Page MenuHomePhabricator

No OneTemporary

File Metadata

Created
Mon, Feb 24, 2:00 PM
This file is larger than 256 KB, so syntax highlighting was skipped.
diff --git a/clang/include/clang/AST/ASTNodeTraverser.h b/clang/include/clang/AST/ASTNodeTraverser.h
index 1d4025f..e43eace 100644
--- a/clang/include/clang/AST/ASTNodeTraverser.h
+++ b/clang/include/clang/AST/ASTNodeTraverser.h
@@ -1,649 +1,654 @@
//===--- ASTNodeTraverser.h - Traversal of AST nodes ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the AST traversal facilities. Other users
// of this class may make use of the same traversal logic by inheriting it,
// similar to RecursiveASTVisitor.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_ASTNODETRAVERSER_H
#define LLVM_CLANG_AST_ASTNODETRAVERSER_H
#include "clang/AST/AttrVisitor.h"
#include "clang/AST/CommentVisitor.h"
#include "clang/AST/DeclVisitor.h"
#include "clang/AST/LocInfoType.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/AST/TemplateArgumentVisitor.h"
#include "clang/AST/TypeVisitor.h"
namespace clang {
/**
ASTNodeTraverser traverses the Clang AST for dumping purposes.
The `Derived::doGetNodeDelegate()` method is required to be an accessible member
which returns a reference of type `NodeDelegateType &` which implements the
following interface:
struct {
template <typename Fn> void AddChild(Fn DoAddChild);
template <typename Fn> void AddChild(StringRef Label, Fn DoAddChild);
void Visit(const comments::Comment *C, const comments::FullComment *FC);
void Visit(const Attr *A);
void Visit(const TemplateArgument &TA, SourceRange R = {},
const Decl *From = nullptr, StringRef Label = {});
void Visit(const Stmt *Node);
void Visit(const Type *T);
void Visit(QualType T);
void Visit(const Decl *D);
void Visit(const CXXCtorInitializer *Init);
void Visit(const OMPClause *C);
void Visit(const BlockDecl::Capture &C);
void Visit(const GenericSelectionExpr::ConstAssociation &A);
};
*/
template <typename Derived, typename NodeDelegateType>
class ASTNodeTraverser
: public ConstDeclVisitor<Derived>,
public ConstStmtVisitor<Derived>,
public comments::ConstCommentVisitor<Derived, void,
const comments::FullComment *>,
public TypeVisitor<Derived>,
public ConstAttrVisitor<Derived>,
public ConstTemplateArgumentVisitor<Derived> {
/// Indicates whether we should trigger deserialization of nodes that had
/// not already been loaded.
bool Deserialize = false;
NodeDelegateType &getNodeDelegate() {
return getDerived().doGetNodeDelegate();
}
Derived &getDerived() { return *static_cast<Derived *>(this); }
public:
void setDeserialize(bool D) { Deserialize = D; }
bool getDeserialize() const { return Deserialize; }
void Visit(const Decl *D) {
getNodeDelegate().AddChild([=] {
getNodeDelegate().Visit(D);
if (!D)
return;
ConstDeclVisitor<Derived>::Visit(D);
for (const auto &A : D->attrs())
Visit(A);
if (const comments::FullComment *Comment =
D->getASTContext().getLocalCommentForDeclUncached(D))
Visit(Comment, Comment);
// Decls within functions are visited by the body.
if (!isa<FunctionDecl>(*D) && !isa<ObjCMethodDecl>(*D)) {
if (const auto *DC = dyn_cast<DeclContext>(D))
dumpDeclContext(DC);
}
});
}
void Visit(const Stmt *S, StringRef Label = {}) {
getNodeDelegate().AddChild(Label, [=] {
getNodeDelegate().Visit(S);
if (!S) {
return;
}
ConstStmtVisitor<Derived>::Visit(S);
// Some statements have custom mechanisms for dumping their children.
if (isa<DeclStmt>(S) || isa<GenericSelectionExpr>(S)) {
return;
}
for (const Stmt *SubStmt : S->children())
Visit(SubStmt);
});
}
void Visit(QualType T) {
SplitQualType SQT = T.split();
if (!SQT.Quals.hasQualifiers())
return Visit(SQT.Ty);
getNodeDelegate().AddChild([=] {
getNodeDelegate().Visit(T);
Visit(T.split().Ty);
});
}
void Visit(const Type *T) {
getNodeDelegate().AddChild([=] {
getNodeDelegate().Visit(T);
if (!T)
return;
TypeVisitor<Derived>::Visit(T);
QualType SingleStepDesugar =
T->getLocallyUnqualifiedSingleStepDesugaredType();
if (SingleStepDesugar != QualType(T, 0))
Visit(SingleStepDesugar);
});
}
void Visit(const Attr *A) {
getNodeDelegate().AddChild([=] {
getNodeDelegate().Visit(A);
ConstAttrVisitor<Derived>::Visit(A);
});
}
void Visit(const CXXCtorInitializer *Init) {
getNodeDelegate().AddChild([=] {
getNodeDelegate().Visit(Init);
Visit(Init->getInit());
});
}
void Visit(const TemplateArgument &A, SourceRange R = {},
const Decl *From = nullptr, const char *Label = nullptr) {
getNodeDelegate().AddChild([=] {
getNodeDelegate().Visit(A, R, From, Label);
ConstTemplateArgumentVisitor<Derived>::Visit(A);
});
}
void Visit(const BlockDecl::Capture &C) {
getNodeDelegate().AddChild([=] {
getNodeDelegate().Visit(C);
if (C.hasCopyExpr())
Visit(C.getCopyExpr());
});
}
void Visit(const OMPClause *C) {
getNodeDelegate().AddChild([=] {
getNodeDelegate().Visit(C);
for (const auto *S : C->children())
Visit(S);
});
}
void Visit(const GenericSelectionExpr::ConstAssociation &A) {
getNodeDelegate().AddChild([=] {
getNodeDelegate().Visit(A);
if (const TypeSourceInfo *TSI = A.getTypeSourceInfo())
Visit(TSI->getType());
Visit(A.getAssociationExpr());
});
}
void Visit(const comments::Comment *C, const comments::FullComment *FC) {
getNodeDelegate().AddChild([=] {
getNodeDelegate().Visit(C, FC);
if (!C) {
return;
}
comments::ConstCommentVisitor<Derived, void,
const comments::FullComment *>::visit(C,
FC);
for (comments::Comment::child_iterator I = C->child_begin(),
E = C->child_end();
I != E; ++I)
Visit(*I, FC);
});
}
void Visit(const ast_type_traits::DynTypedNode &N) {
// FIXME: Improve this with a switch or a visitor pattern.
if (const auto *D = N.get<Decl>())
Visit(D);
else if (const auto *S = N.get<Stmt>())
Visit(S);
else if (const auto *QT = N.get<QualType>())
Visit(*QT);
else if (const auto *T = N.get<Type>())
Visit(T);
else if (const auto *C = N.get<CXXCtorInitializer>())
Visit(C);
else if (const auto *C = N.get<OMPClause>())
Visit(C);
else if (const auto *T = N.get<TemplateArgument>())
Visit(*T);
}
void dumpDeclContext(const DeclContext *DC) {
if (!DC)
return;
for (const auto *D : (Deserialize ? DC->decls() : DC->noload_decls()))
Visit(D);
}
void dumpTemplateParameters(const TemplateParameterList *TPL) {
if (!TPL)
return;
for (const auto &TP : *TPL)
Visit(TP);
}
void
dumpASTTemplateArgumentListInfo(const ASTTemplateArgumentListInfo *TALI) {
if (!TALI)
return;
for (const auto &TA : TALI->arguments())
dumpTemplateArgumentLoc(TA);
}
void dumpTemplateArgumentLoc(const TemplateArgumentLoc &A,
const Decl *From = nullptr,
const char *Label = nullptr) {
Visit(A.getArgument(), A.getSourceRange(), From, Label);
}
void dumpTemplateArgumentList(const TemplateArgumentList &TAL) {
for (unsigned i = 0, e = TAL.size(); i < e; ++i)
Visit(TAL[i]);
}
void dumpObjCTypeParamList(const ObjCTypeParamList *typeParams) {
if (!typeParams)
return;
for (const auto &typeParam : *typeParams) {
Visit(typeParam);
}
}
void VisitComplexType(const ComplexType *T) { Visit(T->getElementType()); }
void VisitLocInfoType(const LocInfoType *T) {
Visit(T->getTypeSourceInfo()->getType());
}
void VisitPointerType(const PointerType *T) { Visit(T->getPointeeType()); }
void VisitBlockPointerType(const BlockPointerType *T) {
Visit(T->getPointeeType());
}
void VisitReferenceType(const ReferenceType *T) {
Visit(T->getPointeeType());
}
void VisitMemberPointerType(const MemberPointerType *T) {
Visit(T->getClass());
Visit(T->getPointeeType());
}
void VisitArrayType(const ArrayType *T) { Visit(T->getElementType()); }
void VisitVariableArrayType(const VariableArrayType *T) {
VisitArrayType(T);
Visit(T->getSizeExpr());
}
void VisitDependentSizedArrayType(const DependentSizedArrayType *T) {
Visit(T->getElementType());
Visit(T->getSizeExpr());
}
void VisitDependentSizedExtVectorType(const DependentSizedExtVectorType *T) {
Visit(T->getElementType());
Visit(T->getSizeExpr());
}
void VisitVectorType(const VectorType *T) { Visit(T->getElementType()); }
void VisitFunctionType(const FunctionType *T) { Visit(T->getReturnType()); }
void VisitFunctionProtoType(const FunctionProtoType *T) {
VisitFunctionType(T);
for (const QualType &PT : T->getParamTypes())
Visit(PT);
}
void VisitTypeOfExprType(const TypeOfExprType *T) {
Visit(T->getUnderlyingExpr());
}
void VisitDecltypeType(const DecltypeType *T) {
Visit(T->getUnderlyingExpr());
}
void VisitUnaryTransformType(const UnaryTransformType *T) {
Visit(T->getBaseType());
}
void VisitAttributedType(const AttributedType *T) {
// FIXME: AttrKind
Visit(T->getModifiedType());
}
void VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) {
Visit(T->getReplacedParameter());
}
void
VisitSubstTemplateTypeParmPackType(const SubstTemplateTypeParmPackType *T) {
Visit(T->getReplacedParameter());
Visit(T->getArgumentPack());
}
void VisitTemplateSpecializationType(const TemplateSpecializationType *T) {
for (const auto &Arg : *T)
Visit(Arg);
if (T->isTypeAlias())
Visit(T->getAliasedType());
}
void VisitObjCObjectPointerType(const ObjCObjectPointerType *T) {
Visit(T->getPointeeType());
}
void VisitAtomicType(const AtomicType *T) { Visit(T->getValueType()); }
void VisitPipeType(const PipeType *T) { Visit(T->getElementType()); }
void VisitAdjustedType(const AdjustedType *T) { Visit(T->getOriginalType()); }
void VisitPackExpansionType(const PackExpansionType *T) {
if (!T->isSugared())
Visit(T->getPattern());
}
// FIXME: ElaboratedType, DependentNameType,
// DependentTemplateSpecializationType, ObjCObjectType
void VisitTypedefDecl(const TypedefDecl *D) { Visit(D->getUnderlyingType()); }
void VisitEnumConstantDecl(const EnumConstantDecl *D) {
if (const Expr *Init = D->getInitExpr())
Visit(Init);
}
void VisitFunctionDecl(const FunctionDecl *D) {
if (const auto *FTSI = D->getTemplateSpecializationInfo())
dumpTemplateArgumentList(*FTSI->TemplateArguments);
if (D->param_begin())
for (const auto *Parameter : D->parameters())
Visit(Parameter);
if (const auto *C = dyn_cast<CXXConstructorDecl>(D))
for (const auto *I : C->inits())
Visit(I);
if (D->doesThisDeclarationHaveABody())
Visit(D->getBody());
}
void VisitFieldDecl(const FieldDecl *D) {
if (D->isBitField())
Visit(D->getBitWidth());
if (Expr *Init = D->getInClassInitializer())
Visit(Init);
}
void VisitVarDecl(const VarDecl *D) {
if (D->hasInit())
Visit(D->getInit());
}
void VisitDecompositionDecl(const DecompositionDecl *D) {
VisitVarDecl(D);
for (const auto *B : D->bindings())
Visit(B);
}
void VisitBindingDecl(const BindingDecl *D) {
if (const auto *E = D->getBinding())
Visit(E);
}
void VisitFileScopeAsmDecl(const FileScopeAsmDecl *D) {
Visit(D->getAsmString());
}
void VisitCapturedDecl(const CapturedDecl *D) { Visit(D->getBody()); }
void VisitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
for (const auto *E : D->varlists())
Visit(E);
}
void VisitOMPDeclareReductionDecl(const OMPDeclareReductionDecl *D) {
Visit(D->getCombiner());
if (const auto *Initializer = D->getInitializer())
Visit(Initializer);
}
void VisitOMPDeclareMapperDecl(const OMPDeclareMapperDecl *D) {
for (const auto *C : D->clauselists())
Visit(C);
}
void VisitOMPCapturedExprDecl(const OMPCapturedExprDecl *D) {
Visit(D->getInit());
}
void VisitOMPAllocateDecl(const OMPAllocateDecl *D) {
for (const auto *E : D->varlists())
Visit(E);
for (const auto *C : D->clauselists())
Visit(C);
}
template <typename SpecializationDecl>
void dumpTemplateDeclSpecialization(const SpecializationDecl *D) {
for (const auto *RedeclWithBadType : D->redecls()) {
// FIXME: The redecls() range sometimes has elements of a less-specific
// type. (In particular, ClassTemplateSpecializationDecl::redecls() gives
// us TagDecls, and should give CXXRecordDecls).
auto *Redecl = dyn_cast<SpecializationDecl>(RedeclWithBadType);
if (!Redecl) {
// Found the injected-class-name for a class template. This will be
// dumped as part of its surrounding class so we don't need to dump it
// here.
assert(isa<CXXRecordDecl>(RedeclWithBadType) &&
"expected an injected-class-name");
continue;
}
Visit(Redecl);
}
}
template <typename TemplateDecl>
void dumpTemplateDecl(const TemplateDecl *D) {
dumpTemplateParameters(D->getTemplateParameters());
Visit(D->getTemplatedDecl());
for (const auto *Child : D->specializations())
dumpTemplateDeclSpecialization(Child);
}
void VisitTypeAliasDecl(const TypeAliasDecl *D) {
Visit(D->getUnderlyingType());
}
void VisitTypeAliasTemplateDecl(const TypeAliasTemplateDecl *D) {
dumpTemplateParameters(D->getTemplateParameters());
Visit(D->getTemplatedDecl());
}
void VisitStaticAssertDecl(const StaticAssertDecl *D) {
Visit(D->getAssertExpr());
Visit(D->getMessage());
}
void VisitFunctionTemplateDecl(const FunctionTemplateDecl *D) {
dumpTemplateDecl(D);
}
void VisitClassTemplateDecl(const ClassTemplateDecl *D) {
dumpTemplateDecl(D);
}
void VisitClassTemplateSpecializationDecl(
const ClassTemplateSpecializationDecl *D) {
dumpTemplateArgumentList(D->getTemplateArgs());
}
void VisitClassTemplatePartialSpecializationDecl(
const ClassTemplatePartialSpecializationDecl *D) {
VisitClassTemplateSpecializationDecl(D);
dumpTemplateParameters(D->getTemplateParameters());
}
void VisitClassScopeFunctionSpecializationDecl(
const ClassScopeFunctionSpecializationDecl *D) {
Visit(D->getSpecialization());
dumpASTTemplateArgumentListInfo(D->getTemplateArgsAsWritten());
}
void VisitVarTemplateDecl(const VarTemplateDecl *D) { dumpTemplateDecl(D); }
void VisitBuiltinTemplateDecl(const BuiltinTemplateDecl *D) {
dumpTemplateParameters(D->getTemplateParameters());
}
void
VisitVarTemplateSpecializationDecl(const VarTemplateSpecializationDecl *D) {
dumpTemplateArgumentList(D->getTemplateArgs());
VisitVarDecl(D);
}
void VisitVarTemplatePartialSpecializationDecl(
const VarTemplatePartialSpecializationDecl *D) {
dumpTemplateParameters(D->getTemplateParameters());
VisitVarTemplateSpecializationDecl(D);
}
void VisitTemplateTypeParmDecl(const TemplateTypeParmDecl *D) {
if (D->hasDefaultArgument())
Visit(D->getDefaultArgument(), SourceRange(),
D->getDefaultArgStorage().getInheritedFrom(),
D->defaultArgumentWasInherited() ? "inherited from" : "previous");
}
void VisitNonTypeTemplateParmDecl(const NonTypeTemplateParmDecl *D) {
if (D->hasDefaultArgument())
Visit(D->getDefaultArgument(), SourceRange(),
D->getDefaultArgStorage().getInheritedFrom(),
D->defaultArgumentWasInherited() ? "inherited from" : "previous");
}
void VisitTemplateTemplateParmDecl(const TemplateTemplateParmDecl *D) {
dumpTemplateParameters(D->getTemplateParameters());
if (D->hasDefaultArgument())
dumpTemplateArgumentLoc(
D->getDefaultArgument(), D->getDefaultArgStorage().getInheritedFrom(),
D->defaultArgumentWasInherited() ? "inherited from" : "previous");
}
+ void VisitConceptDecl(const ConceptDecl *D) {
+ dumpTemplateParameters(D->getTemplateParameters());
+ Visit(D->getConstraintExpr());
+ }
+
void VisitUsingShadowDecl(const UsingShadowDecl *D) {
if (auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl()))
Visit(TD->getTypeForDecl());
}
void VisitFriendDecl(const FriendDecl *D) {
if (!D->getFriendType())
Visit(D->getFriendDecl());
}
void VisitObjCMethodDecl(const ObjCMethodDecl *D) {
if (D->isThisDeclarationADefinition())
dumpDeclContext(D);
else
for (const ParmVarDecl *Parameter : D->parameters())
Visit(Parameter);
if (D->hasBody())
Visit(D->getBody());
}
void VisitObjCCategoryDecl(const ObjCCategoryDecl *D) {
dumpObjCTypeParamList(D->getTypeParamList());
}
void VisitObjCInterfaceDecl(const ObjCInterfaceDecl *D) {
dumpObjCTypeParamList(D->getTypeParamListAsWritten());
}
void VisitObjCImplementationDecl(const ObjCImplementationDecl *D) {
for (const auto &I : D->inits())
Visit(I);
}
void VisitBlockDecl(const BlockDecl *D) {
for (const auto &I : D->parameters())
Visit(I);
for (const auto &I : D->captures())
Visit(I);
Visit(D->getBody());
}
void VisitDeclStmt(const DeclStmt *Node) {
for (const auto &D : Node->decls())
Visit(D);
}
void VisitAttributedStmt(const AttributedStmt *Node) {
for (const auto *A : Node->getAttrs())
Visit(A);
}
void VisitCXXCatchStmt(const CXXCatchStmt *Node) {
Visit(Node->getExceptionDecl());
}
void VisitCapturedStmt(const CapturedStmt *Node) {
Visit(Node->getCapturedDecl());
}
void VisitOMPExecutableDirective(const OMPExecutableDirective *Node) {
for (const auto *C : Node->clauses())
Visit(C);
}
void VisitInitListExpr(const InitListExpr *ILE) {
if (auto *Filler = ILE->getArrayFiller()) {
Visit(Filler, "array_filler");
}
}
void VisitBlockExpr(const BlockExpr *Node) { Visit(Node->getBlockDecl()); }
void VisitOpaqueValueExpr(const OpaqueValueExpr *Node) {
if (Expr *Source = Node->getSourceExpr())
Visit(Source);
}
void VisitGenericSelectionExpr(const GenericSelectionExpr *E) {
Visit(E->getControllingExpr());
Visit(E->getControllingExpr()->getType()); // FIXME: remove
for (const auto &Assoc : E->associations()) {
Visit(Assoc);
}
}
void VisitLambdaExpr(const LambdaExpr *Node) {
Visit(Node->getLambdaClass());
}
void VisitSizeOfPackExpr(const SizeOfPackExpr *Node) {
if (Node->isPartiallySubstituted())
for (const auto &A : Node->getPartialArguments())
Visit(A);
}
void VisitObjCAtCatchStmt(const ObjCAtCatchStmt *Node) {
if (const VarDecl *CatchParam = Node->getCatchParamDecl())
Visit(CatchParam);
}
void VisitExpressionTemplateArgument(const TemplateArgument &TA) {
Visit(TA.getAsExpr());
}
void VisitPackTemplateArgument(const TemplateArgument &TA) {
for (const auto &TArg : TA.pack_elements())
Visit(TArg);
}
// Implements Visit methods for Attrs.
#include "clang/AST/AttrNodeTraverse.inc"
};
} // namespace clang
#endif // LLVM_CLANG_AST_ASTNODETRAVERSER_H
diff --git a/clang/include/clang/AST/DeclTemplate.h b/clang/include/clang/AST/DeclTemplate.h
index 5933810..235b31c 100644
--- a/clang/include/clang/AST/DeclTemplate.h
+++ b/clang/include/clang/AST/DeclTemplate.h
@@ -1,3113 +1,3149 @@
//===- DeclTemplate.h - Classes for representing C++ templates --*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// Defines the C++ template declaration subclasses.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_DECLTEMPLATE_H
#define LLVM_CLANG_AST_DECLTEMPLATE_H
#include "clang/AST/Decl.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclarationName.h"
#include "clang/AST/Redeclarable.h"
#include "clang/AST/TemplateBase.h"
#include "clang/AST/Type.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/Specifiers.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/ADT/iterator.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/TrailingObjects.h"
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <utility>
namespace clang {
enum BuiltinTemplateKind : int;
class ClassTemplateDecl;
class ClassTemplatePartialSpecializationDecl;
class Expr;
class FunctionTemplateDecl;
class IdentifierInfo;
class NonTypeTemplateParmDecl;
class TemplateDecl;
class TemplateTemplateParmDecl;
class TemplateTypeParmDecl;
class UnresolvedSetImpl;
class VarTemplateDecl;
class VarTemplatePartialSpecializationDecl;
/// Stores a template parameter of any kind.
using TemplateParameter =
llvm::PointerUnion3<TemplateTypeParmDecl *, NonTypeTemplateParmDecl *,
TemplateTemplateParmDecl *>;
NamedDecl *getAsNamedDecl(TemplateParameter P);
/// Stores a list of template parameters for a TemplateDecl and its
/// derived classes.
class TemplateParameterList final
: private llvm::TrailingObjects<TemplateParameterList, NamedDecl *,
Expr *> {
/// The location of the 'template' keyword.
SourceLocation TemplateLoc;
/// The locations of the '<' and '>' angle brackets.
SourceLocation LAngleLoc, RAngleLoc;
/// The number of template parameters in this template
/// parameter list.
unsigned NumParams : 30;
/// Whether this template parameter list contains an unexpanded parameter
/// pack.
unsigned ContainsUnexpandedParameterPack : 1;
/// Whether this template parameter list has an associated requires-clause
unsigned HasRequiresClause : 1;
protected:
TemplateParameterList(SourceLocation TemplateLoc, SourceLocation LAngleLoc,
ArrayRef<NamedDecl *> Params, SourceLocation RAngleLoc,
Expr *RequiresClause);
size_t numTrailingObjects(OverloadToken<NamedDecl *>) const {
return NumParams;
}
size_t numTrailingObjects(OverloadToken<Expr *>) const {
return HasRequiresClause;
}
public:
template <size_t N, bool HasRequiresClause>
friend class FixedSizeTemplateParameterListStorage;
friend TrailingObjects;
static TemplateParameterList *Create(const ASTContext &C,
SourceLocation TemplateLoc,
SourceLocation LAngleLoc,
ArrayRef<NamedDecl *> Params,
SourceLocation RAngleLoc,
Expr *RequiresClause);
/// Iterates through the template parameters in this list.
using iterator = NamedDecl **;
/// Iterates through the template parameters in this list.
using const_iterator = NamedDecl * const *;
iterator begin() { return getTrailingObjects<NamedDecl *>(); }
const_iterator begin() const { return getTrailingObjects<NamedDecl *>(); }
iterator end() { return begin() + NumParams; }
const_iterator end() const { return begin() + NumParams; }
unsigned size() const { return NumParams; }
ArrayRef<NamedDecl*> asArray() {
return llvm::makeArrayRef(begin(), end());
}
ArrayRef<const NamedDecl*> asArray() const {
return llvm::makeArrayRef(begin(), size());
}
NamedDecl* getParam(unsigned Idx) {
assert(Idx < size() && "Template parameter index out-of-range");
return begin()[Idx];
}
const NamedDecl* getParam(unsigned Idx) const {
assert(Idx < size() && "Template parameter index out-of-range");
return begin()[Idx];
}
/// Returns the minimum number of arguments needed to form a
/// template specialization.
///
/// This may be fewer than the number of template parameters, if some of
/// the parameters have default arguments or if there is a parameter pack.
unsigned getMinRequiredArguments() const;
/// Get the depth of this template parameter list in the set of
/// template parameter lists.
///
/// The first template parameter list in a declaration will have depth 0,
/// the second template parameter list will have depth 1, etc.
unsigned getDepth() const;
/// Determine whether this template parameter list contains an
/// unexpanded parameter pack.
bool containsUnexpandedParameterPack() const {
return ContainsUnexpandedParameterPack;
}
/// The constraint-expression of the associated requires-clause.
Expr *getRequiresClause() {
return HasRequiresClause ? *getTrailingObjects<Expr *>() : nullptr;
}
/// The constraint-expression of the associated requires-clause.
const Expr *getRequiresClause() const {
return HasRequiresClause ? *getTrailingObjects<Expr *>() : nullptr;
}
SourceLocation getTemplateLoc() const { return TemplateLoc; }
SourceLocation getLAngleLoc() const { return LAngleLoc; }
SourceLocation getRAngleLoc() const { return RAngleLoc; }
SourceRange getSourceRange() const LLVM_READONLY {
return SourceRange(TemplateLoc, RAngleLoc);
}
void print(raw_ostream &Out, const ASTContext &Context,
bool OmitTemplateKW = false) const;
void print(raw_ostream &Out, const ASTContext &Context,
const PrintingPolicy &Policy, bool OmitTemplateKW = false) const;
public:
// FIXME: workaround for MSVC 2013; remove when no longer needed
using FixedSizeStorageOwner = TrailingObjects::FixedSizeStorageOwner;
};
/// Stores a list of template parameters and the associated
/// requires-clause (if any) for a TemplateDecl and its derived classes.
/// Suitable for creating on the stack.
template <size_t N, bool HasRequiresClause>
class FixedSizeTemplateParameterListStorage
: public TemplateParameterList::FixedSizeStorageOwner {
typename TemplateParameterList::FixedSizeStorage<
NamedDecl *, Expr *>::with_counts<
N, HasRequiresClause ? 1u : 0u
>::type storage;
public:
FixedSizeTemplateParameterListStorage(SourceLocation TemplateLoc,
SourceLocation LAngleLoc,
ArrayRef<NamedDecl *> Params,
SourceLocation RAngleLoc,
Expr *RequiresClause)
: FixedSizeStorageOwner(
(assert(N == Params.size()),
assert(HasRequiresClause == static_cast<bool>(RequiresClause)),
new (static_cast<void *>(&storage)) TemplateParameterList(
TemplateLoc, LAngleLoc, Params, RAngleLoc, RequiresClause))) {}
};
/// A template argument list.
class TemplateArgumentList final
: private llvm::TrailingObjects<TemplateArgumentList, TemplateArgument> {
/// The template argument list.
const TemplateArgument *Arguments;
/// The number of template arguments in this template
/// argument list.
unsigned NumArguments;
// Constructs an instance with an internal Argument list, containing
// a copy of the Args array. (Called by CreateCopy)
TemplateArgumentList(ArrayRef<TemplateArgument> Args);
public:
friend TrailingObjects;
TemplateArgumentList(const TemplateArgumentList &) = delete;
TemplateArgumentList &operator=(const TemplateArgumentList &) = delete;
/// Type used to indicate that the template argument list itself is a
/// stack object. It does not own its template arguments.
enum OnStackType { OnStack };
/// Create a new template argument list that copies the given set of
/// template arguments.
static TemplateArgumentList *CreateCopy(ASTContext &Context,
ArrayRef<TemplateArgument> Args);
/// Construct a new, temporary template argument list on the stack.
///
/// The template argument list does not own the template arguments
/// provided.
explicit TemplateArgumentList(OnStackType, ArrayRef<TemplateArgument> Args)
: Arguments(Args.data()), NumArguments(Args.size()) {}
/// Produces a shallow copy of the given template argument list.
///
/// This operation assumes that the input argument list outlives it.
/// This takes the list as a pointer to avoid looking like a copy
/// constructor, since this really really isn't safe to use that
/// way.
explicit TemplateArgumentList(const TemplateArgumentList *Other)
: Arguments(Other->data()), NumArguments(Other->size()) {}
/// Retrieve the template argument at a given index.
const TemplateArgument &get(unsigned Idx) const {
assert(Idx < NumArguments && "Invalid template argument index");
return data()[Idx];
}
/// Retrieve the template argument at a given index.
const TemplateArgument &operator[](unsigned Idx) const { return get(Idx); }
/// Produce this as an array ref.
ArrayRef<TemplateArgument> asArray() const {
return llvm::makeArrayRef(data(), size());
}
/// Retrieve the number of template arguments in this
/// template argument list.
unsigned size() const { return NumArguments; }
/// Retrieve a pointer to the template argument list.
const TemplateArgument *data() const { return Arguments; }
};
void *allocateDefaultArgStorageChain(const ASTContext &C);
/// Storage for a default argument. This is conceptually either empty, or an
/// argument value, or a pointer to a previous declaration that had a default
/// argument.
///
/// However, this is complicated by modules: while we require all the default
/// arguments for a template to be equivalent, there may be more than one, and
/// we need to track all the originating parameters to determine if the default
/// argument is visible.
template<typename ParmDecl, typename ArgType>
class DefaultArgStorage {
/// Storage for both the value *and* another parameter from which we inherit
/// the default argument. This is used when multiple default arguments for a
/// parameter are merged together from different modules.
struct Chain {
ParmDecl *PrevDeclWithDefaultArg;
ArgType Value;
};
static_assert(sizeof(Chain) == sizeof(void *) * 2,
"non-pointer argument type?");
llvm::PointerUnion3<ArgType, ParmDecl*, Chain*> ValueOrInherited;
static ParmDecl *getParmOwningDefaultArg(ParmDecl *Parm) {
const DefaultArgStorage &Storage = Parm->getDefaultArgStorage();
if (auto *Prev = Storage.ValueOrInherited.template dyn_cast<ParmDecl *>())
Parm = Prev;
assert(!Parm->getDefaultArgStorage()
.ValueOrInherited.template is<ParmDecl *>() &&
"should only be one level of indirection");
return Parm;
}
public:
DefaultArgStorage() : ValueOrInherited(ArgType()) {}
/// Determine whether there is a default argument for this parameter.
bool isSet() const { return !ValueOrInherited.isNull(); }
/// Determine whether the default argument for this parameter was inherited
/// from a previous declaration of the same entity.
bool isInherited() const { return ValueOrInherited.template is<ParmDecl*>(); }
/// Get the default argument's value. This does not consider whether the
/// default argument is visible.
ArgType get() const {
const DefaultArgStorage *Storage = this;
if (const auto *Prev = ValueOrInherited.template dyn_cast<ParmDecl *>())
Storage = &Prev->getDefaultArgStorage();
if (const auto *C = Storage->ValueOrInherited.template dyn_cast<Chain *>())
return C->Value;
return Storage->ValueOrInherited.template get<ArgType>();
}
/// Get the parameter from which we inherit the default argument, if any.
/// This is the parameter on which the default argument was actually written.
const ParmDecl *getInheritedFrom() const {
if (const auto *D = ValueOrInherited.template dyn_cast<ParmDecl *>())
return D;
if (const auto *C = ValueOrInherited.template dyn_cast<Chain *>())
return C->PrevDeclWithDefaultArg;
return nullptr;
}
/// Set the default argument.
void set(ArgType Arg) {
assert(!isSet() && "default argument already set");
ValueOrInherited = Arg;
}
/// Set that the default argument was inherited from another parameter.
void setInherited(const ASTContext &C, ParmDecl *InheritedFrom) {
assert(!isInherited() && "default argument already inherited");
InheritedFrom = getParmOwningDefaultArg(InheritedFrom);
if (!isSet())
ValueOrInherited = InheritedFrom;
else
ValueOrInherited = new (allocateDefaultArgStorageChain(C))
Chain{InheritedFrom, ValueOrInherited.template get<ArgType>()};
}
/// Remove the default argument, even if it was inherited.
void clear() {
ValueOrInherited = ArgType();
}
};
//===----------------------------------------------------------------------===//
// Kinds of Templates
//===----------------------------------------------------------------------===//
/// Stores the template parameter list and associated constraints for
/// \c TemplateDecl objects that track associated constraints.
class ConstrainedTemplateDeclInfo {
friend TemplateDecl;
public:
ConstrainedTemplateDeclInfo() = default;
TemplateParameterList *getTemplateParameters() const {
return TemplateParams;
}
Expr *getAssociatedConstraints() const { return AssociatedConstraints; }
protected:
void setTemplateParameters(TemplateParameterList *TParams) {
TemplateParams = TParams;
}
void setAssociatedConstraints(Expr *AC) { AssociatedConstraints = AC; }
TemplateParameterList *TemplateParams = nullptr;
Expr *AssociatedConstraints = nullptr;
};
/// The base class of all kinds of template declarations (e.g.,
/// class, function, etc.).
///
/// The TemplateDecl class stores the list of template parameters and a
/// reference to the templated scoped declaration: the underlying AST node.
class TemplateDecl : public NamedDecl {
void anchor() override;
protected:
// Construct a template decl with the given name and parameters.
// Used when there is no templated element (e.g., for tt-params).
TemplateDecl(ConstrainedTemplateDeclInfo *CTDI, Kind DK, DeclContext *DC,
SourceLocation L, DeclarationName Name,
TemplateParameterList *Params)
: NamedDecl(DK, DC, L, Name), TemplatedDecl(nullptr),
TemplateParams(CTDI) {
this->setTemplateParameters(Params);
}
TemplateDecl(Kind DK, DeclContext *DC, SourceLocation L, DeclarationName Name,
TemplateParameterList *Params)
: TemplateDecl(nullptr, DK, DC, L, Name, Params) {}
// Construct a template decl with name, parameters, and templated element.
TemplateDecl(ConstrainedTemplateDeclInfo *CTDI, Kind DK, DeclContext *DC,
SourceLocation L, DeclarationName Name,
TemplateParameterList *Params, NamedDecl *Decl)
: NamedDecl(DK, DC, L, Name), TemplatedDecl(Decl),
TemplateParams(CTDI) {
this->setTemplateParameters(Params);
}
TemplateDecl(Kind DK, DeclContext *DC, SourceLocation L, DeclarationName Name,
TemplateParameterList *Params, NamedDecl *Decl)
: TemplateDecl(nullptr, DK, DC, L, Name, Params, Decl) {}
public:
/// Get the list of template parameters
TemplateParameterList *getTemplateParameters() const {
const auto *const CTDI =
TemplateParams.dyn_cast<ConstrainedTemplateDeclInfo *>();
return CTDI ? CTDI->getTemplateParameters()
: TemplateParams.get<TemplateParameterList *>();
}
/// Get the constraint-expression from the associated requires-clause (if any)
const Expr *getRequiresClause() const {
const TemplateParameterList *const TP = getTemplateParameters();
return TP ? TP->getRequiresClause() : nullptr;
}
Expr *getAssociatedConstraints() const {
const auto *const C = cast<TemplateDecl>(getCanonicalDecl());
const auto *const CTDI =
C->TemplateParams.dyn_cast<ConstrainedTemplateDeclInfo *>();
return CTDI ? CTDI->getAssociatedConstraints() : nullptr;
}
/// Get the underlying, templated declaration.
NamedDecl *getTemplatedDecl() const { return TemplatedDecl; }
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) {
return K >= firstTemplate && K <= lastTemplate;
}
SourceRange getSourceRange() const override LLVM_READONLY {
return SourceRange(getTemplateParameters()->getTemplateLoc(),
TemplatedDecl->getSourceRange().getEnd());
}
protected:
NamedDecl *TemplatedDecl;
/// The template parameter list and optional requires-clause
/// associated with this declaration; alternatively, a
/// \c ConstrainedTemplateDeclInfo if the associated constraints of the
/// template are being tracked by this particular declaration.
llvm::PointerUnion<TemplateParameterList *,
ConstrainedTemplateDeclInfo *>
TemplateParams;
void setTemplateParameters(TemplateParameterList *TParams) {
if (auto *const CTDI =
TemplateParams.dyn_cast<ConstrainedTemplateDeclInfo *>()) {
CTDI->setTemplateParameters(TParams);
} else {
TemplateParams = TParams;
}
}
void setAssociatedConstraints(Expr *AC) {
assert(isCanonicalDecl() &&
"Attaching associated constraints to non-canonical Decl");
TemplateParams.get<ConstrainedTemplateDeclInfo *>()
->setAssociatedConstraints(AC);
}
public:
/// Initialize the underlying templated declaration and
/// template parameters.
void init(NamedDecl *templatedDecl, TemplateParameterList* templateParams) {
assert(!TemplatedDecl && "TemplatedDecl already set!");
assert(!TemplateParams && "TemplateParams already set!");
TemplatedDecl = templatedDecl;
TemplateParams = templateParams;
}
};
/// Provides information about a function template specialization,
/// which is a FunctionDecl that has been explicitly specialization or
/// instantiated from a function template.
class FunctionTemplateSpecializationInfo final
: public llvm::FoldingSetNode,
private llvm::TrailingObjects<FunctionTemplateSpecializationInfo,
MemberSpecializationInfo *> {
/// The function template specialization that this structure describes and a
/// flag indicating if the function is a member specialization.
llvm::PointerIntPair<FunctionDecl *, 1, bool> Function;
/// The function template from which this function template
/// specialization was generated.
///
/// The two bits contain the top 4 values of TemplateSpecializationKind.
llvm::PointerIntPair<FunctionTemplateDecl *, 2> Template;
public:
/// The template arguments used to produce the function template
/// specialization from the function template.
const TemplateArgumentList *TemplateArguments;
/// The template arguments as written in the sources, if provided.
/// FIXME: Normally null; tail-allocate this.
const ASTTemplateArgumentListInfo *TemplateArgumentsAsWritten;
/// The point at which this function template specialization was
/// first instantiated.
SourceLocation PointOfInstantiation;
private:
FunctionTemplateSpecializationInfo(
FunctionDecl *FD, FunctionTemplateDecl *Template,
TemplateSpecializationKind TSK, const TemplateArgumentList *TemplateArgs,
const ASTTemplateArgumentListInfo *TemplateArgsAsWritten,
SourceLocation POI, MemberSpecializationInfo *MSInfo)
: Function(FD, MSInfo ? 1 : 0), Template(Template, TSK - 1),
TemplateArguments(TemplateArgs),
TemplateArgumentsAsWritten(TemplateArgsAsWritten),
PointOfInstantiation(POI) {
if (MSInfo)
getTrailingObjects<MemberSpecializationInfo *>()[0] = MSInfo;
}
size_t numTrailingObjects(OverloadToken<MemberSpecializationInfo*>) const {
return Function.getInt();
}
public:
friend TrailingObjects;
static FunctionTemplateSpecializationInfo *
Create(ASTContext &C, FunctionDecl *FD, FunctionTemplateDecl *Template,
TemplateSpecializationKind TSK,
const TemplateArgumentList *TemplateArgs,
const TemplateArgumentListInfo *TemplateArgsAsWritten,
SourceLocation POI, MemberSpecializationInfo *MSInfo);
/// Retrieve the declaration of the function template specialization.
FunctionDecl *getFunction() const { return Function.getPointer(); }
/// Retrieve the template from which this function was specialized.
FunctionTemplateDecl *getTemplate() const { return Template.getPointer(); }
/// Determine what kind of template specialization this is.
TemplateSpecializationKind getTemplateSpecializationKind() const {
return (TemplateSpecializationKind)(Template.getInt() + 1);
}
bool isExplicitSpecialization() const {
return getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
}
/// True if this declaration is an explicit specialization,
/// explicit instantiation declaration, or explicit instantiation
/// definition.
bool isExplicitInstantiationOrSpecialization() const {
return isTemplateExplicitInstantiationOrSpecialization(
getTemplateSpecializationKind());
}
/// Set the template specialization kind.
void setTemplateSpecializationKind(TemplateSpecializationKind TSK) {
assert(TSK != TSK_Undeclared &&
"Cannot encode TSK_Undeclared for a function template specialization");
Template.setInt(TSK - 1);
}
/// Retrieve the first point of instantiation of this function
/// template specialization.
///
/// The point of instantiation may be an invalid source location if this
/// function has yet to be instantiated.
SourceLocation getPointOfInstantiation() const {
return PointOfInstantiation;
}
/// Set the (first) point of instantiation of this function template
/// specialization.
void setPointOfInstantiation(SourceLocation POI) {
PointOfInstantiation = POI;
}
/// Get the specialization info if this function template specialization is
/// also a member specialization:
///
/// \code
/// template<typename> struct A {
/// template<typename> void f();
/// template<> void f<int>(); // ClassScopeFunctionSpecializationDecl
/// };
/// \endcode
///
/// Here, A<int>::f<int> is a function template specialization that is
/// an explicit specialization of A<int>::f, but it's also a member
/// specialization (an implicit instantiation in this case) of A::f<int>.
/// Further:
///
/// \code
/// template<> template<> void A<int>::f<int>() {}
/// \endcode
///
/// ... declares a function template specialization that is an explicit
/// specialization of A<int>::f, and is also an explicit member
/// specialization of A::f<int>.
///
/// Note that the TemplateSpecializationKind of the MemberSpecializationInfo
/// need not be the same as that returned by getTemplateSpecializationKind(),
/// and represents the relationship between the function and the class-scope
/// explicit specialization in the original templated class -- whereas our
/// TemplateSpecializationKind represents the relationship between the
/// function and the function template, and should always be
/// TSK_ExplicitSpecialization whenever we have MemberSpecializationInfo.
MemberSpecializationInfo *getMemberSpecializationInfo() const {
return numTrailingObjects(OverloadToken<MemberSpecializationInfo *>())
? getTrailingObjects<MemberSpecializationInfo *>()[0]
: nullptr;
}
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, TemplateArguments->asArray(), getFunction()->getASTContext());
}
static void
Profile(llvm::FoldingSetNodeID &ID, ArrayRef<TemplateArgument> TemplateArgs,
ASTContext &Context) {
ID.AddInteger(TemplateArgs.size());
for (const TemplateArgument &TemplateArg : TemplateArgs)
TemplateArg.Profile(ID, Context);
}
};
/// Provides information a specialization of a member of a class
/// template, which may be a member function, static data member,
/// member class or member enumeration.
class MemberSpecializationInfo {
// The member declaration from which this member was instantiated, and the
// manner in which the instantiation occurred (in the lower two bits).
llvm::PointerIntPair<NamedDecl *, 2> MemberAndTSK;
// The point at which this member was first instantiated.
SourceLocation PointOfInstantiation;
public:
explicit
MemberSpecializationInfo(NamedDecl *IF, TemplateSpecializationKind TSK,
SourceLocation POI = SourceLocation())
: MemberAndTSK(IF, TSK - 1), PointOfInstantiation(POI) {
assert(TSK != TSK_Undeclared &&
"Cannot encode undeclared template specializations for members");
}
/// Retrieve the member declaration from which this member was
/// instantiated.
NamedDecl *getInstantiatedFrom() const { return MemberAndTSK.getPointer(); }
/// Determine what kind of template specialization this is.
TemplateSpecializationKind getTemplateSpecializationKind() const {
return (TemplateSpecializationKind)(MemberAndTSK.getInt() + 1);
}
bool isExplicitSpecialization() const {
return getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
}
/// Set the template specialization kind.
void setTemplateSpecializationKind(TemplateSpecializationKind TSK) {
assert(TSK != TSK_Undeclared &&
"Cannot encode undeclared template specializations for members");
MemberAndTSK.setInt(TSK - 1);
}
/// Retrieve the first point of instantiation of this member.
/// If the point of instantiation is an invalid location, then this member
/// has not yet been instantiated.
SourceLocation getPointOfInstantiation() const {
return PointOfInstantiation;
}
/// Set the first point of instantiation.
void setPointOfInstantiation(SourceLocation POI) {
PointOfInstantiation = POI;
}
};
/// Provides information about a dependent function-template
/// specialization declaration.
///
/// Since explicit function template specialization and instantiation
/// declarations can only appear in namespace scope, and you can only
/// specialize a member of a fully-specialized class, the only way to
/// get one of these is in a friend declaration like the following:
///
/// \code
/// template \<class T> void foo(T);
/// template \<class T> class A {
/// friend void foo<>(T);
/// };
/// \endcode
class DependentFunctionTemplateSpecializationInfo final
: private llvm::TrailingObjects<DependentFunctionTemplateSpecializationInfo,
TemplateArgumentLoc,
FunctionTemplateDecl *> {
/// The number of potential template candidates.
unsigned NumTemplates;
/// The number of template arguments.
unsigned NumArgs;
/// The locations of the left and right angle brackets.
SourceRange AngleLocs;
size_t numTrailingObjects(OverloadToken<TemplateArgumentLoc>) const {
return NumArgs;
}
size_t numTrailingObjects(OverloadToken<FunctionTemplateDecl *>) const {
return NumTemplates;
}
DependentFunctionTemplateSpecializationInfo(
const UnresolvedSetImpl &Templates,
const TemplateArgumentListInfo &TemplateArgs);
public:
friend TrailingObjects;
static DependentFunctionTemplateSpecializationInfo *
Create(ASTContext &Context, const UnresolvedSetImpl &Templates,
const TemplateArgumentListInfo &TemplateArgs);
/// Returns the number of function templates that this might
/// be a specialization of.
unsigned getNumTemplates() const { return NumTemplates; }
/// Returns the i'th template candidate.
FunctionTemplateDecl *getTemplate(unsigned I) const {
assert(I < getNumTemplates() && "template index out of range");
return getTrailingObjects<FunctionTemplateDecl *>()[I];
}
/// Returns the explicit template arguments that were given.
const TemplateArgumentLoc *getTemplateArgs() const {
return getTrailingObjects<TemplateArgumentLoc>();
}
/// Returns the number of explicit template arguments that were given.
unsigned getNumTemplateArgs() const { return NumArgs; }
/// Returns the nth template argument.
const TemplateArgumentLoc &getTemplateArg(unsigned I) const {
assert(I < getNumTemplateArgs() && "template arg index out of range");
return getTemplateArgs()[I];
}
SourceLocation getLAngleLoc() const {
return AngleLocs.getBegin();
}
SourceLocation getRAngleLoc() const {
return AngleLocs.getEnd();
}
};
/// Declaration of a redeclarable template.
class RedeclarableTemplateDecl : public TemplateDecl,
public Redeclarable<RedeclarableTemplateDecl>
{
using redeclarable_base = Redeclarable<RedeclarableTemplateDecl>;
RedeclarableTemplateDecl *getNextRedeclarationImpl() override {
return getNextRedeclaration();
}
RedeclarableTemplateDecl *getPreviousDeclImpl() override {
return getPreviousDecl();
}
RedeclarableTemplateDecl *getMostRecentDeclImpl() override {
return getMostRecentDecl();
}
void anchor() override;
protected:
template <typename EntryType> struct SpecEntryTraits {
using DeclType = EntryType;
static DeclType *getDecl(EntryType *D) {
return D;
}
static ArrayRef<TemplateArgument> getTemplateArgs(EntryType *D) {
return D->getTemplateArgs().asArray();
}
};
template <typename EntryType, typename SETraits = SpecEntryTraits<EntryType>,
typename DeclType = typename SETraits::DeclType>
struct SpecIterator
: llvm::iterator_adaptor_base<
SpecIterator<EntryType, SETraits, DeclType>,
typename llvm::FoldingSetVector<EntryType>::iterator,
typename std::iterator_traits<typename llvm::FoldingSetVector<
EntryType>::iterator>::iterator_category,
DeclType *, ptrdiff_t, DeclType *, DeclType *> {
SpecIterator() = default;
explicit SpecIterator(
typename llvm::FoldingSetVector<EntryType>::iterator SetIter)
: SpecIterator::iterator_adaptor_base(std::move(SetIter)) {}
DeclType *operator*() const {
return SETraits::getDecl(&*this->I)->getMostRecentDecl();
}
DeclType *operator->() const { return **this; }
};
template <typename EntryType>
static SpecIterator<EntryType>
makeSpecIterator(llvm::FoldingSetVector<EntryType> &Specs, bool isEnd) {
return SpecIterator<EntryType>(isEnd ? Specs.end() : Specs.begin());
}
void loadLazySpecializationsImpl() const;
template <class EntryType> typename SpecEntryTraits<EntryType>::DeclType*
findSpecializationImpl(llvm::FoldingSetVector<EntryType> &Specs,
ArrayRef<TemplateArgument> Args, void *&InsertPos);
template <class Derived, class EntryType>
void addSpecializationImpl(llvm::FoldingSetVector<EntryType> &Specs,
EntryType *Entry, void *InsertPos);
struct CommonBase {
CommonBase() : InstantiatedFromMember(nullptr, false) {}
/// The template from which this was most
/// directly instantiated (or null).
///
/// The boolean value indicates whether this template
/// was explicitly specialized.
llvm::PointerIntPair<RedeclarableTemplateDecl*, 1, bool>
InstantiatedFromMember;
/// If non-null, points to an array of specializations (including
/// partial specializations) known only by their external declaration IDs.
///
/// The first value in the array is the number of specializations/partial
/// specializations that follow.
uint32_t *LazySpecializations = nullptr;
};
/// Pointer to the common data shared by all declarations of this
/// template.
mutable CommonBase *Common = nullptr;
/// Retrieves the "common" pointer shared by all (re-)declarations of
/// the same template. Calling this routine may implicitly allocate memory
/// for the common pointer.
CommonBase *getCommonPtr() const;
virtual CommonBase *newCommon(ASTContext &C) const = 0;
// Construct a template decl with name, parameters, and templated element.
RedeclarableTemplateDecl(ConstrainedTemplateDeclInfo *CTDI, Kind DK,
ASTContext &C, DeclContext *DC, SourceLocation L,
DeclarationName Name, TemplateParameterList *Params,
NamedDecl *Decl)
: TemplateDecl(CTDI, DK, DC, L, Name, Params, Decl), redeclarable_base(C)
{}
RedeclarableTemplateDecl(Kind DK, ASTContext &C, DeclContext *DC,
SourceLocation L, DeclarationName Name,
TemplateParameterList *Params, NamedDecl *Decl)
: RedeclarableTemplateDecl(nullptr, DK, C, DC, L, Name, Params, Decl) {}
public:
friend class ASTDeclReader;
friend class ASTDeclWriter;
friend class ASTReader;
template <class decl_type> friend class RedeclarableTemplate;
/// Retrieves the canonical declaration of this template.
RedeclarableTemplateDecl *getCanonicalDecl() override {
return getFirstDecl();
}
const RedeclarableTemplateDecl *getCanonicalDecl() const {
return getFirstDecl();
}
/// Determines whether this template was a specialization of a
/// member template.
///
/// In the following example, the function template \c X<int>::f and the
/// member template \c X<int>::Inner are member specializations.
///
/// \code
/// template<typename T>
/// struct X {
/// template<typename U> void f(T, U);
/// template<typename U> struct Inner;
/// };
///
/// template<> template<typename T>
/// void X<int>::f(int, T);
/// template<> template<typename T>
/// struct X<int>::Inner { /* ... */ };
/// \endcode
bool isMemberSpecialization() const {
return getCommonPtr()->InstantiatedFromMember.getInt();
}
/// Note that this member template is a specialization.
void setMemberSpecialization() {
assert(getCommonPtr()->InstantiatedFromMember.getPointer() &&
"Only member templates can be member template specializations");
getCommonPtr()->InstantiatedFromMember.setInt(true);
}
/// Retrieve the member template from which this template was
/// instantiated, or nullptr if this template was not instantiated from a
/// member template.
///
/// A template is instantiated from a member template when the member
/// template itself is part of a class template (or member thereof). For
/// example, given
///
/// \code
/// template<typename T>
/// struct X {
/// template<typename U> void f(T, U);
/// };
///
/// void test(X<int> x) {
/// x.f(1, 'a');
/// };
/// \endcode
///
/// \c X<int>::f is a FunctionTemplateDecl that describes the function
/// template
///
/// \code
/// template<typename U> void X<int>::f(int, U);
/// \endcode
///
/// which was itself created during the instantiation of \c X<int>. Calling
/// getInstantiatedFromMemberTemplate() on this FunctionTemplateDecl will
/// retrieve the FunctionTemplateDecl for the original template \c f within
/// the class template \c X<T>, i.e.,
///
/// \code
/// template<typename T>
/// template<typename U>
/// void X<T>::f(T, U);
/// \endcode
RedeclarableTemplateDecl *getInstantiatedFromMemberTemplate() const {
return getCommonPtr()->InstantiatedFromMember.getPointer();
}
void setInstantiatedFromMemberTemplate(RedeclarableTemplateDecl *TD) {
assert(!getCommonPtr()->InstantiatedFromMember.getPointer());
getCommonPtr()->InstantiatedFromMember.setPointer(TD);
}
using redecl_range = redeclarable_base::redecl_range;
using redecl_iterator = redeclarable_base::redecl_iterator;
using redeclarable_base::redecls_begin;
using redeclarable_base::redecls_end;
using redeclarable_base::redecls;
using redeclarable_base::getPreviousDecl;
using redeclarable_base::getMostRecentDecl;
using redeclarable_base::isFirstDecl;
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) {
return K >= firstRedeclarableTemplate && K <= lastRedeclarableTemplate;
}
};
template <> struct RedeclarableTemplateDecl::
SpecEntryTraits<FunctionTemplateSpecializationInfo> {
using DeclType = FunctionDecl;
static DeclType *getDecl(FunctionTemplateSpecializationInfo *I) {
return I->getFunction();
}
static ArrayRef<TemplateArgument>
getTemplateArgs(FunctionTemplateSpecializationInfo *I) {
return I->TemplateArguments->asArray();
}
};
/// Declaration of a template function.
class FunctionTemplateDecl : public RedeclarableTemplateDecl {
protected:
friend class FunctionDecl;
/// Data that is common to all of the declarations of a given
/// function template.
struct Common : CommonBase {
/// The function template specializations for this function
/// template, including explicit specializations and instantiations.
llvm::FoldingSetVector<FunctionTemplateSpecializationInfo> Specializations;
/// The set of "injected" template arguments used within this
/// function template.
///
/// This pointer refers to the template arguments (there are as
/// many template arguments as template parameaters) for the function
/// template, and is allocated lazily, since most function templates do not
/// require the use of this information.
TemplateArgument *InjectedArgs = nullptr;
Common() = default;
};
FunctionTemplateDecl(ASTContext &C, DeclContext *DC, SourceLocation L,
DeclarationName Name, TemplateParameterList *Params,
NamedDecl *Decl)
: RedeclarableTemplateDecl(FunctionTemplate, C, DC, L, Name, Params,
Decl) {}
CommonBase *newCommon(ASTContext &C) const override;
Common *getCommonPtr() const {
return static_cast<Common *>(RedeclarableTemplateDecl::getCommonPtr());
}
/// Retrieve the set of function template specializations of this
/// function template.
llvm::FoldingSetVector<FunctionTemplateSpecializationInfo> &
getSpecializations() const;
/// Add a specialization of this function template.
///
/// \param InsertPos Insert position in the FoldingSetVector, must have been
/// retrieved by an earlier call to findSpecialization().
void addSpecialization(FunctionTemplateSpecializationInfo* Info,
void *InsertPos);
public:
friend class ASTDeclReader;
friend class ASTDeclWriter;
/// Load any lazily-loaded specializations from the external source.
void LoadLazySpecializations() const;
/// Get the underlying function declaration of the template.
FunctionDecl *getTemplatedDecl() const {
return static_cast<FunctionDecl *>(TemplatedDecl);
}
/// Returns whether this template declaration defines the primary
/// pattern.
bool isThisDeclarationADefinition() const {
return getTemplatedDecl()->isThisDeclarationADefinition();
}
/// Return the specialization with the provided arguments if it exists,
/// otherwise return the insertion point.
FunctionDecl *findSpecialization(ArrayRef<TemplateArgument> Args,
void *&InsertPos);
FunctionTemplateDecl *getCanonicalDecl() override {
return cast<FunctionTemplateDecl>(
RedeclarableTemplateDecl::getCanonicalDecl());
}
const FunctionTemplateDecl *getCanonicalDecl() const {
return cast<FunctionTemplateDecl>(
RedeclarableTemplateDecl::getCanonicalDecl());
}
/// Retrieve the previous declaration of this function template, or
/// nullptr if no such declaration exists.
FunctionTemplateDecl *getPreviousDecl() {
return cast_or_null<FunctionTemplateDecl>(
static_cast<RedeclarableTemplateDecl *>(this)->getPreviousDecl());
}
const FunctionTemplateDecl *getPreviousDecl() const {
return cast_or_null<FunctionTemplateDecl>(
static_cast<const RedeclarableTemplateDecl *>(this)->getPreviousDecl());
}
FunctionTemplateDecl *getMostRecentDecl() {
return cast<FunctionTemplateDecl>(
static_cast<RedeclarableTemplateDecl *>(this)
->getMostRecentDecl());
}
const FunctionTemplateDecl *getMostRecentDecl() const {
return const_cast<FunctionTemplateDecl*>(this)->getMostRecentDecl();
}
FunctionTemplateDecl *getInstantiatedFromMemberTemplate() const {
return cast_or_null<FunctionTemplateDecl>(
RedeclarableTemplateDecl::getInstantiatedFromMemberTemplate());
}
using spec_iterator = SpecIterator<FunctionTemplateSpecializationInfo>;
using spec_range = llvm::iterator_range<spec_iterator>;
spec_range specializations() const {
return spec_range(spec_begin(), spec_end());
}
spec_iterator spec_begin() const {
return makeSpecIterator(getSpecializations(), false);
}
spec_iterator spec_end() const {
return makeSpecIterator(getSpecializations(), true);
}
/// Retrieve the "injected" template arguments that correspond to the
/// template parameters of this function template.
///
/// Although the C++ standard has no notion of the "injected" template
/// arguments for a function template, the notion is convenient when
/// we need to perform substitutions inside the definition of a function
/// template.
ArrayRef<TemplateArgument> getInjectedTemplateArgs();
/// Merge \p Prev with our RedeclarableTemplateDecl::Common.
void mergePrevDecl(FunctionTemplateDecl *Prev);
/// Create a function template node.
static FunctionTemplateDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation L,
DeclarationName Name,
TemplateParameterList *Params,
NamedDecl *Decl);
/// Create an empty function template node.
static FunctionTemplateDecl *CreateDeserialized(ASTContext &C, unsigned ID);
// Implement isa/cast/dyncast support
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == FunctionTemplate; }
};
//===----------------------------------------------------------------------===//
// Kinds of Template Parameters
//===----------------------------------------------------------------------===//
/// Defines the position of a template parameter within a template
/// parameter list.
///
/// Because template parameter can be listed
/// sequentially for out-of-line template members, each template parameter is
/// given a Depth - the nesting of template parameter scopes - and a Position -
/// the occurrence within the parameter list.
/// This class is inheritedly privately by different kinds of template
/// parameters and is not part of the Decl hierarchy. Just a facility.
class TemplateParmPosition {
protected:
// FIXME: These probably don't need to be ints. int:5 for depth, int:8 for
// position? Maybe?
unsigned Depth;
unsigned Position;
TemplateParmPosition(unsigned D, unsigned P) : Depth(D), Position(P) {}
public:
TemplateParmPosition() = delete;
/// Get the nesting depth of the template parameter.
unsigned getDepth() const { return Depth; }
void setDepth(unsigned D) { Depth = D; }
/// Get the position of the template parameter within its parameter list.
unsigned getPosition() const { return Position; }
void setPosition(unsigned P) { Position = P; }
/// Get the index of the template parameter within its parameter list.
unsigned getIndex() const { return Position; }
};
/// Declaration of a template type parameter.
///
/// For example, "T" in
/// \code
/// template<typename T> class vector;
/// \endcode
class TemplateTypeParmDecl : public TypeDecl {
/// Sema creates these on the stack during auto type deduction.
friend class Sema;
/// Whether this template type parameter was declaration with
/// the 'typename' keyword.
///
/// If false, it was declared with the 'class' keyword.
bool Typename : 1;
/// The default template argument, if any.
using DefArgStorage =
DefaultArgStorage<TemplateTypeParmDecl, TypeSourceInfo *>;
DefArgStorage DefaultArgument;
TemplateTypeParmDecl(DeclContext *DC, SourceLocation KeyLoc,
SourceLocation IdLoc, IdentifierInfo *Id,
bool Typename)
: TypeDecl(TemplateTypeParm, DC, IdLoc, Id, KeyLoc), Typename(Typename) {}
public:
static TemplateTypeParmDecl *Create(const ASTContext &C, DeclContext *DC,
SourceLocation KeyLoc,
SourceLocation NameLoc,
unsigned D, unsigned P,
IdentifierInfo *Id, bool Typename,
bool ParameterPack);
static TemplateTypeParmDecl *CreateDeserialized(const ASTContext &C,
unsigned ID);
/// Whether this template type parameter was declared with
/// the 'typename' keyword.
///
/// If not, it was declared with the 'class' keyword.
bool wasDeclaredWithTypename() const { return Typename; }
const DefArgStorage &getDefaultArgStorage() const { return DefaultArgument; }
/// Determine whether this template parameter has a default
/// argument.
bool hasDefaultArgument() const { return DefaultArgument.isSet(); }
/// Retrieve the default argument, if any.
QualType getDefaultArgument() const {
return DefaultArgument.get()->getType();
}
/// Retrieves the default argument's source information, if any.
TypeSourceInfo *getDefaultArgumentInfo() const {
return DefaultArgument.get();
}
/// Retrieves the location of the default argument declaration.
SourceLocation getDefaultArgumentLoc() const;
/// Determines whether the default argument was inherited
/// from a previous declaration of this template.
bool defaultArgumentWasInherited() const {
return DefaultArgument.isInherited();
}
/// Set the default argument for this template parameter.
void setDefaultArgument(TypeSourceInfo *DefArg) {
DefaultArgument.set(DefArg);
}
/// Set that this default argument was inherited from another
/// parameter.
void setInheritedDefaultArgument(const ASTContext &C,
TemplateTypeParmDecl *Prev) {
DefaultArgument.setInherited(C, Prev);
}
/// Removes the default argument of this template parameter.
void removeDefaultArgument() {
DefaultArgument.clear();
}
/// Set whether this template type parameter was declared with
/// the 'typename' or 'class' keyword.
void setDeclaredWithTypename(bool withTypename) { Typename = withTypename; }
/// Retrieve the depth of the template parameter.
unsigned getDepth() const;
/// Retrieve the index of the template parameter.
unsigned getIndex() const;
/// Returns whether this is a parameter pack.
bool isParameterPack() const;
SourceRange getSourceRange() const override LLVM_READONLY;
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == TemplateTypeParm; }
};
/// NonTypeTemplateParmDecl - Declares a non-type template parameter,
/// e.g., "Size" in
/// @code
/// template<int Size> class array { };
/// @endcode
class NonTypeTemplateParmDecl final
: public DeclaratorDecl,
protected TemplateParmPosition,
private llvm::TrailingObjects<NonTypeTemplateParmDecl,
std::pair<QualType, TypeSourceInfo *>> {
friend class ASTDeclReader;
friend TrailingObjects;
/// The default template argument, if any, and whether or not
/// it was inherited.
using DefArgStorage = DefaultArgStorage<NonTypeTemplateParmDecl, Expr *>;
DefArgStorage DefaultArgument;
// FIXME: Collapse this into TemplateParamPosition; or, just move depth/index
// down here to save memory.
/// Whether this non-type template parameter is a parameter pack.
bool ParameterPack;
/// Whether this non-type template parameter is an "expanded"
/// parameter pack, meaning that its type is a pack expansion and we
/// already know the set of types that expansion expands to.
bool ExpandedParameterPack = false;
/// The number of types in an expanded parameter pack.
unsigned NumExpandedTypes = 0;
size_t numTrailingObjects(
OverloadToken<std::pair<QualType, TypeSourceInfo *>>) const {
return NumExpandedTypes;
}
NonTypeTemplateParmDecl(DeclContext *DC, SourceLocation StartLoc,
SourceLocation IdLoc, unsigned D, unsigned P,
IdentifierInfo *Id, QualType T,
bool ParameterPack, TypeSourceInfo *TInfo)
: DeclaratorDecl(NonTypeTemplateParm, DC, IdLoc, Id, T, TInfo, StartLoc),
TemplateParmPosition(D, P), ParameterPack(ParameterPack) {}
NonTypeTemplateParmDecl(DeclContext *DC, SourceLocation StartLoc,
SourceLocation IdLoc, unsigned D, unsigned P,
IdentifierInfo *Id, QualType T,
TypeSourceInfo *TInfo,
ArrayRef<QualType> ExpandedTypes,
ArrayRef<TypeSourceInfo *> ExpandedTInfos);
public:
static NonTypeTemplateParmDecl *
Create(const ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
SourceLocation IdLoc, unsigned D, unsigned P, IdentifierInfo *Id,
QualType T, bool ParameterPack, TypeSourceInfo *TInfo);
static NonTypeTemplateParmDecl *
Create(const ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
SourceLocation IdLoc, unsigned D, unsigned P, IdentifierInfo *Id,
QualType T, TypeSourceInfo *TInfo, ArrayRef<QualType> ExpandedTypes,
ArrayRef<TypeSourceInfo *> ExpandedTInfos);
static NonTypeTemplateParmDecl *CreateDeserialized(ASTContext &C,
unsigned ID);
static NonTypeTemplateParmDecl *CreateDeserialized(ASTContext &C,
unsigned ID,
unsigned NumExpandedTypes);
using TemplateParmPosition::getDepth;
using TemplateParmPosition::setDepth;
using TemplateParmPosition::getPosition;
using TemplateParmPosition::setPosition;
using TemplateParmPosition::getIndex;
SourceRange getSourceRange() const override LLVM_READONLY;
const DefArgStorage &getDefaultArgStorage() const { return DefaultArgument; }
/// Determine whether this template parameter has a default
/// argument.
bool hasDefaultArgument() const { return DefaultArgument.isSet(); }
/// Retrieve the default argument, if any.
Expr *getDefaultArgument() const { return DefaultArgument.get(); }
/// Retrieve the location of the default argument, if any.
SourceLocation getDefaultArgumentLoc() const;
/// Determines whether the default argument was inherited
/// from a previous declaration of this template.
bool defaultArgumentWasInherited() const {
return DefaultArgument.isInherited();
}
/// Set the default argument for this template parameter, and
/// whether that default argument was inherited from another
/// declaration.
void setDefaultArgument(Expr *DefArg) { DefaultArgument.set(DefArg); }
void setInheritedDefaultArgument(const ASTContext &C,
NonTypeTemplateParmDecl *Parm) {
DefaultArgument.setInherited(C, Parm);
}
/// Removes the default argument of this template parameter.
void removeDefaultArgument() { DefaultArgument.clear(); }
/// Whether this parameter is a non-type template parameter pack.
///
/// If the parameter is a parameter pack, the type may be a
/// \c PackExpansionType. In the following example, the \c Dims parameter
/// is a parameter pack (whose type is 'unsigned').
///
/// \code
/// template<typename T, unsigned ...Dims> struct multi_array;
/// \endcode
bool isParameterPack() const { return ParameterPack; }
/// Whether this parameter pack is a pack expansion.
///
/// A non-type template parameter pack is a pack expansion if its type
/// contains an unexpanded parameter pack. In this case, we will have
/// built a PackExpansionType wrapping the type.
bool isPackExpansion() const {
return ParameterPack && getType()->getAs<PackExpansionType>();
}
/// Whether this parameter is a non-type template parameter pack
/// that has a known list of different types at different positions.
///
/// A parameter pack is an expanded parameter pack when the original
/// parameter pack's type was itself a pack expansion, and that expansion
/// has already been expanded. For example, given:
///
/// \code
/// template<typename ...Types>
/// struct X {
/// template<Types ...Values>
/// struct Y { /* ... */ };
/// };
/// \endcode
///
/// The parameter pack \c Values has a \c PackExpansionType as its type,
/// which expands \c Types. When \c Types is supplied with template arguments
/// by instantiating \c X, the instantiation of \c Values becomes an
/// expanded parameter pack. For example, instantiating
/// \c X<int, unsigned int> results in \c Values being an expanded parameter
/// pack with expansion types \c int and \c unsigned int.
///
/// The \c getExpansionType() and \c getExpansionTypeSourceInfo() functions
/// return the expansion types.
bool isExpandedParameterPack() const { return ExpandedParameterPack; }
/// Retrieves the number of expansion types in an expanded parameter
/// pack.
unsigned getNumExpansionTypes() const {
assert(ExpandedParameterPack && "Not an expansion parameter pack");
return NumExpandedTypes;
}
/// Retrieve a particular expansion type within an expanded parameter
/// pack.
QualType getExpansionType(unsigned I) const {
assert(I < NumExpandedTypes && "Out-of-range expansion type index");
auto TypesAndInfos =
getTrailingObjects<std::pair<QualType, TypeSourceInfo *>>();
return TypesAndInfos[I].first;
}
/// Retrieve a particular expansion type source info within an
/// expanded parameter pack.
TypeSourceInfo *getExpansionTypeSourceInfo(unsigned I) const {
assert(I < NumExpandedTypes && "Out-of-range expansion type index");
auto TypesAndInfos =
getTrailingObjects<std::pair<QualType, TypeSourceInfo *>>();
return TypesAndInfos[I].second;
}
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == NonTypeTemplateParm; }
};
/// TemplateTemplateParmDecl - Declares a template template parameter,
/// e.g., "T" in
/// @code
/// template <template <typename> class T> class container { };
/// @endcode
/// A template template parameter is a TemplateDecl because it defines the
/// name of a template and the template parameters allowable for substitution.
class TemplateTemplateParmDecl final
: public TemplateDecl,
protected TemplateParmPosition,
private llvm::TrailingObjects<TemplateTemplateParmDecl,
TemplateParameterList *> {
/// The default template argument, if any.
using DefArgStorage =
DefaultArgStorage<TemplateTemplateParmDecl, TemplateArgumentLoc *>;
DefArgStorage DefaultArgument;
/// Whether this parameter is a parameter pack.
bool ParameterPack;
/// Whether this template template parameter is an "expanded"
/// parameter pack, meaning that it is a pack expansion and we
/// already know the set of template parameters that expansion expands to.
bool ExpandedParameterPack = false;
/// The number of parameters in an expanded parameter pack.
unsigned NumExpandedParams = 0;
TemplateTemplateParmDecl(DeclContext *DC, SourceLocation L,
unsigned D, unsigned P, bool ParameterPack,
IdentifierInfo *Id, TemplateParameterList *Params)
: TemplateDecl(TemplateTemplateParm, DC, L, Id, Params),
TemplateParmPosition(D, P), ParameterPack(ParameterPack) {}
TemplateTemplateParmDecl(DeclContext *DC, SourceLocation L,
unsigned D, unsigned P,
IdentifierInfo *Id, TemplateParameterList *Params,
ArrayRef<TemplateParameterList *> Expansions);
void anchor() override;
public:
friend class ASTDeclReader;
friend class ASTDeclWriter;
friend TrailingObjects;
static TemplateTemplateParmDecl *Create(const ASTContext &C, DeclContext *DC,
SourceLocation L, unsigned D,
unsigned P, bool ParameterPack,
IdentifierInfo *Id,
TemplateParameterList *Params);
static TemplateTemplateParmDecl *Create(const ASTContext &C, DeclContext *DC,
SourceLocation L, unsigned D,
unsigned P,
IdentifierInfo *Id,
TemplateParameterList *Params,
ArrayRef<TemplateParameterList *> Expansions);
static TemplateTemplateParmDecl *CreateDeserialized(ASTContext &C,
unsigned ID);
static TemplateTemplateParmDecl *CreateDeserialized(ASTContext &C,
unsigned ID,
unsigned NumExpansions);
using TemplateParmPosition::getDepth;
using TemplateParmPosition::setDepth;
using TemplateParmPosition::getPosition;
using TemplateParmPosition::setPosition;
using TemplateParmPosition::getIndex;
/// Whether this template template parameter is a template
/// parameter pack.
///
/// \code
/// template<template <class T> ...MetaFunctions> struct Apply;
/// \endcode
bool isParameterPack() const { return ParameterPack; }
/// Whether this parameter pack is a pack expansion.
///
/// A template template parameter pack is a pack expansion if its template
/// parameter list contains an unexpanded parameter pack.
bool isPackExpansion() const {
return ParameterPack &&
getTemplateParameters()->containsUnexpandedParameterPack();
}
/// Whether this parameter is a template template parameter pack that
/// has a known list of different template parameter lists at different
/// positions.
///
/// A parameter pack is an expanded parameter pack when the original parameter
/// pack's template parameter list was itself a pack expansion, and that
/// expansion has already been expanded. For exampe, given:
///
/// \code
/// template<typename...Types> struct Outer {
/// template<template<Types> class...Templates> struct Inner;
/// };
/// \endcode
///
/// The parameter pack \c Templates is a pack expansion, which expands the
/// pack \c Types. When \c Types is supplied with template arguments by
/// instantiating \c Outer, the instantiation of \c Templates is an expanded
/// parameter pack.
bool isExpandedParameterPack() const { return ExpandedParameterPack; }
/// Retrieves the number of expansion template parameters in
/// an expanded parameter pack.
unsigned getNumExpansionTemplateParameters() const {
assert(ExpandedParameterPack && "Not an expansion parameter pack");
return NumExpandedParams;
}
/// Retrieve a particular expansion type within an expanded parameter
/// pack.
TemplateParameterList *getExpansionTemplateParameters(unsigned I) const {
assert(I < NumExpandedParams && "Out-of-range expansion type index");
return getTrailingObjects<TemplateParameterList *>()[I];
}
const DefArgStorage &getDefaultArgStorage() const { return DefaultArgument; }
/// Determine whether this template parameter has a default
/// argument.
bool hasDefaultArgument() const { return DefaultArgument.isSet(); }
/// Retrieve the default argument, if any.
const TemplateArgumentLoc &getDefaultArgument() const {
static const TemplateArgumentLoc None;
return DefaultArgument.isSet() ? *DefaultArgument.get() : None;
}
/// Retrieve the location of the default argument, if any.
SourceLocation getDefaultArgumentLoc() const;
/// Determines whether the default argument was inherited
/// from a previous declaration of this template.
bool defaultArgumentWasInherited() const {
return DefaultArgument.isInherited();
}
/// Set the default argument for this template parameter, and
/// whether that default argument was inherited from another
/// declaration.
void setDefaultArgument(const ASTContext &C,
const TemplateArgumentLoc &DefArg);
void setInheritedDefaultArgument(const ASTContext &C,
TemplateTemplateParmDecl *Prev) {
DefaultArgument.setInherited(C, Prev);
}
/// Removes the default argument of this template parameter.
void removeDefaultArgument() { DefaultArgument.clear(); }
SourceRange getSourceRange() const override LLVM_READONLY {
SourceLocation End = getLocation();
if (hasDefaultArgument() && !defaultArgumentWasInherited())
End = getDefaultArgument().getSourceRange().getEnd();
return SourceRange(getTemplateParameters()->getTemplateLoc(), End);
}
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == TemplateTemplateParm; }
};
/// Represents the builtin template declaration which is used to
/// implement __make_integer_seq and other builtin templates. It serves
/// no real purpose beyond existing as a place to hold template parameters.
class BuiltinTemplateDecl : public TemplateDecl {
BuiltinTemplateKind BTK;
BuiltinTemplateDecl(const ASTContext &C, DeclContext *DC,
DeclarationName Name, BuiltinTemplateKind BTK);
void anchor() override;
public:
// Implement isa/cast/dyncast support
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == BuiltinTemplate; }
static BuiltinTemplateDecl *Create(const ASTContext &C, DeclContext *DC,
DeclarationName Name,
BuiltinTemplateKind BTK) {
return new (C, DC) BuiltinTemplateDecl(C, DC, Name, BTK);
}
SourceRange getSourceRange() const override LLVM_READONLY {
return {};
}
BuiltinTemplateKind getBuiltinTemplateKind() const { return BTK; }
};
/// Represents a class template specialization, which refers to
/// a class template with a given set of template arguments.
///
/// Class template specializations represent both explicit
/// specialization of class templates, as in the example below, and
/// implicit instantiations of class templates.
///
/// \code
/// template<typename T> class array;
///
/// template<>
/// class array<bool> { }; // class template specialization array<bool>
/// \endcode
class ClassTemplateSpecializationDecl
: public CXXRecordDecl, public llvm::FoldingSetNode {
/// Structure that stores information about a class template
/// specialization that was instantiated from a class template partial
/// specialization.
struct SpecializedPartialSpecialization {
/// The class template partial specialization from which this
/// class template specialization was instantiated.
ClassTemplatePartialSpecializationDecl *PartialSpecialization;
/// The template argument list deduced for the class template
/// partial specialization itself.
const TemplateArgumentList *TemplateArgs;
};
/// The template that this specialization specializes
llvm::PointerUnion<ClassTemplateDecl *, SpecializedPartialSpecialization *>
SpecializedTemplate;
/// Further info for explicit template specialization/instantiation.
struct ExplicitSpecializationInfo {
/// The type-as-written.
TypeSourceInfo *TypeAsWritten = nullptr;
/// The location of the extern keyword.
SourceLocation ExternLoc;
/// The location of the template keyword.
SourceLocation TemplateKeywordLoc;
ExplicitSpecializationInfo() = default;
};
/// Further info for explicit template specialization/instantiation.
/// Does not apply to implicit specializations.
ExplicitSpecializationInfo *ExplicitInfo = nullptr;
/// The template arguments used to describe this specialization.
const TemplateArgumentList *TemplateArgs;
/// The point where this template was instantiated (if any)
SourceLocation PointOfInstantiation;
/// The kind of specialization this declaration refers to.
/// Really a value of type TemplateSpecializationKind.
unsigned SpecializationKind : 3;
protected:
ClassTemplateSpecializationDecl(ASTContext &Context, Kind DK, TagKind TK,
DeclContext *DC, SourceLocation StartLoc,
SourceLocation IdLoc,
ClassTemplateDecl *SpecializedTemplate,
ArrayRef<TemplateArgument> Args,
ClassTemplateSpecializationDecl *PrevDecl);
explicit ClassTemplateSpecializationDecl(ASTContext &C, Kind DK);
public:
friend class ASTDeclReader;
friend class ASTDeclWriter;
static ClassTemplateSpecializationDecl *
Create(ASTContext &Context, TagKind TK, DeclContext *DC,
SourceLocation StartLoc, SourceLocation IdLoc,
ClassTemplateDecl *SpecializedTemplate,
ArrayRef<TemplateArgument> Args,
ClassTemplateSpecializationDecl *PrevDecl);
static ClassTemplateSpecializationDecl *
CreateDeserialized(ASTContext &C, unsigned ID);
void getNameForDiagnostic(raw_ostream &OS, const PrintingPolicy &Policy,
bool Qualified) const override;
// FIXME: This is broken. CXXRecordDecl::getMostRecentDecl() returns a
// different "most recent" declaration from this function for the same
// declaration, because we don't override getMostRecentDeclImpl(). But
// it's not clear that we should override that, because the most recent
// declaration as a CXXRecordDecl sometimes is the injected-class-name.
ClassTemplateSpecializationDecl *getMostRecentDecl() {
return cast<ClassTemplateSpecializationDecl>(
getMostRecentNonInjectedDecl());
}
/// Retrieve the template that this specialization specializes.
ClassTemplateDecl *getSpecializedTemplate() const;
/// Retrieve the template arguments of the class template
/// specialization.
const TemplateArgumentList &getTemplateArgs() const {
return *TemplateArgs;
}
/// Determine the kind of specialization that this
/// declaration represents.
TemplateSpecializationKind getSpecializationKind() const {
return static_cast<TemplateSpecializationKind>(SpecializationKind);
}
bool isExplicitSpecialization() const {
return getSpecializationKind() == TSK_ExplicitSpecialization;
}
/// Is this an explicit specialization at class scope (within the class that
/// owns the primary template)? For example:
///
/// \code
/// template<typename T> struct Outer {
/// template<typename U> struct Inner;
/// template<> struct Inner; // class-scope explicit specialization
/// };
/// \endcode
bool isClassScopeExplicitSpecialization() const {
return isExplicitSpecialization() &&
isa<CXXRecordDecl>(getLexicalDeclContext());
}
/// True if this declaration is an explicit specialization,
/// explicit instantiation declaration, or explicit instantiation
/// definition.
bool isExplicitInstantiationOrSpecialization() const {
return isTemplateExplicitInstantiationOrSpecialization(
getTemplateSpecializationKind());
}
void setSpecializationKind(TemplateSpecializationKind TSK) {
SpecializationKind = TSK;
}
/// Get the point of instantiation (if any), or null if none.
SourceLocation getPointOfInstantiation() const {
return PointOfInstantiation;
}
void setPointOfInstantiation(SourceLocation Loc) {
assert(Loc.isValid() && "point of instantiation must be valid!");
PointOfInstantiation = Loc;
}
/// If this class template specialization is an instantiation of
/// a template (rather than an explicit specialization), return the
/// class template or class template partial specialization from which it
/// was instantiated.
llvm::PointerUnion<ClassTemplateDecl *,
ClassTemplatePartialSpecializationDecl *>
getInstantiatedFrom() const {
if (!isTemplateInstantiation(getSpecializationKind()))
return llvm::PointerUnion<ClassTemplateDecl *,
ClassTemplatePartialSpecializationDecl *>();
return getSpecializedTemplateOrPartial();
}
/// Retrieve the class template or class template partial
/// specialization which was specialized by this.
llvm::PointerUnion<ClassTemplateDecl *,
ClassTemplatePartialSpecializationDecl *>
getSpecializedTemplateOrPartial() const {
if (const auto *PartialSpec =
SpecializedTemplate.dyn_cast<SpecializedPartialSpecialization *>())
return PartialSpec->PartialSpecialization;
return SpecializedTemplate.get<ClassTemplateDecl*>();
}
/// Retrieve the set of template arguments that should be used
/// to instantiate members of the class template or class template partial
/// specialization from which this class template specialization was
/// instantiated.
///
/// \returns For a class template specialization instantiated from the primary
/// template, this function will return the same template arguments as
/// getTemplateArgs(). For a class template specialization instantiated from
/// a class template partial specialization, this function will return the
/// deduced template arguments for the class template partial specialization
/// itself.
const TemplateArgumentList &getTemplateInstantiationArgs() const {
if (const auto *PartialSpec =
SpecializedTemplate.dyn_cast<SpecializedPartialSpecialization *>())
return *PartialSpec->TemplateArgs;
return getTemplateArgs();
}
/// Note that this class template specialization is actually an
/// instantiation of the given class template partial specialization whose
/// template arguments have been deduced.
void setInstantiationOf(ClassTemplatePartialSpecializationDecl *PartialSpec,
const TemplateArgumentList *TemplateArgs) {
assert(!SpecializedTemplate.is<SpecializedPartialSpecialization*>() &&
"Already set to a class template partial specialization!");
auto *PS = new (getASTContext()) SpecializedPartialSpecialization();
PS->PartialSpecialization = PartialSpec;
PS->TemplateArgs = TemplateArgs;
SpecializedTemplate = PS;
}
/// Note that this class template specialization is an instantiation
/// of the given class template.
void setInstantiationOf(ClassTemplateDecl *TemplDecl) {
assert(!SpecializedTemplate.is<SpecializedPartialSpecialization*>() &&
"Previously set to a class template partial specialization!");
SpecializedTemplate = TemplDecl;
}
/// Sets the type of this specialization as it was written by
/// the user. This will be a class template specialization type.
void setTypeAsWritten(TypeSourceInfo *T) {
if (!ExplicitInfo)
ExplicitInfo = new (getASTContext()) ExplicitSpecializationInfo;
ExplicitInfo->TypeAsWritten = T;
}
/// Gets the type of this specialization as it was written by
/// the user, if it was so written.
TypeSourceInfo *getTypeAsWritten() const {
return ExplicitInfo ? ExplicitInfo->TypeAsWritten : nullptr;
}
/// Gets the location of the extern keyword, if present.
SourceLocation getExternLoc() const {
return ExplicitInfo ? ExplicitInfo->ExternLoc : SourceLocation();
}
/// Sets the location of the extern keyword.
void setExternLoc(SourceLocation Loc) {
if (!ExplicitInfo)
ExplicitInfo = new (getASTContext()) ExplicitSpecializationInfo;
ExplicitInfo->ExternLoc = Loc;
}
/// Sets the location of the template keyword.
void setTemplateKeywordLoc(SourceLocation Loc) {
if (!ExplicitInfo)
ExplicitInfo = new (getASTContext()) ExplicitSpecializationInfo;
ExplicitInfo->TemplateKeywordLoc = Loc;
}
/// Gets the location of the template keyword, if present.
SourceLocation getTemplateKeywordLoc() const {
return ExplicitInfo ? ExplicitInfo->TemplateKeywordLoc : SourceLocation();
}
SourceRange getSourceRange() const override LLVM_READONLY;
void Profile(llvm::FoldingSetNodeID &ID) const {
Profile(ID, TemplateArgs->asArray(), getASTContext());
}
static void
Profile(llvm::FoldingSetNodeID &ID, ArrayRef<TemplateArgument> TemplateArgs,
ASTContext &Context) {
ID.AddInteger(TemplateArgs.size());
for (const TemplateArgument &TemplateArg : TemplateArgs)
TemplateArg.Profile(ID, Context);
}
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) {
return K >= firstClassTemplateSpecialization &&
K <= lastClassTemplateSpecialization;
}
};
class ClassTemplatePartialSpecializationDecl
: public ClassTemplateSpecializationDecl {
/// The list of template parameters
TemplateParameterList* TemplateParams = nullptr;
/// The source info for the template arguments as written.
/// FIXME: redundant with TypeAsWritten?
const ASTTemplateArgumentListInfo *ArgsAsWritten = nullptr;
/// The class template partial specialization from which this
/// class template partial specialization was instantiated.
///
/// The boolean value will be true to indicate that this class template
/// partial specialization was specialized at this level.
llvm::PointerIntPair<ClassTemplatePartialSpecializationDecl *, 1, bool>
InstantiatedFromMember;
ClassTemplatePartialSpecializationDecl(ASTContext &Context, TagKind TK,
DeclContext *DC,
SourceLocation StartLoc,
SourceLocation IdLoc,
TemplateParameterList *Params,
ClassTemplateDecl *SpecializedTemplate,
ArrayRef<TemplateArgument> Args,
const ASTTemplateArgumentListInfo *ArgsAsWritten,
ClassTemplatePartialSpecializationDecl *PrevDecl);
ClassTemplatePartialSpecializationDecl(ASTContext &C)
: ClassTemplateSpecializationDecl(C, ClassTemplatePartialSpecialization),
InstantiatedFromMember(nullptr, false) {}
void anchor() override;
public:
friend class ASTDeclReader;
friend class ASTDeclWriter;
static ClassTemplatePartialSpecializationDecl *
Create(ASTContext &Context, TagKind TK, DeclContext *DC,
SourceLocation StartLoc, SourceLocation IdLoc,
TemplateParameterList *Params,
ClassTemplateDecl *SpecializedTemplate,
ArrayRef<TemplateArgument> Args,
const TemplateArgumentListInfo &ArgInfos,
QualType CanonInjectedType,
ClassTemplatePartialSpecializationDecl *PrevDecl);
static ClassTemplatePartialSpecializationDecl *
CreateDeserialized(ASTContext &C, unsigned ID);
ClassTemplatePartialSpecializationDecl *getMostRecentDecl() {
return cast<ClassTemplatePartialSpecializationDecl>(
static_cast<ClassTemplateSpecializationDecl *>(
this)->getMostRecentDecl());
}
/// Get the list of template parameters
TemplateParameterList *getTemplateParameters() const {
return TemplateParams;
}
/// Get the template arguments as written.
const ASTTemplateArgumentListInfo *getTemplateArgsAsWritten() const {
return ArgsAsWritten;
}
/// Retrieve the member class template partial specialization from
/// which this particular class template partial specialization was
/// instantiated.
///
/// \code
/// template<typename T>
/// struct Outer {
/// template<typename U> struct Inner;
/// template<typename U> struct Inner<U*> { }; // #1
/// };
///
/// Outer<float>::Inner<int*> ii;
/// \endcode
///
/// In this example, the instantiation of \c Outer<float>::Inner<int*> will
/// end up instantiating the partial specialization
/// \c Outer<float>::Inner<U*>, which itself was instantiated from the class
/// template partial specialization \c Outer<T>::Inner<U*>. Given
/// \c Outer<float>::Inner<U*>, this function would return
/// \c Outer<T>::Inner<U*>.
ClassTemplatePartialSpecializationDecl *getInstantiatedFromMember() const {
const auto *First =
cast<ClassTemplatePartialSpecializationDecl>(getFirstDecl());
return First->InstantiatedFromMember.getPointer();
}
ClassTemplatePartialSpecializationDecl *
getInstantiatedFromMemberTemplate() const {
return getInstantiatedFromMember();
}
void setInstantiatedFromMember(
ClassTemplatePartialSpecializationDecl *PartialSpec) {
auto *First = cast<ClassTemplatePartialSpecializationDecl>(getFirstDecl());
First->InstantiatedFromMember.setPointer(PartialSpec);
}
/// Determines whether this class template partial specialization
/// template was a specialization of a member partial specialization.
///
/// In the following example, the member template partial specialization
/// \c X<int>::Inner<T*> is a member specialization.
///
/// \code
/// template<typename T>
/// struct X {
/// template<typename U> struct Inner;
/// template<typename U> struct Inner<U*>;
/// };
///
/// template<> template<typename T>
/// struct X<int>::Inner<T*> { /* ... */ };
/// \endcode
bool isMemberSpecialization() {
const auto *First =
cast<ClassTemplatePartialSpecializationDecl>(getFirstDecl());
return First->InstantiatedFromMember.getInt();
}
/// Note that this member template is a specialization.
void setMemberSpecialization() {
auto *First = cast<ClassTemplatePartialSpecializationDecl>(getFirstDecl());
assert(First->InstantiatedFromMember.getPointer() &&
"Only member templates can be member template specializations");
return First->InstantiatedFromMember.setInt(true);
}
/// Retrieves the injected specialization type for this partial
/// specialization. This is not the same as the type-decl-type for
/// this partial specialization, which is an InjectedClassNameType.
QualType getInjectedSpecializationType() const {
assert(getTypeForDecl() && "partial specialization has no type set!");
return cast<InjectedClassNameType>(getTypeForDecl())
->getInjectedSpecializationType();
}
// FIXME: Add Profile support!
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) {
return K == ClassTemplatePartialSpecialization;
}
};
/// Declaration of a class template.
class ClassTemplateDecl : public RedeclarableTemplateDecl {
protected:
/// Data that is common to all of the declarations of a given
/// class template.
struct Common : CommonBase {
/// The class template specializations for this class
/// template, including explicit specializations and instantiations.
llvm::FoldingSetVector<ClassTemplateSpecializationDecl> Specializations;
/// The class template partial specializations for this class
/// template.
llvm::FoldingSetVector<ClassTemplatePartialSpecializationDecl>
PartialSpecializations;
/// The injected-class-name type for this class template.
QualType InjectedClassNameType;
Common() = default;
};
/// Retrieve the set of specializations of this class template.
llvm::FoldingSetVector<ClassTemplateSpecializationDecl> &
getSpecializations() const;
/// Retrieve the set of partial specializations of this class
/// template.
llvm::FoldingSetVector<ClassTemplatePartialSpecializationDecl> &
getPartialSpecializations();
ClassTemplateDecl(ConstrainedTemplateDeclInfo *CTDI, ASTContext &C,
DeclContext *DC, SourceLocation L, DeclarationName Name,
TemplateParameterList *Params, NamedDecl *Decl)
: RedeclarableTemplateDecl(CTDI, ClassTemplate, C, DC, L, Name, Params,
Decl) {}
ClassTemplateDecl(ASTContext &C, DeclContext *DC, SourceLocation L,
DeclarationName Name, TemplateParameterList *Params,
NamedDecl *Decl)
: ClassTemplateDecl(nullptr, C, DC, L, Name, Params, Decl) {}
CommonBase *newCommon(ASTContext &C) const override;
Common *getCommonPtr() const {
return static_cast<Common *>(RedeclarableTemplateDecl::getCommonPtr());
}
public:
friend class ASTDeclReader;
friend class ASTDeclWriter;
/// Load any lazily-loaded specializations from the external source.
void LoadLazySpecializations() const;
/// Get the underlying class declarations of the template.
CXXRecordDecl *getTemplatedDecl() const {
return static_cast<CXXRecordDecl *>(TemplatedDecl);
}
/// Returns whether this template declaration defines the primary
/// class pattern.
bool isThisDeclarationADefinition() const {
return getTemplatedDecl()->isThisDeclarationADefinition();
}
// FIXME: remove default argument for AssociatedConstraints
/// Create a class template node.
static ClassTemplateDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation L,
DeclarationName Name,
TemplateParameterList *Params,
NamedDecl *Decl,
Expr *AssociatedConstraints = nullptr);
/// Create an empty class template node.
static ClassTemplateDecl *CreateDeserialized(ASTContext &C, unsigned ID);
/// Return the specialization with the provided arguments if it exists,
/// otherwise return the insertion point.
ClassTemplateSpecializationDecl *
findSpecialization(ArrayRef<TemplateArgument> Args, void *&InsertPos);
/// Insert the specified specialization knowing that it is not already
/// in. InsertPos must be obtained from findSpecialization.
void AddSpecialization(ClassTemplateSpecializationDecl *D, void *InsertPos);
ClassTemplateDecl *getCanonicalDecl() override {
return cast<ClassTemplateDecl>(
RedeclarableTemplateDecl::getCanonicalDecl());
}
const ClassTemplateDecl *getCanonicalDecl() const {
return cast<ClassTemplateDecl>(
RedeclarableTemplateDecl::getCanonicalDecl());
}
/// Retrieve the previous declaration of this class template, or
/// nullptr if no such declaration exists.
ClassTemplateDecl *getPreviousDecl() {
return cast_or_null<ClassTemplateDecl>(
static_cast<RedeclarableTemplateDecl *>(this)->getPreviousDecl());
}
const ClassTemplateDecl *getPreviousDecl() const {
return cast_or_null<ClassTemplateDecl>(
static_cast<const RedeclarableTemplateDecl *>(
this)->getPreviousDecl());
}
ClassTemplateDecl *getMostRecentDecl() {
return cast<ClassTemplateDecl>(
static_cast<RedeclarableTemplateDecl *>(this)->getMostRecentDecl());
}
const ClassTemplateDecl *getMostRecentDecl() const {
return const_cast<ClassTemplateDecl*>(this)->getMostRecentDecl();
}
ClassTemplateDecl *getInstantiatedFromMemberTemplate() const {
return cast_or_null<ClassTemplateDecl>(
RedeclarableTemplateDecl::getInstantiatedFromMemberTemplate());
}
/// Return the partial specialization with the provided arguments if it
/// exists, otherwise return the insertion point.
ClassTemplatePartialSpecializationDecl *
findPartialSpecialization(ArrayRef<TemplateArgument> Args, void *&InsertPos);
/// Insert the specified partial specialization knowing that it is not
/// already in. InsertPos must be obtained from findPartialSpecialization.
void AddPartialSpecialization(ClassTemplatePartialSpecializationDecl *D,
void *InsertPos);
/// Retrieve the partial specializations as an ordered list.
void getPartialSpecializations(
SmallVectorImpl<ClassTemplatePartialSpecializationDecl *> &PS);
/// Find a class template partial specialization with the given
/// type T.
///
/// \param T a dependent type that names a specialization of this class
/// template.
///
/// \returns the class template partial specialization that exactly matches
/// the type \p T, or nullptr if no such partial specialization exists.
ClassTemplatePartialSpecializationDecl *findPartialSpecialization(QualType T);
/// Find a class template partial specialization which was instantiated
/// from the given member partial specialization.
///
/// \param D a member class template partial specialization.
///
/// \returns the class template partial specialization which was instantiated
/// from the given member partial specialization, or nullptr if no such
/// partial specialization exists.
ClassTemplatePartialSpecializationDecl *
findPartialSpecInstantiatedFromMember(
ClassTemplatePartialSpecializationDecl *D);
/// Retrieve the template specialization type of the
/// injected-class-name for this class template.
///
/// The injected-class-name for a class template \c X is \c
/// X<template-args>, where \c template-args is formed from the
/// template arguments that correspond to the template parameters of
/// \c X. For example:
///
/// \code
/// template<typename T, int N>
/// struct array {
/// typedef array this_type; // "array" is equivalent to "array<T, N>"
/// };
/// \endcode
QualType getInjectedClassNameSpecialization();
using spec_iterator = SpecIterator<ClassTemplateSpecializationDecl>;
using spec_range = llvm::iterator_range<spec_iterator>;
spec_range specializations() const {
return spec_range(spec_begin(), spec_end());
}
spec_iterator spec_begin() const {
return makeSpecIterator(getSpecializations(), false);
}
spec_iterator spec_end() const {
return makeSpecIterator(getSpecializations(), true);
}
// Implement isa/cast/dyncast support
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == ClassTemplate; }
};
/// Declaration of a friend template.
///
/// For example:
/// \code
/// template \<typename T> class A {
/// friend class MyVector<T>; // not a friend template
/// template \<typename U> friend class B; // not a friend template
/// template \<typename U> friend class Foo<T>::Nested; // friend template
/// };
/// \endcode
///
/// \note This class is not currently in use. All of the above
/// will yield a FriendDecl, not a FriendTemplateDecl.
class FriendTemplateDecl : public Decl {
virtual void anchor();
public:
using FriendUnion = llvm::PointerUnion<NamedDecl *,TypeSourceInfo *>;
private:
// The number of template parameters; always non-zero.
unsigned NumParams = 0;
// The parameter list.
TemplateParameterList **Params = nullptr;
// The declaration that's a friend of this class.
FriendUnion Friend;
// Location of the 'friend' specifier.
SourceLocation FriendLoc;
FriendTemplateDecl(DeclContext *DC, SourceLocation Loc,
MutableArrayRef<TemplateParameterList *> Params,
FriendUnion Friend, SourceLocation FriendLoc)
: Decl(Decl::FriendTemplate, DC, Loc), NumParams(Params.size()),
Params(Params.data()), Friend(Friend), FriendLoc(FriendLoc) {}
FriendTemplateDecl(EmptyShell Empty) : Decl(Decl::FriendTemplate, Empty) {}
public:
friend class ASTDeclReader;
static FriendTemplateDecl *
Create(ASTContext &Context, DeclContext *DC, SourceLocation Loc,
MutableArrayRef<TemplateParameterList *> Params, FriendUnion Friend,
SourceLocation FriendLoc);
static FriendTemplateDecl *CreateDeserialized(ASTContext &C, unsigned ID);
/// If this friend declaration names a templated type (or
/// a dependent member type of a templated type), return that
/// type; otherwise return null.
TypeSourceInfo *getFriendType() const {
return Friend.dyn_cast<TypeSourceInfo*>();
}
/// If this friend declaration names a templated function (or
/// a member function of a templated type), return that type;
/// otherwise return null.
NamedDecl *getFriendDecl() const {
return Friend.dyn_cast<NamedDecl*>();
}
/// Retrieves the location of the 'friend' keyword.
SourceLocation getFriendLoc() const {
return FriendLoc;
}
TemplateParameterList *getTemplateParameterList(unsigned i) const {
assert(i <= NumParams);
return Params[i];
}
unsigned getNumTemplateParameters() const {
return NumParams;
}
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == Decl::FriendTemplate; }
};
/// Declaration of an alias template.
///
/// For example:
/// \code
/// template \<typename T> using V = std::map<T*, int, MyCompare<T>>;
/// \endcode
class TypeAliasTemplateDecl : public RedeclarableTemplateDecl {
protected:
using Common = CommonBase;
TypeAliasTemplateDecl(ASTContext &C, DeclContext *DC, SourceLocation L,
DeclarationName Name, TemplateParameterList *Params,
NamedDecl *Decl)
: RedeclarableTemplateDecl(TypeAliasTemplate, C, DC, L, Name, Params,
Decl) {}
CommonBase *newCommon(ASTContext &C) const override;
Common *getCommonPtr() {
return static_cast<Common *>(RedeclarableTemplateDecl::getCommonPtr());
}
public:
friend class ASTDeclReader;
friend class ASTDeclWriter;
/// Get the underlying function declaration of the template.
TypeAliasDecl *getTemplatedDecl() const {
return static_cast<TypeAliasDecl *>(TemplatedDecl);
}
TypeAliasTemplateDecl *getCanonicalDecl() override {
return cast<TypeAliasTemplateDecl>(
RedeclarableTemplateDecl::getCanonicalDecl());
}
const TypeAliasTemplateDecl *getCanonicalDecl() const {
return cast<TypeAliasTemplateDecl>(
RedeclarableTemplateDecl::getCanonicalDecl());
}
/// Retrieve the previous declaration of this function template, or
/// nullptr if no such declaration exists.
TypeAliasTemplateDecl *getPreviousDecl() {
return cast_or_null<TypeAliasTemplateDecl>(
static_cast<RedeclarableTemplateDecl *>(this)->getPreviousDecl());
}
const TypeAliasTemplateDecl *getPreviousDecl() const {
return cast_or_null<TypeAliasTemplateDecl>(
static_cast<const RedeclarableTemplateDecl *>(
this)->getPreviousDecl());
}
TypeAliasTemplateDecl *getInstantiatedFromMemberTemplate() const {
return cast_or_null<TypeAliasTemplateDecl>(
RedeclarableTemplateDecl::getInstantiatedFromMemberTemplate());
}
/// Create a function template node.
static TypeAliasTemplateDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation L,
DeclarationName Name,
TemplateParameterList *Params,
NamedDecl *Decl);
/// Create an empty alias template node.
static TypeAliasTemplateDecl *CreateDeserialized(ASTContext &C, unsigned ID);
// Implement isa/cast/dyncast support
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == TypeAliasTemplate; }
};
/// Declaration of a function specialization at template class scope.
///
/// For example:
/// \code
/// template <class T>
/// class A {
/// template <class U> void foo(U a) { }
/// template<> void foo(int a) { }
/// }
/// \endcode
///
/// "template<> foo(int a)" will be saved in Specialization as a normal
/// CXXMethodDecl. Then during an instantiation of class A, it will be
/// transformed into an actual function specialization.
///
/// FIXME: This is redundant; we could store the same information directly on
/// the CXXMethodDecl as a DependentFunctionTemplateSpecializationInfo.
class ClassScopeFunctionSpecializationDecl : public Decl {
CXXMethodDecl *Specialization;
const ASTTemplateArgumentListInfo *TemplateArgs;
ClassScopeFunctionSpecializationDecl(
DeclContext *DC, SourceLocation Loc, CXXMethodDecl *FD,
const ASTTemplateArgumentListInfo *TemplArgs)
: Decl(Decl::ClassScopeFunctionSpecialization, DC, Loc),
Specialization(FD), TemplateArgs(TemplArgs) {}
ClassScopeFunctionSpecializationDecl(EmptyShell Empty)
: Decl(Decl::ClassScopeFunctionSpecialization, Empty) {}
virtual void anchor();
public:
friend class ASTDeclReader;
friend class ASTDeclWriter;
CXXMethodDecl *getSpecialization() const { return Specialization; }
bool hasExplicitTemplateArgs() const { return TemplateArgs; }
const ASTTemplateArgumentListInfo *getTemplateArgsAsWritten() const {
return TemplateArgs;
}
static ClassScopeFunctionSpecializationDecl *
Create(ASTContext &C, DeclContext *DC, SourceLocation Loc, CXXMethodDecl *FD,
bool HasExplicitTemplateArgs,
const TemplateArgumentListInfo &TemplateArgs) {
return new (C, DC) ClassScopeFunctionSpecializationDecl(
DC, Loc, FD,
HasExplicitTemplateArgs
? ASTTemplateArgumentListInfo::Create(C, TemplateArgs)
: nullptr);
}
static ClassScopeFunctionSpecializationDecl *
CreateDeserialized(ASTContext &Context, unsigned ID);
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) {
return K == Decl::ClassScopeFunctionSpecialization;
}
};
/// Implementation of inline functions that require the template declarations
inline AnyFunctionDecl::AnyFunctionDecl(FunctionTemplateDecl *FTD)
: Function(FTD) {}
/// Represents a variable template specialization, which refers to
/// a variable template with a given set of template arguments.
///
/// Variable template specializations represent both explicit
/// specializations of variable templates, as in the example below, and
/// implicit instantiations of variable templates.
///
/// \code
/// template<typename T> constexpr T pi = T(3.1415926535897932385);
///
/// template<>
/// constexpr float pi<float>; // variable template specialization pi<float>
/// \endcode
class VarTemplateSpecializationDecl : public VarDecl,
public llvm::FoldingSetNode {
/// Structure that stores information about a variable template
/// specialization that was instantiated from a variable template partial
/// specialization.
struct SpecializedPartialSpecialization {
/// The variable template partial specialization from which this
/// variable template specialization was instantiated.
VarTemplatePartialSpecializationDecl *PartialSpecialization;
/// The template argument list deduced for the variable template
/// partial specialization itself.
const TemplateArgumentList *TemplateArgs;
};
/// The template that this specialization specializes.
llvm::PointerUnion<VarTemplateDecl *, SpecializedPartialSpecialization *>
SpecializedTemplate;
/// Further info for explicit template specialization/instantiation.
struct ExplicitSpecializationInfo {
/// The type-as-written.
TypeSourceInfo *TypeAsWritten = nullptr;
/// The location of the extern keyword.
SourceLocation ExternLoc;
/// The location of the template keyword.
SourceLocation TemplateKeywordLoc;
ExplicitSpecializationInfo() = default;
};
/// Further info for explicit template specialization/instantiation.
/// Does not apply to implicit specializations.
ExplicitSpecializationInfo *ExplicitInfo = nullptr;
/// The template arguments used to describe this specialization.
const TemplateArgumentList *TemplateArgs;
TemplateArgumentListInfo TemplateArgsInfo;
/// The point where this template was instantiated (if any).
SourceLocation PointOfInstantiation;
/// The kind of specialization this declaration refers to.
/// Really a value of type TemplateSpecializationKind.
unsigned SpecializationKind : 3;
/// Whether this declaration is a complete definition of the
/// variable template specialization. We can't otherwise tell apart
/// an instantiated declaration from an instantiated definition with
/// no initializer.
unsigned IsCompleteDefinition : 1;
protected:
VarTemplateSpecializationDecl(Kind DK, ASTContext &Context, DeclContext *DC,
SourceLocation StartLoc, SourceLocation IdLoc,
VarTemplateDecl *SpecializedTemplate,
QualType T, TypeSourceInfo *TInfo,
StorageClass S,
ArrayRef<TemplateArgument> Args);
explicit VarTemplateSpecializationDecl(Kind DK, ASTContext &Context);
public:
friend class ASTDeclReader;
friend class ASTDeclWriter;
friend class VarDecl;
static VarTemplateSpecializationDecl *
Create(ASTContext &Context, DeclContext *DC, SourceLocation StartLoc,
SourceLocation IdLoc, VarTemplateDecl *SpecializedTemplate, QualType T,
TypeSourceInfo *TInfo, StorageClass S,
ArrayRef<TemplateArgument> Args);
static VarTemplateSpecializationDecl *CreateDeserialized(ASTContext &C,
unsigned ID);
void getNameForDiagnostic(raw_ostream &OS, const PrintingPolicy &Policy,
bool Qualified) const override;
VarTemplateSpecializationDecl *getMostRecentDecl() {
VarDecl *Recent = static_cast<VarDecl *>(this)->getMostRecentDecl();
return cast<VarTemplateSpecializationDecl>(Recent);
}
/// Retrieve the template that this specialization specializes.
VarTemplateDecl *getSpecializedTemplate() const;
/// Retrieve the template arguments of the variable template
/// specialization.
const TemplateArgumentList &getTemplateArgs() const { return *TemplateArgs; }
// TODO: Always set this when creating the new specialization?
void setTemplateArgsInfo(const TemplateArgumentListInfo &ArgsInfo);
const TemplateArgumentListInfo &getTemplateArgsInfo() const {
return TemplateArgsInfo;
}
/// Determine the kind of specialization that this
/// declaration represents.
TemplateSpecializationKind getSpecializationKind() const {
return static_cast<TemplateSpecializationKind>(SpecializationKind);
}
bool isExplicitSpecialization() const {
return getSpecializationKind() == TSK_ExplicitSpecialization;
}
bool isClassScopeExplicitSpecialization() const {
return isExplicitSpecialization() &&
isa<CXXRecordDecl>(getLexicalDeclContext());
}
/// True if this declaration is an explicit specialization,
/// explicit instantiation declaration, or explicit instantiation
/// definition.
bool isExplicitInstantiationOrSpecialization() const {
return isTemplateExplicitInstantiationOrSpecialization(
getTemplateSpecializationKind());
}
void setSpecializationKind(TemplateSpecializationKind TSK) {
SpecializationKind = TSK;
}
/// Get the point of instantiation (if any), or null if none.
SourceLocation getPointOfInstantiation() const {
return PointOfInstantiation;
}
void setPointOfInstantiation(SourceLocation Loc) {
assert(Loc.isValid() && "point of instantiation must be valid!");
PointOfInstantiation = Loc;
}
void setCompleteDefinition() { IsCompleteDefinition = true; }
/// If this variable template specialization is an instantiation of
/// a template (rather than an explicit specialization), return the
/// variable template or variable template partial specialization from which
/// it was instantiated.
llvm::PointerUnion<VarTemplateDecl *, VarTemplatePartialSpecializationDecl *>
getInstantiatedFrom() const {
if (!isTemplateInstantiation(getSpecializationKind()))
return llvm::PointerUnion<VarTemplateDecl *,
VarTemplatePartialSpecializationDecl *>();
return getSpecializedTemplateOrPartial();
}
/// Retrieve the variable template or variable template partial
/// specialization which was specialized by this.
llvm::PointerUnion<VarTemplateDecl *, VarTemplatePartialSpecializationDecl *>
getSpecializedTemplateOrPartial() const {
if (const auto *PartialSpec =
SpecializedTemplate.dyn_cast<SpecializedPartialSpecialization *>())
return PartialSpec->PartialSpecialization;
return SpecializedTemplate.get<VarTemplateDecl *>();
}
/// Retrieve the set of template arguments that should be used
/// to instantiate the initializer of the variable template or variable
/// template partial specialization from which this variable template
/// specialization was instantiated.
///
/// \returns For a variable template specialization instantiated from the
/// primary template, this function will return the same template arguments
/// as getTemplateArgs(). For a variable template specialization instantiated
/// from a variable template partial specialization, this function will the
/// return deduced template arguments for the variable template partial
/// specialization itself.
const TemplateArgumentList &getTemplateInstantiationArgs() const {
if (const auto *PartialSpec =
SpecializedTemplate.dyn_cast<SpecializedPartialSpecialization *>())
return *PartialSpec->TemplateArgs;
return getTemplateArgs();
}
/// Note that this variable template specialization is actually an
/// instantiation of the given variable template partial specialization whose
/// template arguments have been deduced.
void setInstantiationOf(VarTemplatePartialSpecializationDecl *PartialSpec,
const TemplateArgumentList *TemplateArgs) {
assert(!SpecializedTemplate.is<SpecializedPartialSpecialization *>() &&
"Already set to a variable template partial specialization!");
auto *PS = new (getASTContext()) SpecializedPartialSpecialization();
PS->PartialSpecialization = PartialSpec;
PS->TemplateArgs = TemplateArgs;
SpecializedTemplate = PS;
}
/// Note that this variable template specialization is an instantiation
/// of the given variable template.
void setInstantiationOf(VarTemplateDecl *TemplDecl) {
assert(!SpecializedTemplate.is<SpecializedPartialSpecialization *>() &&
"Previously set to a variable template partial specialization!");
SpecializedTemplate = TemplDecl;
}
/// Sets the type of this specialization as it was written by
/// the user.
void setTypeAsWritten(TypeSourceInfo *T) {
if (!ExplicitInfo)
ExplicitInfo = new (getASTContext()) ExplicitSpecializationInfo;
ExplicitInfo->TypeAsWritten = T;
}
/// Gets the type of this specialization as it was written by
/// the user, if it was so written.
TypeSourceInfo *getTypeAsWritten() const {
return ExplicitInfo ? ExplicitInfo->TypeAsWritten : nullptr;
}
/// Gets the location of the extern keyword, if present.
SourceLocation getExternLoc() const {
return ExplicitInfo ? ExplicitInfo->ExternLoc : SourceLocation();
}
/// Sets the location of the extern keyword.
void setExternLoc(SourceLocation Loc) {
if (!ExplicitInfo)
ExplicitInfo = new (getASTContext()) ExplicitSpecializationInfo;
ExplicitInfo->ExternLoc = Loc;
}
/// Sets the location of the template keyword.
void setTemplateKeywordLoc(SourceLocation Loc) {
if (!ExplicitInfo)
ExplicitInfo = new (getASTContext()) ExplicitSpecializationInfo;
ExplicitInfo->TemplateKeywordLoc = Loc;
}
/// Gets the location of the template keyword, if present.
SourceLocation getTemplateKeywordLoc() const {
return ExplicitInfo ? ExplicitInfo->TemplateKeywordLoc : SourceLocation();
}
void Profile(llvm::FoldingSetNodeID &ID) const {
Profile(ID, TemplateArgs->asArray(), getASTContext());
}
static void Profile(llvm::FoldingSetNodeID &ID,
ArrayRef<TemplateArgument> TemplateArgs,
ASTContext &Context) {
ID.AddInteger(TemplateArgs.size());
for (const TemplateArgument &TemplateArg : TemplateArgs)
TemplateArg.Profile(ID, Context);
}
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) {
return K >= firstVarTemplateSpecialization &&
K <= lastVarTemplateSpecialization;
}
};
class VarTemplatePartialSpecializationDecl
: public VarTemplateSpecializationDecl {
/// The list of template parameters
TemplateParameterList *TemplateParams = nullptr;
/// The source info for the template arguments as written.
/// FIXME: redundant with TypeAsWritten?
const ASTTemplateArgumentListInfo *ArgsAsWritten = nullptr;
/// The variable template partial specialization from which this
/// variable template partial specialization was instantiated.
///
/// The boolean value will be true to indicate that this variable template
/// partial specialization was specialized at this level.
llvm::PointerIntPair<VarTemplatePartialSpecializationDecl *, 1, bool>
InstantiatedFromMember;
VarTemplatePartialSpecializationDecl(
ASTContext &Context, DeclContext *DC, SourceLocation StartLoc,
SourceLocation IdLoc, TemplateParameterList *Params,
VarTemplateDecl *SpecializedTemplate, QualType T, TypeSourceInfo *TInfo,
StorageClass S, ArrayRef<TemplateArgument> Args,
const ASTTemplateArgumentListInfo *ArgInfos);
VarTemplatePartialSpecializationDecl(ASTContext &Context)
: VarTemplateSpecializationDecl(VarTemplatePartialSpecialization,
Context),
InstantiatedFromMember(nullptr, false) {}
void anchor() override;
public:
friend class ASTDeclReader;
friend class ASTDeclWriter;
static VarTemplatePartialSpecializationDecl *
Create(ASTContext &Context, DeclContext *DC, SourceLocation StartLoc,
SourceLocation IdLoc, TemplateParameterList *Params,
VarTemplateDecl *SpecializedTemplate, QualType T,
TypeSourceInfo *TInfo, StorageClass S, ArrayRef<TemplateArgument> Args,
const TemplateArgumentListInfo &ArgInfos);
static VarTemplatePartialSpecializationDecl *CreateDeserialized(ASTContext &C,
unsigned ID);
VarTemplatePartialSpecializationDecl *getMostRecentDecl() {
return cast<VarTemplatePartialSpecializationDecl>(
static_cast<VarTemplateSpecializationDecl *>(
this)->getMostRecentDecl());
}
/// Get the list of template parameters
TemplateParameterList *getTemplateParameters() const {
return TemplateParams;
}
/// Get the template arguments as written.
const ASTTemplateArgumentListInfo *getTemplateArgsAsWritten() const {
return ArgsAsWritten;
}
/// Retrieve the member variable template partial specialization from
/// which this particular variable template partial specialization was
/// instantiated.
///
/// \code
/// template<typename T>
/// struct Outer {
/// template<typename U> U Inner;
/// template<typename U> U* Inner<U*> = (U*)(0); // #1
/// };
///
/// template int* Outer<float>::Inner<int*>;
/// \endcode
///
/// In this example, the instantiation of \c Outer<float>::Inner<int*> will
/// end up instantiating the partial specialization
/// \c Outer<float>::Inner<U*>, which itself was instantiated from the
/// variable template partial specialization \c Outer<T>::Inner<U*>. Given
/// \c Outer<float>::Inner<U*>, this function would return
/// \c Outer<T>::Inner<U*>.
VarTemplatePartialSpecializationDecl *getInstantiatedFromMember() const {
const auto *First =
cast<VarTemplatePartialSpecializationDecl>(getFirstDecl());
return First->InstantiatedFromMember.getPointer();
}
void
setInstantiatedFromMember(VarTemplatePartialSpecializationDecl *PartialSpec) {
auto *First = cast<VarTemplatePartialSpecializationDecl>(getFirstDecl());
First->InstantiatedFromMember.setPointer(PartialSpec);
}
/// Determines whether this variable template partial specialization
/// was a specialization of a member partial specialization.
///
/// In the following example, the member template partial specialization
/// \c X<int>::Inner<T*> is a member specialization.
///
/// \code
/// template<typename T>
/// struct X {
/// template<typename U> U Inner;
/// template<typename U> U* Inner<U*> = (U*)(0);
/// };
///
/// template<> template<typename T>
/// U* X<int>::Inner<T*> = (T*)(0) + 1;
/// \endcode
bool isMemberSpecialization() {
const auto *First =
cast<VarTemplatePartialSpecializationDecl>(getFirstDecl());
return First->InstantiatedFromMember.getInt();
}
/// Note that this member template is a specialization.
void setMemberSpecialization() {
auto *First = cast<VarTemplatePartialSpecializationDecl>(getFirstDecl());
assert(First->InstantiatedFromMember.getPointer() &&
"Only member templates can be member template specializations");
return First->InstantiatedFromMember.setInt(true);
}
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) {
return K == VarTemplatePartialSpecialization;
}
};
/// Declaration of a variable template.
class VarTemplateDecl : public RedeclarableTemplateDecl {
protected:
/// Data that is common to all of the declarations of a given
/// variable template.
struct Common : CommonBase {
/// The variable template specializations for this variable
/// template, including explicit specializations and instantiations.
llvm::FoldingSetVector<VarTemplateSpecializationDecl> Specializations;
/// The variable template partial specializations for this variable
/// template.
llvm::FoldingSetVector<VarTemplatePartialSpecializationDecl>
PartialSpecializations;
Common() = default;
};
/// Retrieve the set of specializations of this variable template.
llvm::FoldingSetVector<VarTemplateSpecializationDecl> &
getSpecializations() const;
/// Retrieve the set of partial specializations of this class
/// template.
llvm::FoldingSetVector<VarTemplatePartialSpecializationDecl> &
getPartialSpecializations();
VarTemplateDecl(ASTContext &C, DeclContext *DC, SourceLocation L,
DeclarationName Name, TemplateParameterList *Params,
NamedDecl *Decl)
: RedeclarableTemplateDecl(VarTemplate, C, DC, L, Name, Params, Decl) {}
CommonBase *newCommon(ASTContext &C) const override;
Common *getCommonPtr() const {
return static_cast<Common *>(RedeclarableTemplateDecl::getCommonPtr());
}
public:
friend class ASTDeclReader;
friend class ASTDeclWriter;
/// Load any lazily-loaded specializations from the external source.
void LoadLazySpecializations() const;
/// Get the underlying variable declarations of the template.
VarDecl *getTemplatedDecl() const {
return static_cast<VarDecl *>(TemplatedDecl);
}
/// Returns whether this template declaration defines the primary
/// variable pattern.
bool isThisDeclarationADefinition() const {
return getTemplatedDecl()->isThisDeclarationADefinition();
}
VarTemplateDecl *getDefinition();
/// Create a variable template node.
static VarTemplateDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation L, DeclarationName Name,
TemplateParameterList *Params,
VarDecl *Decl);
/// Create an empty variable template node.
static VarTemplateDecl *CreateDeserialized(ASTContext &C, unsigned ID);
/// Return the specialization with the provided arguments if it exists,
/// otherwise return the insertion point.
VarTemplateSpecializationDecl *
findSpecialization(ArrayRef<TemplateArgument> Args, void *&InsertPos);
/// Insert the specified specialization knowing that it is not already
/// in. InsertPos must be obtained from findSpecialization.
void AddSpecialization(VarTemplateSpecializationDecl *D, void *InsertPos);
VarTemplateDecl *getCanonicalDecl() override {
return cast<VarTemplateDecl>(RedeclarableTemplateDecl::getCanonicalDecl());
}
const VarTemplateDecl *getCanonicalDecl() const {
return cast<VarTemplateDecl>(RedeclarableTemplateDecl::getCanonicalDecl());
}
/// Retrieve the previous declaration of this variable template, or
/// nullptr if no such declaration exists.
VarTemplateDecl *getPreviousDecl() {
return cast_or_null<VarTemplateDecl>(
static_cast<RedeclarableTemplateDecl *>(this)->getPreviousDecl());
}
const VarTemplateDecl *getPreviousDecl() const {
return cast_or_null<VarTemplateDecl>(
static_cast<const RedeclarableTemplateDecl *>(
this)->getPreviousDecl());
}
VarTemplateDecl *getMostRecentDecl() {
return cast<VarTemplateDecl>(
static_cast<RedeclarableTemplateDecl *>(this)->getMostRecentDecl());
}
const VarTemplateDecl *getMostRecentDecl() const {
return const_cast<VarTemplateDecl *>(this)->getMostRecentDecl();
}
VarTemplateDecl *getInstantiatedFromMemberTemplate() const {
return cast_or_null<VarTemplateDecl>(
RedeclarableTemplateDecl::getInstantiatedFromMemberTemplate());
}
/// Return the partial specialization with the provided arguments if it
/// exists, otherwise return the insertion point.
VarTemplatePartialSpecializationDecl *
findPartialSpecialization(ArrayRef<TemplateArgument> Args, void *&InsertPos);
/// Insert the specified partial specialization knowing that it is not
/// already in. InsertPos must be obtained from findPartialSpecialization.
void AddPartialSpecialization(VarTemplatePartialSpecializationDecl *D,
void *InsertPos);
/// Retrieve the partial specializations as an ordered list.
void getPartialSpecializations(
SmallVectorImpl<VarTemplatePartialSpecializationDecl *> &PS);
/// Find a variable template partial specialization which was
/// instantiated
/// from the given member partial specialization.
///
/// \param D a member variable template partial specialization.
///
/// \returns the variable template partial specialization which was
/// instantiated
/// from the given member partial specialization, or nullptr if no such
/// partial specialization exists.
VarTemplatePartialSpecializationDecl *findPartialSpecInstantiatedFromMember(
VarTemplatePartialSpecializationDecl *D);
using spec_iterator = SpecIterator<VarTemplateSpecializationDecl>;
using spec_range = llvm::iterator_range<spec_iterator>;
spec_range specializations() const {
return spec_range(spec_begin(), spec_end());
}
spec_iterator spec_begin() const {
return makeSpecIterator(getSpecializations(), false);
}
spec_iterator spec_end() const {
return makeSpecIterator(getSpecializations(), true);
}
// Implement isa/cast/dyncast support
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == VarTemplate; }
};
+// \brief Declaration of a C++2a concept.
+class ConceptDecl : public TemplateDecl, public Mergeable<ConceptDecl> {
+protected:
+ Expr *ConstraintExpr;
+
+ ConceptDecl(DeclContext *DC,
+ SourceLocation L, DeclarationName Name,
+ TemplateParameterList *Params,
+ Expr *ConstraintExpr)
+ : TemplateDecl(nullptr, Concept, DC, L, Name, Params),
+ ConstraintExpr(ConstraintExpr) {};
+public:
+ static ConceptDecl *Create(ASTContext &C, DeclContext *DC,
+ SourceLocation L, DeclarationName Name,
+ TemplateParameterList *Params,
+ Expr *ConstraintExpr);
+ static ConceptDecl *CreateDeserialized(ASTContext &C, unsigned ID);
+
+ Expr *getConstraintExpr() const {
+ return ConstraintExpr;
+ }
+
+ SourceRange getSourceRange() const override LLVM_READONLY {
+ return SourceRange(getTemplateParameters()->getTemplateLoc(),
+ ConstraintExpr->getEndLoc());
+ }
+
+ // Implement isa/cast/dyncast/etc.
+ static bool classof(const Decl *D) { return classofKind(D->getKind()); }
+ static bool classofKind(Kind K) { return K == Concept; }
+
+ friend class ASTReader;
+ friend class ASTDeclReader;
+ friend class ASTDeclWriter;
+};
+
inline NamedDecl *getAsNamedDecl(TemplateParameter P) {
if (auto *PD = P.dyn_cast<TemplateTypeParmDecl *>())
return PD;
if (auto *PD = P.dyn_cast<NonTypeTemplateParmDecl *>())
return PD;
return P.get<TemplateTemplateParmDecl *>();
}
inline TemplateDecl *getAsTypeTemplateDecl(Decl *D) {
auto *TD = dyn_cast<TemplateDecl>(D);
return TD && (isa<ClassTemplateDecl>(TD) ||
isa<ClassTemplatePartialSpecializationDecl>(TD) ||
isa<TypeAliasTemplateDecl>(TD) ||
isa<TemplateTemplateParmDecl>(TD))
? TD
: nullptr;
}
} // namespace clang
#endif // LLVM_CLANG_AST_DECLTEMPLATE_H
diff --git a/clang/include/clang/AST/RecursiveASTVisitor.h b/clang/include/clang/AST/RecursiveASTVisitor.h
index 292b57a..698fba2 100644
--- a/clang/include/clang/AST/RecursiveASTVisitor.h
+++ b/clang/include/clang/AST/RecursiveASTVisitor.h
@@ -1,3327 +1,3332 @@
//===--- RecursiveASTVisitor.h - Recursive AST Visitor ----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the RecursiveASTVisitor interface, which recursively
// traverses the entire AST.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_RECURSIVEASTVISITOR_H
#define LLVM_CLANG_AST_RECURSIVEASTVISITOR_H
#include "clang/AST/Attr.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclarationName.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclFriend.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclOpenMP.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/ExprOpenMP.h"
#include "clang/AST/LambdaCapture.h"
#include "clang/AST/NestedNameSpecifier.h"
#include "clang/AST/OpenMPClause.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/StmtCXX.h"
#include "clang/AST/StmtObjC.h"
#include "clang/AST/StmtOpenMP.h"
#include "clang/AST/TemplateBase.h"
#include "clang/AST/TemplateName.h"
#include "clang/AST/Type.h"
#include "clang/AST/TypeLoc.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/OpenMPKinds.h"
#include "clang/Basic/Specifiers.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Casting.h"
#include <algorithm>
#include <cstddef>
#include <type_traits>
// The following three macros are used for meta programming. The code
// using them is responsible for defining macro OPERATOR().
// All unary operators.
#define UNARYOP_LIST() \
OPERATOR(PostInc) OPERATOR(PostDec) OPERATOR(PreInc) OPERATOR(PreDec) \
OPERATOR(AddrOf) OPERATOR(Deref) OPERATOR(Plus) OPERATOR(Minus) \
OPERATOR(Not) OPERATOR(LNot) OPERATOR(Real) OPERATOR(Imag) \
OPERATOR(Extension) OPERATOR(Coawait)
// All binary operators (excluding compound assign operators).
#define BINOP_LIST() \
OPERATOR(PtrMemD) OPERATOR(PtrMemI) OPERATOR(Mul) OPERATOR(Div) \
OPERATOR(Rem) OPERATOR(Add) OPERATOR(Sub) OPERATOR(Shl) OPERATOR(Shr) \
OPERATOR(LT) OPERATOR(GT) OPERATOR(LE) OPERATOR(GE) OPERATOR(EQ) \
OPERATOR(NE) OPERATOR(Cmp) OPERATOR(And) OPERATOR(Xor) OPERATOR(Or) \
OPERATOR(LAnd) OPERATOR(LOr) OPERATOR(Assign) OPERATOR(Comma)
// All compound assign operators.
#define CAO_LIST() \
OPERATOR(Mul) OPERATOR(Div) OPERATOR(Rem) OPERATOR(Add) OPERATOR(Sub) \
OPERATOR(Shl) OPERATOR(Shr) OPERATOR(And) OPERATOR(Or) OPERATOR(Xor)
namespace clang {
// A helper macro to implement short-circuiting when recursing. It
// invokes CALL_EXPR, which must be a method call, on the derived
// object (s.t. a user of RecursiveASTVisitor can override the method
// in CALL_EXPR).
#define TRY_TO(CALL_EXPR) \
do { \
if (!getDerived().CALL_EXPR) \
return false; \
} while (false)
/// A class that does preorder or postorder
/// depth-first traversal on the entire Clang AST and visits each node.
///
/// This class performs three distinct tasks:
/// 1. traverse the AST (i.e. go to each node);
/// 2. at a given node, walk up the class hierarchy, starting from
/// the node's dynamic type, until the top-most class (e.g. Stmt,
/// Decl, or Type) is reached.
/// 3. given a (node, class) combination, where 'class' is some base
/// class of the dynamic type of 'node', call a user-overridable
/// function to actually visit the node.
///
/// These tasks are done by three groups of methods, respectively:
/// 1. TraverseDecl(Decl *x) does task #1. It is the entry point
/// for traversing an AST rooted at x. This method simply
/// dispatches (i.e. forwards) to TraverseFoo(Foo *x) where Foo
/// is the dynamic type of *x, which calls WalkUpFromFoo(x) and
/// then recursively visits the child nodes of x.
/// TraverseStmt(Stmt *x) and TraverseType(QualType x) work
/// similarly.
/// 2. WalkUpFromFoo(Foo *x) does task #2. It does not try to visit
/// any child node of x. Instead, it first calls WalkUpFromBar(x)
/// where Bar is the direct parent class of Foo (unless Foo has
/// no parent), and then calls VisitFoo(x) (see the next list item).
/// 3. VisitFoo(Foo *x) does task #3.
///
/// These three method groups are tiered (Traverse* > WalkUpFrom* >
/// Visit*). A method (e.g. Traverse*) may call methods from the same
/// tier (e.g. other Traverse*) or one tier lower (e.g. WalkUpFrom*).
/// It may not call methods from a higher tier.
///
/// Note that since WalkUpFromFoo() calls WalkUpFromBar() (where Bar
/// is Foo's super class) before calling VisitFoo(), the result is
/// that the Visit*() methods for a given node are called in the
/// top-down order (e.g. for a node of type NamespaceDecl, the order will
/// be VisitDecl(), VisitNamedDecl(), and then VisitNamespaceDecl()).
///
/// This scheme guarantees that all Visit*() calls for the same AST
/// node are grouped together. In other words, Visit*() methods for
/// different nodes are never interleaved.
///
/// Clients of this visitor should subclass the visitor (providing
/// themselves as the template argument, using the curiously recurring
/// template pattern) and override any of the Traverse*, WalkUpFrom*,
/// and Visit* methods for declarations, types, statements,
/// expressions, or other AST nodes where the visitor should customize
/// behavior. Most users only need to override Visit*. Advanced
/// users may override Traverse* and WalkUpFrom* to implement custom
/// traversal strategies. Returning false from one of these overridden
/// functions will abort the entire traversal.
///
/// By default, this visitor tries to visit every part of the explicit
/// source code exactly once. The default policy towards templates
/// is to descend into the 'pattern' class or function body, not any
/// explicit or implicit instantiations. Explicit specializations
/// are still visited, and the patterns of partial specializations
/// are visited separately. This behavior can be changed by
/// overriding shouldVisitTemplateInstantiations() in the derived class
/// to return true, in which case all known implicit and explicit
/// instantiations will be visited at the same time as the pattern
/// from which they were produced.
///
/// By default, this visitor preorder traverses the AST. If postorder traversal
/// is needed, the \c shouldTraversePostOrder method needs to be overridden
/// to return \c true.
template <typename Derived> class RecursiveASTVisitor {
public:
/// A queue used for performing data recursion over statements.
/// Parameters involving this type are used to implement data
/// recursion over Stmts and Exprs within this class, and should
/// typically not be explicitly specified by derived classes.
/// The bool bit indicates whether the statement has been traversed or not.
typedef SmallVectorImpl<llvm::PointerIntPair<Stmt *, 1, bool>>
DataRecursionQueue;
/// Return a reference to the derived class.
Derived &getDerived() { return *static_cast<Derived *>(this); }
/// Return whether this visitor should recurse into
/// template instantiations.
bool shouldVisitTemplateInstantiations() const { return false; }
/// Return whether this visitor should recurse into the types of
/// TypeLocs.
bool shouldWalkTypesOfTypeLocs() const { return true; }
/// Return whether this visitor should recurse into implicit
/// code, e.g., implicit constructors and destructors.
bool shouldVisitImplicitCode() const { return false; }
/// Return whether this visitor should traverse post-order.
bool shouldTraversePostOrder() const { return false; }
/// Recursively visits an entire AST, starting from the top-level Decls
/// in the AST traversal scope (by default, the TranslationUnitDecl).
/// \returns false if visitation was terminated early.
bool TraverseAST(ASTContext &AST) {
for (Decl *D : AST.getTraversalScope())
if (!getDerived().TraverseDecl(D))
return false;
return true;
}
/// Recursively visit a statement or expression, by
/// dispatching to Traverse*() based on the argument's dynamic type.
///
/// \returns false if the visitation was terminated early, true
/// otherwise (including when the argument is nullptr).
bool TraverseStmt(Stmt *S, DataRecursionQueue *Queue = nullptr);
/// Invoked before visiting a statement or expression via data recursion.
///
/// \returns false to skip visiting the node, true otherwise.
bool dataTraverseStmtPre(Stmt *S) { return true; }
/// Invoked after visiting a statement or expression via data recursion.
/// This is not invoked if the previously invoked \c dataTraverseStmtPre
/// returned false.
///
/// \returns false if the visitation was terminated early, true otherwise.
bool dataTraverseStmtPost(Stmt *S) { return true; }
/// Recursively visit a type, by dispatching to
/// Traverse*Type() based on the argument's getTypeClass() property.
///
/// \returns false if the visitation was terminated early, true
/// otherwise (including when the argument is a Null type).
bool TraverseType(QualType T);
/// Recursively visit a type with location, by dispatching to
/// Traverse*TypeLoc() based on the argument type's getTypeClass() property.
///
/// \returns false if the visitation was terminated early, true
/// otherwise (including when the argument is a Null type location).
bool TraverseTypeLoc(TypeLoc TL);
/// Recursively visit an attribute, by dispatching to
/// Traverse*Attr() based on the argument's dynamic type.
///
/// \returns false if the visitation was terminated early, true
/// otherwise (including when the argument is a Null type location).
bool TraverseAttr(Attr *At);
/// Recursively visit a declaration, by dispatching to
/// Traverse*Decl() based on the argument's dynamic type.
///
/// \returns false if the visitation was terminated early, true
/// otherwise (including when the argument is NULL).
bool TraverseDecl(Decl *D);
/// Recursively visit a C++ nested-name-specifier.
///
/// \returns false if the visitation was terminated early, true otherwise.
bool TraverseNestedNameSpecifier(NestedNameSpecifier *NNS);
/// Recursively visit a C++ nested-name-specifier with location
/// information.
///
/// \returns false if the visitation was terminated early, true otherwise.
bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc NNS);
/// Recursively visit a name with its location information.
///
/// \returns false if the visitation was terminated early, true otherwise.
bool TraverseDeclarationNameInfo(DeclarationNameInfo NameInfo);
/// Recursively visit a template name and dispatch to the
/// appropriate method.
///
/// \returns false if the visitation was terminated early, true otherwise.
bool TraverseTemplateName(TemplateName Template);
/// Recursively visit a template argument and dispatch to the
/// appropriate method for the argument type.
///
/// \returns false if the visitation was terminated early, true otherwise.
// FIXME: migrate callers to TemplateArgumentLoc instead.
bool TraverseTemplateArgument(const TemplateArgument &Arg);
/// Recursively visit a template argument location and dispatch to the
/// appropriate method for the argument type.
///
/// \returns false if the visitation was terminated early, true otherwise.
bool TraverseTemplateArgumentLoc(const TemplateArgumentLoc &ArgLoc);
/// Recursively visit a set of template arguments.
/// This can be overridden by a subclass, but it's not expected that
/// will be needed -- this visitor always dispatches to another.
///
/// \returns false if the visitation was terminated early, true otherwise.
// FIXME: take a TemplateArgumentLoc* (or TemplateArgumentListInfo) instead.
bool TraverseTemplateArguments(const TemplateArgument *Args,
unsigned NumArgs);
/// Recursively visit a base specifier. This can be overridden by a
/// subclass.
///
/// \returns false if the visitation was terminated early, true otherwise.
bool TraverseCXXBaseSpecifier(const CXXBaseSpecifier &Base);
/// Recursively visit a constructor initializer. This
/// automatically dispatches to another visitor for the initializer
/// expression, but not for the name of the initializer, so may
/// be overridden for clients that need access to the name.
///
/// \returns false if the visitation was terminated early, true otherwise.
bool TraverseConstructorInitializer(CXXCtorInitializer *Init);
/// Recursively visit a lambda capture. \c Init is the expression that
/// will be used to initialize the capture.
///
/// \returns false if the visitation was terminated early, true otherwise.
bool TraverseLambdaCapture(LambdaExpr *LE, const LambdaCapture *C,
Expr *Init);
/// Recursively visit the syntactic or semantic form of an
/// initialization list.
///
/// \returns false if the visitation was terminated early, true otherwise.
bool TraverseSynOrSemInitListExpr(InitListExpr *S,
DataRecursionQueue *Queue = nullptr);
// ---- Methods on Attrs ----
// Visit an attribute.
bool VisitAttr(Attr *A) { return true; }
// Declare Traverse* and empty Visit* for all Attr classes.
#define ATTR_VISITOR_DECLS_ONLY
#include "clang/AST/AttrVisitor.inc"
#undef ATTR_VISITOR_DECLS_ONLY
// ---- Methods on Stmts ----
Stmt::child_range getStmtChildren(Stmt *S) { return S->children(); }
private:
template<typename T, typename U>
struct has_same_member_pointer_type : std::false_type {};
template<typename T, typename U, typename R, typename... P>
struct has_same_member_pointer_type<R (T::*)(P...), R (U::*)(P...)>
: std::true_type {};
// Traverse the given statement. If the most-derived traverse function takes a
// data recursion queue, pass it on; otherwise, discard it. Note that the
// first branch of this conditional must compile whether or not the derived
// class can take a queue, so if we're taking the second arm, make the first
// arm call our function rather than the derived class version.
#define TRAVERSE_STMT_BASE(NAME, CLASS, VAR, QUEUE) \
(has_same_member_pointer_type<decltype( \
&RecursiveASTVisitor::Traverse##NAME), \
decltype(&Derived::Traverse##NAME)>::value \
? static_cast<typename std::conditional< \
has_same_member_pointer_type< \
decltype(&RecursiveASTVisitor::Traverse##NAME), \
decltype(&Derived::Traverse##NAME)>::value, \
Derived &, RecursiveASTVisitor &>::type>(*this) \
.Traverse##NAME(static_cast<CLASS *>(VAR), QUEUE) \
: getDerived().Traverse##NAME(static_cast<CLASS *>(VAR)))
// Try to traverse the given statement, or enqueue it if we're performing data
// recursion in the middle of traversing another statement. Can only be called
// from within a DEF_TRAVERSE_STMT body or similar context.
#define TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(S) \
do { \
if (!TRAVERSE_STMT_BASE(Stmt, Stmt, S, Queue)) \
return false; \
} while (false)
public:
// Declare Traverse*() for all concrete Stmt classes.
#define ABSTRACT_STMT(STMT)
#define STMT(CLASS, PARENT) \
bool Traverse##CLASS(CLASS *S, DataRecursionQueue *Queue = nullptr);
#include "clang/AST/StmtNodes.inc"
// The above header #undefs ABSTRACT_STMT and STMT upon exit.
// Define WalkUpFrom*() and empty Visit*() for all Stmt classes.
bool WalkUpFromStmt(Stmt *S) { return getDerived().VisitStmt(S); }
bool VisitStmt(Stmt *S) { return true; }
#define STMT(CLASS, PARENT) \
bool WalkUpFrom##CLASS(CLASS *S) { \
TRY_TO(WalkUpFrom##PARENT(S)); \
TRY_TO(Visit##CLASS(S)); \
return true; \
} \
bool Visit##CLASS(CLASS *S) { return true; }
#include "clang/AST/StmtNodes.inc"
// Define Traverse*(), WalkUpFrom*(), and Visit*() for unary
// operator methods. Unary operators are not classes in themselves
// (they're all opcodes in UnaryOperator) but do have visitors.
#define OPERATOR(NAME) \
bool TraverseUnary##NAME(UnaryOperator *S, \
DataRecursionQueue *Queue = nullptr) { \
if (!getDerived().shouldTraversePostOrder()) \
TRY_TO(WalkUpFromUnary##NAME(S)); \
TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(S->getSubExpr()); \
return true; \
} \
bool WalkUpFromUnary##NAME(UnaryOperator *S) { \
TRY_TO(WalkUpFromUnaryOperator(S)); \
TRY_TO(VisitUnary##NAME(S)); \
return true; \
} \
bool VisitUnary##NAME(UnaryOperator *S) { return true; }
UNARYOP_LIST()
#undef OPERATOR
// Define Traverse*(), WalkUpFrom*(), and Visit*() for binary
// operator methods. Binary operators are not classes in themselves
// (they're all opcodes in BinaryOperator) but do have visitors.
#define GENERAL_BINOP_FALLBACK(NAME, BINOP_TYPE) \
bool TraverseBin##NAME(BINOP_TYPE *S, DataRecursionQueue *Queue = nullptr) { \
if (!getDerived().shouldTraversePostOrder()) \
TRY_TO(WalkUpFromBin##NAME(S)); \
TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(S->getLHS()); \
TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(S->getRHS()); \
return true; \
} \
bool WalkUpFromBin##NAME(BINOP_TYPE *S) { \
TRY_TO(WalkUpFrom##BINOP_TYPE(S)); \
TRY_TO(VisitBin##NAME(S)); \
return true; \
} \
bool VisitBin##NAME(BINOP_TYPE *S) { return true; }
#define OPERATOR(NAME) GENERAL_BINOP_FALLBACK(NAME, BinaryOperator)
BINOP_LIST()
#undef OPERATOR
// Define Traverse*(), WalkUpFrom*(), and Visit*() for compound
// assignment methods. Compound assignment operators are not
// classes in themselves (they're all opcodes in
// CompoundAssignOperator) but do have visitors.
#define OPERATOR(NAME) \
GENERAL_BINOP_FALLBACK(NAME##Assign, CompoundAssignOperator)
CAO_LIST()
#undef OPERATOR
#undef GENERAL_BINOP_FALLBACK
// ---- Methods on Types ----
// FIXME: revamp to take TypeLoc's rather than Types.
// Declare Traverse*() for all concrete Type classes.
#define ABSTRACT_TYPE(CLASS, BASE)
#define TYPE(CLASS, BASE) bool Traverse##CLASS##Type(CLASS##Type *T);
#include "clang/AST/TypeNodes.def"
// The above header #undefs ABSTRACT_TYPE and TYPE upon exit.
// Define WalkUpFrom*() and empty Visit*() for all Type classes.
bool WalkUpFromType(Type *T) { return getDerived().VisitType(T); }
bool VisitType(Type *T) { return true; }
#define TYPE(CLASS, BASE) \
bool WalkUpFrom##CLASS##Type(CLASS##Type *T) { \
TRY_TO(WalkUpFrom##BASE(T)); \
TRY_TO(Visit##CLASS##Type(T)); \
return true; \
} \
bool Visit##CLASS##Type(CLASS##Type *T) { return true; }
#include "clang/AST/TypeNodes.def"
// ---- Methods on TypeLocs ----
// FIXME: this currently just calls the matching Type methods
// Declare Traverse*() for all concrete TypeLoc classes.
#define ABSTRACT_TYPELOC(CLASS, BASE)
#define TYPELOC(CLASS, BASE) bool Traverse##CLASS##TypeLoc(CLASS##TypeLoc TL);
#include "clang/AST/TypeLocNodes.def"
// The above header #undefs ABSTRACT_TYPELOC and TYPELOC upon exit.
// Define WalkUpFrom*() and empty Visit*() for all TypeLoc classes.
bool WalkUpFromTypeLoc(TypeLoc TL) { return getDerived().VisitTypeLoc(TL); }
bool VisitTypeLoc(TypeLoc TL) { return true; }
// QualifiedTypeLoc and UnqualTypeLoc are not declared in
// TypeNodes.def and thus need to be handled specially.
bool WalkUpFromQualifiedTypeLoc(QualifiedTypeLoc TL) {
return getDerived().VisitUnqualTypeLoc(TL.getUnqualifiedLoc());
}
bool VisitQualifiedTypeLoc(QualifiedTypeLoc TL) { return true; }
bool WalkUpFromUnqualTypeLoc(UnqualTypeLoc TL) {
return getDerived().VisitUnqualTypeLoc(TL.getUnqualifiedLoc());
}
bool VisitUnqualTypeLoc(UnqualTypeLoc TL) { return true; }
// Note that BASE includes trailing 'Type' which CLASS doesn't.
#define TYPE(CLASS, BASE) \
bool WalkUpFrom##CLASS##TypeLoc(CLASS##TypeLoc TL) { \
TRY_TO(WalkUpFrom##BASE##Loc(TL)); \
TRY_TO(Visit##CLASS##TypeLoc(TL)); \
return true; \
} \
bool Visit##CLASS##TypeLoc(CLASS##TypeLoc TL) { return true; }
#include "clang/AST/TypeNodes.def"
// ---- Methods on Decls ----
// Declare Traverse*() for all concrete Decl classes.
#define ABSTRACT_DECL(DECL)
#define DECL(CLASS, BASE) bool Traverse##CLASS##Decl(CLASS##Decl *D);
#include "clang/AST/DeclNodes.inc"
// The above header #undefs ABSTRACT_DECL and DECL upon exit.
// Define WalkUpFrom*() and empty Visit*() for all Decl classes.
bool WalkUpFromDecl(Decl *D) { return getDerived().VisitDecl(D); }
bool VisitDecl(Decl *D) { return true; }
#define DECL(CLASS, BASE) \
bool WalkUpFrom##CLASS##Decl(CLASS##Decl *D) { \
TRY_TO(WalkUpFrom##BASE(D)); \
TRY_TO(Visit##CLASS##Decl(D)); \
return true; \
} \
bool Visit##CLASS##Decl(CLASS##Decl *D) { return true; }
#include "clang/AST/DeclNodes.inc"
bool canIgnoreChildDeclWhileTraversingDeclContext(const Decl *Child);
private:
// These are helper methods used by more than one Traverse* method.
bool TraverseTemplateParameterListHelper(TemplateParameterList *TPL);
// Traverses template parameter lists of either a DeclaratorDecl or TagDecl.
template <typename T>
bool TraverseDeclTemplateParameterLists(T *D);
#define DEF_TRAVERSE_TMPL_INST(TMPLDECLKIND) \
bool TraverseTemplateInstantiations(TMPLDECLKIND##TemplateDecl *D);
DEF_TRAVERSE_TMPL_INST(Class)
DEF_TRAVERSE_TMPL_INST(Var)
DEF_TRAVERSE_TMPL_INST(Function)
#undef DEF_TRAVERSE_TMPL_INST
bool TraverseTemplateArgumentLocsHelper(const TemplateArgumentLoc *TAL,
unsigned Count);
bool TraverseArrayTypeLocHelper(ArrayTypeLoc TL);
bool TraverseRecordHelper(RecordDecl *D);
bool TraverseCXXRecordHelper(CXXRecordDecl *D);
bool TraverseDeclaratorHelper(DeclaratorDecl *D);
bool TraverseDeclContextHelper(DeclContext *DC);
bool TraverseFunctionHelper(FunctionDecl *D);
bool TraverseVarHelper(VarDecl *D);
bool TraverseOMPExecutableDirective(OMPExecutableDirective *S);
bool TraverseOMPLoopDirective(OMPLoopDirective *S);
bool TraverseOMPClause(OMPClause *C);
#define OPENMP_CLAUSE(Name, Class) bool Visit##Class(Class *C);
#include "clang/Basic/OpenMPKinds.def"
/// Process clauses with list of variables.
template <typename T> bool VisitOMPClauseList(T *Node);
/// Process clauses with pre-initis.
bool VisitOMPClauseWithPreInit(OMPClauseWithPreInit *Node);
bool VisitOMPClauseWithPostUpdate(OMPClauseWithPostUpdate *Node);
bool dataTraverseNode(Stmt *S, DataRecursionQueue *Queue);
bool PostVisitStmt(Stmt *S);
};
template <typename Derived>
bool RecursiveASTVisitor<Derived>::dataTraverseNode(Stmt *S,
DataRecursionQueue *Queue) {
#define DISPATCH_STMT(NAME, CLASS, VAR) \
return TRAVERSE_STMT_BASE(NAME, CLASS, VAR, Queue);
// If we have a binary expr, dispatch to the subcode of the binop. A smart
// optimizer (e.g. LLVM) will fold this comparison into the switch stmt
// below.
if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(S)) {
switch (BinOp->getOpcode()) {
#define OPERATOR(NAME) \
case BO_##NAME: \
DISPATCH_STMT(Bin##NAME, BinaryOperator, S);
BINOP_LIST()
#undef OPERATOR
#undef BINOP_LIST
#define OPERATOR(NAME) \
case BO_##NAME##Assign: \
DISPATCH_STMT(Bin##NAME##Assign, CompoundAssignOperator, S);
CAO_LIST()
#undef OPERATOR
#undef CAO_LIST
}
} else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(S)) {
switch (UnOp->getOpcode()) {
#define OPERATOR(NAME) \
case UO_##NAME: \
DISPATCH_STMT(Unary##NAME, UnaryOperator, S);
UNARYOP_LIST()
#undef OPERATOR
#undef UNARYOP_LIST
}
}
// Top switch stmt: dispatch to TraverseFooStmt for each concrete FooStmt.
switch (S->getStmtClass()) {
case Stmt::NoStmtClass:
break;
#define ABSTRACT_STMT(STMT)
#define STMT(CLASS, PARENT) \
case Stmt::CLASS##Class: \
DISPATCH_STMT(CLASS, CLASS, S);
#include "clang/AST/StmtNodes.inc"
}
return true;
}
#undef DISPATCH_STMT
template <typename Derived>
bool RecursiveASTVisitor<Derived>::PostVisitStmt(Stmt *S) {
switch (S->getStmtClass()) {
case Stmt::NoStmtClass:
break;
#define ABSTRACT_STMT(STMT)
#define STMT(CLASS, PARENT) \
case Stmt::CLASS##Class: \
TRY_TO(WalkUpFrom##CLASS(static_cast<CLASS *>(S))); break;
#define INITLISTEXPR(CLASS, PARENT) \
case Stmt::CLASS##Class: \
{ \
auto ILE = static_cast<CLASS *>(S); \
if (auto Syn = ILE->isSemanticForm() ? ILE->getSyntacticForm() : ILE) \
TRY_TO(WalkUpFrom##CLASS(Syn)); \
if (auto Sem = ILE->isSemanticForm() ? ILE : ILE->getSemanticForm()) \
TRY_TO(WalkUpFrom##CLASS(Sem)); \
break; \
}
#include "clang/AST/StmtNodes.inc"
}
return true;
}
#undef DISPATCH_STMT
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseStmt(Stmt *S,
DataRecursionQueue *Queue) {
if (!S)
return true;
if (Queue) {
Queue->push_back({S, false});
return true;
}
SmallVector<llvm::PointerIntPair<Stmt *, 1, bool>, 8> LocalQueue;
LocalQueue.push_back({S, false});
while (!LocalQueue.empty()) {
auto &CurrSAndVisited = LocalQueue.back();
Stmt *CurrS = CurrSAndVisited.getPointer();
bool Visited = CurrSAndVisited.getInt();
if (Visited) {
LocalQueue.pop_back();
TRY_TO(dataTraverseStmtPost(CurrS));
if (getDerived().shouldTraversePostOrder()) {
TRY_TO(PostVisitStmt(CurrS));
}
continue;
}
if (getDerived().dataTraverseStmtPre(CurrS)) {
CurrSAndVisited.setInt(true);
size_t N = LocalQueue.size();
TRY_TO(dataTraverseNode(CurrS, &LocalQueue));
// Process new children in the order they were added.
std::reverse(LocalQueue.begin() + N, LocalQueue.end());
} else {
LocalQueue.pop_back();
}
}
return true;
}
#define DISPATCH(NAME, CLASS, VAR) \
return getDerived().Traverse##NAME(static_cast<CLASS *>(VAR))
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseType(QualType T) {
if (T.isNull())
return true;
switch (T->getTypeClass()) {
#define ABSTRACT_TYPE(CLASS, BASE)
#define TYPE(CLASS, BASE) \
case Type::CLASS: \
DISPATCH(CLASS##Type, CLASS##Type, const_cast<Type *>(T.getTypePtr()));
#include "clang/AST/TypeNodes.def"
}
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseTypeLoc(TypeLoc TL) {
if (TL.isNull())
return true;
switch (TL.getTypeLocClass()) {
#define ABSTRACT_TYPELOC(CLASS, BASE)
#define TYPELOC(CLASS, BASE) \
case TypeLoc::CLASS: \
return getDerived().Traverse##CLASS##TypeLoc(TL.castAs<CLASS##TypeLoc>());
#include "clang/AST/TypeLocNodes.def"
}
return true;
}
// Define the Traverse*Attr(Attr* A) methods
#define VISITORCLASS RecursiveASTVisitor
#include "clang/AST/AttrVisitor.inc"
#undef VISITORCLASS
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseDecl(Decl *D) {
if (!D)
return true;
// As a syntax visitor, by default we want to ignore declarations for
// implicit declarations (ones not typed explicitly by the user).
if (!getDerived().shouldVisitImplicitCode() && D->isImplicit())
return true;
switch (D->getKind()) {
#define ABSTRACT_DECL(DECL)
#define DECL(CLASS, BASE) \
case Decl::CLASS: \
if (!getDerived().Traverse##CLASS##Decl(static_cast<CLASS##Decl *>(D))) \
return false; \
break;
#include "clang/AST/DeclNodes.inc"
}
// Visit any attributes attached to this declaration.
for (auto *I : D->attrs()) {
if (!getDerived().TraverseAttr(I))
return false;
}
return true;
}
#undef DISPATCH
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseNestedNameSpecifier(
NestedNameSpecifier *NNS) {
if (!NNS)
return true;
if (NNS->getPrefix())
TRY_TO(TraverseNestedNameSpecifier(NNS->getPrefix()));
switch (NNS->getKind()) {
case NestedNameSpecifier::Identifier:
case NestedNameSpecifier::Namespace:
case NestedNameSpecifier::NamespaceAlias:
case NestedNameSpecifier::Global:
case NestedNameSpecifier::Super:
return true;
case NestedNameSpecifier::TypeSpec:
case NestedNameSpecifier::TypeSpecWithTemplate:
TRY_TO(TraverseType(QualType(NNS->getAsType(), 0)));
}
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseNestedNameSpecifierLoc(
NestedNameSpecifierLoc NNS) {
if (!NNS)
return true;
if (NestedNameSpecifierLoc Prefix = NNS.getPrefix())
TRY_TO(TraverseNestedNameSpecifierLoc(Prefix));
switch (NNS.getNestedNameSpecifier()->getKind()) {
case NestedNameSpecifier::Identifier:
case NestedNameSpecifier::Namespace:
case NestedNameSpecifier::NamespaceAlias:
case NestedNameSpecifier::Global:
case NestedNameSpecifier::Super:
return true;
case NestedNameSpecifier::TypeSpec:
case NestedNameSpecifier::TypeSpecWithTemplate:
TRY_TO(TraverseTypeLoc(NNS.getTypeLoc()));
break;
}
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseDeclarationNameInfo(
DeclarationNameInfo NameInfo) {
switch (NameInfo.getName().getNameKind()) {
case DeclarationName::CXXConstructorName:
case DeclarationName::CXXDestructorName:
case DeclarationName::CXXConversionFunctionName:
if (TypeSourceInfo *TSInfo = NameInfo.getNamedTypeInfo())
TRY_TO(TraverseTypeLoc(TSInfo->getTypeLoc()));
break;
case DeclarationName::CXXDeductionGuideName:
TRY_TO(TraverseTemplateName(
TemplateName(NameInfo.getName().getCXXDeductionGuideTemplate())));
break;
case DeclarationName::Identifier:
case DeclarationName::ObjCZeroArgSelector:
case DeclarationName::ObjCOneArgSelector:
case DeclarationName::ObjCMultiArgSelector:
case DeclarationName::CXXOperatorName:
case DeclarationName::CXXLiteralOperatorName:
case DeclarationName::CXXUsingDirective:
break;
}
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseTemplateName(TemplateName Template) {
if (DependentTemplateName *DTN = Template.getAsDependentTemplateName())
TRY_TO(TraverseNestedNameSpecifier(DTN->getQualifier()));
else if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
TRY_TO(TraverseNestedNameSpecifier(QTN->getQualifier()));
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseTemplateArgument(
const TemplateArgument &Arg) {
switch (Arg.getKind()) {
case TemplateArgument::Null:
case TemplateArgument::Declaration:
case TemplateArgument::Integral:
case TemplateArgument::NullPtr:
return true;
case TemplateArgument::Type:
return getDerived().TraverseType(Arg.getAsType());
case TemplateArgument::Template:
case TemplateArgument::TemplateExpansion:
return getDerived().TraverseTemplateName(
Arg.getAsTemplateOrTemplatePattern());
case TemplateArgument::Expression:
return getDerived().TraverseStmt(Arg.getAsExpr());
case TemplateArgument::Pack:
return getDerived().TraverseTemplateArguments(Arg.pack_begin(),
Arg.pack_size());
}
return true;
}
// FIXME: no template name location?
// FIXME: no source locations for a template argument pack?
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseTemplateArgumentLoc(
const TemplateArgumentLoc &ArgLoc) {
const TemplateArgument &Arg = ArgLoc.getArgument();
switch (Arg.getKind()) {
case TemplateArgument::Null:
case TemplateArgument::Declaration:
case TemplateArgument::Integral:
case TemplateArgument::NullPtr:
return true;
case TemplateArgument::Type: {
// FIXME: how can TSI ever be NULL?
if (TypeSourceInfo *TSI = ArgLoc.getTypeSourceInfo())
return getDerived().TraverseTypeLoc(TSI->getTypeLoc());
else
return getDerived().TraverseType(Arg.getAsType());
}
case TemplateArgument::Template:
case TemplateArgument::TemplateExpansion:
if (ArgLoc.getTemplateQualifierLoc())
TRY_TO(getDerived().TraverseNestedNameSpecifierLoc(
ArgLoc.getTemplateQualifierLoc()));
return getDerived().TraverseTemplateName(
Arg.getAsTemplateOrTemplatePattern());
case TemplateArgument::Expression:
return getDerived().TraverseStmt(ArgLoc.getSourceExpression());
case TemplateArgument::Pack:
return getDerived().TraverseTemplateArguments(Arg.pack_begin(),
Arg.pack_size());
}
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseTemplateArguments(
const TemplateArgument *Args, unsigned NumArgs) {
for (unsigned I = 0; I != NumArgs; ++I) {
TRY_TO(TraverseTemplateArgument(Args[I]));
}
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseConstructorInitializer(
CXXCtorInitializer *Init) {
if (TypeSourceInfo *TInfo = Init->getTypeSourceInfo())
TRY_TO(TraverseTypeLoc(TInfo->getTypeLoc()));
if (Init->isWritten() || getDerived().shouldVisitImplicitCode())
TRY_TO(TraverseStmt(Init->getInit()));
return true;
}
template <typename Derived>
bool
RecursiveASTVisitor<Derived>::TraverseLambdaCapture(LambdaExpr *LE,
const LambdaCapture *C,
Expr *Init) {
if (LE->isInitCapture(C))
TRY_TO(TraverseDecl(C->getCapturedVar()));
else
TRY_TO(TraverseStmt(Init));
return true;
}
// ----------------- Type traversal -----------------
// This macro makes available a variable T, the passed-in type.
#define DEF_TRAVERSE_TYPE(TYPE, CODE) \
template <typename Derived> \
bool RecursiveASTVisitor<Derived>::Traverse##TYPE(TYPE *T) { \
if (!getDerived().shouldTraversePostOrder()) \
TRY_TO(WalkUpFrom##TYPE(T)); \
{ CODE; } \
if (getDerived().shouldTraversePostOrder()) \
TRY_TO(WalkUpFrom##TYPE(T)); \
return true; \
}
DEF_TRAVERSE_TYPE(BuiltinType, {})
DEF_TRAVERSE_TYPE(ComplexType, { TRY_TO(TraverseType(T->getElementType())); })
DEF_TRAVERSE_TYPE(PointerType, { TRY_TO(TraverseType(T->getPointeeType())); })
DEF_TRAVERSE_TYPE(BlockPointerType,
{ TRY_TO(TraverseType(T->getPointeeType())); })
DEF_TRAVERSE_TYPE(LValueReferenceType,
{ TRY_TO(TraverseType(T->getPointeeType())); })
DEF_TRAVERSE_TYPE(RValueReferenceType,
{ TRY_TO(TraverseType(T->getPointeeType())); })
DEF_TRAVERSE_TYPE(MemberPointerType, {
TRY_TO(TraverseType(QualType(T->getClass(), 0)));
TRY_TO(TraverseType(T->getPointeeType()));
})
DEF_TRAVERSE_TYPE(AdjustedType, { TRY_TO(TraverseType(T->getOriginalType())); })
DEF_TRAVERSE_TYPE(DecayedType, { TRY_TO(TraverseType(T->getOriginalType())); })
DEF_TRAVERSE_TYPE(ConstantArrayType,
{ TRY_TO(TraverseType(T->getElementType())); })
DEF_TRAVERSE_TYPE(IncompleteArrayType,
{ TRY_TO(TraverseType(T->getElementType())); })
DEF_TRAVERSE_TYPE(VariableArrayType, {
TRY_TO(TraverseType(T->getElementType()));
TRY_TO(TraverseStmt(T->getSizeExpr()));
})
DEF_TRAVERSE_TYPE(DependentSizedArrayType, {
TRY_TO(TraverseType(T->getElementType()));
if (T->getSizeExpr())
TRY_TO(TraverseStmt(T->getSizeExpr()));
})
DEF_TRAVERSE_TYPE(DependentAddressSpaceType, {
TRY_TO(TraverseStmt(T->getAddrSpaceExpr()));
TRY_TO(TraverseType(T->getPointeeType()));
})
DEF_TRAVERSE_TYPE(DependentVectorType, {
if (T->getSizeExpr())
TRY_TO(TraverseStmt(T->getSizeExpr()));
TRY_TO(TraverseType(T->getElementType()));
})
DEF_TRAVERSE_TYPE(DependentSizedExtVectorType, {
if (T->getSizeExpr())
TRY_TO(TraverseStmt(T->getSizeExpr()));
TRY_TO(TraverseType(T->getElementType()));
})
DEF_TRAVERSE_TYPE(VectorType, { TRY_TO(TraverseType(T->getElementType())); })
DEF_TRAVERSE_TYPE(ExtVectorType, { TRY_TO(TraverseType(T->getElementType())); })
DEF_TRAVERSE_TYPE(FunctionNoProtoType,
{ TRY_TO(TraverseType(T->getReturnType())); })
DEF_TRAVERSE_TYPE(FunctionProtoType, {
TRY_TO(TraverseType(T->getReturnType()));
for (const auto &A : T->param_types()) {
TRY_TO(TraverseType(A));
}
for (const auto &E : T->exceptions()) {
TRY_TO(TraverseType(E));
}
if (Expr *NE = T->getNoexceptExpr())
TRY_TO(TraverseStmt(NE));
})
DEF_TRAVERSE_TYPE(UnresolvedUsingType, {})
DEF_TRAVERSE_TYPE(TypedefType, {})
DEF_TRAVERSE_TYPE(TypeOfExprType,
{ TRY_TO(TraverseStmt(T->getUnderlyingExpr())); })
DEF_TRAVERSE_TYPE(TypeOfType, { TRY_TO(TraverseType(T->getUnderlyingType())); })
DEF_TRAVERSE_TYPE(DecltypeType,
{ TRY_TO(TraverseStmt(T->getUnderlyingExpr())); })
DEF_TRAVERSE_TYPE(UnaryTransformType, {
TRY_TO(TraverseType(T->getBaseType()));
TRY_TO(TraverseType(T->getUnderlyingType()));
})
DEF_TRAVERSE_TYPE(AutoType, { TRY_TO(TraverseType(T->getDeducedType())); })
DEF_TRAVERSE_TYPE(DeducedTemplateSpecializationType, {
TRY_TO(TraverseTemplateName(T->getTemplateName()));
TRY_TO(TraverseType(T->getDeducedType()));
})
DEF_TRAVERSE_TYPE(RecordType, {})
DEF_TRAVERSE_TYPE(EnumType, {})
DEF_TRAVERSE_TYPE(TemplateTypeParmType, {})
DEF_TRAVERSE_TYPE(SubstTemplateTypeParmType, {
TRY_TO(TraverseType(T->getReplacementType()));
})
DEF_TRAVERSE_TYPE(SubstTemplateTypeParmPackType, {
TRY_TO(TraverseTemplateArgument(T->getArgumentPack()));
})
DEF_TRAVERSE_TYPE(TemplateSpecializationType, {
TRY_TO(TraverseTemplateName(T->getTemplateName()));
TRY_TO(TraverseTemplateArguments(T->getArgs(), T->getNumArgs()));
})
DEF_TRAVERSE_TYPE(InjectedClassNameType, {})
DEF_TRAVERSE_TYPE(AttributedType,
{ TRY_TO(TraverseType(T->getModifiedType())); })
DEF_TRAVERSE_TYPE(ParenType, { TRY_TO(TraverseType(T->getInnerType())); })
DEF_TRAVERSE_TYPE(MacroQualifiedType,
{ TRY_TO(TraverseType(T->getUnderlyingType())); })
DEF_TRAVERSE_TYPE(ElaboratedType, {
if (T->getQualifier()) {
TRY_TO(TraverseNestedNameSpecifier(T->getQualifier()));
}
TRY_TO(TraverseType(T->getNamedType()));
})
DEF_TRAVERSE_TYPE(DependentNameType,
{ TRY_TO(TraverseNestedNameSpecifier(T->getQualifier())); })
DEF_TRAVERSE_TYPE(DependentTemplateSpecializationType, {
TRY_TO(TraverseNestedNameSpecifier(T->getQualifier()));
TRY_TO(TraverseTemplateArguments(T->getArgs(), T->getNumArgs()));
})
DEF_TRAVERSE_TYPE(PackExpansionType, { TRY_TO(TraverseType(T->getPattern())); })
DEF_TRAVERSE_TYPE(ObjCTypeParamType, {})
DEF_TRAVERSE_TYPE(ObjCInterfaceType, {})
DEF_TRAVERSE_TYPE(ObjCObjectType, {
// We have to watch out here because an ObjCInterfaceType's base
// type is itself.
if (T->getBaseType().getTypePtr() != T)
TRY_TO(TraverseType(T->getBaseType()));
for (auto typeArg : T->getTypeArgsAsWritten()) {
TRY_TO(TraverseType(typeArg));
}
})
DEF_TRAVERSE_TYPE(ObjCObjectPointerType,
{ TRY_TO(TraverseType(T->getPointeeType())); })
DEF_TRAVERSE_TYPE(AtomicType, { TRY_TO(TraverseType(T->getValueType())); })
DEF_TRAVERSE_TYPE(PipeType, { TRY_TO(TraverseType(T->getElementType())); })
#undef DEF_TRAVERSE_TYPE
// ----------------- TypeLoc traversal -----------------
// This macro makes available a variable TL, the passed-in TypeLoc.
// If requested, it calls WalkUpFrom* for the Type in the given TypeLoc,
// in addition to WalkUpFrom* for the TypeLoc itself, such that existing
// clients that override the WalkUpFrom*Type() and/or Visit*Type() methods
// continue to work.
#define DEF_TRAVERSE_TYPELOC(TYPE, CODE) \
template <typename Derived> \
bool RecursiveASTVisitor<Derived>::Traverse##TYPE##Loc(TYPE##Loc TL) { \
if (getDerived().shouldWalkTypesOfTypeLocs()) \
TRY_TO(WalkUpFrom##TYPE(const_cast<TYPE *>(TL.getTypePtr()))); \
TRY_TO(WalkUpFrom##TYPE##Loc(TL)); \
{ CODE; } \
return true; \
}
template <typename Derived>
bool
RecursiveASTVisitor<Derived>::TraverseQualifiedTypeLoc(QualifiedTypeLoc TL) {
// Move this over to the 'main' typeloc tree. Note that this is a
// move -- we pretend that we were really looking at the unqualified
// typeloc all along -- rather than a recursion, so we don't follow
// the normal CRTP plan of going through
// getDerived().TraverseTypeLoc. If we did, we'd be traversing
// twice for the same type (once as a QualifiedTypeLoc version of
// the type, once as an UnqualifiedTypeLoc version of the type),
// which in effect means we'd call VisitTypeLoc twice with the
// 'same' type. This solves that problem, at the cost of never
// seeing the qualified version of the type (unless the client
// subclasses TraverseQualifiedTypeLoc themselves). It's not a
// perfect solution. A perfect solution probably requires making
// QualifiedTypeLoc a wrapper around TypeLoc -- like QualType is a
// wrapper around Type* -- rather than being its own class in the
// type hierarchy.
return TraverseTypeLoc(TL.getUnqualifiedLoc());
}
DEF_TRAVERSE_TYPELOC(BuiltinType, {})
// FIXME: ComplexTypeLoc is unfinished
DEF_TRAVERSE_TYPELOC(ComplexType, {
TRY_TO(TraverseType(TL.getTypePtr()->getElementType()));
})
DEF_TRAVERSE_TYPELOC(PointerType,
{ TRY_TO(TraverseTypeLoc(TL.getPointeeLoc())); })
DEF_TRAVERSE_TYPELOC(BlockPointerType,
{ TRY_TO(TraverseTypeLoc(TL.getPointeeLoc())); })
DEF_TRAVERSE_TYPELOC(LValueReferenceType,
{ TRY_TO(TraverseTypeLoc(TL.getPointeeLoc())); })
DEF_TRAVERSE_TYPELOC(RValueReferenceType,
{ TRY_TO(TraverseTypeLoc(TL.getPointeeLoc())); })
// FIXME: location of base class?
// We traverse this in the type case as well, but how is it not reached through
// the pointee type?
DEF_TRAVERSE_TYPELOC(MemberPointerType, {
TRY_TO(TraverseType(QualType(TL.getTypePtr()->getClass(), 0)));
TRY_TO(TraverseTypeLoc(TL.getPointeeLoc()));
})
DEF_TRAVERSE_TYPELOC(AdjustedType,
{ TRY_TO(TraverseTypeLoc(TL.getOriginalLoc())); })
DEF_TRAVERSE_TYPELOC(DecayedType,
{ TRY_TO(TraverseTypeLoc(TL.getOriginalLoc())); })
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseArrayTypeLocHelper(ArrayTypeLoc TL) {
// This isn't available for ArrayType, but is for the ArrayTypeLoc.
TRY_TO(TraverseStmt(TL.getSizeExpr()));
return true;
}
DEF_TRAVERSE_TYPELOC(ConstantArrayType, {
TRY_TO(TraverseTypeLoc(TL.getElementLoc()));
return TraverseArrayTypeLocHelper(TL);
})
DEF_TRAVERSE_TYPELOC(IncompleteArrayType, {
TRY_TO(TraverseTypeLoc(TL.getElementLoc()));
return TraverseArrayTypeLocHelper(TL);
})
DEF_TRAVERSE_TYPELOC(VariableArrayType, {
TRY_TO(TraverseTypeLoc(TL.getElementLoc()));
return TraverseArrayTypeLocHelper(TL);
})
DEF_TRAVERSE_TYPELOC(DependentSizedArrayType, {
TRY_TO(TraverseTypeLoc(TL.getElementLoc()));
return TraverseArrayTypeLocHelper(TL);
})
DEF_TRAVERSE_TYPELOC(DependentAddressSpaceType, {
TRY_TO(TraverseStmt(TL.getTypePtr()->getAddrSpaceExpr()));
TRY_TO(TraverseType(TL.getTypePtr()->getPointeeType()));
})
// FIXME: order? why not size expr first?
// FIXME: base VectorTypeLoc is unfinished
DEF_TRAVERSE_TYPELOC(DependentSizedExtVectorType, {
if (TL.getTypePtr()->getSizeExpr())
TRY_TO(TraverseStmt(TL.getTypePtr()->getSizeExpr()));
TRY_TO(TraverseType(TL.getTypePtr()->getElementType()));
})
// FIXME: VectorTypeLoc is unfinished
DEF_TRAVERSE_TYPELOC(VectorType, {
TRY_TO(TraverseType(TL.getTypePtr()->getElementType()));
})
DEF_TRAVERSE_TYPELOC(DependentVectorType, {
if (TL.getTypePtr()->getSizeExpr())
TRY_TO(TraverseStmt(TL.getTypePtr()->getSizeExpr()));
TRY_TO(TraverseType(TL.getTypePtr()->getElementType()));
})
// FIXME: size and attributes
// FIXME: base VectorTypeLoc is unfinished
DEF_TRAVERSE_TYPELOC(ExtVectorType, {
TRY_TO(TraverseType(TL.getTypePtr()->getElementType()));
})
DEF_TRAVERSE_TYPELOC(FunctionNoProtoType,
{ TRY_TO(TraverseTypeLoc(TL.getReturnLoc())); })
// FIXME: location of exception specifications (attributes?)
DEF_TRAVERSE_TYPELOC(FunctionProtoType, {
TRY_TO(TraverseTypeLoc(TL.getReturnLoc()));
const FunctionProtoType *T = TL.getTypePtr();
for (unsigned I = 0, E = TL.getNumParams(); I != E; ++I) {
if (TL.getParam(I)) {
TRY_TO(TraverseDecl(TL.getParam(I)));
} else if (I < T->getNumParams()) {
TRY_TO(TraverseType(T->getParamType(I)));
}
}
for (const auto &E : T->exceptions()) {
TRY_TO(TraverseType(E));
}
if (Expr *NE = T->getNoexceptExpr())
TRY_TO(TraverseStmt(NE));
})
DEF_TRAVERSE_TYPELOC(UnresolvedUsingType, {})
DEF_TRAVERSE_TYPELOC(TypedefType, {})
DEF_TRAVERSE_TYPELOC(TypeOfExprType,
{ TRY_TO(TraverseStmt(TL.getUnderlyingExpr())); })
DEF_TRAVERSE_TYPELOC(TypeOfType, {
TRY_TO(TraverseTypeLoc(TL.getUnderlyingTInfo()->getTypeLoc()));
})
// FIXME: location of underlying expr
DEF_TRAVERSE_TYPELOC(DecltypeType, {
TRY_TO(TraverseStmt(TL.getTypePtr()->getUnderlyingExpr()));
})
DEF_TRAVERSE_TYPELOC(UnaryTransformType, {
TRY_TO(TraverseTypeLoc(TL.getUnderlyingTInfo()->getTypeLoc()));
})
DEF_TRAVERSE_TYPELOC(AutoType, {
TRY_TO(TraverseType(TL.getTypePtr()->getDeducedType()));
})
DEF_TRAVERSE_TYPELOC(DeducedTemplateSpecializationType, {
TRY_TO(TraverseTemplateName(TL.getTypePtr()->getTemplateName()));
TRY_TO(TraverseType(TL.getTypePtr()->getDeducedType()));
})
DEF_TRAVERSE_TYPELOC(RecordType, {})
DEF_TRAVERSE_TYPELOC(EnumType, {})
DEF_TRAVERSE_TYPELOC(TemplateTypeParmType, {})
DEF_TRAVERSE_TYPELOC(SubstTemplateTypeParmType, {
TRY_TO(TraverseType(TL.getTypePtr()->getReplacementType()));
})
DEF_TRAVERSE_TYPELOC(SubstTemplateTypeParmPackType, {
TRY_TO(TraverseTemplateArgument(TL.getTypePtr()->getArgumentPack()));
})
// FIXME: use the loc for the template name?
DEF_TRAVERSE_TYPELOC(TemplateSpecializationType, {
TRY_TO(TraverseTemplateName(TL.getTypePtr()->getTemplateName()));
for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
TRY_TO(TraverseTemplateArgumentLoc(TL.getArgLoc(I)));
}
})
DEF_TRAVERSE_TYPELOC(InjectedClassNameType, {})
DEF_TRAVERSE_TYPELOC(ParenType, { TRY_TO(TraverseTypeLoc(TL.getInnerLoc())); })
DEF_TRAVERSE_TYPELOC(MacroQualifiedType,
{ TRY_TO(TraverseTypeLoc(TL.getInnerLoc())); })
DEF_TRAVERSE_TYPELOC(AttributedType,
{ TRY_TO(TraverseTypeLoc(TL.getModifiedLoc())); })
DEF_TRAVERSE_TYPELOC(ElaboratedType, {
if (TL.getQualifierLoc()) {
TRY_TO(TraverseNestedNameSpecifierLoc(TL.getQualifierLoc()));
}
TRY_TO(TraverseTypeLoc(TL.getNamedTypeLoc()));
})
DEF_TRAVERSE_TYPELOC(DependentNameType, {
TRY_TO(TraverseNestedNameSpecifierLoc(TL.getQualifierLoc()));
})
DEF_TRAVERSE_TYPELOC(DependentTemplateSpecializationType, {
if (TL.getQualifierLoc()) {
TRY_TO(TraverseNestedNameSpecifierLoc(TL.getQualifierLoc()));
}
for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
TRY_TO(TraverseTemplateArgumentLoc(TL.getArgLoc(I)));
}
})
DEF_TRAVERSE_TYPELOC(PackExpansionType,
{ TRY_TO(TraverseTypeLoc(TL.getPatternLoc())); })
DEF_TRAVERSE_TYPELOC(ObjCTypeParamType, {})
DEF_TRAVERSE_TYPELOC(ObjCInterfaceType, {})
DEF_TRAVERSE_TYPELOC(ObjCObjectType, {
// We have to watch out here because an ObjCInterfaceType's base
// type is itself.
if (TL.getTypePtr()->getBaseType().getTypePtr() != TL.getTypePtr())
TRY_TO(TraverseTypeLoc(TL.getBaseLoc()));
for (unsigned i = 0, n = TL.getNumTypeArgs(); i != n; ++i)
TRY_TO(TraverseTypeLoc(TL.getTypeArgTInfo(i)->getTypeLoc()));
})
DEF_TRAVERSE_TYPELOC(ObjCObjectPointerType,
{ TRY_TO(TraverseTypeLoc(TL.getPointeeLoc())); })
DEF_TRAVERSE_TYPELOC(AtomicType, { TRY_TO(TraverseTypeLoc(TL.getValueLoc())); })
DEF_TRAVERSE_TYPELOC(PipeType, { TRY_TO(TraverseTypeLoc(TL.getValueLoc())); })
#undef DEF_TRAVERSE_TYPELOC
// ----------------- Decl traversal -----------------
//
// For a Decl, we automate (in the DEF_TRAVERSE_DECL macro) traversing
// the children that come from the DeclContext associated with it.
// Therefore each Traverse* only needs to worry about children other
// than those.
template <typename Derived>
bool RecursiveASTVisitor<Derived>::canIgnoreChildDeclWhileTraversingDeclContext(
const Decl *Child) {
// BlockDecls are traversed through BlockExprs,
// CapturedDecls are traversed through CapturedStmts.
if (isa<BlockDecl>(Child) || isa<CapturedDecl>(Child))
return true;
// Lambda classes are traversed through LambdaExprs.
if (const CXXRecordDecl* Cls = dyn_cast<CXXRecordDecl>(Child))
return Cls->isLambda();
return false;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseDeclContextHelper(DeclContext *DC) {
if (!DC)
return true;
for (auto *Child : DC->decls()) {
if (!canIgnoreChildDeclWhileTraversingDeclContext(Child))
TRY_TO(TraverseDecl(Child));
}
return true;
}
// This macro makes available a variable D, the passed-in decl.
#define DEF_TRAVERSE_DECL(DECL, CODE) \
template <typename Derived> \
bool RecursiveASTVisitor<Derived>::Traverse##DECL(DECL *D) { \
bool ShouldVisitChildren = true; \
bool ReturnValue = true; \
if (!getDerived().shouldTraversePostOrder()) \
TRY_TO(WalkUpFrom##DECL(D)); \
{ CODE; } \
if (ReturnValue && ShouldVisitChildren) \
TRY_TO(TraverseDeclContextHelper(dyn_cast<DeclContext>(D))); \
if (ReturnValue && getDerived().shouldTraversePostOrder()) \
TRY_TO(WalkUpFrom##DECL(D)); \
return ReturnValue; \
}
DEF_TRAVERSE_DECL(AccessSpecDecl, {})
DEF_TRAVERSE_DECL(BlockDecl, {
if (TypeSourceInfo *TInfo = D->getSignatureAsWritten())
TRY_TO(TraverseTypeLoc(TInfo->getTypeLoc()));
TRY_TO(TraverseStmt(D->getBody()));
for (const auto &I : D->captures()) {
if (I.hasCopyExpr()) {
TRY_TO(TraverseStmt(I.getCopyExpr()));
}
}
ShouldVisitChildren = false;
})
DEF_TRAVERSE_DECL(CapturedDecl, {
TRY_TO(TraverseStmt(D->getBody()));
ShouldVisitChildren = false;
})
DEF_TRAVERSE_DECL(EmptyDecl, {})
DEF_TRAVERSE_DECL(FileScopeAsmDecl,
{ TRY_TO(TraverseStmt(D->getAsmString())); })
DEF_TRAVERSE_DECL(ImportDecl, {})
DEF_TRAVERSE_DECL(FriendDecl, {
// Friend is either decl or a type.
if (D->getFriendType())
TRY_TO(TraverseTypeLoc(D->getFriendType()->getTypeLoc()));
else
TRY_TO(TraverseDecl(D->getFriendDecl()));
})
DEF_TRAVERSE_DECL(FriendTemplateDecl, {
if (D->getFriendType())
TRY_TO(TraverseTypeLoc(D->getFriendType()->getTypeLoc()));
else
TRY_TO(TraverseDecl(D->getFriendDecl()));
for (unsigned I = 0, E = D->getNumTemplateParameters(); I < E; ++I) {
TemplateParameterList *TPL = D->getTemplateParameterList(I);
for (TemplateParameterList::iterator ITPL = TPL->begin(), ETPL = TPL->end();
ITPL != ETPL; ++ITPL) {
TRY_TO(TraverseDecl(*ITPL));
}
}
})
DEF_TRAVERSE_DECL(ClassScopeFunctionSpecializationDecl, {
TRY_TO(TraverseDecl(D->getSpecialization()));
if (D->hasExplicitTemplateArgs()) {
TRY_TO(TraverseTemplateArgumentLocsHelper(
D->getTemplateArgsAsWritten()->getTemplateArgs(),
D->getTemplateArgsAsWritten()->NumTemplateArgs));
}
})
DEF_TRAVERSE_DECL(LinkageSpecDecl, {})
DEF_TRAVERSE_DECL(ExportDecl, {})
DEF_TRAVERSE_DECL(ObjCPropertyImplDecl, {// FIXME: implement this
})
DEF_TRAVERSE_DECL(StaticAssertDecl, {
TRY_TO(TraverseStmt(D->getAssertExpr()));
TRY_TO(TraverseStmt(D->getMessage()));
})
DEF_TRAVERSE_DECL(
TranslationUnitDecl,
{// Code in an unnamed namespace shows up automatically in
// decls_begin()/decls_end(). Thus we don't need to recurse on
// D->getAnonymousNamespace().
})
DEF_TRAVERSE_DECL(PragmaCommentDecl, {})
DEF_TRAVERSE_DECL(PragmaDetectMismatchDecl, {})
DEF_TRAVERSE_DECL(ExternCContextDecl, {})
DEF_TRAVERSE_DECL(NamespaceAliasDecl, {
TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc()));
// We shouldn't traverse an aliased namespace, since it will be
// defined (and, therefore, traversed) somewhere else.
ShouldVisitChildren = false;
})
DEF_TRAVERSE_DECL(LabelDecl, {// There is no code in a LabelDecl.
})
DEF_TRAVERSE_DECL(
NamespaceDecl,
{// Code in an unnamed namespace shows up automatically in
// decls_begin()/decls_end(). Thus we don't need to recurse on
// D->getAnonymousNamespace().
})
DEF_TRAVERSE_DECL(ObjCCompatibleAliasDecl, {// FIXME: implement
})
DEF_TRAVERSE_DECL(ObjCCategoryDecl, {// FIXME: implement
if (ObjCTypeParamList *typeParamList = D->getTypeParamList()) {
for (auto typeParam : *typeParamList) {
TRY_TO(TraverseObjCTypeParamDecl(typeParam));
}
}
})
DEF_TRAVERSE_DECL(ObjCCategoryImplDecl, {// FIXME: implement
})
DEF_TRAVERSE_DECL(ObjCImplementationDecl, {// FIXME: implement
})
DEF_TRAVERSE_DECL(ObjCInterfaceDecl, {// FIXME: implement
if (ObjCTypeParamList *typeParamList = D->getTypeParamListAsWritten()) {
for (auto typeParam : *typeParamList) {
TRY_TO(TraverseObjCTypeParamDecl(typeParam));
}
}
if (TypeSourceInfo *superTInfo = D->getSuperClassTInfo()) {
TRY_TO(TraverseTypeLoc(superTInfo->getTypeLoc()));
}
})
DEF_TRAVERSE_DECL(ObjCProtocolDecl, {// FIXME: implement
})
DEF_TRAVERSE_DECL(ObjCMethodDecl, {
if (D->getReturnTypeSourceInfo()) {
TRY_TO(TraverseTypeLoc(D->getReturnTypeSourceInfo()->getTypeLoc()));
}
for (ParmVarDecl *Parameter : D->parameters()) {
TRY_TO(TraverseDecl(Parameter));
}
if (D->isThisDeclarationADefinition()) {
TRY_TO(TraverseStmt(D->getBody()));
}
ShouldVisitChildren = false;
})
DEF_TRAVERSE_DECL(ObjCTypeParamDecl, {
if (D->hasExplicitBound()) {
TRY_TO(TraverseTypeLoc(D->getTypeSourceInfo()->getTypeLoc()));
// We shouldn't traverse D->getTypeForDecl(); it's a result of
// declaring the type alias, not something that was written in the
// source.
}
})
DEF_TRAVERSE_DECL(ObjCPropertyDecl, {
if (D->getTypeSourceInfo())
TRY_TO(TraverseTypeLoc(D->getTypeSourceInfo()->getTypeLoc()));
else
TRY_TO(TraverseType(D->getType()));
ShouldVisitChildren = false;
})
DEF_TRAVERSE_DECL(UsingDecl, {
TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc()));
TRY_TO(TraverseDeclarationNameInfo(D->getNameInfo()));
})
DEF_TRAVERSE_DECL(UsingPackDecl, {})
DEF_TRAVERSE_DECL(UsingDirectiveDecl, {
TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc()));
})
DEF_TRAVERSE_DECL(UsingShadowDecl, {})
DEF_TRAVERSE_DECL(ConstructorUsingShadowDecl, {})
DEF_TRAVERSE_DECL(OMPThreadPrivateDecl, {
for (auto *I : D->varlists()) {
TRY_TO(TraverseStmt(I));
}
})
DEF_TRAVERSE_DECL(OMPRequiresDecl, {
for (auto *C : D->clauselists()) {
TRY_TO(TraverseOMPClause(C));
}
})
DEF_TRAVERSE_DECL(OMPDeclareReductionDecl, {
TRY_TO(TraverseStmt(D->getCombiner()));
if (auto *Initializer = D->getInitializer())
TRY_TO(TraverseStmt(Initializer));
TRY_TO(TraverseType(D->getType()));
return true;
})
DEF_TRAVERSE_DECL(OMPDeclareMapperDecl, {
for (auto *C : D->clauselists())
TRY_TO(TraverseOMPClause(C));
TRY_TO(TraverseType(D->getType()));
return true;
})
DEF_TRAVERSE_DECL(OMPCapturedExprDecl, { TRY_TO(TraverseVarHelper(D)); })
DEF_TRAVERSE_DECL(OMPAllocateDecl, {
for (auto *I : D->varlists())
TRY_TO(TraverseStmt(I));
for (auto *C : D->clauselists())
TRY_TO(TraverseOMPClause(C));
})
// A helper method for TemplateDecl's children.
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseTemplateParameterListHelper(
TemplateParameterList *TPL) {
if (TPL) {
for (TemplateParameterList::iterator I = TPL->begin(), E = TPL->end();
I != E; ++I) {
TRY_TO(TraverseDecl(*I));
}
}
return true;
}
template <typename Derived>
template <typename T>
bool RecursiveASTVisitor<Derived>::TraverseDeclTemplateParameterLists(T *D) {
for (unsigned i = 0; i < D->getNumTemplateParameterLists(); i++) {
TemplateParameterList *TPL = D->getTemplateParameterList(i);
TraverseTemplateParameterListHelper(TPL);
}
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseTemplateInstantiations(
ClassTemplateDecl *D) {
for (auto *SD : D->specializations()) {
for (auto *RD : SD->redecls()) {
// We don't want to visit injected-class-names in this traversal.
if (cast<CXXRecordDecl>(RD)->isInjectedClassName())
continue;
switch (
cast<ClassTemplateSpecializationDecl>(RD)->getSpecializationKind()) {
// Visit the implicit instantiations with the requested pattern.
case TSK_Undeclared:
case TSK_ImplicitInstantiation:
TRY_TO(TraverseDecl(RD));
break;
// We don't need to do anything on an explicit instantiation
// or explicit specialization because there will be an explicit
// node for it elsewhere.
case TSK_ExplicitInstantiationDeclaration:
case TSK_ExplicitInstantiationDefinition:
case TSK_ExplicitSpecialization:
break;
}
}
}
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseTemplateInstantiations(
VarTemplateDecl *D) {
for (auto *SD : D->specializations()) {
for (auto *RD : SD->redecls()) {
switch (
cast<VarTemplateSpecializationDecl>(RD)->getSpecializationKind()) {
case TSK_Undeclared:
case TSK_ImplicitInstantiation:
TRY_TO(TraverseDecl(RD));
break;
case TSK_ExplicitInstantiationDeclaration:
case TSK_ExplicitInstantiationDefinition:
case TSK_ExplicitSpecialization:
break;
}
}
}
return true;
}
// A helper method for traversing the instantiations of a
// function while skipping its specializations.
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseTemplateInstantiations(
FunctionTemplateDecl *D) {
for (auto *FD : D->specializations()) {
for (auto *RD : FD->redecls()) {
switch (RD->getTemplateSpecializationKind()) {
case TSK_Undeclared:
case TSK_ImplicitInstantiation:
// We don't know what kind of FunctionDecl this is.
TRY_TO(TraverseDecl(RD));
break;
// FIXME: For now traverse explicit instantiations here. Change that
// once they are represented as dedicated nodes in the AST.
case TSK_ExplicitInstantiationDeclaration:
case TSK_ExplicitInstantiationDefinition:
TRY_TO(TraverseDecl(RD));
break;
case TSK_ExplicitSpecialization:
break;
}
}
}
return true;
}
// This macro unifies the traversal of class, variable and function
// template declarations.
#define DEF_TRAVERSE_TMPL_DECL(TMPLDECLKIND) \
DEF_TRAVERSE_DECL(TMPLDECLKIND##TemplateDecl, { \
TRY_TO(TraverseTemplateParameterListHelper(D->getTemplateParameters())); \
TRY_TO(TraverseDecl(D->getTemplatedDecl())); \
\
/* By default, we do not traverse the instantiations of \
class templates since they do not appear in the user code. The \
following code optionally traverses them. \
\
We only traverse the class instantiations when we see the canonical \
declaration of the template, to ensure we only visit them once. */ \
if (getDerived().shouldVisitTemplateInstantiations() && \
D == D->getCanonicalDecl()) \
TRY_TO(TraverseTemplateInstantiations(D)); \
\
/* Note that getInstantiatedFromMemberTemplate() is just a link \
from a template instantiation back to the template from which \
it was instantiated, and thus should not be traversed. */ \
})
DEF_TRAVERSE_TMPL_DECL(Class)
DEF_TRAVERSE_TMPL_DECL(Var)
DEF_TRAVERSE_TMPL_DECL(Function)
DEF_TRAVERSE_DECL(TemplateTemplateParmDecl, {
// D is the "T" in something like
// template <template <typename> class T> class container { };
TRY_TO(TraverseDecl(D->getTemplatedDecl()));
if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited()) {
TRY_TO(TraverseTemplateArgumentLoc(D->getDefaultArgument()));
}
TRY_TO(TraverseTemplateParameterListHelper(D->getTemplateParameters()));
})
DEF_TRAVERSE_DECL(BuiltinTemplateDecl, {
TRY_TO(TraverseTemplateParameterListHelper(D->getTemplateParameters()));
})
DEF_TRAVERSE_DECL(TemplateTypeParmDecl, {
// D is the "T" in something like "template<typename T> class vector;"
if (D->getTypeForDecl())
TRY_TO(TraverseType(QualType(D->getTypeForDecl(), 0)));
if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited())
TRY_TO(TraverseTypeLoc(D->getDefaultArgumentInfo()->getTypeLoc()));
})
DEF_TRAVERSE_DECL(TypedefDecl, {
TRY_TO(TraverseTypeLoc(D->getTypeSourceInfo()->getTypeLoc()));
// We shouldn't traverse D->getTypeForDecl(); it's a result of
// declaring the typedef, not something that was written in the
// source.
})
DEF_TRAVERSE_DECL(TypeAliasDecl, {
TRY_TO(TraverseTypeLoc(D->getTypeSourceInfo()->getTypeLoc()));
// We shouldn't traverse D->getTypeForDecl(); it's a result of
// declaring the type alias, not something that was written in the
// source.
})
DEF_TRAVERSE_DECL(TypeAliasTemplateDecl, {
TRY_TO(TraverseDecl(D->getTemplatedDecl()));
TRY_TO(TraverseTemplateParameterListHelper(D->getTemplateParameters()));
})
+DEF_TRAVERSE_DECL(ConceptDecl, {
+ TRY_TO(TraverseTemplateParameterListHelper(D->getTemplateParameters()));
+ TRY_TO(TraverseStmt(D->getConstraintExpr()));
+})
+
DEF_TRAVERSE_DECL(UnresolvedUsingTypenameDecl, {
// A dependent using declaration which was marked with 'typename'.
// template<class T> class A : public B<T> { using typename B<T>::foo; };
TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc()));
// We shouldn't traverse D->getTypeForDecl(); it's a result of
// declaring the type, not something that was written in the
// source.
})
DEF_TRAVERSE_DECL(EnumDecl, {
TRY_TO(TraverseDeclTemplateParameterLists(D));
if (D->getTypeForDecl())
TRY_TO(TraverseType(QualType(D->getTypeForDecl(), 0)));
TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc()));
// The enumerators are already traversed by
// decls_begin()/decls_end().
})
// Helper methods for RecordDecl and its children.
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseRecordHelper(RecordDecl *D) {
// We shouldn't traverse D->getTypeForDecl(); it's a result of
// declaring the type, not something that was written in the source.
TRY_TO(TraverseDeclTemplateParameterLists(D));
TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc()));
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseCXXBaseSpecifier(
const CXXBaseSpecifier &Base) {
TRY_TO(TraverseTypeLoc(Base.getTypeSourceInfo()->getTypeLoc()));
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseCXXRecordHelper(CXXRecordDecl *D) {
if (!TraverseRecordHelper(D))
return false;
if (D->isCompleteDefinition()) {
for (const auto &I : D->bases()) {
TRY_TO(TraverseCXXBaseSpecifier(I));
}
// We don't traverse the friends or the conversions, as they are
// already in decls_begin()/decls_end().
}
return true;
}
DEF_TRAVERSE_DECL(RecordDecl, { TRY_TO(TraverseRecordHelper(D)); })
DEF_TRAVERSE_DECL(CXXRecordDecl, { TRY_TO(TraverseCXXRecordHelper(D)); })
#define DEF_TRAVERSE_TMPL_SPEC_DECL(TMPLDECLKIND) \
DEF_TRAVERSE_DECL(TMPLDECLKIND##TemplateSpecializationDecl, { \
/* For implicit instantiations ("set<int> x;"), we don't want to \
recurse at all, since the instatiated template isn't written in \
the source code anywhere. (Note the instatiated *type* -- \
set<int> -- is written, and will still get a callback of \
TemplateSpecializationType). For explicit instantiations \
("template set<int>;"), we do need a callback, since this \
is the only callback that's made for this instantiation. \
We use getTypeAsWritten() to distinguish. */ \
if (TypeSourceInfo *TSI = D->getTypeAsWritten()) \
TRY_TO(TraverseTypeLoc(TSI->getTypeLoc())); \
\
TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc())); \
if (!getDerived().shouldVisitTemplateInstantiations() && \
D->getTemplateSpecializationKind() != TSK_ExplicitSpecialization) \
/* Returning from here skips traversing the \
declaration context of the *TemplateSpecializationDecl \
(embedded in the DEF_TRAVERSE_DECL() macro) \
which contains the instantiated members of the template. */ \
return true; \
})
DEF_TRAVERSE_TMPL_SPEC_DECL(Class)
DEF_TRAVERSE_TMPL_SPEC_DECL(Var)
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseTemplateArgumentLocsHelper(
const TemplateArgumentLoc *TAL, unsigned Count) {
for (unsigned I = 0; I < Count; ++I) {
TRY_TO(TraverseTemplateArgumentLoc(TAL[I]));
}
return true;
}
#define DEF_TRAVERSE_TMPL_PART_SPEC_DECL(TMPLDECLKIND, DECLKIND) \
DEF_TRAVERSE_DECL(TMPLDECLKIND##TemplatePartialSpecializationDecl, { \
/* The partial specialization. */ \
if (TemplateParameterList *TPL = D->getTemplateParameters()) { \
for (TemplateParameterList::iterator I = TPL->begin(), E = TPL->end(); \
I != E; ++I) { \
TRY_TO(TraverseDecl(*I)); \
} \
} \
/* The args that remains unspecialized. */ \
TRY_TO(TraverseTemplateArgumentLocsHelper( \
D->getTemplateArgsAsWritten()->getTemplateArgs(), \
D->getTemplateArgsAsWritten()->NumTemplateArgs)); \
\
/* Don't need the *TemplatePartialSpecializationHelper, even \
though that's our parent class -- we already visit all the \
template args here. */ \
TRY_TO(Traverse##DECLKIND##Helper(D)); \
\
/* Instantiations will have been visited with the primary template. */ \
})
DEF_TRAVERSE_TMPL_PART_SPEC_DECL(Class, CXXRecord)
DEF_TRAVERSE_TMPL_PART_SPEC_DECL(Var, Var)
DEF_TRAVERSE_DECL(EnumConstantDecl, { TRY_TO(TraverseStmt(D->getInitExpr())); })
DEF_TRAVERSE_DECL(UnresolvedUsingValueDecl, {
// Like UnresolvedUsingTypenameDecl, but without the 'typename':
// template <class T> Class A : public Base<T> { using Base<T>::foo; };
TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc()));
TRY_TO(TraverseDeclarationNameInfo(D->getNameInfo()));
})
DEF_TRAVERSE_DECL(IndirectFieldDecl, {})
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseDeclaratorHelper(DeclaratorDecl *D) {
TRY_TO(TraverseDeclTemplateParameterLists(D));
TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc()));
if (D->getTypeSourceInfo())
TRY_TO(TraverseTypeLoc(D->getTypeSourceInfo()->getTypeLoc()));
else
TRY_TO(TraverseType(D->getType()));
return true;
}
DEF_TRAVERSE_DECL(DecompositionDecl, {
TRY_TO(TraverseVarHelper(D));
for (auto *Binding : D->bindings()) {
TRY_TO(TraverseDecl(Binding));
}
})
DEF_TRAVERSE_DECL(BindingDecl, {
if (getDerived().shouldVisitImplicitCode())
TRY_TO(TraverseStmt(D->getBinding()));
})
DEF_TRAVERSE_DECL(MSPropertyDecl, { TRY_TO(TraverseDeclaratorHelper(D)); })
DEF_TRAVERSE_DECL(FieldDecl, {
TRY_TO(TraverseDeclaratorHelper(D));
if (D->isBitField())
TRY_TO(TraverseStmt(D->getBitWidth()));
else if (D->hasInClassInitializer())
TRY_TO(TraverseStmt(D->getInClassInitializer()));
})
DEF_TRAVERSE_DECL(ObjCAtDefsFieldDecl, {
TRY_TO(TraverseDeclaratorHelper(D));
if (D->isBitField())
TRY_TO(TraverseStmt(D->getBitWidth()));
// FIXME: implement the rest.
})
DEF_TRAVERSE_DECL(ObjCIvarDecl, {
TRY_TO(TraverseDeclaratorHelper(D));
if (D->isBitField())
TRY_TO(TraverseStmt(D->getBitWidth()));
// FIXME: implement the rest.
})
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseFunctionHelper(FunctionDecl *D) {
TRY_TO(TraverseDeclTemplateParameterLists(D));
TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc()));
TRY_TO(TraverseDeclarationNameInfo(D->getNameInfo()));
// If we're an explicit template specialization, iterate over the
// template args that were explicitly specified. If we were doing
// this in typing order, we'd do it between the return type and
// the function args, but both are handled by the FunctionTypeLoc
// above, so we have to choose one side. I've decided to do before.
if (const FunctionTemplateSpecializationInfo *FTSI =
D->getTemplateSpecializationInfo()) {
if (FTSI->getTemplateSpecializationKind() != TSK_Undeclared &&
FTSI->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
// A specialization might not have explicit template arguments if it has
// a templated return type and concrete arguments.
if (const ASTTemplateArgumentListInfo *TALI =
FTSI->TemplateArgumentsAsWritten) {
TRY_TO(TraverseTemplateArgumentLocsHelper(TALI->getTemplateArgs(),
TALI->NumTemplateArgs));
}
}
}
// Visit the function type itself, which can be either
// FunctionNoProtoType or FunctionProtoType, or a typedef. This
// also covers the return type and the function parameters,
// including exception specifications.
if (TypeSourceInfo *TSI = D->getTypeSourceInfo()) {
TRY_TO(TraverseTypeLoc(TSI->getTypeLoc()));
} else if (getDerived().shouldVisitImplicitCode()) {
// Visit parameter variable declarations of the implicit function
// if the traverser is visiting implicit code. Parameter variable
// declarations do not have valid TypeSourceInfo, so to visit them
// we need to traverse the declarations explicitly.
for (ParmVarDecl *Parameter : D->parameters()) {
TRY_TO(TraverseDecl(Parameter));
}
}
if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(D)) {
// Constructor initializers.
for (auto *I : Ctor->inits()) {
TRY_TO(TraverseConstructorInitializer(I));
}
}
if (D->isThisDeclarationADefinition()) {
TRY_TO(TraverseStmt(D->getBody())); // Function body.
}
return true;
}
DEF_TRAVERSE_DECL(FunctionDecl, {
// We skip decls_begin/decls_end, which are already covered by
// TraverseFunctionHelper().
ShouldVisitChildren = false;
ReturnValue = TraverseFunctionHelper(D);
})
DEF_TRAVERSE_DECL(CXXDeductionGuideDecl, {
// We skip decls_begin/decls_end, which are already covered by
// TraverseFunctionHelper().
ShouldVisitChildren = false;
ReturnValue = TraverseFunctionHelper(D);
})
DEF_TRAVERSE_DECL(CXXMethodDecl, {
// We skip decls_begin/decls_end, which are already covered by
// TraverseFunctionHelper().
ShouldVisitChildren = false;
ReturnValue = TraverseFunctionHelper(D);
})
DEF_TRAVERSE_DECL(CXXConstructorDecl, {
// We skip decls_begin/decls_end, which are already covered by
// TraverseFunctionHelper().
ShouldVisitChildren = false;
ReturnValue = TraverseFunctionHelper(D);
})
// CXXConversionDecl is the declaration of a type conversion operator.
// It's not a cast expression.
DEF_TRAVERSE_DECL(CXXConversionDecl, {
// We skip decls_begin/decls_end, which are already covered by
// TraverseFunctionHelper().
ShouldVisitChildren = false;
ReturnValue = TraverseFunctionHelper(D);
})
DEF_TRAVERSE_DECL(CXXDestructorDecl, {
// We skip decls_begin/decls_end, which are already covered by
// TraverseFunctionHelper().
ShouldVisitChildren = false;
ReturnValue = TraverseFunctionHelper(D);
})
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseVarHelper(VarDecl *D) {
TRY_TO(TraverseDeclaratorHelper(D));
// Default params are taken care of when we traverse the ParmVarDecl.
if (!isa<ParmVarDecl>(D) &&
(!D->isCXXForRangeDecl() || getDerived().shouldVisitImplicitCode()))
TRY_TO(TraverseStmt(D->getInit()));
return true;
}
DEF_TRAVERSE_DECL(VarDecl, { TRY_TO(TraverseVarHelper(D)); })
DEF_TRAVERSE_DECL(ImplicitParamDecl, { TRY_TO(TraverseVarHelper(D)); })
DEF_TRAVERSE_DECL(NonTypeTemplateParmDecl, {
// A non-type template parameter, e.g. "S" in template<int S> class Foo ...
TRY_TO(TraverseDeclaratorHelper(D));
if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited())
TRY_TO(TraverseStmt(D->getDefaultArgument()));
})
DEF_TRAVERSE_DECL(ParmVarDecl, {
TRY_TO(TraverseVarHelper(D));
if (D->hasDefaultArg() && D->hasUninstantiatedDefaultArg() &&
!D->hasUnparsedDefaultArg())
TRY_TO(TraverseStmt(D->getUninstantiatedDefaultArg()));
if (D->hasDefaultArg() && !D->hasUninstantiatedDefaultArg() &&
!D->hasUnparsedDefaultArg())
TRY_TO(TraverseStmt(D->getDefaultArg()));
})
#undef DEF_TRAVERSE_DECL
// ----------------- Stmt traversal -----------------
//
// For stmts, we automate (in the DEF_TRAVERSE_STMT macro) iterating
// over the children defined in children() (every stmt defines these,
// though sometimes the range is empty). Each individual Traverse*
// method only needs to worry about children other than those. To see
// what children() does for a given class, see, e.g.,
// http://clang.llvm.org/doxygen/Stmt_8cpp_source.html
// This macro makes available a variable S, the passed-in stmt.
#define DEF_TRAVERSE_STMT(STMT, CODE) \
template <typename Derived> \
bool RecursiveASTVisitor<Derived>::Traverse##STMT( \
STMT *S, DataRecursionQueue *Queue) { \
bool ShouldVisitChildren = true; \
bool ReturnValue = true; \
if (!getDerived().shouldTraversePostOrder()) \
TRY_TO(WalkUpFrom##STMT(S)); \
{ CODE; } \
if (ShouldVisitChildren) { \
for (Stmt * SubStmt : getDerived().getStmtChildren(S)) { \
TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(SubStmt); \
} \
} \
if (!Queue && ReturnValue && getDerived().shouldTraversePostOrder()) \
TRY_TO(WalkUpFrom##STMT(S)); \
return ReturnValue; \
}
DEF_TRAVERSE_STMT(GCCAsmStmt, {
TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(S->getAsmString());
for (unsigned I = 0, E = S->getNumInputs(); I < E; ++I) {
TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(S->getInputConstraintLiteral(I));
}
for (unsigned I = 0, E = S->getNumOutputs(); I < E; ++I) {
TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(S->getOutputConstraintLiteral(I));
}
for (unsigned I = 0, E = S->getNumClobbers(); I < E; ++I) {
TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(S->getClobberStringLiteral(I));
}
// children() iterates over inputExpr and outputExpr.
})
DEF_TRAVERSE_STMT(
MSAsmStmt,
{// FIXME: MS Asm doesn't currently parse Constraints, Clobbers, etc. Once
// added this needs to be implemented.
})
DEF_TRAVERSE_STMT(CXXCatchStmt, {
TRY_TO(TraverseDecl(S->getExceptionDecl()));
// children() iterates over the handler block.
})
DEF_TRAVERSE_STMT(DeclStmt, {
for (auto *I : S->decls()) {
TRY_TO(TraverseDecl(I));
}
// Suppress the default iteration over children() by
// returning. Here's why: A DeclStmt looks like 'type var [=
// initializer]'. The decls above already traverse over the
// initializers, so we don't have to do it again (which
// children() would do).
ShouldVisitChildren = false;
})
// These non-expr stmts (most of them), do not need any action except
// iterating over the children.
DEF_TRAVERSE_STMT(BreakStmt, {})
DEF_TRAVERSE_STMT(CXXTryStmt, {})
DEF_TRAVERSE_STMT(CaseStmt, {})
DEF_TRAVERSE_STMT(CompoundStmt, {})
DEF_TRAVERSE_STMT(ContinueStmt, {})
DEF_TRAVERSE_STMT(DefaultStmt, {})
DEF_TRAVERSE_STMT(DoStmt, {})
DEF_TRAVERSE_STMT(ForStmt, {})
DEF_TRAVERSE_STMT(GotoStmt, {})
DEF_TRAVERSE_STMT(IfStmt, {})
DEF_TRAVERSE_STMT(IndirectGotoStmt, {})
DEF_TRAVERSE_STMT(LabelStmt, {})
DEF_TRAVERSE_STMT(AttributedStmt, {})
DEF_TRAVERSE_STMT(NullStmt, {})
DEF_TRAVERSE_STMT(ObjCAtCatchStmt, {})
DEF_TRAVERSE_STMT(ObjCAtFinallyStmt, {})
DEF_TRAVERSE_STMT(ObjCAtSynchronizedStmt, {})
DEF_TRAVERSE_STMT(ObjCAtThrowStmt, {})
DEF_TRAVERSE_STMT(ObjCAtTryStmt, {})
DEF_TRAVERSE_STMT(ObjCForCollectionStmt, {})
DEF_TRAVERSE_STMT(ObjCAutoreleasePoolStmt, {})
DEF_TRAVERSE_STMT(CXXForRangeStmt, {
if (!getDerived().shouldVisitImplicitCode()) {
if (S->getInit())
TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(S->getInit());
TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(S->getLoopVarStmt());
TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(S->getRangeInit());
TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(S->getBody());
// Visit everything else only if shouldVisitImplicitCode().
ShouldVisitChildren = false;
}
})
DEF_TRAVERSE_STMT(MSDependentExistsStmt, {
TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc()));
TRY_TO(TraverseDeclarationNameInfo(S->getNameInfo()));
})
DEF_TRAVERSE_STMT(ReturnStmt, {})
DEF_TRAVERSE_STMT(SwitchStmt, {})
DEF_TRAVERSE_STMT(WhileStmt, {})
DEF_TRAVERSE_STMT(ConstantExpr, {})
DEF_TRAVERSE_STMT(CXXDependentScopeMemberExpr, {
TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc()));
TRY_TO(TraverseDeclarationNameInfo(S->getMemberNameInfo()));
if (S->hasExplicitTemplateArgs()) {
TRY_TO(TraverseTemplateArgumentLocsHelper(S->getTemplateArgs(),
S->getNumTemplateArgs()));
}
})
DEF_TRAVERSE_STMT(DeclRefExpr, {
TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc()));
TRY_TO(TraverseDeclarationNameInfo(S->getNameInfo()));
TRY_TO(TraverseTemplateArgumentLocsHelper(S->getTemplateArgs(),
S->getNumTemplateArgs()));
})
DEF_TRAVERSE_STMT(DependentScopeDeclRefExpr, {
TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc()));
TRY_TO(TraverseDeclarationNameInfo(S->getNameInfo()));
if (S->hasExplicitTemplateArgs()) {
TRY_TO(TraverseTemplateArgumentLocsHelper(S->getTemplateArgs(),
S->getNumTemplateArgs()));
}
})
DEF_TRAVERSE_STMT(MemberExpr, {
TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc()));
TRY_TO(TraverseDeclarationNameInfo(S->getMemberNameInfo()));
TRY_TO(TraverseTemplateArgumentLocsHelper(S->getTemplateArgs(),
S->getNumTemplateArgs()));
})
DEF_TRAVERSE_STMT(
ImplicitCastExpr,
{// We don't traverse the cast type, as it's not written in the
// source code.
})
DEF_TRAVERSE_STMT(CStyleCastExpr, {
TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc()));
})
DEF_TRAVERSE_STMT(CXXFunctionalCastExpr, {
TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc()));
})
DEF_TRAVERSE_STMT(CXXConstCastExpr, {
TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc()));
})
DEF_TRAVERSE_STMT(CXXDynamicCastExpr, {
TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc()));
})
DEF_TRAVERSE_STMT(CXXReinterpretCastExpr, {
TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc()));
})
DEF_TRAVERSE_STMT(CXXStaticCastExpr, {
TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc()));
})
DEF_TRAVERSE_STMT(BuiltinBitCastExpr, {
TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc()));
})
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseSynOrSemInitListExpr(
InitListExpr *S, DataRecursionQueue *Queue) {
if (S) {
// Skip this if we traverse postorder. We will visit it later
// in PostVisitStmt.
if (!getDerived().shouldTraversePostOrder())
TRY_TO(WalkUpFromInitListExpr(S));
// All we need are the default actions. FIXME: use a helper function.
for (Stmt *SubStmt : S->children()) {
TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(SubStmt);
}
}
return true;
}
// This method is called once for each pair of syntactic and semantic
// InitListExpr, and it traverses the subtrees defined by the two forms. This
// may cause some of the children to be visited twice, if they appear both in
// the syntactic and the semantic form.
//
// There is no guarantee about which form \p S takes when this method is called.
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseInitListExpr(
InitListExpr *S, DataRecursionQueue *Queue) {
TRY_TO(TraverseSynOrSemInitListExpr(
S->isSemanticForm() ? S->getSyntacticForm() : S, Queue));
TRY_TO(TraverseSynOrSemInitListExpr(
S->isSemanticForm() ? S : S->getSemanticForm(), Queue));
return true;
}
// GenericSelectionExpr is a special case because the types and expressions
// are interleaved. We also need to watch out for null types (default
// generic associations).
DEF_TRAVERSE_STMT(GenericSelectionExpr, {
TRY_TO(TraverseStmt(S->getControllingExpr()));
for (const GenericSelectionExpr::Association &Assoc : S->associations()) {
if (TypeSourceInfo *TSI = Assoc.getTypeSourceInfo())
TRY_TO(TraverseTypeLoc(TSI->getTypeLoc()));
TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(Assoc.getAssociationExpr());
}
ShouldVisitChildren = false;
})
// PseudoObjectExpr is a special case because of the weirdness with
// syntactic expressions and opaque values.
DEF_TRAVERSE_STMT(PseudoObjectExpr, {
TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(S->getSyntacticForm());
for (PseudoObjectExpr::semantics_iterator i = S->semantics_begin(),
e = S->semantics_end();
i != e; ++i) {
Expr *sub = *i;
if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(sub))
sub = OVE->getSourceExpr();
TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(sub);
}
ShouldVisitChildren = false;
})
DEF_TRAVERSE_STMT(CXXScalarValueInitExpr, {
// This is called for code like 'return T()' where T is a built-in
// (i.e. non-class) type.
TRY_TO(TraverseTypeLoc(S->getTypeSourceInfo()->getTypeLoc()));
})
DEF_TRAVERSE_STMT(CXXNewExpr, {
// The child-iterator will pick up the other arguments.
TRY_TO(TraverseTypeLoc(S->getAllocatedTypeSourceInfo()->getTypeLoc()));
})
DEF_TRAVERSE_STMT(OffsetOfExpr, {
// The child-iterator will pick up the expression representing
// the field.
// FIMXE: for code like offsetof(Foo, a.b.c), should we get
// making a MemberExpr callbacks for Foo.a, Foo.a.b, and Foo.a.b.c?
TRY_TO(TraverseTypeLoc(S->getTypeSourceInfo()->getTypeLoc()));
})
DEF_TRAVERSE_STMT(UnaryExprOrTypeTraitExpr, {
// The child-iterator will pick up the arg if it's an expression,
// but not if it's a type.
if (S->isArgumentType())
TRY_TO(TraverseTypeLoc(S->getArgumentTypeInfo()->getTypeLoc()));
})
DEF_TRAVERSE_STMT(CXXTypeidExpr, {
// The child-iterator will pick up the arg if it's an expression,
// but not if it's a type.
if (S->isTypeOperand())
TRY_TO(TraverseTypeLoc(S->getTypeOperandSourceInfo()->getTypeLoc()));
})
DEF_TRAVERSE_STMT(MSPropertyRefExpr, {
TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc()));
})
DEF_TRAVERSE_STMT(MSPropertySubscriptExpr, {})
DEF_TRAVERSE_STMT(CXXUuidofExpr, {
// The child-iterator will pick up the arg if it's an expression,
// but not if it's a type.
if (S->isTypeOperand())
TRY_TO(TraverseTypeLoc(S->getTypeOperandSourceInfo()->getTypeLoc()));
})
DEF_TRAVERSE_STMT(TypeTraitExpr, {
for (unsigned I = 0, N = S->getNumArgs(); I != N; ++I)
TRY_TO(TraverseTypeLoc(S->getArg(I)->getTypeLoc()));
})
DEF_TRAVERSE_STMT(ArrayTypeTraitExpr, {
TRY_TO(TraverseTypeLoc(S->getQueriedTypeSourceInfo()->getTypeLoc()));
})
DEF_TRAVERSE_STMT(ExpressionTraitExpr,
{ TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(S->getQueriedExpression()); })
DEF_TRAVERSE_STMT(VAArgExpr, {
// The child-iterator will pick up the expression argument.
TRY_TO(TraverseTypeLoc(S->getWrittenTypeInfo()->getTypeLoc()));
})
DEF_TRAVERSE_STMT(CXXTemporaryObjectExpr, {
// This is called for code like 'return T()' where T is a class type.
TRY_TO(TraverseTypeLoc(S->getTypeSourceInfo()->getTypeLoc()));
})
// Walk only the visible parts of lambda expressions.
DEF_TRAVERSE_STMT(LambdaExpr, {
// Visit the capture list.
for (unsigned I = 0, N = S->capture_size(); I != N; ++I) {
const LambdaCapture *C = S->capture_begin() + I;
if (C->isExplicit() || getDerived().shouldVisitImplicitCode()) {
TRY_TO(TraverseLambdaCapture(S, C, S->capture_init_begin()[I]));
}
}
if (getDerived().shouldVisitImplicitCode()) {
// The implicit model is simple: everything else is in the lambda class.
TRY_TO(TraverseDecl(S->getLambdaClass()));
} else {
// We need to poke around to find the bits that might be explicitly written.
TypeLoc TL = S->getCallOperator()->getTypeSourceInfo()->getTypeLoc();
FunctionProtoTypeLoc Proto = TL.getAsAdjusted<FunctionProtoTypeLoc>();
for (Decl *D : S->getExplicitTemplateParameters()) {
// Visit explicit template parameters.
TRY_TO(TraverseDecl(D));
}
if (S->hasExplicitParameters()) {
// Visit parameters.
for (unsigned I = 0, N = Proto.getNumParams(); I != N; ++I)
TRY_TO(TraverseDecl(Proto.getParam(I)));
}
if (S->hasExplicitResultType())
TRY_TO(TraverseTypeLoc(Proto.getReturnLoc()));
auto *T = Proto.getTypePtr();
for (const auto &E : T->exceptions())
TRY_TO(TraverseType(E));
if (Expr *NE = T->getNoexceptExpr())
TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(NE);
TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(S->getBody());
}
ShouldVisitChildren = false;
})
DEF_TRAVERSE_STMT(CXXUnresolvedConstructExpr, {
// This is called for code like 'T()', where T is a template argument.
TRY_TO(TraverseTypeLoc(S->getTypeSourceInfo()->getTypeLoc()));
})
// These expressions all might take explicit template arguments.
// We traverse those if so. FIXME: implement these.
DEF_TRAVERSE_STMT(CXXConstructExpr, {})
DEF_TRAVERSE_STMT(CallExpr, {})
DEF_TRAVERSE_STMT(CXXMemberCallExpr, {})
// These exprs (most of them), do not need any action except iterating
// over the children.
DEF_TRAVERSE_STMT(AddrLabelExpr, {})
DEF_TRAVERSE_STMT(ArraySubscriptExpr, {})
DEF_TRAVERSE_STMT(OMPArraySectionExpr, {})
DEF_TRAVERSE_STMT(BlockExpr, {
TRY_TO(TraverseDecl(S->getBlockDecl()));
return true; // no child statements to loop through.
})
DEF_TRAVERSE_STMT(ChooseExpr, {})
DEF_TRAVERSE_STMT(CompoundLiteralExpr, {
TRY_TO(TraverseTypeLoc(S->getTypeSourceInfo()->getTypeLoc()));
})
DEF_TRAVERSE_STMT(CXXBindTemporaryExpr, {})
DEF_TRAVERSE_STMT(CXXBoolLiteralExpr, {})
DEF_TRAVERSE_STMT(CXXDefaultArgExpr, {
if (getDerived().shouldVisitImplicitCode())
TRY_TO(TraverseStmt(S->getExpr()));
})
DEF_TRAVERSE_STMT(CXXDefaultInitExpr, {})
DEF_TRAVERSE_STMT(CXXDeleteExpr, {})
DEF_TRAVERSE_STMT(ExprWithCleanups, {})
DEF_TRAVERSE_STMT(CXXInheritedCtorInitExpr, {})
DEF_TRAVERSE_STMT(CXXNullPtrLiteralExpr, {})
DEF_TRAVERSE_STMT(CXXStdInitializerListExpr, {})
DEF_TRAVERSE_STMT(CXXPseudoDestructorExpr, {
TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc()));
if (TypeSourceInfo *ScopeInfo = S->getScopeTypeInfo())
TRY_TO(TraverseTypeLoc(ScopeInfo->getTypeLoc()));
if (TypeSourceInfo *DestroyedTypeInfo = S->getDestroyedTypeInfo())
TRY_TO(TraverseTypeLoc(DestroyedTypeInfo->getTypeLoc()));
})
DEF_TRAVERSE_STMT(CXXThisExpr, {})
DEF_TRAVERSE_STMT(CXXThrowExpr, {})
DEF_TRAVERSE_STMT(UserDefinedLiteral, {})
DEF_TRAVERSE_STMT(DesignatedInitExpr, {})
DEF_TRAVERSE_STMT(DesignatedInitUpdateExpr, {})
DEF_TRAVERSE_STMT(ExtVectorElementExpr, {})
DEF_TRAVERSE_STMT(GNUNullExpr, {})
DEF_TRAVERSE_STMT(ImplicitValueInitExpr, {})
DEF_TRAVERSE_STMT(NoInitExpr, {})
DEF_TRAVERSE_STMT(ArrayInitLoopExpr, {
// FIXME: The source expression of the OVE should be listed as
// a child of the ArrayInitLoopExpr.
if (OpaqueValueExpr *OVE = S->getCommonExpr())
TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(OVE->getSourceExpr());
})
DEF_TRAVERSE_STMT(ArrayInitIndexExpr, {})
DEF_TRAVERSE_STMT(ObjCBoolLiteralExpr, {})
DEF_TRAVERSE_STMT(ObjCEncodeExpr, {
if (TypeSourceInfo *TInfo = S->getEncodedTypeSourceInfo())
TRY_TO(TraverseTypeLoc(TInfo->getTypeLoc()));
})
DEF_TRAVERSE_STMT(ObjCIsaExpr, {})
DEF_TRAVERSE_STMT(ObjCIvarRefExpr, {})
DEF_TRAVERSE_STMT(ObjCMessageExpr, {
if (TypeSourceInfo *TInfo = S->getClassReceiverTypeInfo())
TRY_TO(TraverseTypeLoc(TInfo->getTypeLoc()));
})
DEF_TRAVERSE_STMT(ObjCPropertyRefExpr, {})
DEF_TRAVERSE_STMT(ObjCSubscriptRefExpr, {})
DEF_TRAVERSE_STMT(ObjCProtocolExpr, {})
DEF_TRAVERSE_STMT(ObjCSelectorExpr, {})
DEF_TRAVERSE_STMT(ObjCIndirectCopyRestoreExpr, {})
DEF_TRAVERSE_STMT(ObjCBridgedCastExpr, {
TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc()));
})
DEF_TRAVERSE_STMT(ObjCAvailabilityCheckExpr, {})
DEF_TRAVERSE_STMT(ParenExpr, {})
DEF_TRAVERSE_STMT(ParenListExpr, {})
DEF_TRAVERSE_STMT(PredefinedExpr, {})
DEF_TRAVERSE_STMT(ShuffleVectorExpr, {})
DEF_TRAVERSE_STMT(ConvertVectorExpr, {})
DEF_TRAVERSE_STMT(StmtExpr, {})
DEF_TRAVERSE_STMT(SourceLocExpr, {})
DEF_TRAVERSE_STMT(UnresolvedLookupExpr, {
TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc()));
if (S->hasExplicitTemplateArgs()) {
TRY_TO(TraverseTemplateArgumentLocsHelper(S->getTemplateArgs(),
S->getNumTemplateArgs()));
}
})
DEF_TRAVERSE_STMT(UnresolvedMemberExpr, {
TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc()));
if (S->hasExplicitTemplateArgs()) {
TRY_TO(TraverseTemplateArgumentLocsHelper(S->getTemplateArgs(),
S->getNumTemplateArgs()));
}
})
DEF_TRAVERSE_STMT(SEHTryStmt, {})
DEF_TRAVERSE_STMT(SEHExceptStmt, {})
DEF_TRAVERSE_STMT(SEHFinallyStmt, {})
DEF_TRAVERSE_STMT(SEHLeaveStmt, {})
DEF_TRAVERSE_STMT(CapturedStmt, { TRY_TO(TraverseDecl(S->getCapturedDecl())); })
DEF_TRAVERSE_STMT(CXXOperatorCallExpr, {})
DEF_TRAVERSE_STMT(OpaqueValueExpr, {})
DEF_TRAVERSE_STMT(TypoExpr, {})
DEF_TRAVERSE_STMT(CUDAKernelCallExpr, {})
// These operators (all of them) do not need any action except
// iterating over the children.
DEF_TRAVERSE_STMT(BinaryConditionalOperator, {})
DEF_TRAVERSE_STMT(ConditionalOperator, {})
DEF_TRAVERSE_STMT(UnaryOperator, {})
DEF_TRAVERSE_STMT(BinaryOperator, {})
DEF_TRAVERSE_STMT(CompoundAssignOperator, {})
DEF_TRAVERSE_STMT(CXXNoexceptExpr, {})
DEF_TRAVERSE_STMT(PackExpansionExpr, {})
DEF_TRAVERSE_STMT(SizeOfPackExpr, {})
DEF_TRAVERSE_STMT(SubstNonTypeTemplateParmPackExpr, {})
DEF_TRAVERSE_STMT(SubstNonTypeTemplateParmExpr, {})
DEF_TRAVERSE_STMT(FunctionParmPackExpr, {})
DEF_TRAVERSE_STMT(MaterializeTemporaryExpr, {})
DEF_TRAVERSE_STMT(CXXFoldExpr, {})
DEF_TRAVERSE_STMT(AtomicExpr, {})
// For coroutines expressions, traverse either the operand
// as written or the implied calls, depending on what the
// derived class requests.
DEF_TRAVERSE_STMT(CoroutineBodyStmt, {
if (!getDerived().shouldVisitImplicitCode()) {
TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(S->getBody());
ShouldVisitChildren = false;
}
})
DEF_TRAVERSE_STMT(CoreturnStmt, {
if (!getDerived().shouldVisitImplicitCode()) {
TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(S->getOperand());
ShouldVisitChildren = false;
}
})
DEF_TRAVERSE_STMT(CoawaitExpr, {
if (!getDerived().shouldVisitImplicitCode()) {
TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(S->getOperand());
ShouldVisitChildren = false;
}
})
DEF_TRAVERSE_STMT(DependentCoawaitExpr, {
if (!getDerived().shouldVisitImplicitCode()) {
TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(S->getOperand());
ShouldVisitChildren = false;
}
})
DEF_TRAVERSE_STMT(CoyieldExpr, {
if (!getDerived().shouldVisitImplicitCode()) {
TRY_TO_TRAVERSE_OR_ENQUEUE_STMT(S->getOperand());
ShouldVisitChildren = false;
}
})
// These literals (all of them) do not need any action.
DEF_TRAVERSE_STMT(IntegerLiteral, {})
DEF_TRAVERSE_STMT(FixedPointLiteral, {})
DEF_TRAVERSE_STMT(CharacterLiteral, {})
DEF_TRAVERSE_STMT(FloatingLiteral, {})
DEF_TRAVERSE_STMT(ImaginaryLiteral, {})
DEF_TRAVERSE_STMT(StringLiteral, {})
DEF_TRAVERSE_STMT(ObjCStringLiteral, {})
DEF_TRAVERSE_STMT(ObjCBoxedExpr, {})
DEF_TRAVERSE_STMT(ObjCArrayLiteral, {})
DEF_TRAVERSE_STMT(ObjCDictionaryLiteral, {})
// Traverse OpenCL: AsType, Convert.
DEF_TRAVERSE_STMT(AsTypeExpr, {})
// OpenMP directives.
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseOMPExecutableDirective(
OMPExecutableDirective *S) {
for (auto *C : S->clauses()) {
TRY_TO(TraverseOMPClause(C));
}
return true;
}
template <typename Derived>
bool
RecursiveASTVisitor<Derived>::TraverseOMPLoopDirective(OMPLoopDirective *S) {
return TraverseOMPExecutableDirective(S);
}
DEF_TRAVERSE_STMT(OMPParallelDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPSimdDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPForDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPForSimdDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPSectionsDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPSectionDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPSingleDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPMasterDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPCriticalDirective, {
TRY_TO(TraverseDeclarationNameInfo(S->getDirectiveName()));
TRY_TO(TraverseOMPExecutableDirective(S));
})
DEF_TRAVERSE_STMT(OMPParallelForDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPParallelForSimdDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPParallelSectionsDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTaskDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTaskyieldDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPBarrierDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTaskwaitDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTaskgroupDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPCancellationPointDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPCancelDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPFlushDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPOrderedDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPAtomicDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTargetDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTargetDataDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTargetEnterDataDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTargetExitDataDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTargetParallelDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTargetParallelForDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTeamsDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTargetUpdateDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTaskLoopDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTaskLoopSimdDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPDistributeDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPDistributeParallelForDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPDistributeParallelForSimdDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPDistributeSimdDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTargetParallelForSimdDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTargetSimdDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTeamsDistributeDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTeamsDistributeSimdDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTeamsDistributeParallelForSimdDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTeamsDistributeParallelForDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTargetTeamsDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTargetTeamsDistributeDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTargetTeamsDistributeParallelForDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTargetTeamsDistributeParallelForSimdDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
DEF_TRAVERSE_STMT(OMPTargetTeamsDistributeSimdDirective,
{ TRY_TO(TraverseOMPExecutableDirective(S)); })
// OpenMP clauses.
template <typename Derived>
bool RecursiveASTVisitor<Derived>::TraverseOMPClause(OMPClause *C) {
if (!C)
return true;
switch (C->getClauseKind()) {
#define OPENMP_CLAUSE(Name, Class) \
case OMPC_##Name: \
TRY_TO(Visit##Class(static_cast<Class *>(C))); \
break;
#include "clang/Basic/OpenMPKinds.def"
case OMPC_threadprivate:
case OMPC_uniform:
case OMPC_unknown:
break;
}
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::VisitOMPClauseWithPreInit(
OMPClauseWithPreInit *Node) {
TRY_TO(TraverseStmt(Node->getPreInitStmt()));
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::VisitOMPClauseWithPostUpdate(
OMPClauseWithPostUpdate *Node) {
TRY_TO(VisitOMPClauseWithPreInit(Node));
TRY_TO(TraverseStmt(Node->getPostUpdateExpr()));
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::VisitOMPAllocatorClause(
OMPAllocatorClause *C) {
TRY_TO(TraverseStmt(C->getAllocator()));
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::VisitOMPAllocateClause(OMPAllocateClause *C) {
TRY_TO(TraverseStmt(C->getAllocator()));
TRY_TO(VisitOMPClauseList(C));
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::VisitOMPIfClause(OMPIfClause *C) {
TRY_TO(VisitOMPClauseWithPreInit(C));
TRY_TO(TraverseStmt(C->getCondition()));
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::VisitOMPFinalClause(OMPFinalClause *C) {
TRY_TO(TraverseStmt(C->getCondition()));
return true;
}
template <typename Derived>
bool
RecursiveASTVisitor<Derived>::VisitOMPNumThreadsClause(OMPNumThreadsClause *C) {
TRY_TO(VisitOMPClauseWithPreInit(C));
TRY_TO(TraverseStmt(C->getNumThreads()));
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::VisitOMPSafelenClause(OMPSafelenClause *C) {
TRY_TO(TraverseStmt(C->getSafelen()));
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::VisitOMPSimdlenClause(OMPSimdlenClause *C) {
TRY_TO(TraverseStmt(C->getSimdlen()));
return true;
}
template <typename Derived>
bool
RecursiveASTVisitor<Derived>::VisitOMPCollapseClause(OMPCollapseClause *C) {
TRY_TO(TraverseStmt(C->getNumForLoops()));
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::VisitOMPDefaultClause(OMPDefaultClause *) {
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::VisitOMPProcBindClause(OMPProcBindClause *) {
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::VisitOMPUnifiedAddressClause(
OMPUnifiedAddressClause *) {
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::VisitOMPUnifiedSharedMemoryClause(
OMPUnifiedSharedMemoryClause *) {
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::VisitOMPReverseOffloadClause(
OMPReverseOffloadClause *) {
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::VisitOMPDynamicAllocatorsClause(
OMPDynamicAllocatorsClause *) {
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::VisitOMPAtomicDefaultMemOrderClause(
OMPAtomicDefaultMemOrderClause *) {
return true;
}
template <typename Derived>
bool
RecursiveASTVisitor<Derived>::VisitOMPScheduleClause(OMPScheduleClause *C) {
TRY_TO(VisitOMPClauseWithPreInit(C));
TRY_TO(TraverseStmt(C->getChunkSize()));
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::VisitOMPOrderedClause(OMPOrderedClause *C) {
TRY_TO(TraverseStmt(C->getNumForLoops()));
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::VisitOMPNowaitClause(OMPNowaitClause *) {
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::VisitOMPUntiedClause(OMPUntiedClause *) {
return true;
}
template <typename Derived>
bool
RecursiveASTVisitor<Derived>::VisitOMPMergeableClause(OMPMergeableClause *) {
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::VisitOMPReadClause(OMPReadClause *) {
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::VisitOMPWriteClause(OMPWriteClause *) {
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::VisitOMPUpdateClause(OMPUpdateClause *) {
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::VisitOMPCaptureClause(OMPCaptureClause *) {
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::VisitOMPSeqCstClause(OMPSeqCstClause *) {
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::VisitOMPThreadsClause(OMPThreadsClause *) {
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::VisitOMPSIMDClause(OMPSIMDClause *) {
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::VisitOMPNogroupClause(OMPNogroupClause *) {
return true;
}
template <typename Derived>
template <typename T>
bool RecursiveASTVisitor<Derived>::VisitOMPClauseList(T *Node) {
for (auto *E : Node->varlists()) {
TRY_TO(TraverseStmt(E));
}
return true;
}
template <typename Derived>
bool RecursiveASTVisitor<Derived>::VisitOMPPrivateClause(OMPPrivateClause *C) {
TRY_TO(VisitOMPClauseList(C));
for (auto *E : C->private_copies()) {
TRY_TO(TraverseStmt(E));
}
return true;
}