/AttrIterator.h"
#include "clang/AST/DeclarationName.h"
#include "clang/Basic/IdentifierTable.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/Specifiers.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/ADT/iterator.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/PrettyStackTrace.h"
#include "llvm/Support/VersionTuple.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <iterator>
#include <string>
#include <type_traits>
#include <utility>
namespace clang {
class ASTContext;
class ASTMutationListener;
class Attr;
class DeclContext;
class ExternalSourceSymbolAttr;
class FunctionDecl;
class FunctionType;
class IdentifierInfo;
enum Linkage : unsigned char;
class LinkageSpecDecl;
class Module;
class NamedDecl;
class ObjCCategoryDecl;
class ObjCCategoryImplDecl;
class ObjCContainerDecl;
class ObjCImplDecl;
class ObjCImplementationDecl;
class ObjCInterfaceDecl;
class ObjCMethodDecl;
class ObjCProtocolDecl;
struct PrintingPolicy;
class RecordDecl;
class SourceManager;
class Stmt;
class StoredDeclsMap;
class TemplateDecl;
class TranslationUnitDecl;
class UsingDirectiveDecl;
/// Captures the result of checking the availability of a
/// declaration.
enum AvailabilityResult {
AR_Available = 0,
AR_NotYetIntroduced,
AR_Deprecated,
AR_Unavailable
};
/// Decl - This represents one declaration (or definition), e.g. a variable,
/// typedef, function, struct, etc.
///
/// Note: There are objects tacked on before the *beginning* of Decl
/// (and its subclasses) in its Decl::operator new(). Proper alignment
/// of all subclasses (not requiring more than the alignment of Decl) is
/// asserted in DeclBase.cpp.
class alignas(8) Decl {
public:
/// Lists the kind of concrete classes of Decl.
enum Kind {
#define DECL(DERIVED, BASE) DERIVED,
#define ABSTRACT_DECL(DECL)
#define DECL_RANGE(BASE, START, END) \
first##BASE = START, last##BASE = END,
#define LAST_DECL_RANGE(BASE, START, END) \
first##BASE = START, last##BASE = END
#include "clang/AST/DeclNodes.inc"
};
/// A placeholder type used to construct an empty shell of a
/// decl-derived type that will be filled in later (e.g., by some
/// deserialization method).
struct EmptyShell {};
/// IdentifierNamespace - The different namespaces in which
/// declarations may appear. According to C99 6.2.3, there are
/// four namespaces, labels, tags, members and ordinary
/// identifiers. C++ describes lookup completely differently:
/// certain lookups merely "ignore" certain kinds of declarations,
/// usually based on whether the declaration is of a type, etc.
///
/// These are meant as bitmasks, so that searches in
/// C++ can look into the "tag" namespace during ordinary lookup.
///
/// Decl currently provides 15 bits of IDNS bits.
enum IdentifierNamespace {
/// Labels, declared with 'x:' and referenced with 'goto x'.
IDNS_Label = 0x0001,
/// Tags, declared with 'struct foo;' and referenced with
/// 'struct foo'. All tags are also types. This is what
/// elaborated-type-specifiers look for in C.
/// This also contains names that conflict with tags in the
/// same scope but that are otherwise ordinary names (non-type
/// template parameters and indirect field declarations).
IDNS_Tag = 0x0002,
/// Types, declared with 'struct foo', typedefs, etc.
/// This is what elaborated-type-specifiers look for in C++,
/// but note that it's ill-formed to find a non-tag.
IDNS_Type = 0x0004,
/// Members, declared with object declarations within tag
/// definitions. In C, these can only be found by "qualified"
/// lookup in member expressions. In C++, they're found by
/// normal lookup.
IDNS_Member = 0x0008,
/// Namespaces, declared with 'namespace foo {}'.
/// Lookup for nested-name-specifiers find these.
IDNS_Namespace = 0x0010,
/// Ordinary names. In C, everything that's not a label, tag,
/// member, or function-local extern ends up here.
IDNS_Ordinary = 0x0020,
/// Objective C \@protocol.
IDNS_ObjCProtocol = 0x0040,
/// This declaration is a friend function. A friend function
/// declaration is always in this namespace but may also be in
/// IDNS_Ordinary if it was previously declared.
IDNS_OrdinaryFriend = 0x0080,
/// This declaration is a friend class. A friend class
/// declaration is always in this namespace but may also be in
/// IDNS_Tag|IDNS_Type if it was previously declared.
IDNS_TagFriend = 0x0100,
/// This declaration is a using declaration. A using declaration
/// *introduces* a number of other declarations into the current
/// scope, and those declarations use the IDNS of their targets,
/// but the actual using declarations go in this namespace.
IDNS_Using = 0x0200,
/// This declaration is a C++ operator declared in a non-class
/// context. All such operators are also in IDNS_Ordinary.
/// C++ lexical operator lookup looks for these.
IDNS_NonMemberOperator = 0x0400,
/// This declaration is a function-local extern declaration of a
/// variable or function. This may also be IDNS_Ordinary if it
/// has been declared outside any function. These act mostly like
/// invisible friend declarations, but are also visible to unqualified
/// lookup within the scope of the declaring function.
IDNS_LocalExtern = 0x0800,
/// This declaration is an OpenMP user defined reduction construction.
- IDNS_OMPReduction = 0x1000
+ IDNS_OMPReduction = 0x1000,
+
+ /// This declaration is an OpenMP user defined mapper.
+ IDNS_OMPMapper = 0x2000,
};
/// ObjCDeclQualifier - 'Qualifiers' written next to the return and
/// parameter types in method declarations. Other than remembering
/// them and mangling them into the method's signature string, these
/// are ignored by the compiler; they are consumed by certain
/// remote-messaging frameworks.
///
/// in, inout, and out are mutually exclusive and apply only to
/// method parameters. bycopy and byref are mutually exclusive and
/// apply only to method parameters (?). oneway applies only to
/// results. All of these expect their corresponding parameter to
/// have a particular type. None of this is currently enforced by
/// clang.
///
/// This should be kept in sync with ObjCDeclSpec::ObjCDeclQualifier.
enum ObjCDeclQualifier {
OBJC_TQ_None = 0x0,
OBJC_TQ_In = 0x1,
OBJC_TQ_Inout = 0x2,
OBJC_TQ_Out = 0x4,
OBJC_TQ_Bycopy = 0x8,
OBJC_TQ_Byref = 0x10,
OBJC_TQ_Oneway = 0x20,
/// The nullability qualifier is set when the nullability of the
/// result or parameter was expressed via a context-sensitive
/// keyword.
OBJC_TQ_CSNullability = 0x40
};
/// The kind of ownership a declaration has, for visibility purposes.
/// This enumeration is designed such that higher values represent higher
/// levels of name hiding.
enum class ModuleOwnershipKind : unsigned {
/// This declaration is not owned by a module.
Unowned,
/// This declaration has an owning module, but is globally visible
/// (typically because its owning module is visible and we know that
/// modules cannot later become hidden in this compilation).
/// After serialization and deserialization, this will be converted
/// to VisibleWhenImported.
Visible,
/// This declaration has an owning module, and is visible when that
/// module is imported.
VisibleWhenImported,
/// This declaration has an owning module, but is only visible to
/// lookups that occur within that module.
ModulePrivate
};
protected:
/// The next declaration within the same lexical
/// DeclContext. These pointers form the linked list that is
/// traversed via DeclContext's decls_begin()/decls_end().
///
/// The extra two bits are used for the ModuleOwnershipKind.
llvm::PointerIntPair<Decl *, 2, ModuleOwnershipKind> NextInContextAndBits;
private:
friend class DeclContext;
struct MultipleDC {
DeclContext *SemanticDC;
DeclContext *LexicalDC;
};
/// DeclCtx - Holds either a DeclContext* or a MultipleDC*.
/// For declarations that don't contain C++ scope specifiers, it contains
/// the DeclContext where the Decl was declared.
/// For declarations with C++ scope specifiers, it contains a MultipleDC*
/// with the context where it semantically belongs (SemanticDC) and the
/// context where it was lexically declared (LexicalDC).
/// e.g.:
///
/// namespace A {
/// void f(); // SemanticDC == LexicalDC == 'namespace A'
/// }
/// void A::f(); // SemanticDC == namespace 'A'
/// // LexicalDC == global namespace
llvm::PointerUnion<DeclContext*, MultipleDC*> DeclCtx;
bool isInSemaDC() const { return DeclCtx.is<DeclContext*>(); }
bool isOutOfSemaDC() const { return DeclCtx.is<MultipleDC*>(); }
MultipleDC *getMultipleDC() const {
return DeclCtx.get<MultipleDC*>();
}
DeclContext *getSemanticDC() const {
return DeclCtx.get<DeclContext*>();
}
/// Loc - The location of this decl.
SourceLocation Loc;
/// DeclKind - This indicates which class this is.
unsigned DeclKind : 7;
/// InvalidDecl - This indicates a semantic error occurred.
unsigned InvalidDecl : 1;
/// HasAttrs - This indicates whether the decl has attributes or not.
unsigned HasAttrs : 1;
/// Implicit - Whether this declaration was implicitly generated by
/// the implementation rather than explicitly written by the user.
unsigned Implicit : 1;
/// Whether this declaration was "used", meaning that a definition is
/// required.
unsigned Used : 1;
/// Whether this declaration was "referenced".
/// The difference with 'Used' is whether the reference appears in a
/// evaluated context or not, e.g. functions used in uninstantiated templates
/// are regarded as "referenced" but not "used".
unsigned Referenced : 1;
/// Whether this declaration is a top-level declaration (function,
/// global variable, etc.) that is lexically inside an objc container
/// definition.
unsigned TopLevelDeclInObjCContainer : 1;
/// Whether statistic collection is enabled.
static bool StatisticsEnabled;
protected:
friend class ASTDeclReader;
friend class ASTDeclWriter;
friend class ASTNodeImporter;
friend class ASTReader;
friend class CXXClassMemberWrapper;
friend class LinkageComputer;
template<typename decl_type> friend class Redeclarable;
/// Access - Used by C++ decls for the access specifier.
// NOTE: VC++ treats enums as signed, avoid using the AccessSpecifier enum
unsigned Access : 2;
/// Whether this declaration was loaded from an AST file.
unsigned FromASTFile : 1;
/// IdentifierNamespace - This specifies what IDNS_* namespace this lives in.
- unsigned IdentifierNamespace : 13;
+ unsigned IdentifierNamespace : 14;
/// If 0, we have not computed the linkage of this declaration.
/// Otherwise, it is the linkage + 1.
mutable unsigned CacheValidAndLinkage : 3;
/// Allocate memory for a deserialized declaration.
///
/// This routine must be used to allocate memory for any declaration that is
/// deserialized from a module file.
///
/// \param Size The size of the allocated object.
/// \param Ctx The context in which we will allocate memory.
/// \param ID The global ID of the deserialized declaration.
/// \param Extra The amount of extra space to allocate after the object.
void *operator new(std::size_t Size, const ASTContext &Ctx, unsigned ID,
std::size_t Extra = 0);
/// Allocate memory for a non-deserialized declaration.
void *operator new(std::size_t Size, const ASTContext &Ctx,
DeclContext *Parent, std::size_t Extra = 0);
private:
bool AccessDeclContextSanity() const;
/// Get the module ownership kind to use for a local lexical child of \p DC,
/// which may be either a local or (rarely) an imported declaration.
static ModuleOwnershipKind getModuleOwnershipKindForChildOf(DeclContext *DC) {
if (DC) {
auto *D = cast<Decl>(DC);
auto MOK = D->getModuleOwnershipKind();
if (MOK != ModuleOwnershipKind::Unowned &&
(!D->isFromASTFile() || D->hasLocalOwningModuleStorage()))
return MOK;
// If D is not local and we have no local module storage, then we don't
// need to track module ownership at all.
}
return ModuleOwnershipKind::Unowned;
}
protected:
Decl(Kind DK, DeclContext *DC, SourceLocation L)
: NextInContextAndBits(nullptr, getModuleOwnershipKindForChildOf(DC)),
DeclCtx(DC), Loc(L), DeclKind(DK), InvalidDecl(false), HasAttrs(false),
Implicit(false), Used(false), Referenced(false),
TopLevelDeclInObjCContainer(false), Access(AS_none), FromASTFile(0),
IdentifierNamespace(getIdentifierNamespaceForKind(DK)),
CacheValidAndLinkage(0) {
if (StatisticsEnabled) add(DK);
}
Decl(Kind DK, EmptyShell Empty)
: DeclKind(DK), InvalidDecl(false), HasAttrs(false), Implicit(false),
Used(false), Referenced(false), TopLevelDeclInObjCContainer(false),
Access(AS_none), FromASTFile(0),
IdentifierNamespace(getIdentifierNamespaceForKind(DK)),
CacheValidAndLinkage(0) {
if (StatisticsEnabled) add(DK);
}
virtual ~Decl();
/// Update a potentially out-of-date declaration.
void updateOutOfDate(IdentifierInfo &II) const;
Linkage getCachedLinkage() const {
return Linkage(CacheValidAndLinkage - 1);
}
void setCachedLinkage(Linkage L) const {
CacheValidAndLinkage = L + 1;
}
bool hasCachedLinkage() const {
return CacheValidAndLinkage;
}
public:
/// Source range that this declaration covers.
virtual SourceRange getSourceRange() const LLVM_READONLY {
return SourceRange(getLocation(), getLocation());
}
SourceLocation getBeginLoc() const LLVM_READONLY {
return getSourceRange().getBegin();
}
SourceLocation getEndLoc() const LLVM_READONLY {
return getSourceRange().getEnd();
}
SourceLocation getLocation() const { return Loc; }
void setLocation(SourceLocation L) { Loc = L; }
Kind getKind() const { return static_cast<Kind>(DeclKind); }
const char *getDeclKindName() const;
Decl *getNextDeclInContext() { return NextInContextAndBits.getPointer(); }
const Decl *getNextDeclInContext() const {return NextInContextAndBits.getPointer();}
DeclContext *getDeclContext() {
if (isInSemaDC())
return getSemanticDC();
return getMultipleDC()->SemanticDC;
}
const DeclContext *getDeclContext() const {
return const_cast<Decl*>(this)->getDeclContext();
}
/// Find the innermost non-closure ancestor of this declaration,
/// walking up through blocks, lambdas, etc. If that ancestor is
/// not a code context (!isFunctionOrMethod()), returns null.
///
/// A declaration may be its own non-closure context.
Decl *getNonClosureContext();
const Decl *getNonClosureContext() const {
return const_cast<Decl*>(this)->getNonClosureContext();
}
TranslationUnitDecl *getTranslationUnitDecl();
const TranslationUnitDecl *getTranslationUnitDecl() const {
return const_cast<Decl*>(this)->getTranslationUnitDecl();
}
bool isInAnonymousNamespace() const;
bool isInStdNamespace() const;
ASTContext &getASTContext() const LLVM_READONLY;
void setAccess(AccessSpecifier AS) {
Access = AS;
assert(AccessDeclContextSanity());
}
AccessSpecifier getAccess() const {
assert(AccessDeclContextSanity());
return AccessSpecifier(Access);
}
/// Retrieve the access specifier for this declaration, even though
/// it may not yet have been properly set.
AccessSpecifier getAccessUnsafe() const {
return AccessSpecifier(Access);
}
bool hasAttrs() const { return HasAttrs; }
void setAttrs(const AttrVec& Attrs) {
return setAttrsImpl(Attrs, getASTContext());
}
AttrVec &getAttrs() {
return const_cast<AttrVec&>(const_cast<const Decl*>(this)->getAttrs());
}
const AttrVec &getAttrs() const;
void dropAttrs();
void addAttr(Attr *A);
using attr_iterator = AttrVec::const_iterator;
using attr_range = llvm::iterator_range<attr_iterator>;
attr_range attrs() const {
return attr_range(attr_begin(), attr_end());
}
attr_iterator attr_begin() const {
return hasAttrs() ? getAttrs().begin() : nullptr;
}
attr_iterator attr_end() const {
return hasAttrs() ? getAttrs().end() : nullptr;
}
template <typename T>
void dropAttr() {
if (!HasAttrs) return;
AttrVec &Vec = getAttrs();
Vec.erase(std::remove_if(Vec.begin(), Vec.end(), isa<T, Attr*>), Vec.end());
if (Vec.empty())
HasAttrs = false;
}
template <typename T>
llvm::iterator_range<specific_attr_iterator<T>> specific_attrs() const {
return llvm::make_range(specific_attr_begin<T>(), specific_attr_end<T>());
}
template <typename T>
specific_attr_iterator<T> specific_attr_begin() const {
return specific_attr_iterator<T>(attr_begin());
}
template <typename T>
specific_attr_iterator<T> specific_attr_end() const {
return specific_attr_iterator<T>(attr_end());
}
template<typename T> T *getAttr() const {
return hasAttrs() ? getSpecificAttr<T>(getAttrs()) : nullptr;
}
template<typename T> bool hasAttr() const {
return hasAttrs() && hasSpecificAttr<T>(getAttrs());
}
/// getMaxAlignment - return the maximum alignment specified by attributes
/// on this decl, 0 if there are none.
unsigned getMaxAlignment() const;
/// setInvalidDecl - Indicates the Decl had a semantic error. This
/// allows for graceful error recovery.
void setInvalidDecl(bool Invalid = true);
bool isInvalidDecl() const { return (bool) InvalidDecl; }
/// isImplicit - Indicates whether the declaration was implicitly
/// generated by the implementation. If false, this declaration
/// was written explicitly in the source code.
bool isImplicit() const { return Implicit; }
void setImplicit(bool I = true) { Implicit = I; }
/// Whether *any* (re-)declaration of the entity was used, meaning that
/// a definition is required.
///
/// \param CheckUsedAttr When true, also consider the "used" attribute
/// (in addition to the "used" bit set by \c setUsed()) when determining
/// whether the function is used.
bool isUsed(bool CheckUsedAttr = true) const;
/// Set whether the declaration is used, in the sense of odr-use.
///
/// This should only be used immediately after creating a declaration.
/// It intentionally doesn't notify any listeners.
void setIsUsed() { getCanonicalDecl()->Used = true; }
/// Mark the declaration used, in the sense of odr-use.
///
/// This notifies any mutation listeners in addition to setting a bit
/// indicating the declaration is used.
void markUsed(ASTContext &C);
/// Whether any declaration of this entity was referenced.
bool isReferenced() const;
/// Whether this declaration was referenced. This should not be relied
/// upon for anything other than debugging.
bool isThisDeclarationReferenced() const { return Referenced; }
void setReferenced(bool R = true) { Referenced = R; }
/// Whether this declaration is a top-level declaration (function,
/// global variable, etc.) that is lexically inside an objc container
/// definition.
bool isTopLevelDeclInObjCContainer() const {
return TopLevelDeclInObjCContainer;
}
void setTopLevelDeclInObjCContainer(bool V = true) {
TopLevelDeclInObjCContainer = V;
}
/// Looks on this and related declarations for an applicable
/// external source symbol attribute.
ExternalSourceSymbolAttr *getExternalSourceSymbolAttr() const;
/// Whether this declaration was marked as being private to the
/// module in which it was defined.
bool isModulePrivate() const {
return getModuleOwnershipKind() == ModuleOwnershipKind::ModulePrivate;
}
/// Whether this declaration is exported (by virtue of being lexically
/// within an ExportDecl or by being a NamespaceDecl).
bool isExported() const;
/// Return true if this declaration has an attribute which acts as
/// definition of the entity, such as 'alias' or 'ifunc'.
bool hasDefiningAttr() const;
/// Return this declaration's defining attribute if it has one.
const Attr *getDefiningAttr() const;
protected:
/// Specify that this declaration was marked as being private
/// to the module in which it was defined.
void setModulePrivate() {
// The module-private specifier has no effect on unowned declarations.
// FIXME: We should track this in some way for source fidelity.
if (getModuleOwnershipKind() == ModuleOwnershipKind::Unowned)
return;
setModuleOwnershipKind(ModuleOwnershipKind::ModulePrivate);
}
/// Set the owning module ID.
void setOwningModuleID(unsigned ID) {
assert(isFromASTFile() && "Only works on a deserialized declaration");
*((unsigned*)this - 2) = ID;
}
public:
/// Determine the availability of the given declaration.
///
/// This routine will determine the most restrictive availability of
/// the given declaration (e.g., preferring 'unavailable' to
/// 'deprecated').
///
/// \param Message If non-NULL and the result is not \c
/// AR_Available, will be set to a (possibly empty) message
/// describing why the declaration has not been introduced, is
/// deprecated, or is unavailable.
///
/// \param EnclosingVersion The version to compare with. If empty, assume the
/// deployment target version.
///
/// \param RealizedPlatform If non-NULL and the availability result is found
/// in an available attribute it will set to the platform which is written in
/// the available attribute.
AvailabilityResult
getAvailability(std::string *Message = nullptr,
VersionTuple EnclosingVersion = VersionTuple(),
StringRef *RealizedPlatform = nullptr) const;
/// Retrieve the version of the target platform in which this
/// declaration was introduced.
///
/// \returns An empty version tuple if this declaration has no 'introduced'
/// availability attributes, or the version tuple that's specified in the
/// attribute otherwise.
VersionTuple getVersionIntroduced() const;
/// Determine whether this declaration is marked 'deprecated'.
///
/// \param Message If non-NULL and the declaration is deprecated,
/// this will be set to the message describing why the declaration
/// was deprecated (which may be empty).
bool isDeprecated(std::string *Message = nullptr) const {
return getAvailability(Message) == AR_Deprecated;
}
/// Determine whether this declaration is marked 'unavailable'.
///
/// \param Message If non-NULL and the declaration is unavailable,
/// this will be set to the message describing why the declaration
/// was made unavailable (which may be empty).
bool isUnavailable(std::string *Message = nullptr) const {
return getAvailability(Message) == AR_Unavailable;
}
/// Determine whether this is a weak-imported symbol.
///
/// Weak-imported symbols are typically marked with the
/// 'weak_import' attribute, but may also be marked with an
/// 'availability' attribute where we're targing a platform prior to
/// the introduction of this feature.
bool isWeakImported() const;
/// Determines whether this symbol can be weak-imported,
/// e.g., whether it would be well-formed to add the weak_import
/// attribute.
///
/// \param IsDefinition Set to \c true to indicate that this
/// declaration cannot be weak-imported because it has a definition.
bool canBeWeakImported(bool &IsDefinition) const;
/// Determine whether this declaration came from an AST file (such as
/// a precompiled header or module) rather than having been parsed.
bool isFromASTFile() const { return FromASTFile; }
/// Retrieve the global declaration ID associated with this
/// declaration, which specifies where this Decl was loaded from.
unsigned getGlobalID() const {
if (isFromASTFile())
return *((const unsigned*)this - 1);
return 0;
}
/// Retrieve the global ID of the module that owns this particular
/// declaration.
unsigned getOwningModuleID() const {
if (isFromASTFile())
return *((const unsigned*)this - 2);
return 0;
}
private:
Module *getOwningModuleSlow() const;
protected:
bool hasLocalOwningModuleStorage() const;
public:
/// Get the imported owning module, if this decl is from an imported
/// (non-local) module.
Module *getImportedOwningModule() const {
if (!isFromASTFile() || !hasOwningModule())
return nullptr;
return getOwningModuleSlow();
}
/// Get the local owning module, if known. Returns nullptr if owner is
/// not yet known or declaration is not from a module.
Module *getLocalOwningModule() const {
if (isFromASTFile() || !hasOwningModule())
return nullptr;
assert(hasLocalOwningModuleStorage() &&
"owned local decl but no local module storage");
return reinterpret_cast<Module *const *>(this)[-1];
}
void setLocalOwningModule(Module *M) {
assert(!isFromASTFile() && hasOwningModule() &&
hasLocalOwningModuleStorage() &&
"should not have a cached owning module");
reinterpret_cast<Module **>(this)[-1] = M;
}
/// Is this declaration owned by some module?
bool hasOwningModule() const {
return getModuleOwnershipKind() != ModuleOwnershipKind::Unowned;
}
/// Get the module that owns this declaration (for visibility purposes).
Module *getOwningModule() const {
return isFromASTFile() ? getImportedOwningModule() : getLocalOwningModule();
}
/// Get the module that owns this declaration for linkage purposes.
/// There only ever is such a module under the C++ Modules TS.
///
/// \param IgnoreLinkage Ignore the linkage of the entity; assume that
/// all declarations in a global module fragment are unowned.
Module *getOwningModuleForLinkage(bool IgnoreLinkage = false) const;
/// Determine whether this declaration might be hidden from name
/// lookup. Note that the declaration might be visible even if this returns
/// \c false, if the owning module is visible within the query context.
// FIXME: Rename this to make it clearer what it does.
bool isHidden() const {
return (int)getModuleOwnershipKind() > (int)ModuleOwnershipKind::Visible;
}
/// Set that this declaration is globally visible, even if it came from a
/// module that is not visible.
void setVisibleDespiteOwningModule() {
if (isHidden())
setModuleOwnershipKind(ModuleOwnershipKind::Visible);
}
/// Get the kind of module ownership for this declaration.
ModuleOwnershipKind getModuleOwnershipKind() const {
return NextInContextAndBits.getInt();
}
/// Set whether this declaration is hidden from name lookup.
void setModuleOwnershipKind(ModuleOwnershipKind MOK) {
assert(!(getModuleOwnershipKind() == ModuleOwnershipKind::Unowned &&
MOK != ModuleOwnershipKind::Unowned && !isFromASTFile() &&
!hasLocalOwningModuleStorage()) &&
"no storage available for owning module for this declaration");
NextInContextAndBits.setInt(MOK);
}
unsigned getIdentifierNamespace() const {
return IdentifierNamespace;
}
bool isInIdentifierNamespace(unsigned NS) const {
return getIdentifierNamespace() & NS;
}
static unsigned getIdentifierNamespaceForKind(Kind DK);
bool hasTagIdentifierNamespace() const {
return isTagIdentifierNamespace(getIdentifierNamespace());
}
static bool isTagIdentifierNamespace(unsigned NS) {
// TagDecls have Tag and Type set and may also have TagFriend.
return (NS & ~IDNS_TagFriend) == (IDNS_Tag | IDNS_Type);
}
/// getLexicalDeclContext - The declaration context where this Decl was
/// lexically declared (LexicalDC). May be different from
/// getDeclContext() (SemanticDC).
/// e.g.:
///
/// namespace A {
/// void f(); // SemanticDC == LexicalDC == 'namespace A'
/// }
/// void A::f(); // SemanticDC == namespace 'A'
/// // LexicalDC == global namespace
DeclContext *getLexicalDeclContext() {
if (isInSemaDC())
return getSemanticDC();
return getMultipleDC()->LexicalDC;
}
const DeclContext *getLexicalDeclContext() const {
return const_cast<Decl*>(this)->getLexicalDeclContext();
}
/// Determine whether this declaration is declared out of line (outside its
/// semantic context).
virtual bool isOutOfLine() const;
/// setDeclContext - Set both the semantic and lexical DeclContext
/// to DC.
void setDeclContext(DeclContext *DC);
void setLexicalDeclContext(DeclContext *DC);
/// Determine whether this declaration is a templated entity (whether it is
// within the scope of a template parameter).
bool isTemplated() const;
/// isDefinedOutsideFunctionOrMethod - This predicate returns true if this
/// scoped decl is defined outside the current function or method. This is
/// roughly global variables and functions, but also handles enums (which
/// could be defined inside or outside a function etc).
bool isDefinedOutsideFunctionOrMethod() const {
return getParentFunctionOrMethod() == nullptr;
}
/// Returns true if this declaration lexically is inside a function.
/// It recognizes non-defining declarations as well as members of local
/// classes:
/// \code
/// void foo() { void bar(); }
/// void foo2() { class ABC { void bar(); }; }
/// \endcode
bool isLexicallyWithinFunctionOrMethod() const;
/// If this decl is defined inside a function/method/block it returns
/// the corresponding DeclContext, otherwise it returns null.
const DeclContext *getParentFunctionOrMethod() const;
DeclContext *getParentFunctionOrMethod() {
return const_cast<DeclContext*>(
const_cast<const Decl*>(this)->getParentFunctionOrMethod());
}
/// Retrieves the "canonical" declaration of the given declaration.
virtual Decl *getCanonicalDecl() { return this; }
const Decl *getCanonicalDecl() const {
return const_cast<Decl*>(this)->getCanonicalDecl();
}
/// Whether this particular Decl is a canonical one.
bool isCanonicalDecl() const { return getCanonicalDecl() == this; }
protected:
/// Returns the next redeclaration or itself if this is the only decl.
///
/// Decl subclasses that can be redeclared should override this method so that
/// Decl::redecl_iterator can iterate over them.
virtual Decl *getNextRedeclarationImpl() { return this; }
/// Implementation of getPreviousDecl(), to be overridden by any
/// subclass that has a redeclaration chain.
virtual Decl *getPreviousDeclImpl() { return nullptr; }
/// Implementation of getMostRecentDecl(), to be overridden by any
/// subclass that has a redeclaration chain.
virtual Decl *getMostRecentDeclImpl() { return this; }
public:
/// Iterates through all the redeclarations of the same decl.
class redecl_iterator {
/// Current - The current declaration.
Decl *Current = nullptr;
Decl *Starter;
public:
using value_type = Decl *;
using reference = const value_type &;
using pointer = const value_type *;
using iterator_category = std::forward_iterator_tag;
using difference_type = std::ptrdiff_t;
redecl_iterator() = default;
explicit redecl_iterator(Decl *C) : Current(C), Starter(C) {}
reference operator*() const { return Current; }
value_type operator->() const { return Current; }
redecl_iterator& operator++() {
assert(Current && "Advancing while iterator has reached end");
// Get either previous decl or latest decl.
Decl *Next = Current->getNextRedeclarationImpl();
assert(Next && "Should return next redeclaration or itself, never null!");
Current = (Next != Starter) ? Next : nullptr;
return *this;
}
redecl_iterator operator++(int) {
redecl_iterator tmp(*this);
++(*this);
return tmp;
}
friend bool operator==(redecl_iterator x, redecl_iterator y) {
return x.Current == y.Current;
}
friend bool operator!=(redecl_iterator x, redecl_iterator y) {
return x.Current != y.Current;
}
};
using redecl_range = llvm::iterator_range<redecl_iterator>;
/// Returns an iterator range for all the redeclarations of the same
/// decl. It will iterate at least once (when this decl is the only one).
redecl_range redecls() const {
return redecl_range(redecls_begin(), redecls_end());
}
redecl_iterator redecls_begin() const {
return redecl_iterator(const_cast<Decl *>(this));
}
redecl_iterator redecls_end() const { return redecl_iterator(); }
/// Retrieve the previous declaration that declares the same entity
/// as this declaration, or NULL if there is no previous declaration.
Decl *getPreviousDecl() { return getPreviousDeclImpl(); }
/// Retrieve the most recent declaration that declares the same entity
/// as this declaration, or NULL if there is no previous declaration.
const Decl *getPreviousDecl() const {
return const_cast<Decl *>(this)->getPreviousDeclImpl();
}
/// True if this is the first declaration in its redeclaration chain.
bool isFirstDecl() const {
return getPreviousDecl() == nullptr;
}
/// Retrieve the most recent declaration that declares the same entity
/// as this declaration (which may be this declaration).
Decl *getMostRecentDecl() { return getMostRecentDeclImpl(); }
/// Retrieve the most recent declaration that declares the same entity
/// as this declaration (which may be this declaration).
const Decl *getMostRecentDecl() const {
return const_cast<Decl *>(this)->getMostRecentDeclImpl();
}
/// getBody - If this Decl represents a declaration for a body of code,
/// such as a function or method definition, this method returns the
/// top-level Stmt* of that body. Otherwise this method returns null.
virtual Stmt* getBody() const { return nullptr; }
/// Returns true if this \c Decl represents a declaration for a body of
/// code, such as a function or method definition.
/// Note that \c hasBody can also return true if any redeclaration of this
/// \c Decl represents a declaration for a body of code.
virtual bool hasBody() const { return getBody() != nullptr; }
/// getBodyRBrace - Gets the right brace of the body, if a body exists.
/// This works whether the body is a CompoundStmt or a CXXTryStmt.
SourceLocation getBodyRBrace() const;
// global temp stats (until we have a per-module visitor)
static void add(Kind k);
static void EnableStatistics();
static void PrintStats();
/// isTemplateParameter - Determines whether this declaration is a
/// template parameter.
bool isTemplateParameter() const;
/// isTemplateParameter - Determines whether this declaration is a
/// template parameter pack.
bool isTemplateParameterPack() const;
/// Whether this declaration is a parameter pack.
bool isParameterPack() const;
/// returns true if this declaration is a template
bool isTemplateDecl() const;
/// Whether this declaration is a function or function template.
bool isFunctionOrFunctionTemplate() const {
return (DeclKind >= Decl::firstFunction &&
DeclKind <= Decl::lastFunction) ||
DeclKind == FunctionTemplate;
}
/// If this is a declaration that describes some template, this
/// method returns that template declaration.
TemplateDecl *getDescribedTemplate() const;
/// Returns the function itself, or the templated function if this is a
/// function template.
FunctionDecl *getAsFunction() LLVM_READONLY;
const FunctionDecl *getAsFunction() const {
return const_cast<Decl *>(this)->getAsFunction();
}
/// Changes the namespace of this declaration to reflect that it's
/// a function-local extern declaration.
///
/// These declarations appear in the lexical context of the extern
/// declaration, but in the semantic context of the enclosing namespace
/// scope.
void setLocalExternDecl() {
Decl *Prev = getPreviousDecl();
IdentifierNamespace &= ~IDNS_Ordinary;
// It's OK for the declaration to still have the "invisible friend" flag or
// the "conflicts with tag declarations in this scope" flag for the outer
// scope.
assert((IdentifierNamespace & ~(IDNS_OrdinaryFriend | IDNS_Tag)) == 0 &&
"namespace is not ordinary");
IdentifierNamespace |= IDNS_LocalExtern;
if (Prev && Prev->getIdentifierNamespace() & IDNS_Ordinary)
IdentifierNamespace |= IDNS_Ordinary;
}
/// Determine whether this is a block-scope declaration with linkage.
/// This will either be a local variable declaration declared 'extern', or a
/// local function declaration.
bool isLocalExternDecl() {
return IdentifierNamespace & IDNS_LocalExtern;
}
/// Changes the namespace of this declaration to reflect that it's
/// the object of a friend declaration.
///
/// These declarations appear in the lexical context of the friending
/// class, but in the semantic context of the actual entity. This property
/// applies only to a specific decl object; other redeclarations of the
/// same entity may not (and probably don't) share this property.
void setObjectOfFriendDecl(bool PerformFriendInjection = false) {
unsigned OldNS = IdentifierNamespace;
assert((OldNS & (IDNS_Tag | IDNS_Ordinary |
IDNS_TagFriend | IDNS_OrdinaryFriend |
IDNS_LocalExtern | IDNS_NonMemberOperator)) &&
"namespace includes neither ordinary nor tag");
assert(!(OldNS & ~(IDNS_Tag | IDNS_Ordinary | IDNS_Type |
IDNS_TagFriend | IDNS_OrdinaryFriend |
IDNS_LocalExtern | IDNS_NonMemberOperator)) &&
"namespace includes other than ordinary or tag");
Decl *Prev = getPreviousDecl();
IdentifierNamespace &= ~(IDNS_Ordinary | IDNS_Tag | IDNS_Type);
if (OldNS & (IDNS_Tag | IDNS_TagFriend)) {
IdentifierNamespace |= IDNS_TagFriend;
if (PerformFriendInjection ||
(Prev && Prev->getIdentifierNamespace() & IDNS_Tag))
IdentifierNamespace |= IDNS_Tag | IDNS_Type;
}
if (OldNS & (IDNS_Ordinary | IDNS_OrdinaryFriend |
IDNS_LocalExtern | IDNS_NonMemberOperator)) {
IdentifierNamespace |= IDNS_OrdinaryFriend;
if (PerformFriendInjection ||
(Prev && Prev->getIdentifierNamespace() & IDNS_Ordinary))
IdentifierNamespace |= IDNS_Ordinary;
}
}
enum FriendObjectKind {
FOK_None, ///< Not a friend object.
FOK_Declared, ///< A friend of a previously-declared entity.
FOK_Undeclared ///< A friend of a previously-undeclared entity.
};
/// Determines whether this declaration is the object of a
/// friend declaration and, if so, what kind.
///
/// There is currently no direct way to find the associated FriendDecl.
FriendObjectKind getFriendObjectKind() const {
unsigned mask =
(IdentifierNamespace & (IDNS_TagFriend | IDNS_OrdinaryFriend));
if (!mask) return FOK_None;
return (IdentifierNamespace & (IDNS_Tag | IDNS_Ordinary) ? FOK_Declared
: FOK_Undeclared);
}
/// Specifies that this declaration is a C++ overloaded non-member.
void setNonMemberOperator() {
assert(getKind() == Function || getKind() == FunctionTemplate);
assert((IdentifierNamespace & IDNS_Ordinary) &&
"visible non-member operators should be in ordinary namespace");
IdentifierNamespace |= IDNS_NonMemberOperator;
}
static bool classofKind(Kind K) { return true; }
static DeclContext *castToDeclContext(const Decl *);
static Decl *castFromDeclContext(const DeclContext *);
void print(raw_ostream &Out, unsigned Indentation = 0,
bool PrintInstantiation = false) const;
void print(raw_ostream &Out, const PrintingPolicy &Policy,
unsigned Indentation = 0, bool PrintInstantiation = false) const;
static void printGroup(Decl** Begin, unsigned NumDecls,
raw_ostream &Out, const PrintingPolicy &Policy,
unsigned Indentation = 0);
// Debuggers don't usually respect default arguments.
void dump() const;
// Same as dump(), but forces color printing.
void dumpColor() const;
void dump(raw_ostream &Out, bool Deserialize = false) const;
/// \return Unique reproducible object identifier
int64_t getID() const;
/// Looks through the Decl's underlying type to extract a FunctionType
/// when possible. Will return null if the type underlying the Decl does not
/// have a FunctionType.
const FunctionType *getFunctionType(bool BlocksToo = true) const;
private:
void setAttrsImpl(const AttrVec& Attrs, ASTContext &Ctx);
void setDeclContextsImpl(DeclContext *SemaDC, DeclContext *LexicalDC,
ASTContext &Ctx);
protected:
ASTMutationListener *getASTMutationListener() const;
};
/// Determine whether two declarations declare the same entity.
inline bool declaresSameEntity(const Decl *D1, const Decl *D2) {
if (!D1 || !D2)
return false;
if (D1 == D2)
return true;
return D1->getCanonicalDecl() == D2->getCanonicalDecl();
}
/// PrettyStackTraceDecl - If a crash occurs, indicate that it happened when
/// doing something to a specific decl.
class PrettyStackTraceDecl : public llvm::PrettyStackTraceEntry {
const Decl *TheDecl;
SourceLocation Loc;
SourceManager &SM;
const char *Message;
public:
PrettyStackTraceDecl(const Decl *theDecl, SourceLocation L,
SourceManager &sm, const char *Msg)
: TheDecl(theDecl), Loc(L), SM(sm), Message(Msg) {}
void print(raw_ostream &OS) const override;
};
/// The results of name lookup within a DeclContext. This is either a
/// single result (with no stable storage) or a collection of results (with
/// stable storage provided by the lookup table).
class DeclContextLookupResult {
using ResultTy = ArrayRef<NamedDecl *>;
ResultTy Result;
// If there is only one lookup result, it would be invalidated by
// reallocations of the name table, so store it separately.
NamedDecl *Single = nullptr;
static NamedDecl *const SingleElementDummyList;
public:
DeclContextLookupResult() = default;
DeclContextLookupResult(ArrayRef<NamedDecl *> Result)
: Result(Result) {}
DeclContextLookupResult(NamedDecl *Single)
: Result(SingleElementDummyList), Single(Single) {}
class iterator;
using IteratorBase =
llvm::iterator_adaptor_base<iterator, ResultTy::iterator,
std::random_access_iterator_tag,
NamedDecl *const>;
class iterator : public IteratorBase {
value_type SingleElement;
public:
explicit iterator(pointer Pos, value_type Single = nullptr)
: IteratorBase(Pos), SingleElement(Single) {}
reference operator*() const {
return SingleElement ? SingleElement : IteratorBase::operator*();
}
};
using const_iterator = iterator;
using pointer = iterator::pointer;
using reference = iterator::reference;
iterator begin() const { return iterator(Result.begin(), Single); }
iterator end() const { return iterator(Result.end(), Single); }
bool empty() const { return Result.empty(); }
pointer data() const { return Single ? &Single : Result.data(); }
size_t size() const { return Single ? 1 : Result.size(); }
reference front() const { return Single ? Single : Result.front(); }
reference back() const { return Single ? Single : Result.back(); }
reference operator[](size_t N) const { return Single ? Single : Result[N]; }
// FIXME: Remove this from the interface
DeclContextLookupResult slice(size_t N) const {
DeclContextLookupResult Sliced = Result.slice(N);
Sliced.Single = Single;
return Sliced;
}
};
/// DeclContext - This is used only as base class of specific decl types that
/// can act as declaration contexts. These decls are (only the top classes
/// that directly derive from DeclContext are mentioned, not their subclasses):
///
/// TranslationUnitDecl
/// ExternCContext
/// NamespaceDecl
/// TagDecl
/// OMPDeclareReductionDecl
+/// OMPDeclareMapperDecl
/// FunctionDecl
/// ObjCMethodDecl
/// ObjCContainerDecl
/// LinkageSpecDecl
/// ExportDecl
/// BlockDecl
/// CapturedDecl
class DeclContext {
/// For makeDeclVisibleInContextImpl
friend class ASTDeclReader;
/// For reconcileExternalVisibleStorage, CreateStoredDeclsMap,
/// hasNeedToReconcileExternalVisibleStorage
friend class ExternalASTSource;
/// For CreateStoredDeclsMap
friend class DependentDiagnostic;
/// For hasNeedToReconcileExternalVisibleStorage,
/// hasLazyLocalLexicalLookups, hasLazyExternalLexicalLookups
friend class ASTWriter;
// We use uint64_t in the bit-fields below since some bit-fields
// cross the unsigned boundary and this breaks the packing.
/// Stores the bits used by DeclContext.
/// If modified NumDeclContextBit, the ctor of DeclContext and the accessor
/// methods in DeclContext should be updated appropriately.
class DeclContextBitfields {
friend class DeclContext;
/// DeclKind - This indicates which class this is.
uint64_t DeclKind : 7;
/// Whether this declaration context also has some external
/// storage that contains additional declarations that are lexically
/// part of this context.
mutable uint64_t ExternalLexicalStorage : 1;
/// Whether this declaration context also has some external
/// storage that contains additional declarations that are visible
/// in this context.
mutable uint64_t ExternalVisibleStorage : 1;
/// Whether this declaration context has had externally visible
/// storage added since the last lookup. In this case, \c LookupPtr's
/// invariant may not hold and needs to be fixed before we perform
/// another lookup.
mutable uint64_t NeedToReconcileExternalVisibleStorage : 1;
/// If \c true, this context may have local lexical declarations
/// that are missing from the lookup table.
mutable uint64_t HasLazyLocalLexicalLookups : 1;
/// If \c true, the external source may have lexical declarations
/// that are missing from the lookup table.
mutable uint64_t HasLazyExternalLexicalLookups : 1;
/// If \c true, lookups should only return identifier from
/// DeclContext scope (for example TranslationUnit). Used in
/// LookupQualifiedName()
mutable uint64_t UseQualifiedLookup : 1;
};
/// Number of bits in DeclContextBitfields.
enum { NumDeclContextBits = 13 };
/// Stores the bits used by TagDecl.
/// If modified NumTagDeclBits and the accessor
/// methods in TagDecl should be updated appropriately.
class TagDeclBitfields {
friend class TagDecl;
/// For the bits in DeclContextBitfields
uint64_t : NumDeclContextBits;
/// The TagKind enum.
uint64_t TagDeclKind : 3;
/// True if this is a definition ("struct foo {};"), false if it is a
/// declaration ("struct foo;"). It is not considered a definition
/// until the definition has been fully processed.
uint64_t IsCompleteDefinition : 1;
/// True if this is currently being defined.
uint64_t IsBeingDefined : 1;
/// True if this tag declaration is "embedded" (i.e., defined or declared
/// for the very first time) in the syntax of a declarator.
uint64_t IsEmbeddedInDeclarator : 1;
/// True if this tag is free standing, e.g. "struct foo;".
uint64_t IsFreeStanding : 1;
/// Indicates whether it is possible for declarations of this kind
/// to have an out-of-date definition.
///
/// This option is only enabled when modules are enabled.
uint64_t MayHaveOutOfDateDef : 1;
/// Has the full definition of this type been required by a use somewhere in
/// the TU.
uint64_t IsCompleteDefinitionRequired : 1;
};
/// Number of non-inherited bits in TagDeclBitfields.
enum { NumTagDeclBits = 9 };
/// Stores the bits used by EnumDecl.
/// If modified NumEnumDeclBit and the accessor
/// methods in EnumDecl should be updated appropriately.
class EnumDeclBitfields {
friend class EnumDecl;
/// For the bits in DeclContextBitfields.
uint64_t : NumDeclContextBits;
/// For the bits in TagDeclBitfields.
uint64_t : NumTagDeclBits;
/// Width in bits required to store all the non-negative
/// enumerators of this enum.
uint64_t NumPositiveBits : 8;
/// Width in bits required to store all the negative
/// enumerators of this enum.
uint64_t NumNegativeBits : 8;
/// True if this tag declaration is a scoped enumeration. Only
/// possible in C++11 mode.
uint64_t IsScoped : 1;
/// If this tag declaration is a scoped enum,
/// then this is true if the scoped enum was declared using the class
/// tag, false if it was declared with the struct tag. No meaning is
/// associated if this tag declaration is not a scoped enum.
uint64_t IsScopedUsingClassTag : 1;
/// True if this is an enumeration with fixed underlying type. Only
/// possible in C++11, Microsoft extensions, or Objective C mode.
uint64_t IsFixed : 1;
/// True if a valid hash is stored in ODRHash.
uint64_t HasODRHash : 1;
};
/// Number of non-inherited bits in EnumDeclBitfields.
enum { NumEnumDeclBits = 20 };
/// Stores the bits used by RecordDecl.
/// If modified NumRecordDeclBits and the accessor
/// methods in RecordDecl should be updated appropriately.
class RecordDeclBitfields {
friend class RecordDecl;
/// For the bits in DeclContextBitfields.
uint64_t : NumDeclContextBits;
/// For the bits in TagDeclBitfields.
uint64_t : NumTagDeclBits;
/// This is true if this struct ends with a flexible
/// array member (e.g. int X[]) or if this union contains a struct that does.
/// If so, this cannot be contained in arrays or other structs as a member.
uint64_t HasFlexibleArrayMember : 1;
/// Whether this is the type of an anonymous struct or union.
uint64_t AnonymousStructOrUnion : 1;
/// This is true if this struct has at least one member
/// containing an Objective-C object pointer type.
uint64_t HasObjectMember : 1;
/// This is true if struct has at least one member of
/// 'volatile' type.
uint64_t HasVolatileMember : 1;
/// Whether the field declarations of this record have been loaded
/// from external storage. To avoid unnecessary deserialization of
/// methods/nested types we allow deserialization of just the fields
/// when needed.
mutable uint64_t LoadedFieldsFromExternalStorage : 1;
/// Basic properties of non-trivial C structs.
uint64_t NonTrivialToPrimitiveDefaultInitialize : 1;
uint64_t NonTrivialToPrimitiveCopy : 1;
uint64_t NonTrivialToPrimitiveDestroy : 1;
/// Indicates whether this struct is destroyed in the callee.
uint64_t ParamDestroyedInCallee : 1;
/// Represents the way this type is passed to a function.
uint64_t ArgPassingRestrictions : 2;
};
/// Number of non-inherited bits in RecordDeclBitfields.
enum { NumRecordDeclBits = 11 };
/// Stores the bits used by OMPDeclareReductionDecl.
/// If modified NumOMPDeclareReductionDeclBits and the accessor
/// methods in OMPDeclareReductionDecl should be updated appropriately.
class OMPDeclareReductionDeclBitfields {
friend class OMPDeclareReductionDecl;
/// For the bits in DeclContextBitfields
uint64_t : NumDeclContextBits;
/// Kind of initializer,
/// function call or omp_priv<init_expr> initializtion.
uint64_t InitializerKind : 2;
};
/// Number of non-inherited bits in OMPDeclareReductionDeclBitfields.
enum { NumOMPDeclareReductionDeclBits = 2 };
/// Stores the bits used by FunctionDecl.
/// If modified NumFunctionDeclBits and the accessor
/// methods in FunctionDecl and CXXDeductionGuideDecl
/// (for IsCopyDeductionCandidate) should be updated appropriately.
class FunctionDeclBitfields {
friend class FunctionDecl;
/// For IsCopyDeductionCandidate
friend class CXXDeductionGuideDecl;
/// For the bits in DeclContextBitfields.
uint64_t : NumDeclContextBits;
uint64_t SClass : 3;
uint64_t IsInline : 1;
uint64_t IsInlineSpecified : 1;
/// This is shared by CXXConstructorDecl,
/// CXXConversionDecl, and CXXDeductionGuideDecl.
uint64_t IsExplicitSpecified : 1;
uint64_t IsVirtualAsWritten : 1;
uint64_t IsPure : 1;
uint64_t HasInheritedPrototype : 1;
uint64_t HasWrittenPrototype : 1;
uint64_t IsDeleted : 1;
/// Used by CXXMethodDecl
uint64_t IsTrivial : 1;
/// This flag indicates whether this function is trivial for the purpose of
/// calls. This is meaningful only when this function is a copy/move
/// constructor or a destructor.
uint64_t IsTrivialForCall : 1;
/// Used by CXXMethodDecl
uint64_t IsDefaulted : 1;
/// Used by CXXMethodDecl
uint64_t IsExplicitlyDefaulted : 1;
uint64_t HasImplicitReturnZero : 1;
uint64_t IsLateTemplateParsed : 1;
uint64_t IsConstexpr : 1;
uint64_t InstantiationIsPending : 1;
/// Indicates if the function uses __try.
uint64_t UsesSEHTry : 1;
/// Indicates if the function was a definition
/// but its body was skipped.
uint64_t HasSkippedBody : 1;
/// Indicates if the function declaration will
/// have a body, once we're done parsing it.
uint64_t WillHaveBody : 1;
/// Indicates that this function is a multiversioned
/// function using attribute 'target'.
uint64_t IsMultiVersion : 1;
/// [C++17] Only used by CXXDeductionGuideDecl. Indicates that
/// the Deduction Guide is the implicitly generated 'copy
/// deduction candidate' (is used during overload resolution).
uint64_t IsCopyDeductionCandidate : 1;
/// Store the ODRHash after first calculation.
uint64_t HasODRHash : 1;
};
/// Number of non-inherited bits in FunctionDeclBitfields.
enum { NumFunctionDeclBits = 25 };
/// Stores the bits used by CXXConstructorDecl. If modified
/// NumCXXConstructorDeclBits and the accessor
/// methods in CXXConstructorDecl should be updated appropriately.
class CXXConstructorDeclBitfields {
friend class CXXConstructorDecl;
/// For the bits in DeclContextBitfields.
uint64_t : NumDeclContextBits;
/// For the bits in FunctionDeclBitfields.
uint64_t : NumFunctionDeclBits;
/// 25 bits to fit in the remaining availible space.
/// Note that this makes CXXConstructorDeclBitfields take
/// exactly 64 bits and thus the width of NumCtorInitializers
/// will need to be shrunk if some bit is added to NumDeclContextBitfields,
/// NumFunctionDeclBitfields or CXXConstructorDeclBitfields.
uint64_t NumCtorInitializers : 25;
uint64_t IsInheritingConstructor : 1;
};
/// Number of non-inherited bits in CXXConstructorDeclBitfields.
enum { NumCXXConstructorDeclBits = 26 };
/// Stores the bits used by ObjCMethodDecl.
/// If modified NumObjCMethodDeclBits and the accessor
/// methods in ObjCMethodDecl should be updated appropriately.
class ObjCMethodDeclBitfields {
friend class ObjCMethodDecl;
/// For the bits in DeclContextBitfields.
uint64_t : NumDeclContextBits;
/// The conventional meaning of this method; an ObjCMethodFamily.
/// This is not serialized; instead, it is computed on demand and
/// cached.
mutable uint64_t Family : ObjCMethodFamilyBitWidth;
/// instance (true) or class (false) method.
uint64_t IsInstance : 1;
uint64_t IsVariadic : 1;
/// True if this method is the getter or setter for an explicit property.
uint64_t IsPropertyAccessor : 1;
/// Method has a definition.
uint64_t IsDefined : 1;
/// Method redeclaration in the same interface.
uint64_t IsRedeclaration : 1;
/// Is redeclared in the same interface.
mutable uint64_t HasRedeclaration : 1;
/// \@required/\@optional
uint64_t DeclImplementation : 2;
/// in, inout, etc.
uint64_t objcDeclQualifier : 7;
/// Indicates whether this method has a related result type.
uint64_t RelatedResultType : 1;
/// Whether the locations of the selector identifiers are in a
/// "standard" position, a enum SelectorLocationsKind.
uint64_t SelLocsKind : 2;
/// Whether this method overrides any other in the class hierarchy.
///
/// A method is said to override any method in the class's
/// base classes, its protocols, or its categories' protocols, that has
/// the same selector and is of the same kind (class or instance).
/// A method in an implementation is not considered as overriding the same
/// method in the interface or its categories.
uint64_t IsOverriding : 1;
/// Indicates if the method was a definition but its body was skipped.
uint64_t HasSkippedBody : 1;
};
/// Number of non-inherited bits in ObjCMethodDeclBitfields.
enum { NumObjCMethodDeclBits = 24 };
/// Stores the bits used by ObjCContainerDecl.
/// If modified NumObjCContainerDeclBits and the accessor
/// methods in ObjCContainerDecl should be updated appropriately.
class ObjCContainerDeclBitfields {
friend class ObjCContainerDecl;
/// For the bits in DeclContextBitfields
uint32_t : NumDeclContextBits;
// Not a bitfield but this saves space.
// Note that ObjCContainerDeclBitfields is full.
SourceLocation AtStart;
};
/// Number of non-inherited bits in ObjCContainerDeclBitfields.
/// Note that here we rely on the fact that SourceLocation is 32 bits
/// wide. We check this with the static_assert in the ctor of DeclContext.
enum { NumObjCContainerDeclBits = 64 - NumDeclContextBits };
/// Stores the bits used by LinkageSpecDecl.
/// If modified NumLinkageSpecDeclBits and the accessor
/// methods in LinkageSpecDecl should be updated appropriately.
class LinkageSpecDeclBitfields {
friend class LinkageSpecDecl;
/// For the bits in DeclContextBitfields.
uint64_t : NumDeclContextBits;
/// The language for this linkage specification with values
/// in the enum LinkageSpecDecl::LanguageIDs.
uint64_t Language : 3;
/// True if this linkage spec has braces.
/// This is needed so that hasBraces() returns the correct result while the
/// linkage spec body is being parsed. Once RBraceLoc has been set this is
/// not used, so it doesn't need to be serialized.
uint64_t HasBraces : 1;
};
/// Number of non-inherited bits in LinkageSpecDeclBitfields.
enum { NumLinkageSpecDeclBits = 4 };
/// Stores the bits used by BlockDecl.
/// If modified NumBlockDeclBits and the accessor
/// methods in BlockDecl should be updated appropriately.
class BlockDeclBitfields {
friend class BlockDecl;
/// For the bits in DeclContextBitfields.
uint64_t : NumDeclContextBits;
uint64_t IsVariadic : 1;
uint64_t CapturesCXXThis : 1;
uint64_t BlockMissingReturnType : 1;
uint64_t IsConversionFromLambda : 1;
/// A bit that indicates this block is passed directly to a function as a
/// non-escaping parameter.
uint64_t DoesNotEscape : 1;
};
/// Number of non-inherited bits in BlockDeclBitfields.
enum { NumBlockDeclBits = 5 };
/// Pointer to the data structure used to lookup declarations
/// within this context (or a DependentStoredDeclsMap if this is a
/// dependent context). We maintain the invariant that, if the map
/// contains an entry for a DeclarationName (and we haven't lazily
/// omitted anything), then it contains all relevant entries for that
/// name (modulo the hasExternalDecls() flag).
mutable StoredDeclsMap *LookupPtr = nullptr;
protected:
/// This anonymous union stores the bits belonging to DeclContext and classes
/// deriving from it. The goal is to use otherwise wasted
/// space in DeclContext to store data belonging to derived classes.
/// The space saved is especially significient when pointers are aligned
/// to 8 bytes. In this case due to alignment requirements we have a
/// little less than 8 bytes free in DeclContext which we can use.
/// We check that none of the classes in this union is larger than
/// 8 bytes with static_asserts in the ctor of DeclContext.
union {
DeclContextBitfields DeclContextBits;
TagDeclBitfields TagDeclBits;
EnumDeclBitfields EnumDeclBits;
RecordDeclBitfields RecordDeclBits;
OMPDeclareReductionDeclBitfields OMPDeclareReductionDeclBits;
FunctionDeclBitfields FunctionDeclBits;
CXXConstructorDeclBitfields CXXConstructorDeclBits;
ObjCMethodDeclBitfields ObjCMethodDeclBits;
ObjCContainerDeclBitfields ObjCContainerDeclBits;
LinkageSpecDeclBitfields LinkageSpecDeclBits;
BlockDeclBitfields BlockDeclBits;
static_assert(sizeof(DeclContextBitfields) <= 8,
"DeclContextBitfields is larger than 8 bytes!");
static_assert(sizeof(TagDeclBitfields) <= 8,
"TagDeclBitfields is larger than 8 bytes!");
static_assert(sizeof(EnumDeclBitfields) <= 8,
"EnumDeclBitfields is larger than 8 bytes!");
static_assert(sizeof(RecordDeclBitfields) <= 8,
"RecordDeclBitfields is larger than 8 bytes!");
static_assert(sizeof(OMPDeclareReductionDeclBitfields) <= 8,
"OMPDeclareReductionDeclBitfields is larger than 8 bytes!");
static_assert(sizeof(FunctionDeclBitfields) <= 8,
"FunctionDeclBitfields is larger than 8 bytes!");
static_assert(sizeof(CXXConstructorDeclBitfields) <= 8,
"CXXConstructorDeclBitfields is larger than 8 bytes!");
static_assert(sizeof(ObjCMethodDeclBitfields) <= 8,
"ObjCMethodDeclBitfields is larger than 8 bytes!");
static_assert(sizeof(ObjCContainerDeclBitfields) <= 8,
"ObjCContainerDeclBitfields is larger than 8 bytes!");
static_assert(sizeof(LinkageSpecDeclBitfields) <= 8,
"LinkageSpecDeclBitfields is larger than 8 bytes!");
static_assert(sizeof(BlockDeclBitfields) <= 8,
"BlockDeclBitfields is larger than 8 bytes!");
};
/// FirstDecl - The first declaration stored within this declaration
/// context.
mutable Decl *FirstDecl = nullptr;
/// LastDecl - The last declaration stored within this declaration
/// context. FIXME: We could probably cache this value somewhere
/// outside of the DeclContext, to reduce the size of DeclContext by
/// another pointer.
mutable Decl *LastDecl = nullptr;
/// Build up a chain of declarations.
///
/// \returns the first/last pair of declarations.
static std::pair<Decl *, Decl *>
BuildDeclChain(ArrayRef<Decl*> Decls, bool FieldsAlreadyLoaded);
DeclContext(Decl::Kind K);
public:
~DeclContext();
Decl::Kind getDeclKind() const {
return static_cast<Decl::Kind>(DeclContextBits.DeclKind);
}
const char *getDeclKindName() const;
/// getParent - Returns the containing DeclContext.
DeclContext *getParent() {
return cast<Decl>(this)->getDeclContext();
}
const DeclContext *getParent() const {
return const_cast<DeclContext*>(this)->getParent();
}
/// getLexicalParent - Returns the containing lexical DeclContext. May be
/// different from getParent, e.g.:
///
/// namespace A {
/// struct S;
/// }
/// struct A::S {}; // getParent() == namespace 'A'
/// // getLexicalParent() == translation unit
///
DeclContext *getLexicalParent() {
return cast<Decl>(this)->getLexicalDeclContext();
}
const DeclContext *getLexicalParent() const {
return const_cast<DeclContext*>(this)->getLexicalParent();
}
DeclContext *getLookupParent();
const DeclContext *getLookupParent() const {
return const_cast<DeclContext*>(this)->getLookupParent();
}
ASTContext &getParentASTContext() const {
return cast<Decl>(this)->getASTContext();
}
bool isClosure() const { return getDeclKind() == Decl::Block; }
bool isObjCContainer() const {
switch (getDeclKind()) {
case Decl::ObjCCategory:
case Decl::ObjCCategoryImpl:
case Decl::ObjCImplementation:
case Decl::ObjCInterface:
case Decl::ObjCProtocol:
return true;
default:
return false;
}
}
bool isFunctionOrMethod() const {
switch (getDeclKind()) {
case Decl::Block:
case Decl::Captured:
case Decl::ObjCMethod:
return true;
default:
return getDeclKind() >= Decl::firstFunction &&
getDeclKind() <= Decl::lastFunction;
}
}
/// Test whether the context supports looking up names.
bool isLookupContext() const {
return !isFunctionOrMethod() && getDeclKind() != Decl::LinkageSpec &&
getDeclKind() != Decl::Export;
}
bool isFileContext() const {
return getDeclKind() == Decl::TranslationUnit ||
getDeclKind() == Decl::Namespace;
}
bool isTranslationUnit() const {
return getDeclKind() == Decl::TranslationUnit;
}
bool isRecord() const {
return getDeclKind() >= Decl::firstRecord &&
getDeclKind() <= Decl::lastRecord;
}
bool isNamespace() const { return getDeclKind() == Decl::Namespace; }
bool isStdNamespace() const;
bool isInlineNamespace() const;
/// Determines whether this context is dependent on a
/// template parameter.
bool isDependentContext() const;
/// isTransparentContext - Determines whether this context is a
/// "transparent" context, meaning that the members declared in this
/// context are semantically declared in the nearest enclosing
/// non-transparent (opaque) context but are lexically declared in
/// this context. For example, consider the enumerators of an
/// enumeration type:
/// @code
/// enum E {
/// Val1
/// };
/// @endcode
/// Here, E is a transparent context, so its enumerator (Val1) will
/// appear (semantically) that it is in the same context of E.
/// Examples of transparent contexts include: enumerations (except for
/// C++0x scoped enums), and C++ linkage specifications.
bool isTransparentContext() const;
/// Determines whether this context or some of its ancestors is a
/// linkage specification context that specifies C linkage.
bool isExternCContext() const;
/// Retrieve the nearest enclosing C linkage specification context.
const LinkageSpecDecl *getExternCContext() const;
/// Determines whether this context or some of its ancestors is a
/// linkage specification context that specifies C++ linkage.
bool isExternCXXContext() const;
/// Determine whether this declaration context is equivalent
/// to the declaration context DC.
bool Equals(const DeclContext *DC) const {
return DC && this->getPrimaryContext() == DC->getPrimaryContext();
}
/// Determine whether this declaration context encloses the
/// declaration context DC.
bool Encloses(const DeclContext *DC) const;
/// Find the nearest non-closure ancestor of this context,
/// i.e. the innermost semantic parent of this context which is not
/// a closure. A context may be its own non-closure ancestor.
Decl *getNonClosureAncestor();
const Decl *getNonClosureAncestor() const {
return const_cast<DeclContext*>(this)->getNonClosureAncestor();
}
/// getPrimaryContext - There may be many different
/// declarations of the same entity (including forward declarations
/// of classes, multiple definitions of namespaces, etc.), each with
/// a different set of declarations. This routine returns the
/// "primary" DeclContext structure, which will contain the
/// information needed to perform name lookup into this context.
DeclContext *getPrimaryContext();
const DeclContext *getPrimaryContext() const {
return const_cast<DeclContext*>(this)->getPrimaryContext();
}
/// getRedeclContext - Retrieve the context in which an entity conflicts with
/// other entities of the same name, or where it is a redeclaration if the
/// two entities are compatible. This skips through transparent contexts.
DeclContext *getRedeclContext();
const DeclContext *getRedeclContext() const {
return const_cast<DeclContext *>(this)->getRedeclContext();
}
/// Retrieve the nearest enclosing namespace context.
DeclContext *getEnclosingNamespaceContext();
const DeclContext *getEnclosingNamespaceContext() const {
return const_cast<DeclContext *>(this)->getEnclosingNamespaceContext();
}
/// Retrieve the outermost lexically enclosing record context.
RecordDecl *getOuterLexicalRecordContext();
const RecordDecl *getOuterLexicalRecordContext() const {
return const_cast<DeclContext *>(this)->getOuterLexicalRecordContext();
}
/// Test if this context is part of the enclosing namespace set of
/// the context NS, as defined in C++0x [namespace.def]p9. If either context
/// isn't a namespace, this is equivalent to Equals().
///
/// The enclosing namespace set of a namespace is the namespace and, if it is
/// inline, its enclosing namespace, recursively.
bool InEnclosingNamespaceSetOf(const DeclContext *NS) const;
/// Collects all of the declaration contexts that are semantically
/// connected to this declaration context.
///
/// For declaration contexts that have multiple semantically connected but
/// syntactically distinct contexts, such as C++ namespaces, this routine
/// retrieves the complete set of such declaration contexts in source order.
/// For example, given:
///
/// \code
/// namespace N {
/// int x;
/// }
/// namespace N {
/// int y;
/// }
/// \endcode
///
/// The \c Contexts parameter will contain both definitions of N.
///
/// \param Contexts Will be cleared and set to the set of declaration
/// contexts that are semanticaly connected to this declaration context,
/// in source order, including this context (which may be the only result,
/// for non-namespace contexts).
void collectAllContexts(SmallVectorImpl<DeclContext *> &Contexts);
/// decl_iterator - Iterates through the declarations stored
/// within this context.
class decl_iterator {
/// Current - The current declaration.
Decl *Current = nullptr;
public:
using value_type = Decl *;
using reference = const value_type &;
using pointer = const value_type *;
using iterator_category = std::forward_iterator_tag;
using difference_type = std::ptrdiff_t;
decl_iterator() = default;
explicit decl_iterator(Decl *C) : Current(C) {}
reference operator*() const { return Current; }
// This doesn't meet the iterator requirements, but it's convenient
value_type operator->() const { return Current; }
decl_iterator& operator++() {
Current = Current->getNextDeclInContext();
return *this;
}
decl_iterator operator++(int) {
decl_iterator tmp(*this);
++(*this);
return tmp;
}
friend bool operator==(decl_iterator x, decl_iterator y) {
return x.Current == y.Current;
}
friend bool operator!=(decl_iterator x, decl_iterator y) {
return x.Current != y.Current;
}
};
using decl_range = llvm::iterator_range<decl_iterator>;
/// decls_begin/decls_end - Iterate over the declarations stored in
/// this context.
decl_range decls() const { return decl_range(decls_begin(), decls_end()); }
decl_iterator decls_begin() const;
decl_iterator decls_end() const { return decl_iterator(); }
bool decls_empty() const;
/// noload_decls_begin/end - Iterate over the declarations stored in this
/// context that are currently loaded; don't attempt to retrieve anything
/// from an external source.
decl_range noload_decls() const {
return decl_range(noload_decls_begin(), noload_decls_end());
}
decl_iterator noload_decls_begin() const { return decl_iterator(FirstDecl); }
decl_iterator noload_decls_end() const { return decl_iterator(); }
/// specific_decl_iterator - Iterates over a subrange of
/// declarations stored in a DeclContext, providing only those that
/// are of type SpecificDecl (or a class derived from it). This
/// iterator is used, for example, to provide iteration over just
/// the fields within a RecordDecl (with SpecificDecl = FieldDecl).
template<typename SpecificDecl>
class specific_decl_iterator {
/// Current - The current, underlying declaration iterator, which
/// will either be NULL or will point to a declaration of
/// type SpecificDecl.
DeclContext::decl_iterator Current;
/// SkipToNextDecl - Advances the current position up to the next
/// declaration of type SpecificDecl that also meets the criteria
/// required by Acceptable.
void SkipToNextDecl() {
while (*Current && !isa<SpecificDecl>(*Current))
++Current;
}
public:
using value_type = SpecificDecl *;
// TODO: Add reference and pointer types (with some appropriate proxy type)
// if we ever have a need for them.
using reference = void;
using pointer = void;
using difference_type =
std::iterator_traits<DeclContext::decl_iterator>::difference_type;
using iterator_category = std::forward_iterator_tag;
specific_decl_iterator() = default;
/// specific_decl_iterator - Construct a new iterator over a
/// subset of the declarations the range [C,
/// end-of-declarations). If A is non-NULL, it is a pointer to a
/// member function of SpecificDecl that should return true for
/// all of the SpecificDecl instances that will be in the subset
/// of iterators. For example, if you want Objective-C instance
/// methods, SpecificDecl will be ObjCMethodDecl and A will be
/// &ObjCMethodDecl::isInstanceMethod.
explicit specific_decl_iterator(DeclContext::decl_iterator C) : Current(C) {
SkipToNextDecl();
}
value_type operator*() const { return cast<SpecificDecl>(*Current); }
// This doesn't meet the iterator requirements, but it's convenient
value_type operator->() const { return **this; }
specific_decl_iterator& operator++() {
++Current;
SkipToNextDecl();
return *this;
}
specific_decl_iterator operator++(int) {
specific_decl_iterator tmp(*this);
++(*this);
return tmp;
}
friend bool operator==(const specific_decl_iterator& x,
const specific_decl_iterator& y) {
return x.Current == y.Current;
}
friend bool operator!=(const specific_decl_iterator& x,
const specific_decl_iterator& y) {
return x.Current != y.Current;
}
};
/// Iterates over a filtered subrange of declarations stored
/// in a DeclContext.
///
/// This iterator visits only those declarations that are of type
/// SpecificDecl (or a class derived from it) and that meet some
/// additional run-time criteria. This iterator is used, for
/// example, to provide access to the instance methods within an
/// Objective-C interface (with SpecificDecl = ObjCMethodDecl and
/// Acceptable = ObjCMethodDecl::isInstanceMethod).
template<typename SpecificDecl, bool (SpecificDecl::*Acceptable)() const>
class filtered_decl_iterator {
/// Current - The current, underlying declaration iterator, which
/// will either be NULL or will point to a declaration of
/// type SpecificDecl.
DeclContext::decl_iterator Current;
/// SkipToNextDecl - Advances the current position up to the next
/// declaration of type SpecificDecl that also meets the criteria
/// required by Acceptable.
void SkipToNextDecl() {
while (*Current &&
(!isa<SpecificDecl>(*Current) ||
(Acceptable && !(cast<SpecificDecl>(*Current)->*Acceptable)())))
++Current;
}
public:
using value_type = SpecificDecl *;
// TODO: Add reference and pointer types (with some appropriate proxy type)
// if we ever have a need for them.
using reference = void;
using pointer = void;
using difference_type =
std::iterator_traits<DeclContext::decl_iterator>::difference_type;
using iterator_category = std::forward_iterator_tag;
filtered_decl_iterator() = default;
/// filtered_decl_iterator - Construct a new iterator over a
/// subset of the declarations the range [C,
/// end-of-declarations). If A is non-NULL, it is a pointer to a
/// member function of SpecificDecl that should return true for
/// all of the SpecificDecl instances that will be in the subset
/// of iterators. For example, if you want Objective-C instance
/// methods, SpecificDecl will be ObjCMethodDecl and A will be
/// &ObjCMethodDecl::isInstanceMethod.
explicit filtered_decl_iterator(DeclContext::decl_iterator C) : Current(C) {
SkipToNextDecl();
}
value_type operator*() const { return cast<SpecificDecl>(*Current); }
value_type operator->() const { return cast<SpecificDecl>(*Current); }
filtered_decl_iterator& operator++() {
++Current;
SkipToNextDecl();
return *this;
}
filtered_decl_iterator operator++(int) {
filtered_decl_iterator tmp(*this);
++(*this);
return tmp;
}
friend bool operator==(const filtered_decl_iterator& x,
const filtered_decl_iterator& y) {
return x.Current == y.Current;
}
friend bool operator!=(const filtered_decl_iterator& x,
const filtered_decl_iterator& y) {
return x.Current != y.Current;
}
};
/// Add the declaration D into this context.
///
/// This routine should be invoked when the declaration D has first
/// been declared, to place D into the context where it was
/// (lexically) defined. Every declaration must be added to one
/// (and only one!) context, where it can be visited via
/// [decls_begin(), decls_end()). Once a declaration has been added
/// to its lexical context, the corresponding DeclContext owns the
/// declaration.
///
/// If D is also a NamedDecl, it will be made visible within its
/// semantic context via makeDeclVisibleInContext.
void addDecl(Decl *D);
/// Add the declaration D into this context, but suppress
/// searches for external declarations with the same name.
///
/// Although analogous in function to addDecl, this removes an
/// important check. This is only useful if the Decl is being
/// added in response to an external search; in all other cases,
/// addDecl() is the right function to use.
/// See the ASTImporter for use cases.
void addDeclInternal(Decl *D);
/// Add the declaration D to this context without modifying
/// any lookup tables.
///
/// This is useful for some operations in dependent contexts where
/// the semantic context might not be dependent; this basically
/// only happens with friends.
void addHiddenDecl(Decl *D);
/// Removes a declaration from this context.
void removeDecl(Decl *D);
/// Checks whether a declaration is in this context.
bool containsDecl(Decl *D) const;
/// Checks whether a declaration is in this context.
/// This also loads the Decls from the external source before the check.
bool containsDeclAndLoad(Decl *D) const;
using lookup_result = DeclContextLookupResult;
using lookup_iterator = lookup_result::iterator;
/// lookup - Find the declarations (if any) with the given Name in
/// this context. Returns a range of iterators that contains all of
/// the declarations with this name, with object, function, member,
/// and enumerator names preceding any tag name. Note that this
/// routine will not look into parent contexts.
lookup_result lookup(DeclarationName Name) const;
/// Find the declarations with the given name that are visible
/// within this context; don't attempt to retrieve anything from an
/// external source.
lookup_result noload_lookup(DeclarationName Name);
/// A simplistic name lookup mechanism that performs name lookup
/// into this declaration context without consulting the external source.
///
/// This function should almost never be used, because it subverts the
/// usual relationship between a DeclContext and the external source.
/// See the ASTImporter for the (few, but important) use cases.
///
/// FIXME: This is very inefficient; replace uses of it with uses of
/// noload_lookup.
void localUncachedLookup(DeclarationName Name,
SmallVectorImpl<NamedDecl *> &Results);
/// Makes a declaration visible within this context.
///
/// This routine makes the declaration D visible to name lookup
/// within this context and, if this is a transparent context,
/// within its parent contexts up to the first enclosing
/// non-transparent context. Making a declaration visible within a
/// context does not transfer ownership of a declaration, and a
/// declaration can be visible in many contexts that aren't its
/// lexical context.
///
/// If D is a redeclaration of an existing declaration that is
/// visible from this context, as determined by
/// NamedDecl::declarationReplaces, the previous declaration will be
/// replaced with D.
void makeDeclVisibleInContext(NamedDecl *D);
/// all_lookups_iterator - An iterator that provides a view over the results
/// of looking up every possible name.
class all_lookups_iterator;
using lookups_range = llvm::iterator_range<all_lookups_iterator>;
lookups_range lookups() const;
// Like lookups(), but avoids loading external declarations.
// If PreserveInternalState, avoids building lookup data structures too.
lookups_range noload_lookups(bool PreserveInternalState) const;
/// Iterators over all possible lookups within this context.
all_lookups_iterator lookups_begin() const;
all_lookups_iterator lookups_end() const;
/// Iterators over all possible lookups within this context that are
/// currently loaded; don't attempt to retrieve anything from an external
/// source.
all_lookups_iterator noload_lookups_begin() const;
all_lookups_iterator noload_lookups_end() const;
struct udir_iterator;
using udir_iterator_base =
llvm::iterator_adaptor_base<udir_iterator, lookup_iterator,
std::random_access_iterator_tag,
UsingDirectiveDecl *>;
struct udir_iterator : udir_iterator_base {
udir_iterator(lookup_iterator I) : udir_iterator_base(I) {}
UsingDirectiveDecl *operator*() const;
};
using udir_range = llvm::iterator_range<udir_iterator>;
udir_range using_directives() const;
// These are all defined in DependentDiagnostic.h.
class ddiag_iterator;
using ddiag_range = llvm::iterator_range<DeclContext::ddiag_iterator>;
inline ddiag_range ddiags() const;
// Low-level accessors
/// Mark that there are external lexical declarations that we need
/// to include in our lookup table (and that are not available as external
/// visible lookups). These extra lookup results will be found by walking
/// the lexical declarations of this context. This should be used only if
/// setHasExternalLexicalStorage() has been called on any decl context for
/// which this is the primary context.
void setMustBuildLookupTable() {
assert(this == getPrimaryContext() &&
"should only be called on primary context");
DeclContextBits.HasLazyExternalLexicalLookups = true;
}
/// Retrieve the internal representation of the lookup structure.
/// This may omit some names if we are lazily building the structure.
StoredDeclsMap *getLookupPtr() const { return LookupPtr; }
/// Ensure the lookup structure is fully-built and return it.
StoredDeclsMap *buildLookup();
/// Whether this DeclContext has external storage containing
/// additional declarations that are lexically in this context.
bool hasExternalLexicalStorage() const {
return DeclContextBits.ExternalLexicalStorage;
}
/// State whether this DeclContext has external storage for
/// declarations lexically in this context.
void setHasExternalLexicalStorage(bool ES = true) const {
DeclContextBits.ExternalLexicalStorage = ES;
}
/// Whether this DeclContext has external storage containing
/// additional declarations that are visible in this context.
bool hasExternalVisibleStorage() const {
return DeclContextBits.ExternalVisibleStorage;
}
/// State whether this DeclContext has external storage for
/// declarations visible in this context.
void setHasExternalVisibleStorage(bool ES = true) const {
DeclContextBits.ExternalVisibleStorage = ES;
if (ES && LookupPtr)
DeclContextBits.NeedToReconcileExternalVisibleStorage = true;
}
/// Determine whether the given declaration is stored in the list of
/// declarations lexically within this context.
bool isDeclInLexicalTraversal(const Decl *D) const {
return D && (D->NextInContextAndBits.getPointer() || D == FirstDecl ||
D == LastDecl);
}
bool setUseQualifiedLookup(bool use = true) const {
bool old_value = DeclContextBits.UseQualifiedLookup;
DeclContextBits.UseQualifiedLookup = use;
return old_value;
}
bool shouldUseQualifiedLookup() const {
return DeclContextBits.UseQualifiedLookup;
}
static bool classof(const Decl *D);
static bool classof(const DeclContext *D) { return true; }
void dumpDeclContext() const;
void dumpLookups() const;
void dumpLookups(llvm::raw_ostream &OS, bool DumpDecls = false,
bool Deserialize = false) const;
private:
/// Whether this declaration context has had externally visible
/// storage added since the last lookup. In this case, \c LookupPtr's
/// invariant may not hold and needs to be fixed before we perform
/// another lookup.
bool hasNeedToReconcileExternalVisibleStorage() const {
return DeclContextBits.NeedToReconcileExternalVisibleStorage;
}
/// State that this declaration context has had externally visible
/// storage added since the last lookup. In this case, \c LookupPtr's
/// invariant may not hold and needs to be fixed before we perform
/// another lookup.
void setNeedToReconcileExternalVisibleStorage(bool Need = true) const {
DeclContextBits.NeedToReconcileExternalVisibleStorage = Need;
}
/// If \c true, this context may have local lexical declarations
/// that are missing from the lookup table.
bool hasLazyLocalLexicalLookups() const {
return DeclContextBits.HasLazyLocalLexicalLookups;
}
/// If \c true, this context may have local lexical declarations
/// that are missing from the lookup table.
void setHasLazyLocalLexicalLookups(bool HasLLLL = true) const {
DeclContextBits.HasLazyLocalLexicalLookups = HasLLLL;
}
/// If \c true, the external source may have lexical declarations
/// that are missing from the lookup table.
bool hasLazyExternalLexicalLookups() const {
return DeclContextBits.HasLazyExternalLexicalLookups;
}
/// If \c true, the external source may have lexical declarations
/// that are missing from the lookup table.
void setHasLazyExternalLexicalLookups(bool HasLELL = true) const {
DeclContextBits.HasLazyExternalLexicalLookups = HasLELL;
}
void reconcileExternalVisibleStorage() const;
bool LoadLexicalDeclsFromExternalStorage() const;
/// Makes a declaration visible within this context, but
/// suppresses searches for external declarations with the same
/// name.
///
/// Analogous to makeDeclVisibleInContext, but for the exclusive
/// use of addDeclInternal().
void makeDeclVisibleInContextInternal(NamedDecl *D);
StoredDeclsMap *CreateStoredDeclsMap(ASTContext &C) const;
void loadLazyLocalLexicalLookups();
void buildLookupImpl(DeclContext *DCtx, bool Internal);
void makeDeclVisibleInContextWithFlags(NamedDecl *D, bool Internal,
bool Rediscoverable);
void makeDeclVisibleInContextImpl(NamedDecl *D, bool Internal);
};
inline bool Decl::isTemplateParameter() const {
return getKind() == TemplateTypeParm || getKind() == NonTypeTemplateParm ||
getKind() == TemplateTemplateParm;
}
// Specialization selected when ToTy is not a known subclass of DeclContext.
template <class ToTy,
bool IsKnownSubtype = ::std::is_base_of<DeclContext, ToTy>::value>
struct cast_convert_decl_context {
static const ToTy *doit(const DeclContext *Val) {
return static_cast<const ToTy*>(Decl::castFromDeclContext(Val));
}
static ToTy *doit(DeclContext *Val) {
return static_cast<ToTy*>(Decl::castFromDeclContext(Val));
}
};
// Specialization selected when ToTy is a known subclass of DeclContext.
template <class ToTy>
struct cast_convert_decl_context<ToTy, true> {
static const ToTy *doit(const DeclContext *Val) {
return static_cast<const ToTy*>(Val);
}
static ToTy *doit(DeclContext *Val) {
return static_cast<ToTy*>(Val);
}
};
} // namespace clang
namespace llvm {
/// isa<T>(DeclContext*)
template <typename To>
struct isa_impl<To, ::clang::DeclContext> {
static bool doit(const ::clang::DeclContext &Val) {
return To::classofKind(Val.getDeclKind());
}
};
/// cast<T>(DeclContext*)
template<class ToTy>
struct cast_convert_val<ToTy,
const ::clang::DeclContext,const ::clang::DeclContext> {
static const ToTy &doit(const ::clang::DeclContext &Val) {
return *::clang::cast_convert_decl_context<ToTy>::doit(&Val);
}
};
template<class ToTy>
struct cast_convert_val<ToTy, ::clang::DeclContext, ::clang::DeclContext> {
static ToTy &doit(::clang::DeclContext &Val) {
return *::clang::cast_convert_decl_context<ToTy>::doit(&Val);
}
};
template<class ToTy>
struct cast_convert_val<ToTy,
const ::clang::DeclContext*, const ::clang::DeclContext*> {
static const ToTy *doit(const ::clang::DeclContext *Val) {
return ::clang::cast_convert_decl_context<ToTy>::doit(Val);
}
};
template<class ToTy>
struct cast_convert_val<ToTy, ::clang::DeclContext*, ::clang::DeclContext*> {
static ToTy *doit(::clang::DeclContext *Val) {
return ::clang::cast_convert_decl_context<ToTy>::doit(Val);
}
};
/// Implement cast_convert_val for Decl -> DeclContext conversions.
template<class FromTy>
struct cast_convert_val< ::clang::DeclContext, FromTy, FromTy> {
static ::clang::DeclContext &doit(const FromTy &Val) {
return *FromTy::castToDeclContext(&Val);
}
};
template<class FromTy>
struct cast_convert_val< ::clang::DeclContext, FromTy*, FromTy*> {
static ::clang::DeclContext *doit(const FromTy *Val) {
return FromTy::castToDeclContext(Val);
}
};
template<class FromTy>
struct cast_convert_val< const ::clang::DeclContext, FromTy, FromTy> {
static const ::clang::DeclContext &doit(const FromTy &Val) {
return *FromTy::castToDeclContext(&Val);
}
};
template<class FromTy>
struct cast_convert_val< const ::clang::DeclContext, FromTy*, FromTy*> {
static const ::clang::DeclContext *doit(const FromTy *Val) {
return FromTy::castToDeclContext(Val);
}
};
} // namespace llvm
#endif // LLVM_CLANG_AST_DECLBASE_H
diff --git a/clang/include/clang/AST/DeclCXX.h b/clang/include/clang/AST/DeclCXX.h
index d6cad4e80686..6b99f7cad176 100644
--- a/clang/include/clang/AST/DeclCXX.h
+++ b/clang/include/clang/AST/DeclCXX.h
@@ -1,3948 +1,3956 @@
//===- DeclCXX.h - Classes for representing C++ declarations --*- C++ -*-=====//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// Defines the C++ Decl subclasses, other than those for templates
/// (found in DeclTemplate.h) and friends (in DeclFriend.h).
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_DECLCXX_H
#define LLVM_CLANG_AST_DECLCXX_H
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTUnresolvedSet.h"
#include "clang/AST/Attr.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/DeclarationName.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExternalASTSource.h"
#include "clang/AST/LambdaCapture.h"
#include "clang/AST/NestedNameSpecifier.h"
#include "clang/AST/Redeclarable.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/Type.h"
#include "clang/AST/TypeLoc.h"
#include "clang/AST/UnresolvedSet.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/Lambda.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/OperatorKinds.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/Specifiers.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/PointerLikeTypeTraits.h"
#include "llvm/Support/TrailingObjects.h"
#include <cassert>
#include <cstddef>
#include <iterator>
#include <memory>
#include <vector>
namespace clang {
class ClassTemplateDecl;
class ConstructorUsingShadowDecl;
class CXXBasePath;
class CXXBasePaths;
class CXXConstructorDecl;
class CXXDestructorDecl;
class CXXFinalOverriderMap;
class CXXIndirectPrimaryBaseSet;
class CXXMethodDecl;
class DiagnosticBuilder;
class FriendDecl;
class FunctionTemplateDecl;
class IdentifierInfo;
class MemberSpecializationInfo;
class TemplateDecl;
class TemplateParameterList;
class UsingDecl;
/// Represents any kind of function declaration, whether it is a
/// concrete function or a function template.
class AnyFunctionDecl {
NamedDecl *Function;
AnyFunctionDecl(NamedDecl *ND) : Function(ND) {}
public:
AnyFunctionDecl(FunctionDecl *FD) : Function(FD) {}
AnyFunctionDecl(FunctionTemplateDecl *FTD);
/// Implicily converts any function or function template into a
/// named declaration.
operator NamedDecl *() const { return Function; }
/// Retrieve the underlying function or function template.
NamedDecl *get() const { return Function; }
static AnyFunctionDecl getFromNamedDecl(NamedDecl *ND) {
return AnyFunctionDecl(ND);
}
};
} // namespace clang
namespace llvm {
// Provide PointerLikeTypeTraits for non-cvr pointers.
template<>
struct PointerLikeTypeTraits< ::clang::AnyFunctionDecl> {
static void *getAsVoidPointer(::clang::AnyFunctionDecl F) {
return F.get();
}
static ::clang::AnyFunctionDecl getFromVoidPointer(void *P) {
return ::clang::AnyFunctionDecl::getFromNamedDecl(
static_cast< ::clang::NamedDecl*>(P));
}
enum { NumLowBitsAvailable = 2 };
};
} // namespace llvm
namespace clang {
/// Represents an access specifier followed by colon ':'.
///
/// An objects of this class represents sugar for the syntactic occurrence
/// of an access specifier followed by a colon in the list of member
/// specifiers of a C++ class definition.
///
/// Note that they do not represent other uses of access specifiers,
/// such as those occurring in a list of base specifiers.
/// Also note that this class has nothing to do with so-called
/// "access declarations" (C++98 11.3 [class.access.dcl]).
class AccessSpecDecl : public Decl {
/// The location of the ':'.
SourceLocation ColonLoc;
AccessSpecDecl(AccessSpecifier AS, DeclContext *DC,
SourceLocation ASLoc, SourceLocation ColonLoc)
: Decl(AccessSpec, DC, ASLoc), ColonLoc(ColonLoc) {
setAccess(AS);
}
AccessSpecDecl(EmptyShell Empty) : Decl(AccessSpec, Empty) {}
virtual void anchor();
public:
/// The location of the access specifier.
SourceLocation getAccessSpecifierLoc() const { return getLocation(); }
/// Sets the location of the access specifier.
void setAccessSpecifierLoc(SourceLocation ASLoc) { setLocation(ASLoc); }
/// The location of the colon following the access specifier.
SourceLocation getColonLoc() const { return ColonLoc; }
/// Sets the location of the colon.
void setColonLoc(SourceLocation CLoc) { ColonLoc = CLoc; }
SourceRange getSourceRange() const override LLVM_READONLY {
return SourceRange(getAccessSpecifierLoc(), getColonLoc());
}
static AccessSpecDecl *Create(ASTContext &C, AccessSpecifier AS,
DeclContext *DC, SourceLocation ASLoc,
SourceLocation ColonLoc) {
return new (C, DC) AccessSpecDecl(AS, DC, ASLoc, ColonLoc);
}
static AccessSpecDecl *CreateDeserialized(ASTContext &C, unsigned ID);
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == AccessSpec; }
};
/// Represents a base class of a C++ class.
///
/// Each CXXBaseSpecifier represents a single, direct base class (or
/// struct) of a C++ class (or struct). It specifies the type of that
/// base class, whether it is a virtual or non-virtual base, and what
/// level of access (public, protected, private) is used for the
/// derivation. For example:
///
/// \code
/// class A { };
/// class B { };
/// class C : public virtual A, protected B { };
/// \endcode
///
/// In this code, C will have two CXXBaseSpecifiers, one for "public
/// virtual A" and the other for "protected B".
class CXXBaseSpecifier {
/// The source code range that covers the full base
/// specifier, including the "virtual" (if present) and access
/// specifier (if present).
SourceRange Range;
/// The source location of the ellipsis, if this is a pack
/// expansion.
SourceLocation EllipsisLoc;
/// Whether this is a virtual base class or not.
unsigned Virtual : 1;
/// Whether this is the base of a class (true) or of a struct (false).
///
/// This determines the mapping from the access specifier as written in the
/// source code to the access specifier used for semantic analysis.
unsigned BaseOfClass : 1;
/// Access specifier as written in the source code (may be AS_none).
///
/// The actual type of data stored here is an AccessSpecifier, but we use
/// "unsigned" here to work around a VC++ bug.
unsigned Access : 2;
/// Whether the class contains a using declaration
/// to inherit the named class's constructors.
unsigned InheritConstructors : 1;
/// The type of the base class.
///
/// This will be a class or struct (or a typedef of such). The source code
/// range does not include the \c virtual or the access specifier.
TypeSourceInfo *BaseTypeInfo;
public:
CXXBaseSpecifier() = default;
CXXBaseSpecifier(SourceRange R, bool V, bool BC, AccessSpecifier A,
TypeSourceInfo *TInfo, SourceLocation EllipsisLoc)
: Range(R), EllipsisLoc(EllipsisLoc), Virtual(V), BaseOfClass(BC),
Access(A), InheritConstructors(false), BaseTypeInfo(TInfo) {}
/// Retrieves the source range that contains the entire base specifier.
SourceRange getSourceRange() const LLVM_READONLY { return Range; }
SourceLocation getBeginLoc() const LLVM_READONLY { return Range.getBegin(); }
SourceLocation getEndLoc() const LLVM_READONLY { return Range.getEnd(); }
/// Get the location at which the base class type was written.
SourceLocation getBaseTypeLoc() const LLVM_READONLY {
return BaseTypeInfo->getTypeLoc().getBeginLoc();
}
/// Determines whether the base class is a virtual base class (or not).
bool isVirtual() const { return Virtual; }
/// Determine whether this base class is a base of a class declared
/// with the 'class' keyword (vs. one declared with the 'struct' keyword).
bool isBaseOfClass() const { return BaseOfClass; }
/// Determine whether this base specifier is a pack expansion.
bool isPackExpansion() const { return EllipsisLoc.isValid(); }
/// Determine whether this base class's constructors get inherited.
bool getInheritConstructors() const { return InheritConstructors; }
/// Set that this base class's constructors should be inherited.
void setInheritConstructors(bool Inherit = true) {
InheritConstructors = Inherit;
}
/// For a pack expansion, determine the location of the ellipsis.
SourceLocation getEllipsisLoc() const {
return EllipsisLoc;
}
/// Returns the access specifier for this base specifier.
///
/// This is the actual base specifier as used for semantic analysis, so
/// the result can never be AS_none. To retrieve the access specifier as
/// written in the source code, use getAccessSpecifierAsWritten().
AccessSpecifier getAccessSpecifier() const {
if ((AccessSpecifier)Access == AS_none)
return BaseOfClass? AS_private : AS_public;
else
return (AccessSpecifier)Access;
}
/// Retrieves the access specifier as written in the source code
/// (which may mean that no access specifier was explicitly written).
///
/// Use getAccessSpecifier() to retrieve the access specifier for use in
/// semantic analysis.
AccessSpecifier getAccessSpecifierAsWritten() const {
return (AccessSpecifier)Access;
}
/// Retrieves the type of the base class.
///
/// This type will always be an unqualified class type.
QualType getType() const {
return BaseTypeInfo->getType().getUnqualifiedType();
}
/// Retrieves the type and source location of the base class.
TypeSourceInfo *getTypeSourceInfo() const { return BaseTypeInfo; }
};
/// Represents a C++ struct/union/class.
class CXXRecordDecl : public RecordDecl {
friend class ASTDeclReader;
friend class ASTDeclWriter;
friend class ASTNodeImporter;
friend class ASTReader;
friend class ASTRecordWriter;
friend class ASTWriter;
friend class DeclContext;
friend class LambdaExpr;
friend void FunctionDecl::setPure(bool);
friend void TagDecl::startDefinition();
/// Values used in DefinitionData fields to represent special members.
enum SpecialMemberFlags {
SMF_DefaultConstructor = 0x1,
SMF_CopyConstructor = 0x2,
SMF_MoveConstructor = 0x4,
SMF_CopyAssignment = 0x8,
SMF_MoveAssignment = 0x10,
SMF_Destructor = 0x20,
SMF_All = 0x3f
};
struct DefinitionData {
/// True if this class has any user-declared constructors.
unsigned UserDeclaredConstructor : 1;
/// The user-declared special members which this class has.
unsigned UserDeclaredSpecialMembers : 6;
/// True when this class is an aggregate.
unsigned Aggregate : 1;
/// True when this class is a POD-type.
unsigned PlainOldData : 1;
/// true when this class is empty for traits purposes,
/// i.e. has no data members other than 0-width bit-fields, has no
/// virtual function/base, and doesn't inherit from a non-empty
/// class. Doesn't take union-ness into account.
unsigned Empty : 1;
/// True when this class is polymorphic, i.e., has at
/// least one virtual member or derives from a polymorphic class.
unsigned Polymorphic : 1;
/// True when this class is abstract, i.e., has at least
/// one pure virtual function, (that can come from a base class).
unsigned Abstract : 1;
/// True when this class is standard-layout, per the applicable
/// language rules (including DRs).
unsigned IsStandardLayout : 1;
/// True when this class was standard-layout under the C++11
/// definition.
///
/// C++11 [class]p7. A standard-layout class is a class that:
/// * has no non-static data members of type non-standard-layout class (or
/// array of such types) or reference,
/// * has no virtual functions (10.3) and no virtual base classes (10.1),
/// * has the same access control (Clause 11) for all non-static data
/// members
/// * has no non-standard-layout base classes,
/// * either has no non-static data members in the most derived class and at
/// most one base class with non-static data members, or has no base
/// classes with non-static data members, and
/// * has no base classes of the same type as the first non-static data
/// member.
unsigned IsCXX11StandardLayout : 1;
/// True when any base class has any declared non-static data
/// members or bit-fields.
/// This is a helper bit of state used to implement IsStandardLayout more
/// efficiently.
unsigned HasBasesWithFields : 1;
/// True when any base class has any declared non-static data
/// members.
/// This is a helper bit of state used to implement IsCXX11StandardLayout
/// more efficiently.
unsigned HasBasesWithNonStaticDataMembers : 1;
/// True when there are private non-static data members.
unsigned HasPrivateFields : 1;
/// True when there are protected non-static data members.
unsigned HasProtectedFields : 1;
/// True when there are private non-static data members.
unsigned HasPublicFields : 1;
/// True if this class (or any subobject) has mutable fields.
unsigned HasMutableFields : 1;
/// True if this class (or any nested anonymous struct or union)
/// has variant members.
unsigned HasVariantMembers : 1;
/// True if there no non-field members declared by the user.
unsigned HasOnlyCMembers : 1;
/// True if any field has an in-class initializer, including those
/// within anonymous unions or structs.
unsigned HasInClassInitializer : 1;
/// True if any field is of reference type, and does not have an
/// in-class initializer.
///
/// In this case, value-initialization of this class is illegal in C++98
/// even if the class has a trivial default constructor.
unsigned HasUninitializedReferenceMember : 1;
/// True if any non-mutable field whose type doesn't have a user-
/// provided default ctor also doesn't have an in-class initializer.
unsigned HasUninitializedFields : 1;
/// True if there are any member using-declarations that inherit
/// constructors from a base class.
unsigned HasInheritedConstructor : 1;
/// True if there are any member using-declarations named
/// 'operator='.
unsigned HasInheritedAssignment : 1;
/// These flags are \c true if a defaulted corresponding special
/// member can't be fully analyzed without performing overload resolution.
/// @{
unsigned NeedOverloadResolutionForCopyConstructor : 1;
unsigned NeedOverloadResolutionForMoveConstructor : 1;
unsigned NeedOverloadResolutionForMoveAssignment : 1;
unsigned NeedOverloadResolutionForDestructor : 1;
/// @}
/// These flags are \c true if an implicit defaulted corresponding
/// special member would be defined as deleted.
/// @{
unsigned DefaultedCopyConstructorIsDeleted : 1;
unsigned DefaultedMoveConstructorIsDeleted : 1;
unsigned DefaultedMoveAssignmentIsDeleted : 1;
unsigned DefaultedDestructorIsDeleted : 1;
/// @}
/// The trivial special members which this class has, per
/// C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25,
/// C++11 [class.dtor]p5, or would have if the member were not suppressed.
///
/// This excludes any user-declared but not user-provided special members
/// which have been declared but not yet defined.
unsigned HasTrivialSpecialMembers : 6;
/// These bits keep track of the triviality of special functions for the
/// purpose of calls. Only the bits corresponding to SMF_CopyConstructor,
/// SMF_MoveConstructor, and SMF_Destructor are meaningful here.
unsigned HasTrivialSpecialMembersForCall : 6;
/// The declared special members of this class which are known to be
/// non-trivial.
///
/// This excludes any user-declared but not user-provided special members
/// which have been declared but not yet defined, and any implicit special
/// members which have not yet been declared.
unsigned DeclaredNonTrivialSpecialMembers : 6;
/// These bits keep track of the declared special members that are
/// non-trivial for the purpose of calls.
/// Only the bits corresponding to SMF_CopyConstructor,
/// SMF_MoveConstructor, and SMF_Destructor are meaningful here.
unsigned DeclaredNonTrivialSpecialMembersForCall : 6;
/// True when this class has a destructor with no semantic effect.
unsigned HasIrrelevantDestructor : 1;
/// True when this class has at least one user-declared constexpr
/// constructor which is neither the copy nor move constructor.
unsigned HasConstexprNonCopyMoveConstructor : 1;
/// True if this class has a (possibly implicit) defaulted default
/// constructor.
unsigned HasDefaultedDefaultConstructor : 1;
/// True if a defaulted default constructor for this class would
/// be constexpr.
unsigned DefaultedDefaultConstructorIsConstexpr : 1;
/// True if this class has a constexpr default constructor.
///
/// This is true for either a user-declared constexpr default constructor
/// or an implicitly declared constexpr default constructor.
unsigned HasConstexprDefaultConstructor : 1;
/// True when this class contains at least one non-static data
/// member or base class of non-literal or volatile type.
unsigned HasNonLiteralTypeFieldsOrBases : 1;
/// True when visible conversion functions are already computed
/// and are available.
unsigned ComputedVisibleConversions : 1;
/// Whether we have a C++11 user-provided default constructor (not
/// explicitly deleted or defaulted).
unsigned UserProvidedDefaultConstructor : 1;
/// The special members which have been declared for this class,
/// either by the user or implicitly.
unsigned DeclaredSpecialMembers : 6;
/// Whether an implicit copy constructor could have a const-qualified
/// parameter, for initializing virtual bases and for other subobjects.
unsigned ImplicitCopyConstructorCanHaveConstParamForVBase : 1;
unsigned ImplicitCopyConstructorCanHaveConstParamForNonVBase : 1;
/// Whether an implicit copy assignment operator would have a
/// const-qualified parameter.
unsigned ImplicitCopyAssignmentHasConstParam : 1;
/// Whether any declared copy constructor has a const-qualified
/// parameter.
unsigned HasDeclaredCopyConstructorWithConstParam : 1;
/// Whether any declared copy assignment operator has either a
/// const-qualified reference parameter or a non-reference parameter.
unsigned HasDeclaredCopyAssignmentWithConstParam : 1;
/// Whether this class describes a C++ lambda.
unsigned IsLambda : 1;
/// Whether we are currently parsing base specifiers.
unsigned IsParsingBaseSpecifiers : 1;
unsigned HasODRHash : 1;
/// A hash of parts of the class to help in ODR checking.
unsigned ODRHash = 0;
/// The number of base class specifiers in Bases.
unsigned NumBases = 0;
/// The number of virtual base class specifiers in VBases.
unsigned NumVBases = 0;
/// Base classes of this class.
///
/// FIXME: This is wasted space for a union.
LazyCXXBaseSpecifiersPtr Bases;
/// direct and indirect virtual base classes of this class.
LazyCXXBaseSpecifiersPtr VBases;
/// The conversion functions of this C++ class (but not its
/// inherited conversion functions).
///
/// Each of the entries in this overload set is a CXXConversionDecl.
LazyASTUnresolvedSet Conversions;
/// The conversion functions of this C++ class and all those
/// inherited conversion functions that are visible in this class.
///
/// Each of the entries in this overload set is a CXXConversionDecl or a
/// FunctionTemplateDecl.
LazyASTUnresolvedSet VisibleConversions;
/// The declaration which defines this record.
CXXRecordDecl *Definition;
/// The first friend declaration in this class, or null if there
/// aren't any.
///
/// This is actually currently stored in reverse order.
LazyDeclPtr FirstFriend;
DefinitionData(CXXRecordDecl *D);
/// Retrieve the set of direct base classes.
CXXBaseSpecifier *getBases() const {
if (!Bases.isOffset())
return Bases.get(nullptr);
return getBasesSlowCase();
}
/// Retrieve the set of virtual base classes.
CXXBaseSpecifier *getVBases() const {
if (!VBases.isOffset())
return VBases.get(nullptr);
return getVBasesSlowCase();
}
ArrayRef<CXXBaseSpecifier> bases() const {
return llvm::makeArrayRef(getBases(), NumBases);
}
ArrayRef<CXXBaseSpecifier> vbases() const {
return llvm::makeArrayRef(getVBases(), NumVBases);
}
private:
CXXBaseSpecifier *getBasesSlowCase() const;
CXXBaseSpecifier *getVBasesSlowCase() const;
};
struct DefinitionData *DefinitionData;
/// Describes a C++ closure type (generated by a lambda expression).
struct LambdaDefinitionData : public DefinitionData {
using Capture = LambdaCapture;
/// Whether this lambda is known to be dependent, even if its
/// context isn't dependent.
///
/// A lambda with a non-dependent context can be dependent if it occurs
/// within the default argument of a function template, because the
/// lambda will have been created with the enclosing context as its
/// declaration context, rather than function. This is an unfortunate
/// artifact of having to parse the default arguments before.
unsigned Dependent : 1;
/// Whether this lambda is a generic lambda.
unsigned IsGenericLambda : 1;
/// The Default Capture.
unsigned CaptureDefault : 2;
/// The number of captures in this lambda is limited 2^NumCaptures.
unsigned NumCaptures : 15;
/// The number of explicit captures in this lambda.
unsigned NumExplicitCaptures : 13;
/// The number used to indicate this lambda expression for name
/// mangling in the Itanium C++ ABI.
unsigned ManglingNumber = 0;
/// The declaration that provides context for this lambda, if the
/// actual DeclContext does not suffice. This is used for lambdas that
/// occur within default arguments of function parameters within the class
/// or within a data member initializer.
LazyDeclPtr ContextDecl;
/// The list of captures, both explicit and implicit, for this
/// lambda.
Capture *Captures = nullptr;
/// The type of the call method.
TypeSourceInfo *MethodTyInfo;
LambdaDefinitionData(CXXRecordDecl *D, TypeSourceInfo *Info,
bool Dependent, bool IsGeneric,
LambdaCaptureDefault CaptureDefault)
: DefinitionData(D), Dependent(Dependent), IsGenericLambda(IsGeneric),
CaptureDefault(CaptureDefault), NumCaptures(0), NumExplicitCaptures(0),
MethodTyInfo(Info) {
IsLambda = true;
// C++1z [expr.prim.lambda]p4:
// This class type is not an aggregate type.
Aggregate = false;
PlainOldData = false;
}
};
struct DefinitionData *dataPtr() const {
// Complete the redecl chain (if necessary).
getMostRecentDecl();
return DefinitionData;
}
struct DefinitionData &data() const {
auto *DD = dataPtr();
assert(DD && "queried property of class with no definition");
return *DD;
}
struct LambdaDefinitionData &getLambdaData() const {
// No update required: a merged definition cannot change any lambda
// properties.
auto *DD = DefinitionData;
assert(DD && DD->IsLambda && "queried lambda property of non-lambda class");
return static_cast<LambdaDefinitionData&>(*DD);
}
/// The template or declaration that this declaration
/// describes or was instantiated from, respectively.
///
/// For non-templates, this value will be null. For record
/// declarations that describe a class template, this will be a
/// pointer to a ClassTemplateDecl. For member
/// classes of class template specializations, this will be the
/// MemberSpecializationInfo referring to the member class that was
/// instantiated or specialized.
llvm::PointerUnion<ClassTemplateDecl *, MemberSpecializationInfo *>
TemplateOrInstantiation;
/// Called from setBases and addedMember to notify the class that a
/// direct or virtual base class or a member of class type has been added.
void addedClassSubobject(CXXRecordDecl *Base);
/// Notify the class that member has been added.
///
/// This routine helps maintain information about the class based on which
/// members have been added. It will be invoked by DeclContext::addDecl()
/// whenever a member is added to this record.
void addedMember(Decl *D);
void markedVirtualFunctionPure();
/// Get the head of our list of friend declarations, possibly
/// deserializing the friends from an external AST source.
FriendDecl *getFirstFriend() const;
/// Determine whether this class has an empty base class subobject of type X
/// or of one of the types that might be at offset 0 within X (per the C++
/// "standard layout" rules).
bool hasSubobjectAtOffsetZeroOfEmptyBaseType(ASTContext &Ctx,
const CXXRecordDecl *X);
protected:
CXXRecordDecl(Kind K, TagKind TK, const ASTContext &C, DeclContext *DC,
SourceLocation StartLoc, SourceLocation IdLoc,
IdentifierInfo *Id, CXXRecordDecl *PrevDecl);
public:
/// Iterator that traverses the base classes of a class.
using base_class_iterator = CXXBaseSpecifier *;
/// Iterator that traverses the base classes of a class.
using base_class_const_iterator = const CXXBaseSpecifier *;
CXXRecordDecl *getCanonicalDecl() override {
return cast<CXXRecordDecl>(RecordDecl::getCanonicalDecl());
}
const CXXRecordDecl *getCanonicalDecl() const {
return const_cast<CXXRecordDecl*>(this)->getCanonicalDecl();
}
CXXRecordDecl *getPreviousDecl() {
return cast_or_null<CXXRecordDecl>(
static_cast<RecordDecl *>(this)->getPreviousDecl());
}
const CXXRecordDecl *getPreviousDecl() const {
return const_cast<CXXRecordDecl*>(this)->getPreviousDecl();
}
CXXRecordDecl *getMostRecentDecl() {
return cast<CXXRecordDecl>(
static_cast<RecordDecl *>(this)->getMostRecentDecl());
}
const CXXRecordDecl *getMostRecentDecl() const {
return const_cast<CXXRecordDecl*>(this)->getMostRecentDecl();
}
CXXRecordDecl *getMostRecentNonInjectedDecl() {
CXXRecordDecl *Recent =
static_cast<CXXRecordDecl *>(this)->getMostRecentDecl();
while (Recent->isInjectedClassName()) {
// FIXME: Does injected class name need to be in the redeclarations chain?
assert(Recent->getPreviousDecl());
Recent = Recent->getPreviousDecl();
}
return Recent;
}
const CXXRecordDecl *getMostRecentNonInjectedDecl() const {
return const_cast<CXXRecordDecl*>(this)->getMostRecentNonInjectedDecl();
}
CXXRecordDecl *getDefinition() const {
// We only need an update if we don't already know which
// declaration is the definition.
auto *DD = DefinitionData ? DefinitionData : dataPtr();
return DD ? DD->Definition : nullptr;
}
bool hasDefinition() const { return DefinitionData || dataPtr(); }
static CXXRecordDecl *Create(const ASTContext &C, TagKind TK, DeclContext *DC,
SourceLocation StartLoc, SourceLocation IdLoc,
IdentifierInfo *Id,
CXXRecordDecl *PrevDecl = nullptr,
bool DelayTypeCreation = false);
static CXXRecordDecl *CreateLambda(const ASTContext &C, DeclContext *DC,
TypeSourceInfo *Info, SourceLocation Loc,
bool DependentLambda, bool IsGeneric,
LambdaCaptureDefault CaptureDefault);
static CXXRecordDecl *CreateDeserialized(const ASTContext &C, unsigned ID);
bool isDynamicClass() const {
return data().Polymorphic || data().NumVBases != 0;
}
/// @returns true if class is dynamic or might be dynamic because the
/// definition is incomplete of dependent.
bool mayBeDynamicClass() const {
return !hasDefinition() || isDynamicClass() || hasAnyDependentBases();
}
/// @returns true if class is non dynamic or might be non dynamic because the
/// definition is incomplete of dependent.
bool mayBeNonDynamicClass() const {
return !hasDefinition() || !isDynamicClass() || hasAnyDependentBases();
}
void setIsParsingBaseSpecifiers() { data().IsParsingBaseSpecifiers = true; }
bool isParsingBaseSpecifiers() const {
return data().IsParsingBaseSpecifiers;
}
unsigned getODRHash() const;
/// Sets the base classes of this struct or class.
void setBases(CXXBaseSpecifier const * const *Bases, unsigned NumBases);
/// Retrieves the number of base classes of this class.
unsigned getNumBases() const { return data().NumBases; }
using base_class_range = llvm::iterator_range<base_class_iterator>;
using base_class_const_range =
llvm::iterator_range<base_class_const_iterator>;
base_class_range bases() {
return base_class_range(bases_begin(), bases_end());
}
base_class_const_range bases() const {
return base_class_const_range(bases_begin(), bases_end());
}
base_class_iterator bases_begin() { return data().getBases(); }
base_class_const_iterator bases_begin() const { return data().getBases(); }
base_class_iterator bases_end() { return bases_begin() + data().NumBases; }
base_class_const_iterator bases_end() const {
return bases_begin() + data().NumBases;
}
/// Retrieves the number of virtual base classes of this class.
unsigned getNumVBases() const { return data().NumVBases; }
base_class_range vbases() {
return base_class_range(vbases_begin(), vbases_end());
}
base_class_const_range vbases() const {
return base_class_const_range(vbases_begin(), vbases_end());
}
base_class_iterator vbases_begin() { return data().getVBases(); }
base_class_const_iterator vbases_begin() const { return data().getVBases(); }
base_class_iterator vbases_end() { return vbases_begin() + data().NumVBases; }
base_class_const_iterator vbases_end() const {
return vbases_begin() + data().NumVBases;
}
/// Determine whether this class has any dependent base classes which
/// are not the current instantiation.
bool hasAnyDependentBases() const;
/// Iterator access to method members. The method iterator visits
/// all method members of the class, including non-instance methods,
/// special methods, etc.
using method_iterator = specific_decl_iterator<CXXMethodDecl>;
using method_range =
llvm::iterator_range<specific_decl_iterator<CXXMethodDecl>>;
method_range methods() const {
return method_range(method_begin(), method_end());
}
/// Method begin iterator. Iterates in the order the methods
/// were declared.
method_iterator method_begin() const {
return method_iterator(decls_begin());
}
/// Method past-the-end iterator.
method_iterator method_end() const {
return method_iterator(decls_end());
}
/// Iterator access to constructor members.
using ctor_iterator = specific_decl_iterator<CXXConstructorDecl>;
using ctor_range =
llvm::iterator_range<specific_decl_iterator<CXXConstructorDecl>>;
ctor_range ctors() const { return ctor_range(ctor_begin(), ctor_end()); }
ctor_iterator ctor_begin() const {
return ctor_iterator(decls_begin());
}
ctor_iterator ctor_end() const {
return ctor_iterator(decls_end());
}
/// An iterator over friend declarations. All of these are defined
/// in DeclFriend.h.
class friend_iterator;
using friend_range = llvm::iterator_range<friend_iterator>;
friend_range friends() const;
friend_iterator friend_begin() const;
friend_iterator friend_end() const;
void pushFriendDecl(FriendDecl *FD);
/// Determines whether this record has any friends.
bool hasFriends() const {
return data().FirstFriend.isValid();
}
/// \c true if a defaulted copy constructor for this class would be
/// deleted.
bool defaultedCopyConstructorIsDeleted() const {
assert((!needsOverloadResolutionForCopyConstructor() ||
(data().DeclaredSpecialMembers & SMF_CopyConstructor)) &&
"this property has not yet been computed by Sema");
return data().DefaultedCopyConstructorIsDeleted;
}
/// \c true if a defaulted move constructor for this class would be
/// deleted.
bool defaultedMoveConstructorIsDeleted() const {
assert((!needsOverloadResolutionForMoveConstructor() ||
(data().DeclaredSpecialMembers & SMF_MoveConstructor)) &&
"this property has not yet been computed by Sema");
return data().DefaultedMoveConstructorIsDeleted;
}
/// \c true if a defaulted destructor for this class would be deleted.
bool defaultedDestructorIsDeleted() const {
assert((!needsOverloadResolutionForDestructor() ||
(data().DeclaredSpecialMembers & SMF_Destructor)) &&
"this property has not yet been computed by Sema");
return data().DefaultedDestructorIsDeleted;
}
/// \c true if we know for sure that this class has a single,
/// accessible, unambiguous copy constructor that is not deleted.
bool hasSimpleCopyConstructor() const {
return !hasUserDeclaredCopyConstructor() &&
!data().DefaultedCopyConstructorIsDeleted;
}
/// \c true if we know for sure that this class has a single,
/// accessible, unambiguous move constructor that is not deleted.
bool hasSimpleMoveConstructor() const {
return !hasUserDeclaredMoveConstructor() && hasMoveConstructor() &&
!data().DefaultedMoveConstructorIsDeleted;
}
/// \c true if we know for sure that this class has a single,
/// accessible, unambiguous move assignment operator that is not deleted.
bool hasSimpleMoveAssignment() const {
return !hasUserDeclaredMoveAssignment() && hasMoveAssignment() &&
!data().DefaultedMoveAssignmentIsDeleted;
}
/// \c true if we know for sure that this class has an accessible
/// destructor that is not deleted.
bool hasSimpleDestructor() const {
return !hasUserDeclaredDestructor() &&
!data().DefaultedDestructorIsDeleted;
}
/// Determine whether this class has any default constructors.
bool hasDefaultConstructor() const {
return (data().DeclaredSpecialMembers & SMF_DefaultConstructor) ||
needsImplicitDefaultConstructor();
}
/// Determine if we need to declare a default constructor for
/// this class.
///
/// This value is used for lazy creation of default constructors.
bool needsImplicitDefaultConstructor() const {
return !data().UserDeclaredConstructor &&
!(data().DeclaredSpecialMembers & SMF_DefaultConstructor) &&
(!isLambda() || lambdaIsDefaultConstructibleAndAssignable());
}
/// Determine whether this class has any user-declared constructors.
///
/// When true, a default constructor will not be implicitly declared.
bool hasUserDeclaredConstructor() const {
return data().UserDeclaredConstructor;
}
/// Whether this class has a user-provided default constructor
/// per C++11.
bool hasUserProvidedDefaultConstructor() const {
return data().UserProvidedDefaultConstructor;
}
/// Determine whether this class has a user-declared copy constructor.
///
/// When false, a copy constructor will be implicitly declared.
bool hasUserDeclaredCopyConstructor() const {
return data().UserDeclaredSpecialMembers & SMF_CopyConstructor;
}
/// Determine whether this class needs an implicit copy
/// constructor to be lazily declared.
bool needsImplicitCopyConstructor() const {
return !(data().DeclaredSpecialMembers & SMF_CopyConstructor);
}
/// Determine whether we need to eagerly declare a defaulted copy
/// constructor for this class.
bool needsOverloadResolutionForCopyConstructor() const {
// C++17 [class.copy.ctor]p6:
// If the class definition declares a move constructor or move assignment
// operator, the implicitly declared copy constructor is defined as
// deleted.
// In MSVC mode, sometimes a declared move assignment does not delete an
// implicit copy constructor, so defer this choice to Sema.
if (data().UserDeclaredSpecialMembers &
(SMF_MoveConstructor | SMF_MoveAssignment))
return true;
return data().NeedOverloadResolutionForCopyConstructor;
}
/// Determine whether an implicit copy constructor for this type
/// would have a parameter with a const-qualified reference type.
bool implicitCopyConstructorHasConstParam() const {
return data().ImplicitCopyConstructorCanHaveConstParamForNonVBase &&
(isAbstract() ||
data().ImplicitCopyConstructorCanHaveConstParamForVBase);
}
/// Determine whether this class has a copy constructor with
/// a parameter type which is a reference to a const-qualified type.
bool hasCopyConstructorWithConstParam() const {
return data().HasDeclaredCopyConstructorWithConstParam ||
(needsImplicitCopyConstructor() &&
implicitCopyConstructorHasConstParam());
}
/// Whether this class has a user-declared move constructor or
/// assignment operator.
///
/// When false, a move constructor and assignment operator may be
/// implicitly declared.
bool hasUserDeclaredMoveOperation() const {
return data().UserDeclaredSpecialMembers &
(SMF_MoveConstructor | SMF_MoveAssignment);
}
/// Determine whether this class has had a move constructor
/// declared by the user.
bool hasUserDeclaredMoveConstructor() const {
return data().UserDeclaredSpecialMembers & SMF_MoveConstructor;
}
/// Determine whether this class has a move constructor.
bool hasMoveConstructor() const {
return (data().DeclaredSpecialMembers & SMF_MoveConstructor) ||
needsImplicitMoveConstructor();
}
/// Set that we attempted to declare an implicit copy
/// constructor, but overload resolution failed so we deleted it.
void setImplicitCopyConstructorIsDeleted() {
assert((data().DefaultedCopyConstructorIsDeleted ||
needsOverloadResolutionForCopyConstructor()) &&
"Copy constructor should not be deleted");
data().DefaultedCopyConstructorIsDeleted = true;
}
/// Set that we attempted to declare an implicit move
/// constructor, but overload resolution failed so we deleted it.
void setImplicitMoveConstructorIsDeleted() {
assert((data().DefaultedMoveConstructorIsDeleted ||
needsOverloadResolutionForMoveConstructor()) &&
"move constructor should not be deleted");
data().DefaultedMoveConstructorIsDeleted = true;
}
/// Set that we attempted to declare an implicit destructor,
/// but overload resolution failed so we deleted it.
void setImplicitDestructorIsDeleted() {
assert((data().DefaultedDestructorIsDeleted ||
needsOverloadResolutionForDestructor()) &&
"destructor should not be deleted");
data().DefaultedDestructorIsDeleted = true;
}
/// Determine whether this class should get an implicit move
/// constructor or if any existing special member function inhibits this.
bool needsImplicitMoveConstructor() const {
return !(data().DeclaredSpecialMembers & SMF_MoveConstructor) &&
!hasUserDeclaredCopyConstructor() &&
!hasUserDeclaredCopyAssignment() &&
!hasUserDeclaredMoveAssignment() &&
!hasUserDeclaredDestructor();
}
/// Determine whether we need to eagerly declare a defaulted move
/// constructor for this class.
bool needsOverloadResolutionForMoveConstructor() const {
return data().NeedOverloadResolutionForMoveConstructor;
}
/// Determine whether this class has a user-declared copy assignment
/// operator.
///
/// When false, a copy assignment operator will be implicitly declared.
bool hasUserDeclaredCopyAssignment() const {
return data().UserDeclaredSpecialMembers & SMF_CopyAssignment;
}
/// Determine whether this class needs an implicit copy
/// assignment operator to be lazily declared.
bool needsImplicitCopyAssignment() const {
return !(data().DeclaredSpecialMembers & SMF_CopyAssignment);
}
/// Determine whether we need to eagerly declare a defaulted copy
/// assignment operator for this class.
bool needsOverloadResolutionForCopyAssignment() const {
return data().HasMutableFields;
}
/// Determine whether an implicit copy assignment operator for this
/// type would have a parameter with a const-qualified reference type.
bool implicitCopyAssignmentHasConstParam() const {
return data().ImplicitCopyAssignmentHasConstParam;
}
/// Determine whether this class has a copy assignment operator with
/// a parameter type which is a reference to a const-qualified type or is not
/// a reference.
bool hasCopyAssignmentWithConstParam() const {
return data().HasDeclaredCopyAssignmentWithConstParam ||
(needsImplicitCopyAssignment() &&
implicitCopyAssignmentHasConstParam());
}
/// Determine whether this class has had a move assignment
/// declared by the user.
bool hasUserDeclaredMoveAssignment() const {
return data().UserDeclaredSpecialMembers & SMF_MoveAssignment;
}
/// Determine whether this class has a move assignment operator.
bool hasMoveAssignment() const {
return (data().DeclaredSpecialMembers & SMF_MoveAssignment) ||
needsImplicitMoveAssignment();
}
/// Set that we attempted to declare an implicit move assignment
/// operator, but overload resolution failed so we deleted it.
void setImplicitMoveAssignmentIsDeleted() {
assert((data().DefaultedMoveAssignmentIsDeleted ||
needsOverloadResolutionForMoveAssignment()) &&
"move assignment should not be deleted");
data().DefaultedMoveAssignmentIsDeleted = true;
}
/// Determine whether this class should get an implicit move
/// assignment operator or if any existing special member function inhibits
/// this.
bool needsImplicitMoveAssignment() const {
return !(data().DeclaredSpecialMembers & SMF_MoveAssignment) &&
!hasUserDeclaredCopyConstructor() &&
!hasUserDeclaredCopyAssignment() &&
!hasUserDeclaredMoveConstructor() &&
!hasUserDeclaredDestructor() &&
(!isLambda() || lambdaIsDefaultConstructibleAndAssignable());
}
/// Determine whether we need to eagerly declare a move assignment
/// operator for this class.
bool needsOverloadResolutionForMoveAssignment() const {
return data().NeedOverloadResolutionForMoveAssignment;
}
/// Determine whether this class has a user-declared destructor.
///
/// When false, a destructor will be implicitly declared.
bool hasUserDeclaredDestructor() const {
return data().UserDeclaredSpecialMembers & SMF_Destructor;
}
/// Determine whether this class needs an implicit destructor to
/// be lazily declared.
bool needsImplicitDestructor() const {
return !(data().DeclaredSpecialMembers & SMF_Destructor);
}
/// Determine whether we need to eagerly declare a destructor for this
/// class.
bool needsOverloadResolutionForDestructor() const {
return data().NeedOverloadResolutionForDestructor;
}
/// Determine whether this class describes a lambda function object.
bool isLambda() const {
// An update record can't turn a non-lambda into a lambda.
auto *DD = DefinitionData;
return DD && DD->IsLambda;
}
/// Determine whether this class describes a generic
/// lambda function object (i.e. function call operator is
/// a template).
bool isGenericLambda() const;
/// Determine whether this lambda should have an implicit default constructor
/// and copy and move assignment operators.
bool lambdaIsDefaultConstructibleAndAssignable() const;
/// Retrieve the lambda call operator of the closure type
/// if this is a closure type.
CXXMethodDecl *getLambdaCallOperator() const;
/// Retrieve the lambda static invoker, the address of which
/// is returned by the conversion operator, and the body of which
/// is forwarded to the lambda call operator.
CXXMethodDecl *getLambdaStaticInvoker() const;
/// Retrieve the generic lambda's template parameter list.
/// Returns null if the class does not represent a lambda or a generic
/// lambda.
TemplateParameterList *getGenericLambdaTemplateParameterList() const;
LambdaCaptureDefault getLambdaCaptureDefault() const {
assert(isLambda());
return static_cast<LambdaCaptureDefault>(getLambdaData().CaptureDefault);
}
/// For a closure type, retrieve the mapping from captured
/// variables and \c this to the non-static data members that store the
/// values or references of the captures.
///
/// \param Captures Will be populated with the mapping from captured
/// variables to the corresponding fields.
///
/// \param ThisCapture Will be set to the field declaration for the
/// \c this capture.
///
/// \note No entries will be added for init-captures, as they do not capture
/// variables.
void getCaptureFields(llvm::DenseMap<const VarDecl *, FieldDecl *> &Captures,
FieldDecl *&ThisCapture) const;
using capture_const_iterator = const LambdaCapture *;
using capture_const_range = llvm::iterator_range<capture_const_iterator>;
capture_const_range captures() const {
return capture_const_range(captures_begin(), captures_end());
}
capture_const_iterator captures_begin() const {
return isLambda() ? getLambdaData().Captures : nullptr;
}
capture_const_iterator captures_end() const {
return isLambda() ? captures_begin() + getLambdaData().NumCaptures
: nullptr;
}
using conversion_iterator = UnresolvedSetIterator;
conversion_iterator conversion_begin() const {
return data().Conversions.get(getASTContext()).begin();
}
conversion_iterator conversion_end() const {
return data().Conversions.get(getASTContext()).end();
}
/// Removes a conversion function from this class. The conversion
/// function must currently be a member of this class. Furthermore,
/// this class must currently be in the process of being defined.
void removeConversion(const NamedDecl *Old);
/// Get all conversion functions visible in current class,
/// including conversion function templates.
llvm::iterator_range<conversion_iterator> getVisibleConversionFunctions();
/// Determine whether this class is an aggregate (C++ [dcl.init.aggr]),
/// which is a class with no user-declared constructors, no private
/// or protected non-static data members, no base classes, and no virtual
/// functions (C++ [dcl.init.aggr]p1).
bool isAggregate() const { return data().Aggregate; }
/// Whether this class has any in-class initializers
/// for non-static data members (including those in anonymous unions or
/// structs).
bool hasInClassInitializer() const { return data().HasInClassInitializer; }
/// Whether this class or any of its subobjects has any members of
/// reference type which would make value-initialization ill-formed.
///
/// Per C++03 [dcl.init]p5:
/// - if T is a non-union class type without a user-declared constructor,
/// then every non-static data member and base-class component of T is
/// value-initialized [...] A program that calls for [...]
/// value-initialization of an entity of reference type is ill-formed.
bool hasUninitializedReferenceMember() const {
return !isUnion() && !hasUserDeclaredConstructor() &&
data().HasUninitializedReferenceMember;
}
/// Whether this class is a POD-type (C++ [class]p4)
///
/// For purposes of this function a class is POD if it is an aggregate
/// that has no non-static non-POD data members, no reference data
/// members, no user-defined copy assignment operator and no
/// user-defined destructor.
///
/// Note that this is the C++ TR1 definition of POD.
bool isPOD() const { return data().PlainOldData; }
/// True if this class is C-like, without C++-specific features, e.g.
/// it contains only public fields, no bases, tag kind is not 'class', etc.
bool isCLike() const;
/// Determine whether this is an empty class in the sense of
/// (C++11 [meta.unary.prop]).
///
/// The CXXRecordDecl is a class type, but not a union type,
/// with no non-static data members other than bit-fields of length 0,
/// no virtual member functions, no virtual base classes,
/// and no base class B for which is_empty<B>::value is false.
///
/// \note This does NOT include a check for union-ness.
bool isEmpty() const { return data().Empty; }
/// Determine whether this class has direct non-static data members.
bool hasDirectFields() const {
auto &D = data();
return D.HasPublicFields || D.HasProtectedFields || D.HasPrivateFields;
}
/// Whether this class is polymorphic (C++ [class.virtual]),
/// which means that the class contains or inherits a virtual function.
bool isPolymorphic() const { return data().Polymorphic; }
/// Determine whether this class has a pure virtual function.
///
/// The class is is abstract per (C++ [class.abstract]p2) if it declares
/// a pure virtual function or inherits a pure virtual function that is
/// not overridden.
bool isAbstract() const { return data().Abstract; }
/// Determine whether this class is standard-layout per
/// C++ [class]p7.
bool isStandardLayout() const { return data().IsStandardLayout; }
/// Determine whether this class was standard-layout per
/// C++11 [class]p7, specifically using the C++11 rules without any DRs.
bool isCXX11StandardLayout() const { return data().IsCXX11StandardLayout; }
/// Determine whether this class, or any of its class subobjects,
/// contains a mutable field.
bool hasMutableFields() const { return data().HasMutableFields; }
/// Determine whether this class has any variant members.
bool hasVariantMembers() const { return data().HasVariantMembers; }
/// Determine whether this class has a trivial default constructor
/// (C++11 [class.ctor]p5).
bool hasTrivialDefaultConstructor() const {
return hasDefaultConstructor() &&
(data().HasTrivialSpecialMembers & SMF_DefaultConstructor);
}
/// Determine whether this class has a non-trivial default constructor
/// (C++11 [class.ctor]p5).
bool hasNonTrivialDefaultConstructor() const {
return (data().DeclaredNonTrivialSpecialMembers & SMF_DefaultConstructor) ||
(needsImplicitDefaultConstructor() &&
!(data().HasTrivialSpecialMembers & SMF_DefaultConstructor));
}
/// Determine whether this class has at least one constexpr constructor
/// other than the copy or move constructors.
bool hasConstexprNonCopyMoveConstructor() const {
return data().HasConstexprNonCopyMoveConstructor ||
(needsImplicitDefaultConstructor() &&
defaultedDefaultConstructorIsConstexpr());
}
/// Determine whether a defaulted default constructor for this class
/// would be constexpr.
bool defaultedDefaultConstructorIsConstexpr() const {
return data().DefaultedDefaultConstructorIsConstexpr &&
(!isUnion() || hasInClassInitializer() || !hasVariantMembers());
}
/// Determine whether this class has a constexpr default constructor.
bool hasConstexprDefaultConstructor() const {
return data().HasConstexprDefaultConstructor ||
(needsImplicitDefaultConstructor() &&
defaultedDefaultConstructorIsConstexpr());
}
/// Determine whether this class has a trivial copy constructor
/// (C++ [class.copy]p6, C++11 [class.copy]p12)
bool hasTrivialCopyConstructor() const {
return data().HasTrivialSpecialMembers & SMF_CopyConstructor;
}
bool hasTrivialCopyConstructorForCall() const {
return data().HasTrivialSpecialMembersForCall & SMF_CopyConstructor;
}
/// Determine whether this class has a non-trivial copy constructor
/// (C++ [class.copy]p6, C++11 [class.copy]p12)
bool hasNonTrivialCopyConstructor() const {
return data().DeclaredNonTrivialSpecialMembers & SMF_CopyConstructor ||
!hasTrivialCopyConstructor();
}
bool hasNonTrivialCopyConstructorForCall() const {
return (data().DeclaredNonTrivialSpecialMembersForCall &
SMF_CopyConstructor) ||
!hasTrivialCopyConstructorForCall();
}
/// Determine whether this class has a trivial move constructor
/// (C++11 [class.copy]p12)
bool hasTrivialMoveConstructor() const {
return hasMoveConstructor() &&
(data().HasTrivialSpecialMembers & SMF_MoveConstructor);
}
bool hasTrivialMoveConstructorForCall() const {
return hasMoveConstructor() &&
(data().HasTrivialSpecialMembersForCall & SMF_MoveConstructor);
}
/// Determine whether this class has a non-trivial move constructor
/// (C++11 [class.copy]p12)
bool hasNonTrivialMoveConstructor() const {
return (data().DeclaredNonTrivialSpecialMembers & SMF_MoveConstructor) ||
(needsImplicitMoveConstructor() &&
!(data().HasTrivialSpecialMembers & SMF_MoveConstructor));
}
bool hasNonTrivialMoveConstructorForCall() const {
return (data().DeclaredNonTrivialSpecialMembersForCall &
SMF_MoveConstructor) ||
(needsImplicitMoveConstructor() &&
!(data().HasTrivialSpecialMembersForCall & SMF_MoveConstructor));
}
/// Determine whether this class has a trivial copy assignment operator
/// (C++ [class.copy]p11, C++11 [class.copy]p25)
bool hasTrivialCopyAssignment() const {
return data().HasTrivialSpecialMembers & SMF_CopyAssignment;
}
/// Determine whether this class has a non-trivial copy assignment
/// operator (C++ [class.copy]p11, C++11 [class.copy]p25)
bool hasNonTrivialCopyAssignment() const {
return data().DeclaredNonTrivialSpecialMembers & SMF_CopyAssignment ||
!hasTrivialCopyAssignment();
}
/// Determine whether this class has a trivial move assignment operator
/// (C++11 [class.copy]p25)
bool hasTrivialMoveAssignment() const {
return hasMoveAssignment() &&
(data().HasTrivialSpecialMembers & SMF_MoveAssignment);
}
/// Determine whether this class has a non-trivial move assignment
/// operator (C++11 [class.copy]p25)
bool hasNonTrivialMoveAssignment() const {
return (data().DeclaredNonTrivialSpecialMembers & SMF_MoveAssignment) ||
(needsImplicitMoveAssignment() &&
!(data().HasTrivialSpecialMembers & SMF_MoveAssignment));
}
/// Determine whether this class has a trivial destructor
/// (C++ [class.dtor]p3)
bool hasTrivialDestructor() const {
return data().HasTrivialSpecialMembers & SMF_Destructor;
}
bool hasTrivialDestructorForCall() const {
return data().HasTrivialSpecialMembersForCall & SMF_Destructor;
}
/// Determine whether this class has a non-trivial destructor
/// (C++ [class.dtor]p3)
bool hasNonTrivialDestructor() const {
return !(data().HasTrivialSpecialMembers & SMF_Destructor);
}
bool hasNonTrivialDestructorForCall() const {
return !(data().HasTrivialSpecialMembersForCall & SMF_Destructor);
}
void setHasTrivialSpecialMemberForCall() {
data().HasTrivialSpecialMembersForCall =
(SMF_CopyConstructor | SMF_MoveConstructor | SMF_Destructor);
}
/// Determine whether declaring a const variable with this type is ok
/// per core issue 253.
bool allowConstDefaultInit() const {
return !data().HasUninitializedFields ||
!(data().HasDefaultedDefaultConstructor ||
needsImplicitDefaultConstructor());
}
/// Determine whether this class has a destructor which has no
/// semantic effect.
///
/// Any such destructor will be trivial, public, defaulted and not deleted,
/// and will call only irrelevant destructors.
bool hasIrrelevantDestructor() const {
return data().HasIrrelevantDestructor;
}
/// Determine whether this class has a non-literal or/ volatile type
/// non-static data member or base class.
bool hasNonLiteralTypeFieldsOrBases() const {
return data().HasNonLiteralTypeFieldsOrBases;
}
/// Determine whether this class has a using-declaration that names
/// a user-declared base class constructor.
bool hasInheritedConstructor() const {
return data().HasInheritedConstructor;
}
/// Determine whether this class has a using-declaration that names
/// a base class assignment operator.
bool hasInheritedAssignment() const {
return data().HasInheritedAssignment;
}
/// Determine whether this class is considered trivially copyable per
/// (C++11 [class]p6).
bool isTriviallyCopyable() const;
/// Determine whether this class is considered trivial.
///
/// C++11 [class]p6:
/// "A trivial class is a class that has a trivial default constructor and
/// is trivially copyable."
bool isTrivial() const {
return isTriviallyCopyable() && hasTrivialDefaultConstructor();
}
/// Determine whether this class is a literal type.
///
/// C++11 [basic.types]p10:
/// A class type that has all the following properties:
/// - it has a trivial destructor
/// - every constructor call and full-expression in the
/// brace-or-equal-intializers for non-static data members (if any) is
/// a constant expression.
/// - it is an aggregate type or has at least one constexpr constructor
/// or constructor template that is not a copy or move constructor, and
/// - all of its non-static data members and base classes are of literal
/// types
///
/// We resolve DR1361 by ignoring the second bullet. We resolve DR1452 by
/// treating types with trivial default constructors as literal types.
///
/// Only in C++17 and beyond, are lambdas literal types.
bool isLiteral() const {
return hasTrivialDestructor() &&
(!isLambda() || getASTContext().getLangOpts().CPlusPlus17) &&
!hasNonLiteralTypeFieldsOrBases() &&
(isAggregate() || isLambda() ||
hasConstexprNonCopyMoveConstructor() ||
hasTrivialDefaultConstructor());
}
/// If this record is an instantiation of a member class,
/// retrieves the member class from which it was instantiated.
///
/// This routine will return non-null for (non-templated) member
/// classes of class templates. For example, given:
///
/// \code
/// template<typename T>
/// struct X {
/// struct A { };
/// };
/// \endcode
///
/// The declaration for X<int>::A is a (non-templated) CXXRecordDecl
/// whose parent is the class template specialization X<int>. For
/// this declaration, getInstantiatedFromMemberClass() will return
/// the CXXRecordDecl X<T>::A. When a complete definition of
/// X<int>::A is required, it will be instantiated from the
/// declaration returned by getInstantiatedFromMemberClass().
CXXRecordDecl *getInstantiatedFromMemberClass() const;
/// If this class is an instantiation of a member class of a
/// class template specialization, retrieves the member specialization
/// information.
MemberSpecializationInfo *getMemberSpecializationInfo() const;
/// Specify that this record is an instantiation of the
/// member class \p RD.
void setInstantiationOfMemberClass(CXXRecordDecl *RD,
TemplateSpecializationKind TSK);
/// Retrieves the class template that is described by this
/// class declaration.
///
/// Every class template is represented as a ClassTemplateDecl and a
/// CXXRecordDecl. The former contains template properties (such as
/// the template parameter lists) while the latter contains the
/// actual description of the template's
/// contents. ClassTemplateDecl::getTemplatedDecl() retrieves the
/// CXXRecordDecl that from a ClassTemplateDecl, while
/// getDescribedClassTemplate() retrieves the ClassTemplateDecl from
/// a CXXRecordDecl.
ClassTemplateDecl *getDescribedClassTemplate() const;
void setDescribedClassTemplate(ClassTemplateDecl *Template);
/// Determine whether this particular class is a specialization or
/// instantiation of a class template or member class of a class template,
/// and how it was instantiated or specialized.
TemplateSpecializationKind getTemplateSpecializationKind() const;
/// Set the kind of specialization or template instantiation this is.
void setTemplateSpecializationKind(TemplateSpecializationKind TSK);
/// Retrieve the record declaration from which this record could be
/// instantiated. Returns null if this class is not a template instantiation.
const CXXRecordDecl *getTemplateInstantiationPattern() const;
CXXRecordDecl *getTemplateInstantiationPattern() {
return const_cast<CXXRecordDecl *>(const_cast<const CXXRecordDecl *>(this)
->getTemplateInstantiationPattern());
}
/// Returns the destructor decl for this class.
CXXDestructorDecl *getDestructor() const;
/// Returns true if the class destructor, or any implicitly invoked
/// destructors are marked noreturn.
bool isAnyDestructorNoReturn() const;
/// If the class is a local class [class.local], returns
/// the enclosing function declaration.
const FunctionDecl *isLocalClass() const {
if (const auto *RD = dyn_cast<CXXRecordDecl>(getDeclContext()))
return RD->isLocalClass();
return dyn_cast<FunctionDecl>(getDeclContext());
}
FunctionDecl *isLocalClass() {
return const_cast<FunctionDecl*>(
const_cast<const CXXRecordDecl*>(this)->isLocalClass());
}
/// Determine whether this dependent class is a current instantiation,
/// when viewed from within the given context.
bool isCurrentInstantiation(const DeclContext *CurContext) const;
/// Determine whether this class is derived from the class \p Base.
///
/// This routine only determines whether this class is derived from \p Base,
/// but does not account for factors that may make a Derived -> Base class
/// ill-formed, such as private/protected inheritance or multiple, ambiguous
/// base class subobjects.
///
/// \param Base the base class we are searching for.
///
/// \returns true if this class is derived from Base, false otherwise.
bool isDerivedFrom(const CXXRecordDecl *Base) const;
/// Determine whether this class is derived from the type \p Base.
///
/// This routine only determines whether this class is derived from \p Base,
/// but does not account for factors that may make a Derived -> Base class
/// ill-formed, such as private/protected inheritance or multiple, ambiguous
/// base class subobjects.
///
/// \param Base the base class we are searching for.
///
/// \param Paths will contain the paths taken from the current class to the
/// given \p Base class.
///
/// \returns true if this class is derived from \p Base, false otherwise.
///
/// \todo add a separate parameter to configure IsDerivedFrom, rather than
/// tangling input and output in \p Paths
bool isDerivedFrom(const CXXRecordDecl *Base, CXXBasePaths &Paths) const;
/// Determine whether this class is virtually derived from
/// the class \p Base.
///
/// This routine only determines whether this class is virtually
/// derived from \p Base, but does not account for factors that may
/// make a Derived -> Base class ill-formed, such as
/// private/protected inheritance or multiple, ambiguous base class
/// subobjects.
///
/// \param Base the base class we are searching for.
///
/// \returns true if this class is virtually derived from Base,
/// false otherwise.
bool isVirtuallyDerivedFrom(const CXXRecordDecl *Base) const;
/// Determine whether this class is provably not derived from
/// the type \p Base.
bool isProvablyNotDerivedFrom(const CXXRecordDecl *Base) const;
/// Function type used by forallBases() as a callback.
///
/// \param BaseDefinition the definition of the base class
///
/// \returns true if this base matched the search criteria
using ForallBasesCallback =
llvm::function_ref<bool(const CXXRecordDecl *BaseDefinition)>;
/// Determines if the given callback holds for all the direct
/// or indirect base classes of this type.
///
/// The class itself does not count as a base class. This routine
/// returns false if the class has non-computable base classes.
///
/// \param BaseMatches Callback invoked for each (direct or indirect) base
/// class of this type, or if \p AllowShortCircuit is true then until a call
/// returns false.
///
/// \param AllowShortCircuit if false, forces the callback to be called
/// for every base class, even if a dependent or non-matching base was
/// found.
bool forallBases(ForallBasesCallback BaseMatches,
bool AllowShortCircuit = true) const;
/// Function type used by lookupInBases() to determine whether a
/// specific base class subobject matches the lookup criteria.
///
/// \param Specifier the base-class specifier that describes the inheritance
/// from the base class we are trying to match.
///
/// \param Path the current path, from the most-derived class down to the
/// base named by the \p Specifier.
///
/// \returns true if this base matched the search criteria, false otherwise.
using BaseMatchesCallback =
llvm::function_ref<bool(const CXXBaseSpecifier *Specifier,
CXXBasePath &Path)>;
/// Look for entities within the base classes of this C++ class,
/// transitively searching all base class subobjects.
///
/// This routine uses the callback function \p BaseMatches to find base
/// classes meeting some search criteria, walking all base class subobjects
/// and populating the given \p Paths structure with the paths through the
/// inheritance hierarchy that resulted in a match. On a successful search,
/// the \p Paths structure can be queried to retrieve the matching paths and
/// to determine if there were any ambiguities.
///
/// \param BaseMatches callback function used to determine whether a given
/// base matches the user-defined search criteria.
///
/// \param Paths used to record the paths from this class to its base class
/// subobjects that match the search criteria.
///
/// \param LookupInDependent can be set to true to extend the search to
/// dependent base classes.
///
/// \returns true if there exists any path from this class to a base class
/// subobject that matches the search criteria.
bool lookupInBases(BaseMatchesCallback BaseMatches, CXXBasePaths &Paths,
bool LookupInDependent = false) const;
/// Base-class lookup callback that determines whether the given
/// base class specifier refers to a specific class declaration.
///
/// This callback can be used with \c lookupInBases() to determine whether
/// a given derived class has is a base class subobject of a particular type.
/// The base record pointer should refer to the canonical CXXRecordDecl of the
/// base class that we are searching for.
static bool FindBaseClass(const CXXBaseSpecifier *Specifier,
CXXBasePath &Path, const CXXRecordDecl *BaseRecord);
/// Base-class lookup callback that determines whether the
/// given base class specifier refers to a specific class
/// declaration and describes virtual derivation.
///
/// This callback can be used with \c lookupInBases() to determine
/// whether a given derived class has is a virtual base class
/// subobject of a particular type. The base record pointer should
/// refer to the canonical CXXRecordDecl of the base class that we
/// are searching for.
static bool FindVirtualBaseClass(const CXXBaseSpecifier *Specifier,
CXXBasePath &Path,
const CXXRecordDecl *BaseRecord);
/// Base-class lookup callback that determines whether there exists
/// a tag with the given name.
///
/// This callback can be used with \c lookupInBases() to find tag members
/// of the given name within a C++ class hierarchy.
static bool FindTagMember(const CXXBaseSpecifier *Specifier,
CXXBasePath &Path, DeclarationName Name);
/// Base-class lookup callback that determines whether there exists
/// a member with the given name.
///
/// This callback can be used with \c lookupInBases() to find members
/// of the given name within a C++ class hierarchy.
static bool FindOrdinaryMember(const CXXBaseSpecifier *Specifier,
CXXBasePath &Path, DeclarationName Name);
/// Base-class lookup callback that determines whether there exists
/// a member with the given name.
///
/// This callback can be used with \c lookupInBases() to find members
/// of the given name within a C++ class hierarchy, including dependent
/// classes.
static bool
FindOrdinaryMemberInDependentClasses(const CXXBaseSpecifier *Specifier,
CXXBasePath &Path, DeclarationName Name);
/// Base-class lookup callback that determines whether there exists
/// an OpenMP declare reduction member with the given name.
///
/// This callback can be used with \c lookupInBases() to find members
/// of the given name within a C++ class hierarchy.
static bool FindOMPReductionMember(const CXXBaseSpecifier *Specifier,
CXXBasePath &Path, DeclarationName Name);
+ /// Base-class lookup callback that determines whether there exists
+ /// an OpenMP declare mapper member with the given name.
+ ///
+ /// This callback can be used with \c lookupInBases() to find members
+ /// of the given name within a C++ class hierarchy.
+ static bool FindOMPMapperMember(const CXXBaseSpecifier *Specifier,
+ CXXBasePath &Path, DeclarationName Name);
+
/// Base-class lookup callback that determines whether there exists
/// a member with the given name that can be used in a nested-name-specifier.
///
/// This callback can be used with \c lookupInBases() to find members of
/// the given name within a C++ class hierarchy that can occur within
/// nested-name-specifiers.
static bool FindNestedNameSpecifierMember(const CXXBaseSpecifier *Specifier,
CXXBasePath &Path,
DeclarationName Name);
/// Retrieve the final overriders for each virtual member
/// function in the class hierarchy where this class is the
/// most-derived class in the class hierarchy.
void getFinalOverriders(CXXFinalOverriderMap &FinaOverriders) const;
/// Get the indirect primary bases for this class.
void getIndirectPrimaryBases(CXXIndirectPrimaryBaseSet& Bases) const;
/// Performs an imprecise lookup of a dependent name in this class.
///
/// This function does not follow strict semantic rules and should be used
/// only when lookup rules can be relaxed, e.g. indexing.
std::vector<const NamedDecl *>
lookupDependentName(const DeclarationName &Name,
llvm::function_ref<bool(const NamedDecl *ND)> Filter);
/// Renders and displays an inheritance diagram
/// for this C++ class and all of its base classes (transitively) using
/// GraphViz.
void viewInheritance(ASTContext& Context) const;
/// Calculates the access of a decl that is reached
/// along a path.
static AccessSpecifier MergeAccess(AccessSpecifier PathAccess,
AccessSpecifier DeclAccess) {
assert(DeclAccess != AS_none);
if (DeclAccess == AS_private) return AS_none;
return (PathAccess > DeclAccess ? PathAccess : DeclAccess);
}
/// Indicates that the declaration of a defaulted or deleted special
/// member function is now complete.
void finishedDefaultedOrDeletedMember(CXXMethodDecl *MD);
void setTrivialForCallFlags(CXXMethodDecl *MD);
/// Indicates that the definition of this class is now complete.
void completeDefinition() override;
/// Indicates that the definition of this class is now complete,
/// and provides a final overrider map to help determine
///
/// \param FinalOverriders The final overrider map for this class, which can
/// be provided as an optimization for abstract-class checking. If NULL,
/// final overriders will be computed if they are needed to complete the
/// definition.
void completeDefinition(CXXFinalOverriderMap *FinalOverriders);
/// Determine whether this class may end up being abstract, even though
/// it is not yet known to be abstract.
///
/// \returns true if this class is not known to be abstract but has any
/// base classes that are abstract. In this case, \c completeDefinition()
/// will need to compute final overriders to determine whether the class is
/// actually abstract.
bool mayBeAbstract() const;
/// If this is the closure type of a lambda expression, retrieve the
/// number to be used for name mangling in the Itanium C++ ABI.
///
/// Zero indicates that this closure type has internal linkage, so the
/// mangling number does not matter, while a non-zero value indicates which
/// lambda expression this is in this particular context.
unsigned getLambdaManglingNumber() const {
assert(isLambda() && "Not a lambda closure type!");
return getLambdaData().ManglingNumber;
}
/// Retrieve the declaration that provides additional context for a
/// lambda, when the normal declaration context is not specific enough.
///
/// Certain contexts (default arguments of in-class function parameters and
/// the initializers of data members) have separate name mangling rules for
/// lambdas within the Itanium C++ ABI. For these cases, this routine provides
/// the declaration in which the lambda occurs, e.g., the function parameter
/// or the non-static data member. Otherwise, it returns NULL to imply that
/// the declaration context suffices.
Decl *getLambdaContextDecl() const;
/// Set the mangling number and context declaration for a lambda
/// class.
void setLambdaMangling(unsigned ManglingNumber, Decl *ContextDecl) {
getLambdaData().ManglingNumber = ManglingNumber;
getLambdaData().ContextDecl = ContextDecl;
}
/// Returns the inheritance model used for this record.
MSInheritanceAttr::Spelling getMSInheritanceModel() const;
/// Calculate what the inheritance model would be for this class.
MSInheritanceAttr::Spelling calculateInheritanceModel() const;
/// In the Microsoft C++ ABI, use zero for the field offset of a null data
/// member pointer if we can guarantee that zero is not a valid field offset,
/// or if the member pointer has multiple fields. Polymorphic classes have a
/// vfptr at offset zero, so we can use zero for null. If there are multiple
/// fields, we can use zero even if it is a valid field offset because
/// null-ness testing will check the other fields.
bool nullFieldOffsetIsZero() const {
return !MSInheritanceAttr::hasOnlyOneField(/*IsMemberFunction=*/false,
getMSInheritanceModel()) ||
(hasDefinition() && isPolymorphic());
}
/// Controls when vtordisps will be emitted if this record is used as a
/// virtual base.
MSVtorDispAttr::Mode getMSVtorDispMode() const;
/// Determine whether this lambda expression was known to be dependent
/// at the time it was created, even if its context does not appear to be
/// dependent.
///
/// This flag is a workaround for an issue with parsing, where default
/// arguments are parsed before their enclosing function declarations have
/// been created. This means that any lambda expressions within those
/// default arguments will have as their DeclContext the context enclosing
/// the function declaration, which may be non-dependent even when the
/// function declaration itself is dependent. This flag indicates when we
/// know that the lambda is dependent despite that.
bool isDependentLambda() const {
return isLambda() && getLambdaData().Dependent;
}
TypeSourceInfo *getLambdaTypeInfo() const {
return getLambdaData().MethodTyInfo;
}
// Determine whether this type is an Interface Like type for
// __interface inheritance purposes.
bool isInterfaceLike() const;
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) {
return K >= firstCXXRecord && K <= lastCXXRecord;
}
};
/// Represents a C++ deduction guide declaration.
///
/// \code
/// template<typename T> struct A { A(); A(T); };
/// A() -> A<int>;
/// \endcode
///
/// In this example, there will be an explicit deduction guide from the
/// second line, and implicit deduction guide templates synthesized from
/// the constructors of \c A.
class CXXDeductionGuideDecl : public FunctionDecl {
void anchor() override;
private:
CXXDeductionGuideDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
bool IsExplicit, const DeclarationNameInfo &NameInfo,
QualType T, TypeSourceInfo *TInfo,
SourceLocation EndLocation)
: FunctionDecl(CXXDeductionGuide, C, DC, StartLoc, NameInfo, T, TInfo,
SC_None, false, false) {
if (EndLocation.isValid())
setRangeEnd(EndLocation);
setExplicitSpecified(IsExplicit);
setIsCopyDeductionCandidate(false);
}
public:
friend class ASTDeclReader;
friend class ASTDeclWriter;
static CXXDeductionGuideDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation StartLoc, bool IsExplicit,
const DeclarationNameInfo &NameInfo,
QualType T, TypeSourceInfo *TInfo,
SourceLocation EndLocation);
static CXXDeductionGuideDecl *CreateDeserialized(ASTContext &C, unsigned ID);
/// Whether this deduction guide is explicit.
bool isExplicit() const { return isExplicitSpecified(); }
/// Get the template for which this guide performs deduction.
TemplateDecl *getDeducedTemplate() const {
return getDeclName().getCXXDeductionGuideTemplate();
}
void setIsCopyDeductionCandidate(bool isCDC = true) {
FunctionDeclBits.IsCopyDeductionCandidate = isCDC;
}
bool isCopyDeductionCandidate() const {
return FunctionDeclBits.IsCopyDeductionCandidate;
}
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == CXXDeductionGuide; }
};
/// Represents a static or instance method of a struct/union/class.
///
/// In the terminology of the C++ Standard, these are the (static and
/// non-static) member functions, whether virtual or not.
class CXXMethodDecl : public FunctionDecl {
void anchor() override;
protected:
CXXMethodDecl(Kind DK, ASTContext &C, CXXRecordDecl *RD,
SourceLocation StartLoc, const DeclarationNameInfo &NameInfo,
QualType T, TypeSourceInfo *TInfo,
StorageClass SC, bool isInline,
bool isConstexpr, SourceLocation EndLocation)
: FunctionDecl(DK, C, RD, StartLoc, NameInfo, T, TInfo,
SC, isInline, isConstexpr) {
if (EndLocation.isValid())
setRangeEnd(EndLocation);
}
public:
static CXXMethodDecl *Create(ASTContext &C, CXXRecordDecl *RD,
SourceLocation StartLoc,
const DeclarationNameInfo &NameInfo,
QualType T, TypeSourceInfo *TInfo,
StorageClass SC,
bool isInline,
bool isConstexpr,
SourceLocation EndLocation);
static CXXMethodDecl *CreateDeserialized(ASTContext &C, unsigned ID);
bool isStatic() const;
bool isInstance() const { return !isStatic(); }
/// Returns true if the given operator is implicitly static in a record
/// context.
static bool isStaticOverloadedOperator(OverloadedOperatorKind OOK) {
// [class.free]p1:
// Any allocation function for a class T is a static member
// (even if not explicitly declared static).
// [class.free]p6 Any deallocation function for a class X is a static member
// (even if not explicitly declared static).
return OOK == OO_New || OOK == OO_Array_New || OOK == OO_Delete ||
OOK == OO_Array_Delete;
}
bool isConst() const { return getType()->castAs<FunctionType>()->isConst(); }
bool isVolatile() const { return getType()->castAs<FunctionType>()->isVolatile(); }
bool isVirtual() const {
CXXMethodDecl *CD = const_cast<CXXMethodDecl*>(this)->getCanonicalDecl();
// Member function is virtual if it is marked explicitly so, or if it is
// declared in __interface -- then it is automatically pure virtual.
if (CD->isVirtualAsWritten() || CD->isPure())
return true;
return CD->size_overridden_methods() != 0;
}
/// If it's possible to devirtualize a call to this method, return the called
/// function. Otherwise, return null.
/// \param Base The object on which this virtual function is called.
/// \param IsAppleKext True if we are compiling for Apple kext.
CXXMethodDecl *getDevirtualizedMethod(const Expr *Base, bool IsAppleKext);
const CXXMethodDecl *getDevirtualizedMethod(const Expr *Base,
bool IsAppleKext) const {
return const_cast<CXXMethodDecl *>(this)->getDevirtualizedMethod(
Base, IsAppleKext);
}
/// Determine whether this is a usual deallocation function (C++
/// [basic.stc.dynamic.deallocation]p2), which is an overloaded delete or
/// delete[] operator with a particular signature. Populates \p PreventedBy
/// with the declarations of the functions of the same kind if they were the
/// reason for this function returning false. This is used by
/// Sema::isUsualDeallocationFunction to reconsider the answer based on the
/// context.
bool isUsualDeallocationFunction(
SmallVectorImpl<const FunctionDecl *> &PreventedBy) const;
/// Determine whether this is a copy-assignment operator, regardless
/// of whether it was declared implicitly or explicitly.
bool isCopyAssignmentOperator() const;
/// Determine whether this is a move assignment operator.
bool isMoveAssignmentOperator() const;
CXXMethodDecl *getCanonicalDecl() override {
return cast<CXXMethodDecl>(FunctionDecl::getCanonicalDecl());
}
const CXXMethodDecl *getCanonicalDecl() const {
return const_cast<CXXMethodDecl*>(this)->getCanonicalDecl();
}
CXXMethodDecl *getMostRecentDecl() {
return cast<CXXMethodDecl>(
static_cast<FunctionDecl *>(this)->getMostRecentDecl());
}
const CXXMethodDecl *getMostRecentDecl() const {
return const_cast<CXXMethodDecl*>(this)->getMostRecentDecl();
}
/// True if this method is user-declared and was not
/// deleted or defaulted on its first declaration.
bool isUserProvided() const {
auto *DeclAsWritten = this;
if (auto *Pattern = getTemplateInstantiationPattern())
DeclAsWritten = cast<CXXMethodDecl>(Pattern);
return !(DeclAsWritten->isDeleted() ||
DeclAsWritten->getCanonicalDecl()->isDefaulted());
}
void addOverriddenMethod(const CXXMethodDecl *MD);
using method_iterator = const CXXMethodDecl *const *;
method_iterator begin_overridden_methods() const;
method_iterator end_overridden_methods() const;
unsigned size_overridden_methods() const;
using overridden_method_range= ASTContext::overridden_method_range;
overridden_method_range overridden_methods() const;
/// Returns the parent of this method declaration, which
/// is the class in which this method is defined.
const CXXRecordDecl *getParent() const {
return cast<CXXRecordDecl>(FunctionDecl::getParent());
}
/// Returns the parent of this method declaration, which
/// is the class in which this method is defined.
CXXRecordDecl *getParent() {
return const_cast<CXXRecordDecl *>(
cast<CXXRecordDecl>(FunctionDecl::getParent()));
}
/// Returns the type of the \c this pointer.
///
/// Should only be called for instance (i.e., non-static) methods. Note
/// that for the call operator of a lambda closure type, this returns the
/// desugared 'this' type (a pointer to the closure type), not the captured
/// 'this' type.
QualType getThisType() const;
static QualType getThisType(const FunctionProtoType *FPT,
const CXXRecordDecl *Decl);
Qualifiers getMethodQualifiers() const {
return getType()->getAs<FunctionProtoType>()->getMethodQuals();
}
/// Retrieve the ref-qualifier associated with this method.
///
/// In the following example, \c f() has an lvalue ref-qualifier, \c g()
/// has an rvalue ref-qualifier, and \c h() has no ref-qualifier.
/// @code
/// struct X {
/// void f() &;
/// void g() &&;
/// void h();
/// };
/// @endcode
RefQualifierKind getRefQualifier() const {
return getType()->getAs<FunctionProtoType>()->getRefQualifier();
}
bool hasInlineBody() const;
/// Determine whether this is a lambda closure type's static member
/// function that is used for the result of the lambda's conversion to
/// function pointer (for a lambda with no captures).
///
/// The function itself, if used, will have a placeholder body that will be
/// supplied by IR generation to either forward to the function call operator
/// or clone the function call operator.
bool isLambdaStaticInvoker() const;
/// Find the method in \p RD that corresponds to this one.
///
/// Find if \p RD or one of the classes it inherits from override this method.
/// If so, return it. \p RD is assumed to be a subclass of the class defining
/// this method (or be the class itself), unless \p MayBeBase is set to true.
CXXMethodDecl *
getCorrespondingMethodInClass(const CXXRecordDecl *RD,
bool MayBeBase = false);
const CXXMethodDecl *
getCorrespondingMethodInClass(const CXXRecordDecl *RD,
bool MayBeBase = false) const {
return const_cast<CXXMethodDecl *>(this)
->getCorrespondingMethodInClass(RD, MayBeBase);
}
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) {
return K >= firstCXXMethod && K <= lastCXXMethod;
}
};
/// Represents a C++ base or member initializer.
///
/// This is part of a constructor initializer that
/// initializes one non-static member variable or one base class. For
/// example, in the following, both 'A(a)' and 'f(3.14159)' are member
/// initializers:
///
/// \code
/// class A { };
/// class B : public A {
/// float f;
/// public:
/// B(A& a) : A(a), f(3.14159) { }
/// };
/// \endcode
class CXXCtorInitializer final {
/// Either the base class name/delegating constructor type (stored as
/// a TypeSourceInfo*), an normal field (FieldDecl), or an anonymous field
/// (IndirectFieldDecl*) being initialized.
llvm::PointerUnion3<TypeSourceInfo *, FieldDecl *, IndirectFieldDecl *>
Initializee;
/// The source location for the field name or, for a base initializer
/// pack expansion, the location of the ellipsis.
///
/// In the case of a delegating
/// constructor, it will still include the type's source location as the
/// Initializee points to the CXXConstructorDecl (to allow loop detection).
SourceLocation MemberOrEllipsisLocation;
/// The argument used to initialize the base or member, which may
/// end up constructing an object (when multiple arguments are involved).
Stmt *Init;
/// Location of the left paren of the ctor-initializer.
SourceLocation LParenLoc;
/// Location of the right paren of the ctor-initializer.
SourceLocation RParenLoc;
/// If the initializee is a type, whether that type makes this
/// a delegating initialization.
unsigned IsDelegating : 1;
/// If the initializer is a base initializer, this keeps track
/// of whether the base is virtual or not.
unsigned IsVirtual : 1;
/// Whether or not the initializer is explicitly written
/// in the sources.
unsigned IsWritten : 1;
/// If IsWritten is true, then this number keeps track of the textual order
/// of this initializer in the original sources, counting from 0.
unsigned SourceOrder : 13;
public:
/// Creates a new base-class initializer.
explicit
CXXCtorInitializer(ASTContext &Context, TypeSourceInfo *TInfo, bool IsVirtual,
SourceLocation L, Expr *Init, SourceLocation R,
SourceLocation EllipsisLoc);
/// Creates a new member initializer.
explicit
CXXCtorInitializer(ASTContext &Context, FieldDecl *Member,
SourceLocation MemberLoc, SourceLocation L, Expr *Init,
SourceLocation R);
/// Creates a new anonymous field initializer.
explicit
CXXCtorInitializer(ASTContext &Context, IndirectFieldDecl *Member,
SourceLocation MemberLoc, SourceLocation L, Expr *Init,
SourceLocation R);
/// Creates a new delegating initializer.
explicit
CXXCtorInitializer(ASTContext &Context, TypeSourceInfo *TInfo,
SourceLocation L, Expr *Init, SourceLocation R);
/// \return Unique reproducible object identifier.
int64_t getID(const ASTContext &Context) const;
/// Determine whether this initializer is initializing a base class.
bool isBaseInitializer() const {
return Initializee.is<TypeSourceInfo*>() && !IsDelegating;
}
/// Determine whether this initializer is initializing a non-static
/// data member.
bool isMemberInitializer() const { return Initializee.is<FieldDecl*>(); }
bool isAnyMemberInitializer() const {
return isMemberInitializer() || isIndirectMemberInitializer();
}
bool isIndirectMemberInitializer() const {
return Initializee.is<IndirectFieldDecl*>();
}
/// Determine whether this initializer is an implicit initializer
/// generated for a field with an initializer defined on the member
/// declaration.
///
/// In-class member initializers (also known as "non-static data member
/// initializations", NSDMIs) were introduced in C++11.
bool isInClassMemberInitializer() const {
return Init->getStmtClass() == Stmt::CXXDefaultInitExprClass;
}
/// Determine whether this initializer is creating a delegating
/// constructor.
bool isDelegatingInitializer() const {
return Initializee.is<TypeSourceInfo*>() && IsDelegating;
}
/// Determine whether this initializer is a pack expansion.
bool isPackExpansion() const {
return isBaseInitializer() && MemberOrEllipsisLocation.isValid();
}
// For a pack expansion, returns the location of the ellipsis.
SourceLocation getEllipsisLoc() const {
assert(isPackExpansion() && "Initializer is not a pack expansion");
return MemberOrEllipsisLocation;
}
/// If this is a base class initializer, returns the type of the
/// base class with location information. Otherwise, returns an NULL
/// type location.
TypeLoc getBaseClassLoc() const;
/// If this is a base class initializer, returns the type of the base class.
/// Otherwise, returns null.
const Type *getBaseClass() const;
/// Returns whether the base is virtual or not.
bool isBaseVirtual() const {
assert(isBaseInitializer() && "Must call this on base initializer!");
return IsVirtual;
}
/// Returns the declarator information for a base class or delegating
/// initializer.
TypeSourceInfo *getTypeSourceInfo() const {
return Initializee.dyn_cast<TypeSourceInfo *>();
}
/// If this is a member initializer, returns the declaration of the
/// non-static data member being initialized. Otherwise, returns null.
FieldDecl *getMember() const {
if (isMemberInitializer())
return Initializee.get<FieldDecl*>();
return nullptr;
}
FieldDecl *getAnyMember() const {
if (isMemberInitializer())
return Initializee.get<FieldDecl*>();
if (isIndirectMemberInitializer())
return Initializee.get<IndirectFieldDecl*>()->getAnonField();
return nullptr;
}
IndirectFieldDecl *getIndirectMember() const {
if (isIndirectMemberInitializer())
return Initializee.get<IndirectFieldDecl*>();
return nullptr;
}
SourceLocation getMemberLocation() const {
return MemberOrEllipsisLocation;
}
/// Determine the source location of the initializer.
SourceLocation getSourceLocation() const;
/// Determine the source range covering the entire initializer.
SourceRange getSourceRange() const LLVM_READONLY;
/// Determine whether this initializer is explicitly written
/// in the source code.
bool isWritten() const { return IsWritten; }
/// Return the source position of the initializer, counting from 0.
/// If the initializer was implicit, -1 is returned.
int getSourceOrder() const {
return IsWritten ? static_cast<int>(SourceOrder) : -1;
}
/// Set the source order of this initializer.
///
/// This can only be called once for each initializer; it cannot be called
/// on an initializer having a positive number of (implicit) array indices.
///
/// This assumes that the initializer was written in the source code, and
/// ensures that isWritten() returns true.
void setSourceOrder(int Pos) {
assert(!IsWritten &&
"setSourceOrder() used on implicit initializer");
assert(SourceOrder == 0 &&
"calling twice setSourceOrder() on the same initializer");
assert(Pos >= 0 &&
"setSourceOrder() used to make an initializer implicit");
IsWritten = true;
SourceOrder = static_cast<unsigned>(Pos);
}
SourceLocation getLParenLoc() const { return LParenLoc; }
SourceLocation getRParenLoc() const { return RParenLoc; }
/// Get the initializer.
Expr *getInit() const { return static_cast<Expr *>(Init); }
};
/// Description of a constructor that was inherited from a base class.
class InheritedConstructor {
ConstructorUsingShadowDecl *Shadow = nullptr;
CXXConstructorDecl *BaseCtor = nullptr;
public:
InheritedConstructor() = default;
InheritedConstructor(ConstructorUsingShadowDecl *Shadow,
CXXConstructorDecl *BaseCtor)
: Shadow(Shadow), BaseCtor(BaseCtor) {}
explicit operator bool() const { return Shadow; }
ConstructorUsingShadowDecl *getShadowDecl() const { return Shadow; }
CXXConstructorDecl *getConstructor() const { return BaseCtor; }
};
/// Represents a C++ constructor within a class.
///
/// For example:
///
/// \code
/// class X {
/// public:
/// explicit X(int); // represented by a CXXConstructorDecl.
/// };
/// \endcode
class CXXConstructorDecl final
: public CXXMethodDecl,
private llvm::TrailingObjects<CXXConstructorDecl, InheritedConstructor> {
// This class stores some data in DeclContext::CXXConstructorDeclBits
// to save some space. Use the provided accessors to access it.
/// \name Support for base and member initializers.
/// \{
/// The arguments used to initialize the base or member.
LazyCXXCtorInitializersPtr CtorInitializers;
CXXConstructorDecl(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
const DeclarationNameInfo &NameInfo,
QualType T, TypeSourceInfo *TInfo,
bool isExplicitSpecified, bool isInline,
bool isImplicitlyDeclared, bool isConstexpr,
InheritedConstructor Inherited);
void anchor() override;
public:
friend class ASTDeclReader;
friend class ASTDeclWriter;
friend TrailingObjects;
static CXXConstructorDecl *CreateDeserialized(ASTContext &C, unsigned ID,
bool InheritsConstructor);
static CXXConstructorDecl *
Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
bool isExplicit, bool isInline, bool isImplicitlyDeclared,
bool isConstexpr,
InheritedConstructor Inherited = InheritedConstructor());
/// Iterates through the member/base initializer list.
using init_iterator = CXXCtorInitializer **;
/// Iterates through the member/base initializer list.
using init_const_iterator = CXXCtorInitializer *const *;
using init_range = llvm::iterator_range<init_iterator>;
using init_const_range = llvm::iterator_range<init_const_iterator>;
init_range inits() { return init_range(init_begin(), init_end()); }
init_const_range inits() const {
return init_const_range(init_begin(), init_end());
}
/// Retrieve an iterator to the first initializer.
init_iterator init_begin() {
const auto *ConstThis = this;
return const_cast<init_iterator>(ConstThis->init_begin());
}
/// Retrieve an iterator to the first initializer.
init_const_iterator init_begin() const;
/// Retrieve an iterator past the last initializer.
init_iterator init_end() {
return init_begin() + getNumCtorInitializers();
}
/// Retrieve an iterator past the last initializer.
init_const_iterator init_end() const {
return init_begin() + getNumCtorInitializers();
}
using init_reverse_iterator = std::reverse_iterator<init_iterator>;
using init_const_reverse_iterator =
std::reverse_iterator<init_const_iterator>;
init_reverse_iterator init_rbegin() {
return init_reverse_iterator(init_end());
}
init_const_reverse_iterator init_rbegin() const {
return init_const_reverse_iterator(init_end());
}
init_reverse_iterator init_rend() {
return init_reverse_iterator(init_begin());
}
init_const_reverse_iterator init_rend() const {
return init_const_reverse_iterator(init_begin());
}
/// Determine the number of arguments used to initialize the member
/// or base.
unsigned getNumCtorInitializers() const {
return CXXConstructorDeclBits.NumCtorInitializers;
}
void setNumCtorInitializers(unsigned numCtorInitializers) {
CXXConstructorDeclBits.NumCtorInitializers = numCtorInitializers;
// This assert added because NumCtorInitializers is stored
// in CXXConstructorDeclBits as a bitfield and its width has
// been shrunk from 32 bits to fit into CXXConstructorDeclBitfields.
assert(CXXConstructorDeclBits.NumCtorInitializers ==
numCtorInitializers && "NumCtorInitializers overflow!");
}
void setCtorInitializers(CXXCtorInitializer **Initializers) {
CtorInitializers = Initializers;
}
/// Whether this function is explicit.
bool isExplicit() const {
return getCanonicalDecl()->isExplicitSpecified();
}
/// Determine whether this constructor is a delegating constructor.
bool isDelegatingConstructor() const {
return (getNumCtorInitializers() == 1) &&
init_begin()[0]->isDelegatingInitializer();
}
/// When this constructor delegates to another, retrieve the target.
CXXConstructorDecl *getTargetConstructor() const;
/// Whether this constructor is a default
/// constructor (C++ [class.ctor]p5), which can be used to
/// default-initialize a class of this type.
bool isDefaultConstructor() const;
/// Whether this constructor is a copy constructor (C++ [class.copy]p2,
/// which can be used to copy the class.
///
/// \p TypeQuals will be set to the qualifiers on the
/// argument type. For example, \p TypeQuals would be set to \c
/// Qualifiers::Const for the following copy constructor:
///
/// \code
/// class X {
/// public:
/// X(const X&);
/// };
/// \endcode
bool isCopyConstructor(unsigned &TypeQuals) const;
/// Whether this constructor is a copy
/// constructor (C++ [class.copy]p2, which can be used to copy the
/// class.
bool isCopyConstructor() const {
unsigned TypeQuals = 0;
return isCopyConstructor(TypeQuals);
}
/// Determine whether this constructor is a move constructor
/// (C++11 [class.copy]p3), which can be used to move values of the class.
///
/// \param TypeQuals If this constructor is a move constructor, will be set
/// to the type qualifiers on the referent of the first parameter's type.
bool isMoveConstructor(unsigned &TypeQuals) const;
/// Determine whether this constructor is a move constructor
/// (C++11 [class.copy]p3), which can be used to move values of the class.
bool isMoveConstructor() const {
unsigned TypeQuals = 0;
return isMoveConstructor(TypeQuals);
}
/// Determine whether this is a copy or move constructor.
///
/// \param TypeQuals Will be set to the type qualifiers on the reference
/// parameter, if in fact this is a copy or move constructor.
bool isCopyOrMoveConstructor(unsigned &TypeQuals) const;
/// Determine whether this a copy or move constructor.
bool isCopyOrMoveConstructor() const {
unsigned Quals;
return isCopyOrMoveConstructor(Quals);
}
/// Whether this constructor is a
/// converting constructor (C++ [class.conv.ctor]), which can be
/// used for user-defined conversions.
bool isConvertingConstructor(bool AllowExplicit) const;
/// Determine whether this is a member template specialization that
/// would copy the object to itself. Such constructors are never used to copy
/// an object.
bool isSpecializationCopyingObject() const;
/// Determine whether this is an implicit constructor synthesized to
/// model a call to a constructor inherited from a base class.
bool isInheritingConstructor() const {
return CXXConstructorDeclBits.IsInheritingConstructor;
}
/// State that this is an implicit constructor synthesized to
/// model a call to a constructor inherited from a base class.
void setInheritingConstructor(bool isIC = true) {
CXXConstructorDeclBits.IsInheritingConstructor = isIC;
}
/// Get the constructor that this inheriting constructor is based on.
InheritedConstructor getInheritedConstructor() const {
return isInheritingConstructor() ?
*getTrailingObjects<InheritedConstructor>() : InheritedConstructor();
}
CXXConstructorDecl *getCanonicalDecl() override {
return cast<CXXConstructorDecl>(FunctionDecl::getCanonicalDecl());
}
const CXXConstructorDecl *getCanonicalDecl() const {
return const_cast<CXXConstructorDecl*>(this)->getCanonicalDecl();
}
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == CXXConstructor; }
};
/// Represents a C++ destructor within a class.
///
/// For example:
///
/// \code
/// class X {
/// public:
/// ~X(); // represented by a CXXDestructorDecl.
/// };
/// \endcode
class CXXDestructorDecl : public CXXMethodDecl {
friend class ASTDeclReader;
friend class ASTDeclWriter;
// FIXME: Don't allocate storage for these except in the first declaration
// of a virtual destructor.
FunctionDecl *OperatorDelete = nullptr;
Expr *OperatorDeleteThisArg = nullptr;
CXXDestructorDecl(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
const DeclarationNameInfo &NameInfo,
QualType T, TypeSourceInfo *TInfo,
bool isInline, bool isImplicitlyDeclared)
: CXXMethodDecl(CXXDestructor, C, RD, StartLoc, NameInfo, T, TInfo,
SC_None, isInline, /*isConstexpr=*/false, SourceLocation())
{
setImplicit(isImplicitlyDeclared);
}
void anchor() override;
public:
static CXXDestructorDecl *Create(ASTContext &C, CXXRecordDecl *RD,
SourceLocation StartLoc,
const DeclarationNameInfo &NameInfo,
QualType T, TypeSourceInfo* TInfo,
bool isInline,
bool isImplicitlyDeclared);
static CXXDestructorDecl *CreateDeserialized(ASTContext & C, unsigned ID);
void setOperatorDelete(FunctionDecl *OD, Expr *ThisArg);
const FunctionDecl *getOperatorDelete() const {
return getCanonicalDecl()->OperatorDelete;
}
Expr *getOperatorDeleteThisArg() const {
return getCanonicalDecl()->OperatorDeleteThisArg;
}
CXXDestructorDecl *getCanonicalDecl() override {
return cast<CXXDestructorDecl>(FunctionDecl::getCanonicalDecl());
}
const CXXDestructorDecl *getCanonicalDecl() const {
return const_cast<CXXDestructorDecl*>(this)->getCanonicalDecl();
}
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == CXXDestructor; }
};
/// Represents a C++ conversion function within a class.
///
/// For example:
///
/// \code
/// class X {
/// public:
/// operator bool();
/// };
/// \endcode
class CXXConversionDecl : public CXXMethodDecl {
CXXConversionDecl(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
const DeclarationNameInfo &NameInfo, QualType T,
TypeSourceInfo *TInfo, bool isInline,
bool isExplicitSpecified, bool isConstexpr,
SourceLocation EndLocation)
: CXXMethodDecl(CXXConversion, C, RD, StartLoc, NameInfo, T, TInfo,
SC_None, isInline, isConstexpr, EndLocation) {
setExplicitSpecified(isExplicitSpecified);
}
void anchor() override;
public:
friend class ASTDeclReader;
friend class ASTDeclWriter;
static CXXConversionDecl *Create(ASTContext &C, CXXRecordDecl *RD,
SourceLocation StartLoc,
const DeclarationNameInfo &NameInfo,
QualType T, TypeSourceInfo *TInfo,
bool isInline, bool isExplicit,
bool isConstexpr,
SourceLocation EndLocation);
static CXXConversionDecl *CreateDeserialized(ASTContext &C, unsigned ID);
/// Whether this function is explicit.
bool isExplicit() const {
return getCanonicalDecl()->isExplicitSpecified();
}
/// Returns the type that this conversion function is converting to.
QualType getConversionType() const {
return getType()->getAs<FunctionType>()->getReturnType();
}
/// Determine whether this conversion function is a conversion from
/// a lambda closure type to a block pointer.
bool isLambdaToBlockPointerConversion() const;
CXXConversionDecl *getCanonicalDecl() override {
return cast<CXXConversionDecl>(FunctionDecl::getCanonicalDecl());
}
const CXXConversionDecl *getCanonicalDecl() const {
return const_cast<CXXConversionDecl*>(this)->getCanonicalDecl();
}
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == CXXConversion; }
};
/// Represents a linkage specification.
///
/// For example:
/// \code
/// extern "C" void foo();
/// \endcode
class LinkageSpecDecl : public Decl, public DeclContext {
virtual void anchor();
// This class stores some data in DeclContext::LinkageSpecDeclBits to save
// some space. Use the provided accessors to access it.
public:
/// Represents the language in a linkage specification.
///
/// The values are part of the serialization ABI for
/// ASTs and cannot be changed without altering that ABI. To help
/// ensure a stable ABI for this, we choose the DW_LANG_ encodings
/// from the dwarf standard.
enum LanguageIDs {
lang_c = /* DW_LANG_C */ 0x0002,
lang_cxx = /* DW_LANG_C_plus_plus */ 0x0004
};
private:
/// The source location for the extern keyword.
SourceLocation ExternLoc;
/// The source location for the right brace (if valid).
SourceLocation RBraceLoc;
LinkageSpecDecl(DeclContext *DC, SourceLocation ExternLoc,
SourceLocation LangLoc, LanguageIDs lang, bool HasBraces);
public:
static LinkageSpecDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation ExternLoc,
SourceLocation LangLoc, LanguageIDs Lang,
bool HasBraces);
static LinkageSpecDecl *CreateDeserialized(ASTContext &C, unsigned ID);
/// Return the language specified by this linkage specification.
LanguageIDs getLanguage() const {
return static_cast<LanguageIDs>(LinkageSpecDeclBits.Language);
}
/// Set the language specified by this linkage specification.
void setLanguage(LanguageIDs L) { LinkageSpecDeclBits.Language = L; }
/// Determines whether this linkage specification had braces in
/// its syntactic form.
bool hasBraces() const {
assert(!RBraceLoc.isValid() || LinkageSpecDeclBits.HasBraces);
return LinkageSpecDeclBits.HasBraces;
}
SourceLocation getExternLoc() const { return ExternLoc; }
SourceLocation getRBraceLoc() const { return RBraceLoc; }
void setExternLoc(SourceLocation L) { ExternLoc = L; }
void setRBraceLoc(SourceLocation L) {
RBraceLoc = L;
LinkageSpecDeclBits.HasBraces = RBraceLoc.isValid();
}
SourceLocation getEndLoc() const LLVM_READONLY {
if (hasBraces())
return getRBraceLoc();
// No braces: get the end location of the (only) declaration in context
// (if present).
return decls_empty() ? getLocation() : decls_begin()->getEndLoc();
}
SourceRange getSourceRange() const override LLVM_READONLY {
return SourceRange(ExternLoc, getEndLoc());
}
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == LinkageSpec; }
static DeclContext *castToDeclContext(const LinkageSpecDecl *D) {
return static_cast<DeclContext *>(const_cast<LinkageSpecDecl*>(D));
}
static LinkageSpecDecl *castFromDeclContext(const DeclContext *DC) {
return static_cast<LinkageSpecDecl *>(const_cast<DeclContext*>(DC));
}
};
/// Represents C++ using-directive.
///
/// For example:
/// \code
/// using namespace std;
/// \endcode
///
/// \note UsingDirectiveDecl should be Decl not NamedDecl, but we provide
/// artificial names for all using-directives in order to store
/// them in DeclContext effectively.
class UsingDirectiveDecl : public NamedDecl {
/// The location of the \c using keyword.
SourceLocation UsingLoc;
/// The location of the \c namespace keyword.
SourceLocation NamespaceLoc;
/// The nested-name-specifier that precedes the namespace.
NestedNameSpecifierLoc QualifierLoc;
/// The namespace nominated by this using-directive.
NamedDecl *NominatedNamespace;
/// Enclosing context containing both using-directive and nominated
/// namespace.
DeclContext *CommonAncestor;
UsingDirectiveDecl(DeclContext *DC, SourceLocation UsingLoc,
SourceLocation NamespcLoc,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation IdentLoc,
NamedDecl *Nominated,
DeclContext *CommonAncestor)
: NamedDecl(UsingDirective, DC, IdentLoc, getName()), UsingLoc(UsingLoc),
NamespaceLoc(NamespcLoc), QualifierLoc(QualifierLoc),
NominatedNamespace(Nominated), CommonAncestor(CommonAncestor) {}
/// Returns special DeclarationName used by using-directives.
///
/// This is only used by DeclContext for storing UsingDirectiveDecls in
/// its lookup structure.
static DeclarationName getName() {
return DeclarationName::getUsingDirectiveName();
}
void anchor() override;
public:
friend class ASTDeclReader;
// Friend for getUsingDirectiveName.
friend class DeclContext;
/// Retrieve the nested-name-specifier that qualifies the
/// name of the namespace, with source-location information.
NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
/// Retrieve the nested-name-specifier that qualifies the
/// name of the namespace.
NestedNameSpecifier *getQualifier() const {
return QualifierLoc.getNestedNameSpecifier();
}
NamedDecl *getNominatedNamespaceAsWritten() { return NominatedNamespace; }
const NamedDecl *getNominatedNamespaceAsWritten() const {
return NominatedNamespace;
}
/// Returns the namespace nominated by this using-directive.
NamespaceDecl *getNominatedNamespace();
const NamespaceDecl *getNominatedNamespace() const {
return const_cast<UsingDirectiveDecl*>(this)->getNominatedNamespace();
}
/// Returns the common ancestor context of this using-directive and
/// its nominated namespace.
DeclContext *getCommonAncestor() { return CommonAncestor; }
const DeclContext *getCommonAncestor() const { return CommonAncestor; }
/// Return the location of the \c using keyword.
SourceLocation getUsingLoc() const { return UsingLoc; }
// FIXME: Could omit 'Key' in name.
/// Returns the location of the \c namespace keyword.
SourceLocation getNamespaceKeyLocation() const { return NamespaceLoc; }
/// Returns the location of this using declaration's identifier.
SourceLocation getIdentLocation() const { return getLocation(); }
static UsingDirectiveDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation UsingLoc,
SourceLocation NamespaceLoc,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation IdentLoc,
NamedDecl *Nominated,
DeclContext *CommonAncestor);
static UsingDirectiveDecl *CreateDeserialized(ASTContext &C, unsigned ID);
SourceRange getSourceRange() const override LLVM_READONLY {
return SourceRange(UsingLoc, getLocation());
}
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == UsingDirective; }
};
/// Represents a C++ namespace alias.
///
/// For example:
///
/// \code
/// namespace Foo = Bar;
/// \endcode
class NamespaceAliasDecl : public NamedDecl,
public Redeclarable<NamespaceAliasDecl> {
friend class ASTDeclReader;
/// The location of the \c namespace keyword.
SourceLocation NamespaceLoc;
/// The location of the namespace's identifier.
///
/// This is accessed by TargetNameLoc.
SourceLocation IdentLoc;
/// The nested-name-specifier that precedes the namespace.
NestedNameSpecifierLoc QualifierLoc;
/// The Decl that this alias points to, either a NamespaceDecl or
/// a NamespaceAliasDecl.
NamedDecl *Namespace;
NamespaceAliasDecl(ASTContext &C, DeclContext *DC,
SourceLocation NamespaceLoc, SourceLocation AliasLoc,
IdentifierInfo *Alias, NestedNameSpecifierLoc QualifierLoc,
SourceLocation IdentLoc, NamedDecl *Namespace)
: NamedDecl(NamespaceAlias, DC, AliasLoc, Alias), redeclarable_base(C),
NamespaceLoc(NamespaceLoc), IdentLoc(IdentLoc),
QualifierLoc(QualifierLoc), Namespace(Namespace) {}
void anchor() override;
using redeclarable_base = Redeclarable<NamespaceAliasDecl>;
NamespaceAliasDecl *getNextRedeclarationImpl() override;
NamespaceAliasDecl *getPreviousDeclImpl() override;
NamespaceAliasDecl *getMostRecentDeclImpl() override;
public:
static NamespaceAliasDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation NamespaceLoc,
SourceLocation AliasLoc,
IdentifierInfo *Alias,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation IdentLoc,
NamedDecl *Namespace);
static NamespaceAliasDecl *CreateDeserialized(ASTContext &C, unsigned ID);
using redecl_range = redeclarable_base::redecl_range;
using redecl_iterator = redeclarable_base::redecl_iterator;
using redeclarable_base::redecls_begin;
using redeclarable_base::redecls_end;
using redeclarable_base::redecls;
using redeclarable_base::getPreviousDecl;
using redeclarable_base::getMostRecentDecl;
NamespaceAliasDecl *getCanonicalDecl() override {
return getFirstDecl();
}
const NamespaceAliasDecl *getCanonicalDecl() const {
return getFirstDecl();
}
/// Retrieve the nested-name-specifier that qualifies the
/// name of the namespace, with source-location information.
NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
/// Retrieve the nested-name-specifier that qualifies the
/// name of the namespace.
NestedNameSpecifier *getQualifier() const {
return QualifierLoc.getNestedNameSpecifier();
}
/// Retrieve the namespace declaration aliased by this directive.
NamespaceDecl *getNamespace() {
if (auto *AD = dyn_cast<NamespaceAliasDecl>(Namespace))
return AD->getNamespace();
return cast<NamespaceDecl>(Namespace);
}
const NamespaceDecl *getNamespace() const {
return const_cast<NamespaceAliasDecl *>(this)->getNamespace();
}
/// Returns the location of the alias name, i.e. 'foo' in
/// "namespace foo = ns::bar;".
SourceLocation getAliasLoc() const { return getLocation(); }
/// Returns the location of the \c namespace keyword.
SourceLocation getNamespaceLoc() const { return NamespaceLoc; }
/// Returns the location of the identifier in the named namespace.
SourceLocation getTargetNameLoc() const { return IdentLoc; }
/// Retrieve the namespace that this alias refers to, which
/// may either be a NamespaceDecl or a NamespaceAliasDecl.
NamedDecl *getAliasedNamespace() const { return Namespace; }
SourceRange getSourceRange() const override LLVM_READONLY {
return SourceRange(NamespaceLoc, IdentLoc);
}
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == NamespaceAlias; }
};
/// Represents a shadow declaration introduced into a scope by a
/// (resolved) using declaration.
///
/// For example,
/// \code
/// namespace A {
/// void foo();
/// }
/// namespace B {
/// using A::foo; // <- a UsingDecl
/// // Also creates a UsingShadowDecl for A::foo() in B
/// }
/// \endcode
class UsingShadowDecl : public NamedDecl, public Redeclarable<UsingShadowDecl> {
friend class UsingDecl;
/// The referenced declaration.
NamedDecl *Underlying = nullptr;
/// The using declaration which introduced this decl or the next using
/// shadow declaration contained in the aforementioned using declaration.
NamedDecl *UsingOrNextShadow = nullptr;
void anchor() override;
using redeclarable_base = Redeclarable<UsingShadowDecl>;
UsingShadowDecl *getNextRedeclarationImpl() override {
return getNextRedeclaration();
}
UsingShadowDecl *getPreviousDeclImpl() override {
return getPreviousDecl();
}
UsingShadowDecl *getMostRecentDeclImpl() override {
return getMostRecentDecl();
}
protected:
UsingShadowDecl(Kind K, ASTContext &C, DeclContext *DC, SourceLocation Loc,
UsingDecl *Using, NamedDecl *Target);
UsingShadowDecl(Kind K, ASTContext &C, EmptyShell);
public:
friend class ASTDeclReader;
friend class ASTDeclWriter;
static UsingShadowDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation Loc, UsingDecl *Using,
NamedDecl *Target) {
return new (C, DC) UsingShadowDecl(UsingShadow, C, DC, Loc, Using, Target);
}
static UsingShadowDecl *CreateDeserialized(ASTContext &C, unsigned ID);
using redecl_range = redeclarable_base::redecl_range;
using redecl_iterator = redeclarable_base::redecl_iterator;
using redeclarable_base::redecls_begin;
using redeclarable_base::redecls_end;
using redeclarable_base::redecls;
using redeclarable_base::getPreviousDecl;
using redeclarable_base::getMostRecentDecl;
using redeclarable_base::isFirstDecl;
UsingShadowDecl *getCanonicalDecl() override {
return getFirstDecl();
}
const UsingShadowDecl *getCanonicalDecl() const {
return getFirstDecl();
}
/// Gets the underlying declaration which has been brought into the
/// local scope.
NamedDecl *getTargetDecl() const { return Underlying; }
/// Sets the underlying declaration which has been brought into the
/// local scope.
void setTargetDecl(NamedDecl *ND) {
assert(ND && "Target decl is null!");
Underlying = ND;
// A UsingShadowDecl is never a friend or local extern declaration, even
// if it is a shadow declaration for one.
IdentifierNamespace =
ND->getIdentifierNamespace() &
~(IDNS_OrdinaryFriend | IDNS_TagFriend | IDNS_LocalExtern);
}
/// Gets the using declaration to which this declaration is tied.
UsingDecl *getUsingDecl() const;
/// The next using shadow declaration contained in the shadow decl
/// chain of the using declaration which introduced this decl.
UsingShadowDecl *getNextUsingShadowDecl() const {
return dyn_cast_or_null<UsingShadowDecl>(UsingOrNextShadow);
}
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) {
return K == Decl::UsingShadow || K == Decl::ConstructorUsingShadow;
}
};
/// Represents a shadow constructor declaration introduced into a
/// class by a C++11 using-declaration that names a constructor.
///
/// For example:
/// \code
/// struct Base { Base(int); };
/// struct Derived {
/// using Base::Base; // creates a UsingDecl and a ConstructorUsingShadowDecl
/// };
/// \endcode
class ConstructorUsingShadowDecl final : public UsingShadowDecl {
/// If this constructor using declaration inherted the constructor
/// from an indirect base class, this is the ConstructorUsingShadowDecl
/// in the named direct base class from which the declaration was inherited.
ConstructorUsingShadowDecl *NominatedBaseClassShadowDecl = nullptr;
/// If this constructor using declaration inherted the constructor
/// from an indirect base class, this is the ConstructorUsingShadowDecl
/// that will be used to construct the unique direct or virtual base class
/// that receives the constructor arguments.
ConstructorUsingShadowDecl *ConstructedBaseClassShadowDecl = nullptr;
/// \c true if the constructor ultimately named by this using shadow
/// declaration is within a virtual base class subobject of the class that
/// contains this declaration.
unsigned IsVirtual : 1;
ConstructorUsingShadowDecl(ASTContext &C, DeclContext *DC, SourceLocation Loc,
UsingDecl *Using, NamedDecl *Target,
bool TargetInVirtualBase)
: UsingShadowDecl(ConstructorUsingShadow, C, DC, Loc, Using,
Target->getUnderlyingDecl()),
NominatedBaseClassShadowDecl(
dyn_cast<ConstructorUsingShadowDecl>(Target)),
ConstructedBaseClassShadowDecl(NominatedBaseClassShadowDecl),
IsVirtual(TargetInVirtualBase) {
// If we found a constructor that chains to a constructor for a virtual
// base, we should directly call that virtual base constructor instead.
// FIXME: This logic belongs in Sema.
if (NominatedBaseClassShadowDecl &&
NominatedBaseClassShadowDecl->constructsVirtualBase()) {
ConstructedBaseClassShadowDecl =
NominatedBaseClassShadowDecl->ConstructedBaseClassShadowDecl;
IsVirtual = true;
}
}
ConstructorUsingShadowDecl(ASTContext &C, EmptyShell Empty)
: UsingShadowDecl(ConstructorUsingShadow, C, Empty), IsVirtual(false) {}
void anchor() override;
public:
friend class ASTDeclReader;
friend class ASTDeclWriter;
static ConstructorUsingShadowDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation Loc,
UsingDecl *Using, NamedDecl *Target,
bool IsVirtual);
static ConstructorUsingShadowDecl *CreateDeserialized(ASTContext &C,
unsigned ID);
/// Returns the parent of this using shadow declaration, which
/// is the class in which this is declared.
//@{
const CXXRecordDecl *getParent() const {
return cast<CXXRecordDecl>(getDeclContext());
}
CXXRecordDecl *getParent() {
return cast<CXXRecordDecl>(getDeclContext());
}
//@}
/// Get the inheriting constructor declaration for the direct base
/// class from which this using shadow declaration was inherited, if there is
/// one. This can be different for each redeclaration of the same shadow decl.
ConstructorUsingShadowDecl *getNominatedBaseClassShadowDecl() const {
return NominatedBaseClassShadowDecl;
}
/// Get the inheriting constructor declaration for the base class
/// for which we don't have an explicit initializer, if there is one.
ConstructorUsingShadowDecl *getConstructedBaseClassShadowDecl() const {
return ConstructedBaseClassShadowDecl;
}
/// Get the base class that was named in the using declaration. This
/// can be different for each redeclaration of this same shadow decl.
CXXRecordDecl *getNominatedBaseClass() const;
/// Get the base class whose constructor or constructor shadow
/// declaration is passed the constructor arguments.
CXXRecordDecl *getConstructedBaseClass() const {
return cast<CXXRecordDecl>((ConstructedBaseClassShadowDecl
? ConstructedBaseClassShadowDecl
: getTargetDecl())
->getDeclContext());
}
/// Returns \c true if the constructed base class is a virtual base
/// class subobject of this declaration's class.
bool constructsVirtualBase() const {
return IsVirtual;
}
/// Get the constructor or constructor template in the derived class
/// correspnding to this using shadow declaration, if it has been implicitly
/// declared already.
CXXConstructorDecl *getConstructor() const;
void setConstructor(NamedDecl *Ctor);
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == ConstructorUsingShadow; }
};
/// Represents a C++ using-declaration.
///
/// For example:
/// \code
/// using someNameSpace::someIdentifier;
/// \endcode
class UsingDecl : public NamedDecl, public Mergeable<UsingDecl> {
/// The source location of the 'using' keyword itself.
SourceLocation UsingLocation;
/// The nested-name-specifier that precedes the name.
NestedNameSpecifierLoc QualifierLoc;
/// Provides source/type location info for the declaration name
/// embedded in the ValueDecl base class.
DeclarationNameLoc DNLoc;
/// The first shadow declaration of the shadow decl chain associated
/// with this using declaration.
///
/// The bool member of the pair store whether this decl has the \c typename
/// keyword.
llvm::PointerIntPair<UsingShadowDecl *, 1, bool> FirstUsingShadow;
UsingDecl(DeclContext *DC, SourceLocation UL,
NestedNameSpecifierLoc QualifierLoc,
const DeclarationNameInfo &NameInfo, bool HasTypenameKeyword)
: NamedDecl(Using, DC, NameInfo.getLoc(), NameInfo.getName()),
UsingLocation(UL), QualifierLoc(QualifierLoc),
DNLoc(NameInfo.getInfo()), FirstUsingShadow(nullptr, HasTypenameKeyword) {
}
void anchor() override;
public:
friend class ASTDeclReader;
friend class ASTDeclWriter;
/// Return the source location of the 'using' keyword.
SourceLocation getUsingLoc() const { return UsingLocation; }
/// Set the source location of the 'using' keyword.
void setUsingLoc(SourceLocation L) { UsingLocation = L; }
/// Retrieve the nested-name-specifier that qualifies the name,
/// with source-location information.
NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
/// Retrieve the nested-name-specifier that qualifies the name.
NestedNameSpecifier *getQualifier() const {
return QualifierLoc.getNestedNameSpecifier();
}
DeclarationNameInfo getNameInfo() const {
return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc);
}
/// Return true if it is a C++03 access declaration (no 'using').
bool isAccessDeclaration() const { return UsingLocation.isInvalid(); }
/// Return true if the using declaration has 'typename'.
bool hasTypename() const { return FirstUsingShadow.getInt(); }
/// Sets whether the using declaration has 'typename'.
void setTypename(bool TN) { FirstUsingShadow.setInt(TN); }
/// Iterates through the using shadow declarations associated with
/// this using declaration.
class shadow_iterator {
/// The current using shadow declaration.
UsingShadowDecl *Current = nullptr;
public:
using value_type = UsingShadowDecl *;
using reference = UsingShadowDecl *;
using pointer = UsingShadowDecl *;
using iterator_category = std::forward_iterator_tag;
using difference_type = std::ptrdiff_t;
shadow_iterator() = default;
explicit shadow_iterator(UsingShadowDecl *C) : Current(C) {}
reference operator*() const { return Current; }
pointer operator->() const { return Current; }
shadow_iterator& operator++() {
Current = Current->getNextUsingShadowDecl();
return *this;
}
shadow_iterator operator++(int) {
shadow_iterator tmp(*this);
++(*this);
return tmp;
}
friend bool operator==(shadow_iterator x, shadow_iterator y) {
return x.Current == y.Current;
}
friend bool operator!=(shadow_iterator x, shadow_iterator y) {
return x.Current != y.Current;
}
};
using shadow_range = llvm::iterator_range<shadow_iterator>;
shadow_range shadows() const {
return shadow_range(shadow_begin(), shadow_end());
}
shadow_iterator shadow_begin() const {
return shadow_iterator(FirstUsingShadow.getPointer());
}
shadow_iterator shadow_end() const { return shadow_iterator(); }
/// Return the number of shadowed declarations associated with this
/// using declaration.
unsigned shadow_size() const {
return std::distance(shadow_begin(), shadow_end());
}
void addShadowDecl(UsingShadowDecl *S);
void removeShadowDecl(UsingShadowDecl *S);
static UsingDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation UsingL,
NestedNameSpecifierLoc QualifierLoc,
const DeclarationNameInfo &NameInfo,
bool HasTypenameKeyword);
static UsingDecl *CreateDeserialized(ASTContext &C, unsigned ID);
SourceRange getSourceRange() const override LLVM_READONLY;
/// Retrieves the canonical declaration of this declaration.
UsingDecl *getCanonicalDecl() override { return getFirstDecl(); }
const UsingDecl *getCanonicalDecl() const { return getFirstDecl(); }
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == Using; }
};
/// Represents a pack of using declarations that a single
/// using-declarator pack-expanded into.
///
/// \code
/// template<typename ...T> struct X : T... {
/// using T::operator()...;
/// using T::operator T...;
/// };
/// \endcode
///
/// In the second case above, the UsingPackDecl will have the name
/// 'operator T' (which contains an unexpanded pack), but the individual
/// UsingDecls and UsingShadowDecls will have more reasonable names.
class UsingPackDecl final
: public NamedDecl, public Mergeable<UsingPackDecl>,
private llvm::TrailingObjects<UsingPackDecl, NamedDecl *> {
/// The UnresolvedUsingValueDecl or UnresolvedUsingTypenameDecl from
/// which this waas instantiated.
NamedDecl *InstantiatedFrom;
/// The number of using-declarations created by this pack expansion.
unsigned NumExpansions;
UsingPackDecl(DeclContext *DC, NamedDecl *InstantiatedFrom,
ArrayRef<NamedDecl *> UsingDecls)
: NamedDecl(UsingPack, DC,
InstantiatedFrom ? InstantiatedFrom->getLocation()
: SourceLocation(),
InstantiatedFrom ? InstantiatedFrom->getDeclName()
: DeclarationName()),
InstantiatedFrom(InstantiatedFrom), NumExpansions(UsingDecls.size()) {
std::uninitialized_copy(UsingDecls.begin(), UsingDecls.end(),
getTrailingObjects<NamedDecl *>());
}
void anchor() override;
public:
friend class ASTDeclReader;
friend class ASTDeclWriter;
friend TrailingObjects;
/// Get the using declaration from which this was instantiated. This will
/// always be an UnresolvedUsingValueDecl or an UnresolvedUsingTypenameDecl
/// that is a pack expansion.
NamedDecl *getInstantiatedFromUsingDecl() const { return InstantiatedFrom; }
/// Get the set of using declarations that this pack expanded into. Note that
/// some of these may still be unresolved.
ArrayRef<NamedDecl *> expansions() const {
return llvm::makeArrayRef(getTrailingObjects<NamedDecl *>(), NumExpansions);
}
static UsingPackDecl *Create(ASTContext &C, DeclContext *DC,
NamedDecl *InstantiatedFrom,
ArrayRef<NamedDecl *> UsingDecls);
static UsingPackDecl *CreateDeserialized(ASTContext &C, unsigned ID,
unsigned NumExpansions);
SourceRange getSourceRange() const override LLVM_READONLY {
return InstantiatedFrom->getSourceRange();
}
UsingPackDecl *getCanonicalDecl() override { return getFirstDecl(); }
const UsingPackDecl *getCanonicalDecl() const { return getFirstDecl(); }
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == UsingPack; }
};
/// Represents a dependent using declaration which was not marked with
/// \c typename.
///
/// Unlike non-dependent using declarations, these *only* bring through
/// non-types; otherwise they would break two-phase lookup.
///
/// \code
/// template \<class T> class A : public Base<T> {
/// using Base<T>::foo;
/// };
/// \endcode
class UnresolvedUsingValueDecl : public ValueDecl,
public Mergeable<UnresolvedUsingValueDecl> {
/// The source location of the 'using' keyword
SourceLocation UsingLocation;
/// If this is a pack expansion, the location of the '...'.
SourceLocation EllipsisLoc;
/// The nested-name-specifier that precedes the name.
NestedNameSpecifierLoc QualifierLoc;
/// Provides source/type location info for the declaration name
/// embedded in the ValueDecl base class.
DeclarationNameLoc DNLoc;
UnresolvedUsingValueDecl(DeclContext *DC, QualType Ty,
SourceLocation UsingLoc,
NestedNameSpecifierLoc QualifierLoc,
const DeclarationNameInfo &NameInfo,
SourceLocation EllipsisLoc)
: ValueDecl(UnresolvedUsingValue, DC,
NameInfo.getLoc(), NameInfo.getName(), Ty),
UsingLocation(UsingLoc), EllipsisLoc(EllipsisLoc),
QualifierLoc(QualifierLoc), DNLoc(NameInfo.getInfo()) {}
void anchor() override;
public:
friend class ASTDeclReader;
friend class ASTDeclWriter;
/// Returns the source location of the 'using' keyword.
SourceLocation getUsingLoc() const { return UsingLocation; }
/// Set the source location of the 'using' keyword.
void setUsingLoc(SourceLocation L) { UsingLocation = L; }
/// Return true if it is a C++03 access declaration (no 'using').
bool isAccessDeclaration() const { return UsingLocation.isInvalid(); }
/// Retrieve the nested-name-specifier that qualifies the name,
/// with source-location information.
NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
/// Retrieve the nested-name-specifier that qualifies the name.
NestedNameSpecifier *getQualifier() const {
return QualifierLoc.getNestedNameSpecifier();
}
DeclarationNameInfo getNameInfo() const {
return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc);
}
/// Determine whether this is a pack expansion.
bool isPackExpansion() const {
return EllipsisLoc.isValid();
}
/// Get the location of the ellipsis if this is a pack expansion.
SourceLocation getEllipsisLoc() const {
return EllipsisLoc;
}
static UnresolvedUsingValueDecl *
Create(ASTContext &C, DeclContext *DC, SourceLocation UsingLoc,
NestedNameSpecifierLoc QualifierLoc,
const DeclarationNameInfo &NameInfo, SourceLocation EllipsisLoc);
static UnresolvedUsingValueDecl *
CreateDeserialized(ASTContext &C, unsigned ID);
SourceRange getSourceRange() const override LLVM_READONLY;
/// Retrieves the canonical declaration of this declaration.
UnresolvedUsingValueDecl *getCanonicalDecl() override {
return getFirstDecl();
}
const UnresolvedUsingValueDecl *getCanonicalDecl() const {
return getFirstDecl();
}
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == UnresolvedUsingValue; }
};
/// Represents a dependent using declaration which was marked with
/// \c typename.
///
/// \code
/// template \<class T> class A : public Base<T> {
/// using typename Base<T>::foo;
/// };
/// \endcode
///
/// The type associated with an unresolved using typename decl is
/// currently always a typename type.
class UnresolvedUsingTypenameDecl
: public TypeDecl,
public Mergeable<UnresolvedUsingTypenameDecl> {
friend class ASTDeclReader;
/// The source location of the 'typename' keyword
SourceLocation TypenameLocation;
/// If this is a pack expansion, the location of the '...'.
SourceLocation EllipsisLoc;
/// The nested-name-specifier that precedes the name.
NestedNameSpecifierLoc QualifierLoc;
UnresolvedUsingTypenameDecl(DeclContext *DC, SourceLocation UsingLoc,
SourceLocation TypenameLoc,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation TargetNameLoc,
IdentifierInfo *TargetName,
SourceLocation EllipsisLoc)
: TypeDecl(UnresolvedUsingTypename, DC, TargetNameLoc, TargetName,
UsingLoc),
TypenameLocation(TypenameLoc), EllipsisLoc(EllipsisLoc),
QualifierLoc(QualifierLoc) {}
void anchor() override;
public:
/// Returns the source location of the 'using' keyword.
SourceLocation getUsingLoc() const { return getBeginLoc(); }
/// Returns the source location of the 'typename' keyword.
SourceLocation getTypenameLoc() const { return TypenameLocation; }
/// Retrieve the nested-name-specifier that qualifies the name,
/// with source-location information.
NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
/// Retrieve the nested-name-specifier that qualifies the name.
NestedNameSpecifier *getQualifier() const {
return QualifierLoc.getNestedNameSpecifier();
}
DeclarationNameInfo getNameInfo() const {
return DeclarationNameInfo(getDeclName(), getLocation());
}
/// Determine whether this is a pack expansion.
bool isPackExpansion() const {
return EllipsisLoc.isValid();
}
/// Get the location of the ellipsis if this is a pack expansion.
SourceLocation getEllipsisLoc() const {
return EllipsisLoc;
}
static UnresolvedUsingTypenameDecl *
Create(ASTContext &C, DeclContext *DC, SourceLocation UsingLoc,
SourceLocation TypenameLoc, NestedNameSpecifierLoc QualifierLoc,
SourceLocation TargetNameLoc, DeclarationName TargetName,
SourceLocation EllipsisLoc);
static UnresolvedUsingTypenameDecl *
CreateDeserialized(ASTContext &C, unsigned ID);
/// Retrieves the canonical declaration of this declaration.
UnresolvedUsingTypenameDecl *getCanonicalDecl() override {
return getFirstDecl();
}
const UnresolvedUsingTypenameDecl *getCanonicalDecl() const {
return getFirstDecl();
}
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == UnresolvedUsingTypename; }
};
/// Represents a C++11 static_assert declaration.
class StaticAssertDecl : public Decl {
llvm::PointerIntPair<Expr *, 1, bool> AssertExprAndFailed;
StringLiteral *Message;
SourceLocation RParenLoc;
StaticAssertDecl(DeclContext *DC, SourceLocation StaticAssertLoc,
Expr *AssertExpr, StringLiteral *Message,
SourceLocation RParenLoc, bool Failed)
: Decl(StaticAssert, DC, StaticAssertLoc),
AssertExprAndFailed(AssertExpr, Failed), Message(Message),
RParenLoc(RParenLoc) {}
virtual void anchor();
public:
friend class ASTDeclReader;
static StaticAssertDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation StaticAssertLoc,
Expr *AssertExpr, StringLiteral *Message,
SourceLocation RParenLoc, bool Failed);
static StaticAssertDecl *CreateDeserialized(ASTContext &C, unsigned ID);
Expr *getAssertExpr() { return AssertExprAndFailed.getPointer(); }
const Expr *getAssertExpr() const { return AssertExprAndFailed.getPointer(); }
StringLiteral *getMessage() { return Message; }
const StringLiteral *getMessage() const { return Message; }
bool isFailed() const { return AssertExprAndFailed.getInt(); }
SourceLocation getRParenLoc() const { return RParenLoc; }
SourceRange getSourceRange() const override LLVM_READONLY {
return SourceRange(getLocation(), getRParenLoc());
}
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == StaticAssert; }
};
/// A binding in a decomposition declaration. For instance, given:
///
/// int n[3];
/// auto &[a, b, c] = n;
///
/// a, b, and c are BindingDecls, whose bindings are the expressions
/// x[0], x[1], and x[2] respectively, where x is the implicit
/// DecompositionDecl of type 'int (&)[3]'.
class BindingDecl : public ValueDecl {
/// The binding represented by this declaration. References to this
/// declaration are effectively equivalent to this expression (except
/// that it is only evaluated once at the point of declaration of the
/// binding).
Expr *Binding = nullptr;
BindingDecl(DeclContext *DC, SourceLocation IdLoc, IdentifierInfo *Id)
: ValueDecl(Decl::Binding, DC, IdLoc, Id, QualType()) {}
void anchor() override;
public:
friend class ASTDeclReader;
static BindingDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation IdLoc, IdentifierInfo *Id);
static BindingDecl *CreateDeserialized(ASTContext &C, unsigned ID);
/// Get the expression to which this declaration is bound. This may be null
/// in two different cases: while parsing the initializer for the
/// decomposition declaration, and when the initializer is type-dependent.
Expr *getBinding() const { return Binding; }
/// Get the variable (if any) that holds the value of evaluating the binding.
/// Only present for user-defined bindings for tuple-like types.
VarDecl *getHoldingVar() const;
/// Set the binding for this BindingDecl, along with its declared type (which
/// should be a possibly-cv-qualified form of the type of the binding, or a
/// reference to such a type).
void setBinding(QualType DeclaredType, Expr *Binding) {
setType(DeclaredType);
this->Binding = Binding;
}
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == Decl::Binding; }
};
/// A decomposition declaration. For instance, given:
///
/// int n[3];
/// auto &[a, b, c] = n;
///
/// the second line declares a DecompositionDecl of type 'int (&)[3]', and
/// three BindingDecls (named a, b, and c). An instance of this class is always
/// unnamed, but behaves in almost all other respects like a VarDecl.
class DecompositionDecl final
: public VarDecl,
private llvm::TrailingObjects<DecompositionDecl, BindingDecl *> {
/// The number of BindingDecl*s following this object.
unsigned NumBindings;
DecompositionDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
SourceLocation LSquareLoc, QualType T,
TypeSourceInfo *TInfo, StorageClass SC,
ArrayRef<BindingDecl *> Bindings)
: VarDecl(Decomposition, C, DC, StartLoc, LSquareLoc, nullptr, T, TInfo,
SC),
NumBindings(Bindings.size()) {
std::uninitialized_copy(Bindings.begin(), Bindings.end(),
getTrailingObjects<BindingDecl *>());
}
void anchor() override;
public:
friend class ASTDeclReader;
friend TrailingObjects;
static DecompositionDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation StartLoc,
SourceLocation LSquareLoc,
QualType T, TypeSourceInfo *TInfo,
StorageClass S,
ArrayRef<BindingDecl *> Bindings);
static DecompositionDecl *CreateDeserialized(ASTContext &C, unsigned ID,
unsigned NumBindings);
ArrayRef<BindingDecl *> bindings() const {
return llvm::makeArrayRef(getTrailingObjects<BindingDecl *>(), NumBindings);
}
void printName(raw_ostream &os) const override;
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == Decomposition; }
};
/// An instance of this class represents the declaration of a property
/// member. This is a Microsoft extension to C++, first introduced in
/// Visual Studio .NET 2003 as a parallel to similar features in C#
/// and Managed C++.
///
/// A property must always be a non-static class member.
///
/// A property member superficially resembles a non-static data
/// member, except preceded by a property attribute:
/// __declspec(property(get=GetX, put=PutX)) int x;
/// Either (but not both) of the 'get' and 'put' names may be omitted.
///
/// A reference to a property is always an lvalue. If the lvalue
/// undergoes lvalue-to-rvalue conversion, then a getter name is
/// required, and that member is called with no arguments.
/// If the lvalue is assigned into, then a setter name is required,
/// and that member is called with one argument, the value assigned.
/// Both operations are potentially overloaded. Compound assignments
/// are permitted, as are the increment and decrement operators.
///
/// The getter and putter methods are permitted to be overloaded,
/// although their return and parameter types are subject to certain
/// restrictions according to the type of the property.
///
/// A property declared using an incomplete array type may
/// additionally be subscripted, adding extra parameters to the getter
/// and putter methods.
class MSPropertyDecl : public DeclaratorDecl {
IdentifierInfo *GetterId, *SetterId;
MSPropertyDecl(DeclContext *DC, SourceLocation L, DeclarationName N,
QualType T, TypeSourceInfo *TInfo, SourceLocation StartL,
IdentifierInfo *Getter, IdentifierInfo *Setter)
: DeclaratorDecl(MSProperty, DC, L, N, T, TInfo, StartL),
GetterId(Getter), SetterId(Setter) {}
void anchor() override;
public:
friend class ASTDeclReader;
static MSPropertyDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation L, DeclarationName N, QualType T,
TypeSourceInfo *TInfo, SourceLocation StartL,
IdentifierInfo *Getter, IdentifierInfo *Setter);
static MSPropertyDecl *CreateDeserialized(ASTContext &C, unsigned ID);
static bool classof(const Decl *D) { return D->getKind() == MSProperty; }
bool hasGetter() const { return GetterId != nullptr; }
IdentifierInfo* getGetterId() const { return GetterId; }
bool hasSetter() const { return SetterId != nullptr; }
IdentifierInfo* getSetterId() const { return SetterId; }
};
/// Insertion operator for diagnostics. This allows sending an AccessSpecifier
/// into a diagnostic with <<.
const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
AccessSpecifier AS);
const PartialDiagnostic &operator<<(const PartialDiagnostic &DB,
AccessSpecifier AS);
} // namespace clang
#endif // LLVM_CLANG_AST_DECLCXX_H
diff --git a/clang/include/clang/AST/DeclOpenMP.h b/clang/include/clang/AST/DeclOpenMP.h
index d3d7cf51aa40..5faf6c84c8cd 100644
--- a/clang/include/clang/AST/DeclOpenMP.h
+++ b/clang/include/clang/AST/DeclOpenMP.h
@@ -1,314 +1,416 @@
//===- DeclOpenMP.h - Classes for representing OpenMP directives -*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file defines OpenMP nodes for declarative directives.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_DECLOPENMP_H
#define LLVM_CLANG_AST_DECLOPENMP_H
#include "clang/AST/Decl.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExternalASTSource.h"
#include "clang/AST/OpenMPClause.h"
#include "clang/AST/Type.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/Support/TrailingObjects.h"
namespace clang {
/// This represents '#pragma omp threadprivate ...' directive.
/// For example, in the following, both 'a' and 'A::b' are threadprivate:
///
/// \code
/// int a;
/// #pragma omp threadprivate(a)
/// struct A {
/// static int b;
/// #pragma omp threadprivate(b)
/// };
/// \endcode
///
class OMPThreadPrivateDecl final
: public Decl,
private llvm::TrailingObjects<OMPThreadPrivateDecl, Expr *> {
friend class ASTDeclReader;
friend TrailingObjects;
unsigned NumVars;
virtual void anchor();
OMPThreadPrivateDecl(Kind DK, DeclContext *DC, SourceLocation L) :
Decl(DK, DC, L), NumVars(0) { }
ArrayRef<const Expr *> getVars() const {
return llvm::makeArrayRef(getTrailingObjects<Expr *>(), NumVars);
}
MutableArrayRef<Expr *> getVars() {
return MutableArrayRef<Expr *>(getTrailingObjects<Expr *>(), NumVars);
}
void setVars(ArrayRef<Expr *> VL);
public:
static OMPThreadPrivateDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation L,
ArrayRef<Expr *> VL);
static OMPThreadPrivateDecl *CreateDeserialized(ASTContext &C,
unsigned ID, unsigned N);
typedef MutableArrayRef<Expr *>::iterator varlist_iterator;
typedef ArrayRef<const Expr *>::iterator varlist_const_iterator;
typedef llvm::iterator_range<varlist_iterator> varlist_range;
typedef llvm::iterator_range<varlist_const_iterator> varlist_const_range;
unsigned varlist_size() const { return NumVars; }
bool varlist_empty() const { return NumVars == 0; }
varlist_range varlists() {
return varlist_range(varlist_begin(), varlist_end());
}
varlist_const_range varlists() const {
return varlist_const_range(varlist_begin(), varlist_end());
}
varlist_iterator varlist_begin() { return getVars().begin(); }
varlist_iterator varlist_end() { return getVars().end(); }
varlist_const_iterator varlist_begin() const { return getVars().begin(); }
varlist_const_iterator varlist_end() const { return getVars().end(); }
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == OMPThreadPrivate; }
};
/// This represents '#pragma omp declare reduction ...' directive.
/// For example, in the following, declared reduction 'foo' for types 'int' and
/// 'float':
///
/// \code
/// #pragma omp declare reduction (foo : int,float : omp_out += omp_in) \
/// initializer (omp_priv = 0)
/// \endcode
///
/// Here 'omp_out += omp_in' is a combiner and 'omp_priv = 0' is an initializer.
class OMPDeclareReductionDecl final : public ValueDecl, public DeclContext {
// This class stores some data in DeclContext::OMPDeclareReductionDeclBits
// to save some space. Use the provided accessors to access it.
public:
enum InitKind {
CallInit, // Initialized by function call.
DirectInit, // omp_priv(<expr>)
CopyInit // omp_priv = <expr>
};
private:
friend class ASTDeclReader;
/// Combiner for declare reduction construct.
Expr *Combiner = nullptr;
/// Initializer for declare reduction construct.
Expr *Initializer = nullptr;
/// In parameter of the combiner.
Expr *In = nullptr;
/// Out parameter of the combiner.
Expr *Out = nullptr;
/// Priv parameter of the initializer.
Expr *Priv = nullptr;
/// Orig parameter of the initializer.
Expr *Orig = nullptr;
/// Reference to the previous declare reduction construct in the same
/// scope with the same name. Required for proper templates instantiation if
/// the declare reduction construct is declared inside compound statement.
LazyDeclPtr PrevDeclInScope;
virtual void anchor();
OMPDeclareReductionDecl(Kind DK, DeclContext *DC, SourceLocation L,
DeclarationName Name, QualType Ty,
OMPDeclareReductionDecl *PrevDeclInScope);
void setPrevDeclInScope(OMPDeclareReductionDecl *Prev) {
PrevDeclInScope = Prev;
}
public:
/// Create declare reduction node.
static OMPDeclareReductionDecl *
Create(ASTContext &C, DeclContext *DC, SourceLocation L, DeclarationName Name,
QualType T, OMPDeclareReductionDecl *PrevDeclInScope);
/// Create deserialized declare reduction node.
static OMPDeclareReductionDecl *CreateDeserialized(ASTContext &C,
unsigned ID);
/// Get combiner expression of the declare reduction construct.
Expr *getCombiner() { return Combiner; }
const Expr *getCombiner() const { return Combiner; }
/// Get In variable of the combiner.
Expr *getCombinerIn() { return In; }
const Expr *getCombinerIn() const { return In; }
/// Get Out variable of the combiner.
Expr *getCombinerOut() { return Out; }
const Expr *getCombinerOut() const { return Out; }
/// Set combiner expression for the declare reduction construct.
void setCombiner(Expr *E) { Combiner = E; }
/// Set combiner In and Out vars.
void setCombinerData(Expr *InE, Expr *OutE) {
In = InE;
Out = OutE;
}
/// Get initializer expression (if specified) of the declare reduction
/// construct.
Expr *getInitializer() { return Initializer; }
const Expr *getInitializer() const { return Initializer; }
/// Get initializer kind.
InitKind getInitializerKind() const {
return static_cast<InitKind>(OMPDeclareReductionDeclBits.InitializerKind);
}
/// Get Orig variable of the initializer.
Expr *getInitOrig() { return Orig; }
const Expr *getInitOrig() const { return Orig; }
/// Get Priv variable of the initializer.
Expr *getInitPriv() { return Priv; }
const Expr *getInitPriv() const { return Priv; }
/// Set initializer expression for the declare reduction construct.
void setInitializer(Expr *E, InitKind IK) {
Initializer = E;
OMPDeclareReductionDeclBits.InitializerKind = IK;
}
/// Set initializer Orig and Priv vars.
void setInitializerData(Expr *OrigE, Expr *PrivE) {
Orig = OrigE;
Priv = PrivE;
}
/// Get reference to previous declare reduction construct in the same
/// scope with the same name.
OMPDeclareReductionDecl *getPrevDeclInScope();
const OMPDeclareReductionDecl *getPrevDeclInScope() const;
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == OMPDeclareReduction; }
static DeclContext *castToDeclContext(const OMPDeclareReductionDecl *D) {
return static_cast<DeclContext *>(const_cast<OMPDeclareReductionDecl *>(D));
}
static OMPDeclareReductionDecl *castFromDeclContext(const DeclContext *DC) {
return static_cast<OMPDeclareReductionDecl *>(
const_cast<DeclContext *>(DC));
}
};
+/// This represents '#pragma omp declare mapper ...' directive. Map clauses are
+/// allowed to use with this directive. The following example declares a user
+/// defined mapper for the type 'struct vec'. This example instructs the fields
+/// 'len' and 'data' should be mapped when mapping instances of 'struct vec'.
+///
+/// \code
+/// #pragma omp declare mapper(mid: struct vec v) map(v.len, v.data[0:N])
+/// \endcode
+class OMPDeclareMapperDecl final : public ValueDecl, public DeclContext {
+ friend class ASTDeclReader;
+
+ /// Clauses assoicated with this mapper declaration
+ MutableArrayRef<OMPClause *> Clauses;
+
+ /// Mapper variable, which is 'v' in the example above
+ Expr *MapperVarRef = nullptr;
+
+ /// Name of the mapper variable
+ DeclarationName VarName;
+
+ LazyDeclPtr PrevDeclInScope;
+
+ virtual void anchor();
+
+ OMPDeclareMapperDecl(Kind DK, DeclContext *DC, SourceLocation L,
+ DeclarationName Name, QualType Ty,
+ DeclarationName VarName,
+ OMPDeclareMapperDecl *PrevDeclInScope)
+ : ValueDecl(DK, DC, L, Name, Ty), DeclContext(DK), VarName(VarName),
+ PrevDeclInScope(PrevDeclInScope) {}
+
+ void setPrevDeclInScope(OMPDeclareMapperDecl *Prev) {
+ PrevDeclInScope = Prev;
+ }
+
+ /// Sets an array of clauses to this mapper declaration
+ void setClauses(ArrayRef<OMPClause *> CL);
+
+public:
+ /// Creates declare mapper node.
+ static OMPDeclareMapperDecl *Create(ASTContext &C, DeclContext *DC,
+ SourceLocation L, DeclarationName Name,
+ QualType T, DeclarationName VarName,
+ OMPDeclareMapperDecl *PrevDeclInScope);
+ /// Creates deserialized declare mapper node.
+ static OMPDeclareMapperDecl *CreateDeserialized(ASTContext &C, unsigned ID,
+ unsigned N);
+
+ /// Creates an array of clauses to this mapper declaration and intializes
+ /// them.
+ void CreateClauses(ASTContext &C, ArrayRef<OMPClause *> CL);
+
+ using clauselist_iterator = MutableArrayRef<OMPClause *>::iterator;
+ using clauselist_const_iterator = ArrayRef<const OMPClause *>::iterator;
+ using clauselist_range = llvm::iterator_range<clauselist_iterator>;
+ using clauselist_const_range =
+ llvm::iterator_range<clauselist_const_iterator>;
+
+ unsigned clauselist_size() const { return Clauses.size(); }
+ bool clauselist_empty() const { return Clauses.empty(); }
+
+ clauselist_range clauselists() {
+ return clauselist_range(clauselist_begin(), clauselist_end());
+ }
+ clauselist_const_range clauselists() const {
+ return clauselist_const_range(clauselist_begin(), clauselist_end());
+ }
+ clauselist_iterator clauselist_begin() { return Clauses.begin(); }
+ clauselist_iterator clauselist_end() { return Clauses.end(); }
+ clauselist_const_iterator clauselist_begin() const { return Clauses.begin(); }
+ clauselist_const_iterator clauselist_end() const { return Clauses.end(); }
+
+ /// Get the variable declared in the mapper
+ Expr *getMapperVarRef() { return MapperVarRef; }
+ const Expr *getMapperVarRef() const { return MapperVarRef; }
+ /// Set the variable declared in the mapper
+ void setMapperVarRef(Expr *MapperVarRefE) { MapperVarRef = MapperVarRefE; }
+
+ /// Get the name of the variable declared in the mapper
+ DeclarationName getVarName() { return VarName; }
+
+ /// Get reference to previous declare mapper construct in the same
+ /// scope with the same name.
+ OMPDeclareMapperDecl *getPrevDeclInScope() {
+ return cast_or_null<OMPDeclareMapperDecl>(
+ PrevDeclInScope.get(getASTContext().getExternalSource()));
+ }
+ const OMPDeclareMapperDecl *getPrevDeclInScope() const {
+ return cast_or_null<OMPDeclareMapperDecl>(
+ PrevDeclInScope.get(getASTContext().getExternalSource()));
+ }
+
+ static bool classof(const Decl *D) { return classofKind(D->getKind()); }
+ static bool classofKind(Kind K) { return K == OMPDeclareMapper; }
+ static DeclContext *castToDeclContext(const OMPDeclareMapperDecl *D) {
+ return static_cast<DeclContext *>(const_cast<OMPDeclareMapperDecl *>(D));
+ }
+ static OMPDeclareMapperDecl *castFromDeclContext(const DeclContext *DC) {
+ return static_cast<OMPDeclareMapperDecl *>(const_cast<DeclContext *>(DC));
+ }
+};
+
/// Pseudo declaration for capturing expressions. Also is used for capturing of
/// non-static data members in non-static member functions.
///
/// Clang supports capturing of variables only, but OpenMP 4.5 allows to
/// privatize non-static members of current class in non-static member
/// functions. This pseudo-declaration allows properly handle this kind of
/// capture by wrapping captured expression into a variable-like declaration.
class OMPCapturedExprDecl final : public VarDecl {
friend class ASTDeclReader;
void anchor() override;
OMPCapturedExprDecl(ASTContext &C, DeclContext *DC, IdentifierInfo *Id,
QualType Type, TypeSourceInfo *TInfo,
SourceLocation StartLoc)
: VarDecl(OMPCapturedExpr, C, DC, StartLoc, StartLoc, Id, Type, TInfo,
SC_None) {
setImplicit();
}
public:
static OMPCapturedExprDecl *Create(ASTContext &C, DeclContext *DC,
IdentifierInfo *Id, QualType T,
SourceLocation StartLoc);
static OMPCapturedExprDecl *CreateDeserialized(ASTContext &C, unsigned ID);
SourceRange getSourceRange() const override LLVM_READONLY;
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == OMPCapturedExpr; }
};
/// This represents '#pragma omp requires...' directive.
/// For example
///
/// \code
/// #pragma omp requires unified_address
/// \endcode
///
class OMPRequiresDecl final
: public Decl,
private llvm::TrailingObjects<OMPRequiresDecl, OMPClause *> {
friend class ASTDeclReader;
friend TrailingObjects;