Page MenuHomePhabricator

No OneTemporary

File Metadata

Created
Jan 24 2020, 4:00 PM
Index: lldb/trunk/source/Expression/DWARFExpression.cpp
===================================================================
--- lldb/trunk/source/Expression/DWARFExpression.cpp (revision 214326)
+++ lldb/trunk/source/Expression/DWARFExpression.cpp (revision 214327)
@@ -1,2919 +1,2919 @@
//===-- DWARFExpression.cpp -------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "lldb/Expression/DWARFExpression.h"
// C Includes
#include <inttypes.h>
// C++ Includes
#include <vector>
#include "lldb/Core/DataEncoder.h"
#include "lldb/Core/dwarf.h"
#include "lldb/Core/Log.h"
#include "lldb/Core/RegisterValue.h"
#include "lldb/Core/StreamString.h"
#include "lldb/Core/Scalar.h"
#include "lldb/Core/Value.h"
#include "lldb/Core/VMRange.h"
#include "lldb/Expression/ClangExpressionDeclMap.h"
#include "lldb/Expression/ClangExpressionVariable.h"
#include "lldb/Host/Endian.h"
#include "lldb/Host/Host.h"
#include "lldb/lldb-private-log.h"
#include "lldb/Target/ABI.h"
#include "lldb/Target/ExecutionContext.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/Target/StackFrame.h"
#include "lldb/Target/StackID.h"
#include "lldb/Target/Thread.h"
using namespace lldb;
using namespace lldb_private;
// TODO- why is this also defined (in a better way) in DWARFDefines.cpp?
const char *
DW_OP_value_to_name (uint32_t val)
{
static char invalid[100];
switch (val) {
case 0x03: return "DW_OP_addr";
case 0x06: return "DW_OP_deref";
case 0x08: return "DW_OP_const1u";
case 0x09: return "DW_OP_const1s";
case 0x0a: return "DW_OP_const2u";
case 0x0b: return "DW_OP_const2s";
case 0x0c: return "DW_OP_const4u";
case 0x0d: return "DW_OP_const4s";
case 0x0e: return "DW_OP_const8u";
case 0x0f: return "DW_OP_const8s";
case 0x10: return "DW_OP_constu";
case 0x11: return "DW_OP_consts";
case 0x12: return "DW_OP_dup";
case 0x13: return "DW_OP_drop";
case 0x14: return "DW_OP_over";
case 0x15: return "DW_OP_pick";
case 0x16: return "DW_OP_swap";
case 0x17: return "DW_OP_rot";
case 0x18: return "DW_OP_xderef";
case 0x19: return "DW_OP_abs";
case 0x1a: return "DW_OP_and";
case 0x1b: return "DW_OP_div";
case 0x1c: return "DW_OP_minus";
case 0x1d: return "DW_OP_mod";
case 0x1e: return "DW_OP_mul";
case 0x1f: return "DW_OP_neg";
case 0x20: return "DW_OP_not";
case 0x21: return "DW_OP_or";
case 0x22: return "DW_OP_plus";
case 0x23: return "DW_OP_plus_uconst";
case 0x24: return "DW_OP_shl";
case 0x25: return "DW_OP_shr";
case 0x26: return "DW_OP_shra";
case 0x27: return "DW_OP_xor";
case 0x2f: return "DW_OP_skip";
case 0x28: return "DW_OP_bra";
case 0x29: return "DW_OP_eq";
case 0x2a: return "DW_OP_ge";
case 0x2b: return "DW_OP_gt";
case 0x2c: return "DW_OP_le";
case 0x2d: return "DW_OP_lt";
case 0x2e: return "DW_OP_ne";
case 0x30: return "DW_OP_lit0";
case 0x31: return "DW_OP_lit1";
case 0x32: return "DW_OP_lit2";
case 0x33: return "DW_OP_lit3";
case 0x34: return "DW_OP_lit4";
case 0x35: return "DW_OP_lit5";
case 0x36: return "DW_OP_lit6";
case 0x37: return "DW_OP_lit7";
case 0x38: return "DW_OP_lit8";
case 0x39: return "DW_OP_lit9";
case 0x3a: return "DW_OP_lit10";
case 0x3b: return "DW_OP_lit11";
case 0x3c: return "DW_OP_lit12";
case 0x3d: return "DW_OP_lit13";
case 0x3e: return "DW_OP_lit14";
case 0x3f: return "DW_OP_lit15";
case 0x40: return "DW_OP_lit16";
case 0x41: return "DW_OP_lit17";
case 0x42: return "DW_OP_lit18";
case 0x43: return "DW_OP_lit19";
case 0x44: return "DW_OP_lit20";
case 0x45: return "DW_OP_lit21";
case 0x46: return "DW_OP_lit22";
case 0x47: return "DW_OP_lit23";
case 0x48: return "DW_OP_lit24";
case 0x49: return "DW_OP_lit25";
case 0x4a: return "DW_OP_lit26";
case 0x4b: return "DW_OP_lit27";
case 0x4c: return "DW_OP_lit28";
case 0x4d: return "DW_OP_lit29";
case 0x4e: return "DW_OP_lit30";
case 0x4f: return "DW_OP_lit31";
case 0x50: return "DW_OP_reg0";
case 0x51: return "DW_OP_reg1";
case 0x52: return "DW_OP_reg2";
case 0x53: return "DW_OP_reg3";
case 0x54: return "DW_OP_reg4";
case 0x55: return "DW_OP_reg5";
case 0x56: return "DW_OP_reg6";
case 0x57: return "DW_OP_reg7";
case 0x58: return "DW_OP_reg8";
case 0x59: return "DW_OP_reg9";
case 0x5a: return "DW_OP_reg10";
case 0x5b: return "DW_OP_reg11";
case 0x5c: return "DW_OP_reg12";
case 0x5d: return "DW_OP_reg13";
case 0x5e: return "DW_OP_reg14";
case 0x5f: return "DW_OP_reg15";
case 0x60: return "DW_OP_reg16";
case 0x61: return "DW_OP_reg17";
case 0x62: return "DW_OP_reg18";
case 0x63: return "DW_OP_reg19";
case 0x64: return "DW_OP_reg20";
case 0x65: return "DW_OP_reg21";
case 0x66: return "DW_OP_reg22";
case 0x67: return "DW_OP_reg23";
case 0x68: return "DW_OP_reg24";
case 0x69: return "DW_OP_reg25";
case 0x6a: return "DW_OP_reg26";
case 0x6b: return "DW_OP_reg27";
case 0x6c: return "DW_OP_reg28";
case 0x6d: return "DW_OP_reg29";
case 0x6e: return "DW_OP_reg30";
case 0x6f: return "DW_OP_reg31";
case 0x70: return "DW_OP_breg0";
case 0x71: return "DW_OP_breg1";
case 0x72: return "DW_OP_breg2";
case 0x73: return "DW_OP_breg3";
case 0x74: return "DW_OP_breg4";
case 0x75: return "DW_OP_breg5";
case 0x76: return "DW_OP_breg6";
case 0x77: return "DW_OP_breg7";
case 0x78: return "DW_OP_breg8";
case 0x79: return "DW_OP_breg9";
case 0x7a: return "DW_OP_breg10";
case 0x7b: return "DW_OP_breg11";
case 0x7c: return "DW_OP_breg12";
case 0x7d: return "DW_OP_breg13";
case 0x7e: return "DW_OP_breg14";
case 0x7f: return "DW_OP_breg15";
case 0x80: return "DW_OP_breg16";
case 0x81: return "DW_OP_breg17";
case 0x82: return "DW_OP_breg18";
case 0x83: return "DW_OP_breg19";
case 0x84: return "DW_OP_breg20";
case 0x85: return "DW_OP_breg21";
case 0x86: return "DW_OP_breg22";
case 0x87: return "DW_OP_breg23";
case 0x88: return "DW_OP_breg24";
case 0x89: return "DW_OP_breg25";
case 0x8a: return "DW_OP_breg26";
case 0x8b: return "DW_OP_breg27";
case 0x8c: return "DW_OP_breg28";
case 0x8d: return "DW_OP_breg29";
case 0x8e: return "DW_OP_breg30";
case 0x8f: return "DW_OP_breg31";
case 0x90: return "DW_OP_regx";
case 0x91: return "DW_OP_fbreg";
case 0x92: return "DW_OP_bregx";
case 0x93: return "DW_OP_piece";
case 0x94: return "DW_OP_deref_size";
case 0x95: return "DW_OP_xderef_size";
case 0x96: return "DW_OP_nop";
case 0x97: return "DW_OP_push_object_address";
case 0x98: return "DW_OP_call2";
case 0x99: return "DW_OP_call4";
case 0x9a: return "DW_OP_call_ref";
// case DW_OP_APPLE_array_ref: return "DW_OP_APPLE_array_ref";
// case DW_OP_APPLE_extern: return "DW_OP_APPLE_extern";
case DW_OP_APPLE_uninit: return "DW_OP_APPLE_uninit";
// case DW_OP_APPLE_assign: return "DW_OP_APPLE_assign";
// case DW_OP_APPLE_address_of: return "DW_OP_APPLE_address_of";
// case DW_OP_APPLE_value_of: return "DW_OP_APPLE_value_of";
// case DW_OP_APPLE_deref_type: return "DW_OP_APPLE_deref_type";
// case DW_OP_APPLE_expr_local: return "DW_OP_APPLE_expr_local";
// case DW_OP_APPLE_constf: return "DW_OP_APPLE_constf";
// case DW_OP_APPLE_scalar_cast: return "DW_OP_APPLE_scalar_cast";
// case DW_OP_APPLE_clang_cast: return "DW_OP_APPLE_clang_cast";
// case DW_OP_APPLE_clear: return "DW_OP_APPLE_clear";
// case DW_OP_APPLE_error: return "DW_OP_APPLE_error";
default:
snprintf (invalid, sizeof(invalid), "Unknown DW_OP constant: 0x%x", val);
return invalid;
}
}
//----------------------------------------------------------------------
// DWARFExpression constructor
//----------------------------------------------------------------------
DWARFExpression::DWARFExpression() :
m_module_wp(),
m_data(),
m_reg_kind (eRegisterKindDWARF),
m_loclist_slide (LLDB_INVALID_ADDRESS)
{
}
DWARFExpression::DWARFExpression(const DWARFExpression& rhs) :
m_module_wp(rhs.m_module_wp),
m_data(rhs.m_data),
m_reg_kind (rhs.m_reg_kind),
m_loclist_slide(rhs.m_loclist_slide)
{
}
DWARFExpression::DWARFExpression(lldb::ModuleSP module_sp, const DataExtractor& data, lldb::offset_t data_offset, lldb::offset_t data_length) :
m_module_wp(),
m_data(data, data_offset, data_length),
m_reg_kind (eRegisterKindDWARF),
m_loclist_slide(LLDB_INVALID_ADDRESS)
{
if (module_sp)
m_module_wp = module_sp;
}
//----------------------------------------------------------------------
// Destructor
//----------------------------------------------------------------------
DWARFExpression::~DWARFExpression()
{
}
bool
DWARFExpression::IsValid() const
{
return m_data.GetByteSize() > 0;
}
void
DWARFExpression::SetOpcodeData (const DataExtractor& data)
{
m_data = data;
}
void
DWARFExpression::CopyOpcodeData (lldb::ModuleSP module_sp, const DataExtractor& data, lldb::offset_t data_offset, lldb::offset_t data_length)
{
const uint8_t *bytes = data.PeekData(data_offset, data_length);
if (bytes)
{
m_module_wp = module_sp;
m_data.SetData(DataBufferSP(new DataBufferHeap(bytes, data_length)));
m_data.SetByteOrder(data.GetByteOrder());
m_data.SetAddressByteSize(data.GetAddressByteSize());
}
}
void
DWARFExpression::SetOpcodeData (lldb::ModuleSP module_sp, const DataExtractor& data, lldb::offset_t data_offset, lldb::offset_t data_length)
{
m_module_wp = module_sp;
m_data.SetData(data, data_offset, data_length);
}
void
DWARFExpression::DumpLocation (Stream *s, lldb::offset_t offset, lldb::offset_t length, lldb::DescriptionLevel level, ABI *abi) const
{
if (!m_data.ValidOffsetForDataOfSize(offset, length))
return;
const lldb::offset_t start_offset = offset;
const lldb::offset_t end_offset = offset + length;
while (m_data.ValidOffset(offset) && offset < end_offset)
{
const lldb::offset_t op_offset = offset;
const uint8_t op = m_data.GetU8(&offset);
switch (level)
{
default:
break;
case lldb::eDescriptionLevelBrief:
if (offset > start_offset)
s->PutChar(' ');
break;
case lldb::eDescriptionLevelFull:
case lldb::eDescriptionLevelVerbose:
if (offset > start_offset)
s->EOL();
s->Indent();
if (level == lldb::eDescriptionLevelFull)
break;
// Fall through for verbose and print offset and DW_OP prefix..
s->Printf("0x%8.8" PRIx64 ": %s", op_offset, op >= DW_OP_APPLE_uninit ? "DW_OP_APPLE_" : "DW_OP_");
break;
}
switch (op)
{
case DW_OP_addr: *s << "DW_OP_addr(" << m_data.GetAddress(&offset) << ") "; break; // 0x03 1 address
case DW_OP_deref: *s << "DW_OP_deref"; break; // 0x06
case DW_OP_const1u: s->Printf("DW_OP_const1u(0x%2.2x) ", m_data.GetU8(&offset)); break; // 0x08 1 1-byte constant
case DW_OP_const1s: s->Printf("DW_OP_const1s(0x%2.2x) ", m_data.GetU8(&offset)); break; // 0x09 1 1-byte constant
case DW_OP_const2u: s->Printf("DW_OP_const2u(0x%4.4x) ", m_data.GetU16(&offset)); break; // 0x0a 1 2-byte constant
case DW_OP_const2s: s->Printf("DW_OP_const2s(0x%4.4x) ", m_data.GetU16(&offset)); break; // 0x0b 1 2-byte constant
case DW_OP_const4u: s->Printf("DW_OP_const4u(0x%8.8x) ", m_data.GetU32(&offset)); break; // 0x0c 1 4-byte constant
case DW_OP_const4s: s->Printf("DW_OP_const4s(0x%8.8x) ", m_data.GetU32(&offset)); break; // 0x0d 1 4-byte constant
case DW_OP_const8u: s->Printf("DW_OP_const8u(0x%16.16" PRIx64 ") ", m_data.GetU64(&offset)); break; // 0x0e 1 8-byte constant
case DW_OP_const8s: s->Printf("DW_OP_const8s(0x%16.16" PRIx64 ") ", m_data.GetU64(&offset)); break; // 0x0f 1 8-byte constant
case DW_OP_constu: s->Printf("DW_OP_constu(0x%" PRIx64 ") ", m_data.GetULEB128(&offset)); break; // 0x10 1 ULEB128 constant
case DW_OP_consts: s->Printf("DW_OP_consts(0x%" PRId64 ") ", m_data.GetSLEB128(&offset)); break; // 0x11 1 SLEB128 constant
case DW_OP_dup: s->PutCString("DW_OP_dup"); break; // 0x12
case DW_OP_drop: s->PutCString("DW_OP_drop"); break; // 0x13
case DW_OP_over: s->PutCString("DW_OP_over"); break; // 0x14
case DW_OP_pick: s->Printf("DW_OP_pick(0x%2.2x) ", m_data.GetU8(&offset)); break; // 0x15 1 1-byte stack index
case DW_OP_swap: s->PutCString("DW_OP_swap"); break; // 0x16
case DW_OP_rot: s->PutCString("DW_OP_rot"); break; // 0x17
case DW_OP_xderef: s->PutCString("DW_OP_xderef"); break; // 0x18
case DW_OP_abs: s->PutCString("DW_OP_abs"); break; // 0x19
case DW_OP_and: s->PutCString("DW_OP_and"); break; // 0x1a
case DW_OP_div: s->PutCString("DW_OP_div"); break; // 0x1b
case DW_OP_minus: s->PutCString("DW_OP_minus"); break; // 0x1c
case DW_OP_mod: s->PutCString("DW_OP_mod"); break; // 0x1d
case DW_OP_mul: s->PutCString("DW_OP_mul"); break; // 0x1e
case DW_OP_neg: s->PutCString("DW_OP_neg"); break; // 0x1f
case DW_OP_not: s->PutCString("DW_OP_not"); break; // 0x20
case DW_OP_or: s->PutCString("DW_OP_or"); break; // 0x21
case DW_OP_plus: s->PutCString("DW_OP_plus"); break; // 0x22
case DW_OP_plus_uconst: // 0x23 1 ULEB128 addend
s->Printf("DW_OP_plus_uconst(0x%" PRIx64 ") ", m_data.GetULEB128(&offset));
break;
case DW_OP_shl: s->PutCString("DW_OP_shl"); break; // 0x24
case DW_OP_shr: s->PutCString("DW_OP_shr"); break; // 0x25
case DW_OP_shra: s->PutCString("DW_OP_shra"); break; // 0x26
case DW_OP_xor: s->PutCString("DW_OP_xor"); break; // 0x27
case DW_OP_skip: s->Printf("DW_OP_skip(0x%4.4x)", m_data.GetU16(&offset)); break; // 0x2f 1 signed 2-byte constant
case DW_OP_bra: s->Printf("DW_OP_bra(0x%4.4x)", m_data.GetU16(&offset)); break; // 0x28 1 signed 2-byte constant
case DW_OP_eq: s->PutCString("DW_OP_eq"); break; // 0x29
case DW_OP_ge: s->PutCString("DW_OP_ge"); break; // 0x2a
case DW_OP_gt: s->PutCString("DW_OP_gt"); break; // 0x2b
case DW_OP_le: s->PutCString("DW_OP_le"); break; // 0x2c
case DW_OP_lt: s->PutCString("DW_OP_lt"); break; // 0x2d
case DW_OP_ne: s->PutCString("DW_OP_ne"); break; // 0x2e
case DW_OP_lit0: // 0x30
case DW_OP_lit1: // 0x31
case DW_OP_lit2: // 0x32
case DW_OP_lit3: // 0x33
case DW_OP_lit4: // 0x34
case DW_OP_lit5: // 0x35
case DW_OP_lit6: // 0x36
case DW_OP_lit7: // 0x37
case DW_OP_lit8: // 0x38
case DW_OP_lit9: // 0x39
case DW_OP_lit10: // 0x3A
case DW_OP_lit11: // 0x3B
case DW_OP_lit12: // 0x3C
case DW_OP_lit13: // 0x3D
case DW_OP_lit14: // 0x3E
case DW_OP_lit15: // 0x3F
case DW_OP_lit16: // 0x40
case DW_OP_lit17: // 0x41
case DW_OP_lit18: // 0x42
case DW_OP_lit19: // 0x43
case DW_OP_lit20: // 0x44
case DW_OP_lit21: // 0x45
case DW_OP_lit22: // 0x46
case DW_OP_lit23: // 0x47
case DW_OP_lit24: // 0x48
case DW_OP_lit25: // 0x49
case DW_OP_lit26: // 0x4A
case DW_OP_lit27: // 0x4B
case DW_OP_lit28: // 0x4C
case DW_OP_lit29: // 0x4D
case DW_OP_lit30: // 0x4E
case DW_OP_lit31: s->Printf("DW_OP_lit%i", op - DW_OP_lit0); break; // 0x4f
case DW_OP_reg0: // 0x50
case DW_OP_reg1: // 0x51
case DW_OP_reg2: // 0x52
case DW_OP_reg3: // 0x53
case DW_OP_reg4: // 0x54
case DW_OP_reg5: // 0x55
case DW_OP_reg6: // 0x56
case DW_OP_reg7: // 0x57
case DW_OP_reg8: // 0x58
case DW_OP_reg9: // 0x59
case DW_OP_reg10: // 0x5A
case DW_OP_reg11: // 0x5B
case DW_OP_reg12: // 0x5C
case DW_OP_reg13: // 0x5D
case DW_OP_reg14: // 0x5E
case DW_OP_reg15: // 0x5F
case DW_OP_reg16: // 0x60
case DW_OP_reg17: // 0x61
case DW_OP_reg18: // 0x62
case DW_OP_reg19: // 0x63
case DW_OP_reg20: // 0x64
case DW_OP_reg21: // 0x65
case DW_OP_reg22: // 0x66
case DW_OP_reg23: // 0x67
case DW_OP_reg24: // 0x68
case DW_OP_reg25: // 0x69
case DW_OP_reg26: // 0x6A
case DW_OP_reg27: // 0x6B
case DW_OP_reg28: // 0x6C
case DW_OP_reg29: // 0x6D
case DW_OP_reg30: // 0x6E
case DW_OP_reg31: // 0x6F
{
uint32_t reg_num = op - DW_OP_reg0;
if (abi)
{
RegisterInfo reg_info;
if (abi->GetRegisterInfoByKind(m_reg_kind, reg_num, reg_info))
{
if (reg_info.name)
{
s->PutCString (reg_info.name);
break;
}
else if (reg_info.alt_name)
{
s->PutCString (reg_info.alt_name);
break;
}
}
}
s->Printf("DW_OP_reg%u", reg_num); break;
}
break;
case DW_OP_breg0:
case DW_OP_breg1:
case DW_OP_breg2:
case DW_OP_breg3:
case DW_OP_breg4:
case DW_OP_breg5:
case DW_OP_breg6:
case DW_OP_breg7:
case DW_OP_breg8:
case DW_OP_breg9:
case DW_OP_breg10:
case DW_OP_breg11:
case DW_OP_breg12:
case DW_OP_breg13:
case DW_OP_breg14:
case DW_OP_breg15:
case DW_OP_breg16:
case DW_OP_breg17:
case DW_OP_breg18:
case DW_OP_breg19:
case DW_OP_breg20:
case DW_OP_breg21:
case DW_OP_breg22:
case DW_OP_breg23:
case DW_OP_breg24:
case DW_OP_breg25:
case DW_OP_breg26:
case DW_OP_breg27:
case DW_OP_breg28:
case DW_OP_breg29:
case DW_OP_breg30:
case DW_OP_breg31:
{
uint32_t reg_num = op - DW_OP_breg0;
int64_t reg_offset = m_data.GetSLEB128(&offset);
if (abi)
{
RegisterInfo reg_info;
if (abi->GetRegisterInfoByKind(m_reg_kind, reg_num, reg_info))
{
if (reg_info.name)
{
s->Printf("[%s%+" PRIi64 "]", reg_info.name, reg_offset);
break;
}
else if (reg_info.alt_name)
{
s->Printf("[%s%+" PRIi64 "]", reg_info.alt_name, reg_offset);
break;
}
}
}
s->Printf("DW_OP_breg%i(0x%" PRIx64 ")", reg_num, reg_offset);
}
break;
case DW_OP_regx: // 0x90 1 ULEB128 register
{
uint32_t reg_num = m_data.GetULEB128(&offset);
if (abi)
{
RegisterInfo reg_info;
if (abi->GetRegisterInfoByKind(m_reg_kind, reg_num, reg_info))
{
if (reg_info.name)
{
s->PutCString (reg_info.name);
break;
}
else if (reg_info.alt_name)
{
s->PutCString (reg_info.alt_name);
break;
}
}
}
s->Printf("DW_OP_regx(%" PRIu32 ")", reg_num); break;
}
break;
case DW_OP_fbreg: // 0x91 1 SLEB128 offset
s->Printf("DW_OP_fbreg(%" PRIi64 ")",m_data.GetSLEB128(&offset));
break;
case DW_OP_bregx: // 0x92 2 ULEB128 register followed by SLEB128 offset
{
uint32_t reg_num = m_data.GetULEB128(&offset);
int64_t reg_offset = m_data.GetSLEB128(&offset);
if (abi)
{
RegisterInfo reg_info;
if (abi->GetRegisterInfoByKind(m_reg_kind, reg_num, reg_info))
{
if (reg_info.name)
{
s->Printf("[%s%+" PRIi64 "]", reg_info.name, reg_offset);
break;
}
else if (reg_info.alt_name)
{
s->Printf("[%s%+" PRIi64 "]", reg_info.alt_name, reg_offset);
break;
}
}
}
s->Printf("DW_OP_bregx(reg=%" PRIu32 ",offset=%" PRIi64 ")", reg_num, reg_offset);
}
break;
case DW_OP_piece: // 0x93 1 ULEB128 size of piece addressed
s->Printf("DW_OP_piece(0x%" PRIx64 ")", m_data.GetULEB128(&offset));
break;
case DW_OP_deref_size: // 0x94 1 1-byte size of data retrieved
s->Printf("DW_OP_deref_size(0x%2.2x)", m_data.GetU8(&offset));
break;
case DW_OP_xderef_size: // 0x95 1 1-byte size of data retrieved
s->Printf("DW_OP_xderef_size(0x%2.2x)", m_data.GetU8(&offset));
break;
case DW_OP_nop: s->PutCString("DW_OP_nop"); break; // 0x96
case DW_OP_push_object_address: s->PutCString("DW_OP_push_object_address"); break; // 0x97 DWARF3
case DW_OP_call2: // 0x98 DWARF3 1 2-byte offset of DIE
s->Printf("DW_OP_call2(0x%4.4x)", m_data.GetU16(&offset));
break;
case DW_OP_call4: // 0x99 DWARF3 1 4-byte offset of DIE
s->Printf("DW_OP_call4(0x%8.8x)", m_data.GetU32(&offset));
break;
case DW_OP_call_ref: // 0x9a DWARF3 1 4- or 8-byte offset of DIE
s->Printf("DW_OP_call_ref(0x%8.8" PRIx64 ")", m_data.GetAddress(&offset));
break;
// case DW_OP_form_tls_address: s << "form_tls_address"; break; // 0x9b DWARF3
// case DW_OP_call_frame_cfa: s << "call_frame_cfa"; break; // 0x9c DWARF3
// case DW_OP_bit_piece: // 0x9d DWARF3 2
// s->Printf("DW_OP_bit_piece(0x%x, 0x%x)", m_data.GetULEB128(&offset), m_data.GetULEB128(&offset));
// break;
// case DW_OP_lo_user: s->PutCString("DW_OP_lo_user"); break; // 0xe0
// case DW_OP_hi_user: s->PutCString("DW_OP_hi_user"); break; // 0xff
// case DW_OP_APPLE_extern:
// s->Printf("DW_OP_APPLE_extern(%" PRIu64 ")", m_data.GetULEB128(&offset));
// break;
// case DW_OP_APPLE_array_ref:
// s->PutCString("DW_OP_APPLE_array_ref");
// break;
case DW_OP_GNU_push_tls_address:
s->PutCString("DW_OP_GNU_push_tls_address"); // 0xe0
break;
case DW_OP_APPLE_uninit:
s->PutCString("DW_OP_APPLE_uninit"); // 0xF0
break;
// case DW_OP_APPLE_assign: // 0xF1 - pops value off and assigns it to second item on stack (2nd item must have assignable context)
// s->PutCString("DW_OP_APPLE_assign");
// break;
// case DW_OP_APPLE_address_of: // 0xF2 - gets the address of the top stack item (top item must be a variable, or have value_type that is an address already)
// s->PutCString("DW_OP_APPLE_address_of");
// break;
// case DW_OP_APPLE_value_of: // 0xF3 - pops the value off the stack and pushes the value of that object (top item must be a variable, or expression local)
// s->PutCString("DW_OP_APPLE_value_of");
// break;
// case DW_OP_APPLE_deref_type: // 0xF4 - gets the address of the top stack item (top item must be a variable, or a clang type)
// s->PutCString("DW_OP_APPLE_deref_type");
// break;
// case DW_OP_APPLE_expr_local: // 0xF5 - ULEB128 expression local index
// s->Printf("DW_OP_APPLE_expr_local(%" PRIu64 ")", m_data.GetULEB128(&offset));
// break;
// case DW_OP_APPLE_constf: // 0xF6 - 1 byte float size, followed by constant float data
// {
// uint8_t float_length = m_data.GetU8(&offset);
// s->Printf("DW_OP_APPLE_constf(<%u> ", float_length);
// m_data.Dump(s, offset, eFormatHex, float_length, 1, UINT32_MAX, DW_INVALID_ADDRESS, 0, 0);
// s->PutChar(')');
// // Consume the float data
// m_data.GetData(&offset, float_length);
// }
// break;
// case DW_OP_APPLE_scalar_cast:
// s->Printf("DW_OP_APPLE_scalar_cast(%s)", Scalar::GetValueTypeAsCString ((Scalar::Type)m_data.GetU8(&offset)));
// break;
// case DW_OP_APPLE_clang_cast:
// {
// clang::Type *clang_type = (clang::Type *)m_data.GetMaxU64(&offset, sizeof(void*));
// s->Printf("DW_OP_APPLE_clang_cast(%p)", clang_type);
// }
// break;
// case DW_OP_APPLE_clear:
// s->PutCString("DW_OP_APPLE_clear");
// break;
// case DW_OP_APPLE_error: // 0xFF - Stops expression evaluation and returns an error (no args)
// s->PutCString("DW_OP_APPLE_error");
// break;
}
}
}
void
DWARFExpression::SetLocationListSlide (addr_t slide)
{
m_loclist_slide = slide;
}
int
DWARFExpression::GetRegisterKind ()
{
return m_reg_kind;
}
void
DWARFExpression::SetRegisterKind (RegisterKind reg_kind)
{
m_reg_kind = reg_kind;
}
bool
DWARFExpression::IsLocationList() const
{
return m_loclist_slide != LLDB_INVALID_ADDRESS;
}
void
DWARFExpression::GetDescription (Stream *s, lldb::DescriptionLevel level, addr_t location_list_base_addr, ABI *abi) const
{
if (IsLocationList())
{
// We have a location list
lldb::offset_t offset = 0;
uint32_t count = 0;
addr_t curr_base_addr = location_list_base_addr;
while (m_data.ValidOffset(offset))
{
lldb::addr_t begin_addr_offset = m_data.GetAddress(&offset);
lldb::addr_t end_addr_offset = m_data.GetAddress(&offset);
if (begin_addr_offset < end_addr_offset)
{
if (count > 0)
s->PutCString(", ");
VMRange addr_range(curr_base_addr + begin_addr_offset, curr_base_addr + end_addr_offset);
addr_range.Dump(s, 0, 8);
s->PutChar('{');
lldb::offset_t location_length = m_data.GetU16(&offset);
DumpLocation (s, offset, location_length, level, abi);
s->PutChar('}');
offset += location_length;
}
else if (begin_addr_offset == 0 && end_addr_offset == 0)
{
// The end of the location list is marked by both the start and end offset being zero
break;
}
else
{
if ((m_data.GetAddressByteSize() == 4 && (begin_addr_offset == UINT32_MAX)) ||
(m_data.GetAddressByteSize() == 8 && (begin_addr_offset == UINT64_MAX)))
{
curr_base_addr = end_addr_offset + location_list_base_addr;
// We have a new base address
if (count > 0)
s->PutCString(", ");
*s << "base_addr = " << end_addr_offset;
}
}
count++;
}
}
else
{
// We have a normal location that contains DW_OP location opcodes
DumpLocation (s, 0, m_data.GetByteSize(), level, abi);
}
}
static bool
ReadRegisterValueAsScalar
(
RegisterContext *reg_ctx,
lldb::RegisterKind reg_kind,
uint32_t reg_num,
Error *error_ptr,
Value &value
)
{
if (reg_ctx == NULL)
{
if (error_ptr)
error_ptr->SetErrorStringWithFormat("No register context in frame.\n");
}
else
{
uint32_t native_reg = reg_ctx->ConvertRegisterKindToRegisterNumber(reg_kind, reg_num);
if (native_reg == LLDB_INVALID_REGNUM)
{
if (error_ptr)
error_ptr->SetErrorStringWithFormat("Unable to convert register kind=%u reg_num=%u to a native register number.\n", reg_kind, reg_num);
}
else
{
const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoAtIndex(native_reg);
RegisterValue reg_value;
if (reg_ctx->ReadRegister (reg_info, reg_value))
{
if (reg_value.GetScalarValue(value.GetScalar()))
{
value.SetValueType (Value::eValueTypeScalar);
value.SetContext (Value::eContextTypeRegisterInfo,
const_cast<RegisterInfo *>(reg_info));
if (error_ptr)
error_ptr->Clear();
return true;
}
else
{
// If we get this error, then we need to implement a value
// buffer in the dwarf expression evaluation function...
if (error_ptr)
error_ptr->SetErrorStringWithFormat ("register %s can't be converted to a scalar value",
reg_info->name);
}
}
else
{
if (error_ptr)
error_ptr->SetErrorStringWithFormat("register %s is not available", reg_info->name);
}
}
}
return false;
}
//bool
//DWARFExpression::LocationListContainsLoadAddress (Process* process, const Address &addr) const
//{
// return LocationListContainsLoadAddress(process, addr.GetLoadAddress(process));
//}
//
//bool
//DWARFExpression::LocationListContainsLoadAddress (Process* process, addr_t load_addr) const
//{
// if (load_addr == LLDB_INVALID_ADDRESS)
// return false;
//
// if (IsLocationList())
// {
// lldb::offset_t offset = 0;
//
// addr_t loc_list_base_addr = m_loclist_slide.GetLoadAddress(process);
//
// if (loc_list_base_addr == LLDB_INVALID_ADDRESS)
// return false;
//
// while (m_data.ValidOffset(offset))
// {
// // We need to figure out what the value is for the location.
// addr_t lo_pc = m_data.GetAddress(&offset);
// addr_t hi_pc = m_data.GetAddress(&offset);
// if (lo_pc == 0 && hi_pc == 0)
// break;
// else
// {
// lo_pc += loc_list_base_addr;
// hi_pc += loc_list_base_addr;
//
// if (lo_pc <= load_addr && load_addr < hi_pc)
// return true;
//
// offset += m_data.GetU16(&offset);
// }
// }
// }
// return false;
//}
static offset_t
GetOpcodeDataSize (const DataExtractor &data, const lldb::offset_t data_offset, const uint8_t op)
{
lldb::offset_t offset = data_offset;
switch (op)
{
case DW_OP_addr:
case DW_OP_call_ref: // 0x9a 1 address sized offset of DIE (DWARF3)
return data.GetAddressByteSize();
// Opcodes with no arguments
case DW_OP_deref: // 0x06
case DW_OP_dup: // 0x12
case DW_OP_drop: // 0x13
case DW_OP_over: // 0x14
case DW_OP_swap: // 0x16
case DW_OP_rot: // 0x17
case DW_OP_xderef: // 0x18
case DW_OP_abs: // 0x19
case DW_OP_and: // 0x1a
case DW_OP_div: // 0x1b
case DW_OP_minus: // 0x1c
case DW_OP_mod: // 0x1d
case DW_OP_mul: // 0x1e
case DW_OP_neg: // 0x1f
case DW_OP_not: // 0x20
case DW_OP_or: // 0x21
case DW_OP_plus: // 0x22
case DW_OP_shl: // 0x24
case DW_OP_shr: // 0x25
case DW_OP_shra: // 0x26
case DW_OP_xor: // 0x27
case DW_OP_eq: // 0x29
case DW_OP_ge: // 0x2a
case DW_OP_gt: // 0x2b
case DW_OP_le: // 0x2c
case DW_OP_lt: // 0x2d
case DW_OP_ne: // 0x2e
case DW_OP_lit0: // 0x30
case DW_OP_lit1: // 0x31
case DW_OP_lit2: // 0x32
case DW_OP_lit3: // 0x33
case DW_OP_lit4: // 0x34
case DW_OP_lit5: // 0x35
case DW_OP_lit6: // 0x36
case DW_OP_lit7: // 0x37
case DW_OP_lit8: // 0x38
case DW_OP_lit9: // 0x39
case DW_OP_lit10: // 0x3A
case DW_OP_lit11: // 0x3B
case DW_OP_lit12: // 0x3C
case DW_OP_lit13: // 0x3D
case DW_OP_lit14: // 0x3E
case DW_OP_lit15: // 0x3F
case DW_OP_lit16: // 0x40
case DW_OP_lit17: // 0x41
case DW_OP_lit18: // 0x42
case DW_OP_lit19: // 0x43
case DW_OP_lit20: // 0x44
case DW_OP_lit21: // 0x45
case DW_OP_lit22: // 0x46
case DW_OP_lit23: // 0x47
case DW_OP_lit24: // 0x48
case DW_OP_lit25: // 0x49
case DW_OP_lit26: // 0x4A
case DW_OP_lit27: // 0x4B
case DW_OP_lit28: // 0x4C
case DW_OP_lit29: // 0x4D
case DW_OP_lit30: // 0x4E
case DW_OP_lit31: // 0x4f
case DW_OP_reg0: // 0x50
case DW_OP_reg1: // 0x51
case DW_OP_reg2: // 0x52
case DW_OP_reg3: // 0x53
case DW_OP_reg4: // 0x54
case DW_OP_reg5: // 0x55
case DW_OP_reg6: // 0x56
case DW_OP_reg7: // 0x57
case DW_OP_reg8: // 0x58
case DW_OP_reg9: // 0x59
case DW_OP_reg10: // 0x5A
case DW_OP_reg11: // 0x5B
case DW_OP_reg12: // 0x5C
case DW_OP_reg13: // 0x5D
case DW_OP_reg14: // 0x5E
case DW_OP_reg15: // 0x5F
case DW_OP_reg16: // 0x60
case DW_OP_reg17: // 0x61
case DW_OP_reg18: // 0x62
case DW_OP_reg19: // 0x63
case DW_OP_reg20: // 0x64
case DW_OP_reg21: // 0x65
case DW_OP_reg22: // 0x66
case DW_OP_reg23: // 0x67
case DW_OP_reg24: // 0x68
case DW_OP_reg25: // 0x69
case DW_OP_reg26: // 0x6A
case DW_OP_reg27: // 0x6B
case DW_OP_reg28: // 0x6C
case DW_OP_reg29: // 0x6D
case DW_OP_reg30: // 0x6E
case DW_OP_reg31: // 0x6F
case DW_OP_nop: // 0x96
case DW_OP_push_object_address: // 0x97 DWARF3
case DW_OP_form_tls_address: // 0x9b DWARF3
case DW_OP_call_frame_cfa: // 0x9c DWARF3
case DW_OP_stack_value: // 0x9f DWARF4
case DW_OP_GNU_push_tls_address: // 0xe0 GNU extension
return 0;
// Opcodes with a single 1 byte arguments
case DW_OP_const1u: // 0x08 1 1-byte constant
case DW_OP_const1s: // 0x09 1 1-byte constant
case DW_OP_pick: // 0x15 1 1-byte stack index
case DW_OP_deref_size: // 0x94 1 1-byte size of data retrieved
case DW_OP_xderef_size: // 0x95 1 1-byte size of data retrieved
return 1;
// Opcodes with a single 2 byte arguments
case DW_OP_const2u: // 0x0a 1 2-byte constant
case DW_OP_const2s: // 0x0b 1 2-byte constant
case DW_OP_skip: // 0x2f 1 signed 2-byte constant
case DW_OP_bra: // 0x28 1 signed 2-byte constant
case DW_OP_call2: // 0x98 1 2-byte offset of DIE (DWARF3)
return 2;
// Opcodes with a single 4 byte arguments
case DW_OP_const4u: // 0x0c 1 4-byte constant
case DW_OP_const4s: // 0x0d 1 4-byte constant
case DW_OP_call4: // 0x99 1 4-byte offset of DIE (DWARF3)
return 4;
// Opcodes with a single 8 byte arguments
case DW_OP_const8u: // 0x0e 1 8-byte constant
case DW_OP_const8s: // 0x0f 1 8-byte constant
return 8;
// All opcodes that have a single ULEB (signed or unsigned) argument
case DW_OP_constu: // 0x10 1 ULEB128 constant
case DW_OP_consts: // 0x11 1 SLEB128 constant
case DW_OP_plus_uconst: // 0x23 1 ULEB128 addend
case DW_OP_breg0: // 0x70 1 ULEB128 register
case DW_OP_breg1: // 0x71 1 ULEB128 register
case DW_OP_breg2: // 0x72 1 ULEB128 register
case DW_OP_breg3: // 0x73 1 ULEB128 register
case DW_OP_breg4: // 0x74 1 ULEB128 register
case DW_OP_breg5: // 0x75 1 ULEB128 register
case DW_OP_breg6: // 0x76 1 ULEB128 register
case DW_OP_breg7: // 0x77 1 ULEB128 register
case DW_OP_breg8: // 0x78 1 ULEB128 register
case DW_OP_breg9: // 0x79 1 ULEB128 register
case DW_OP_breg10: // 0x7a 1 ULEB128 register
case DW_OP_breg11: // 0x7b 1 ULEB128 register
case DW_OP_breg12: // 0x7c 1 ULEB128 register
case DW_OP_breg13: // 0x7d 1 ULEB128 register
case DW_OP_breg14: // 0x7e 1 ULEB128 register
case DW_OP_breg15: // 0x7f 1 ULEB128 register
case DW_OP_breg16: // 0x80 1 ULEB128 register
case DW_OP_breg17: // 0x81 1 ULEB128 register
case DW_OP_breg18: // 0x82 1 ULEB128 register
case DW_OP_breg19: // 0x83 1 ULEB128 register
case DW_OP_breg20: // 0x84 1 ULEB128 register
case DW_OP_breg21: // 0x85 1 ULEB128 register
case DW_OP_breg22: // 0x86 1 ULEB128 register
case DW_OP_breg23: // 0x87 1 ULEB128 register
case DW_OP_breg24: // 0x88 1 ULEB128 register
case DW_OP_breg25: // 0x89 1 ULEB128 register
case DW_OP_breg26: // 0x8a 1 ULEB128 register
case DW_OP_breg27: // 0x8b 1 ULEB128 register
case DW_OP_breg28: // 0x8c 1 ULEB128 register
case DW_OP_breg29: // 0x8d 1 ULEB128 register
case DW_OP_breg30: // 0x8e 1 ULEB128 register
case DW_OP_breg31: // 0x8f 1 ULEB128 register
case DW_OP_regx: // 0x90 1 ULEB128 register
case DW_OP_fbreg: // 0x91 1 SLEB128 offset
case DW_OP_piece: // 0x93 1 ULEB128 size of piece addressed
data.Skip_LEB128(&offset);
return offset - data_offset;
// All opcodes that have a 2 ULEB (signed or unsigned) arguments
case DW_OP_bregx: // 0x92 2 ULEB128 register followed by SLEB128 offset
case DW_OP_bit_piece: // 0x9d ULEB128 bit size, ULEB128 bit offset (DWARF3);
data.Skip_LEB128(&offset);
data.Skip_LEB128(&offset);
return offset - data_offset;
case DW_OP_implicit_value: // 0x9e ULEB128 size followed by block of that size (DWARF4)
{
uint64_t block_len = data.Skip_LEB128(&offset);
offset += block_len;
return offset - data_offset;
}
default:
break;
}
return LLDB_INVALID_OFFSET;
}
lldb::addr_t
DWARFExpression::GetLocation_DW_OP_addr (uint32_t op_addr_idx, bool &error) const
{
error = false;
if (IsLocationList())
return LLDB_INVALID_ADDRESS;
lldb::offset_t offset = 0;
uint32_t curr_op_addr_idx = 0;
while (m_data.ValidOffset(offset))
{
const uint8_t op = m_data.GetU8(&offset);
if (op == DW_OP_addr)
{
const lldb::addr_t op_file_addr = m_data.GetAddress(&offset);
if (curr_op_addr_idx == op_addr_idx)
return op_file_addr;
else
++curr_op_addr_idx;
}
else
{
const offset_t op_arg_size = GetOpcodeDataSize (m_data, offset, op);
if (op_arg_size == LLDB_INVALID_OFFSET)
{
error = true;
break;
}
offset += op_arg_size;
}
}
return LLDB_INVALID_ADDRESS;
}
bool
DWARFExpression::Update_DW_OP_addr (lldb::addr_t file_addr)
{
if (IsLocationList())
return false;
lldb::offset_t offset = 0;
while (m_data.ValidOffset(offset))
{
const uint8_t op = m_data.GetU8(&offset);
if (op == DW_OP_addr)
{
const uint32_t addr_byte_size = m_data.GetAddressByteSize();
// We have to make a copy of the data as we don't know if this
// data is from a read only memory mapped buffer, so we duplicate
// all of the data first, then modify it, and if all goes well,
// we then replace the data for this expression
// So first we copy the data into a heap buffer
std::unique_ptr<DataBufferHeap> head_data_ap (new DataBufferHeap (m_data.GetDataStart(),
m_data.GetByteSize()));
// Make en encoder so we can write the address into the buffer using
// the correct byte order (endianness)
DataEncoder encoder (head_data_ap->GetBytes(),
head_data_ap->GetByteSize(),
m_data.GetByteOrder(),
addr_byte_size);
// Replace the address in the new buffer
if (encoder.PutMaxU64 (offset, addr_byte_size, file_addr) == UINT32_MAX)
return false;
// All went well, so now we can reset the data using a shared
// pointer to the heap data so "m_data" will now correctly
// manage the heap data.
m_data.SetData (DataBufferSP (head_data_ap.release()));
return true;
}
else
{
const offset_t op_arg_size = GetOpcodeDataSize (m_data, offset, op);
if (op_arg_size == LLDB_INVALID_OFFSET)
break;
offset += op_arg_size;
}
}
return false;
}
bool
DWARFExpression::LocationListContainsAddress (lldb::addr_t loclist_base_addr, lldb::addr_t addr) const
{
if (addr == LLDB_INVALID_ADDRESS)
return false;
if (IsLocationList())
{
lldb::offset_t offset = 0;
if (loclist_base_addr == LLDB_INVALID_ADDRESS)
return false;
while (m_data.ValidOffset(offset))
{
// We need to figure out what the value is for the location.
addr_t lo_pc = m_data.GetAddress(&offset);
addr_t hi_pc = m_data.GetAddress(&offset);
if (lo_pc == 0 && hi_pc == 0)
break;
else
{
lo_pc += loclist_base_addr - m_loclist_slide;
hi_pc += loclist_base_addr - m_loclist_slide;
if (lo_pc <= addr && addr < hi_pc)
return true;
offset += m_data.GetU16(&offset);
}
}
}
return false;
}
bool
DWARFExpression::GetLocation (addr_t base_addr, addr_t pc, lldb::offset_t &offset, lldb::offset_t &length)
{
offset = 0;
if (!IsLocationList())
{
length = m_data.GetByteSize();
return true;
}
if (base_addr != LLDB_INVALID_ADDRESS && pc != LLDB_INVALID_ADDRESS)
{
addr_t curr_base_addr = base_addr;
while (m_data.ValidOffset(offset))
{
// We need to figure out what the value is for the location.
addr_t lo_pc = m_data.GetAddress(&offset);
addr_t hi_pc = m_data.GetAddress(&offset);
if (lo_pc == 0 && hi_pc == 0)
{
break;
}
else
{
lo_pc += curr_base_addr - m_loclist_slide;
hi_pc += curr_base_addr - m_loclist_slide;
length = m_data.GetU16(&offset);
if (length > 0 && lo_pc <= pc && pc < hi_pc)
return true;
offset += length;
}
}
}
offset = LLDB_INVALID_OFFSET;
length = 0;
return false;
}
bool
DWARFExpression::DumpLocationForAddress (Stream *s,
lldb::DescriptionLevel level,
addr_t base_addr,
addr_t address,
ABI *abi)
{
lldb::offset_t offset = 0;
lldb::offset_t length = 0;
if (GetLocation (base_addr, address, offset, length))
{
if (length > 0)
{
DumpLocation(s, offset, length, level, abi);
return true;
}
}
return false;
}
bool
DWARFExpression::Evaluate
(
ExecutionContextScope *exe_scope,
ClangExpressionVariableList *expr_locals,
ClangExpressionDeclMap *decl_map,
lldb::addr_t loclist_base_load_addr,
const Value* initial_value_ptr,
Value& result,
Error *error_ptr
) const
{
ExecutionContext exe_ctx (exe_scope);
return Evaluate(&exe_ctx, expr_locals, decl_map, NULL, loclist_base_load_addr, initial_value_ptr, result, error_ptr);
}
bool
DWARFExpression::Evaluate
(
ExecutionContext *exe_ctx,
ClangExpressionVariableList *expr_locals,
ClangExpressionDeclMap *decl_map,
RegisterContext *reg_ctx,
lldb::addr_t loclist_base_load_addr,
const Value* initial_value_ptr,
Value& result,
Error *error_ptr
) const
{
ModuleSP module_sp = m_module_wp.lock();
if (IsLocationList())
{
lldb::offset_t offset = 0;
addr_t pc;
StackFrame *frame = NULL;
if (reg_ctx)
pc = reg_ctx->GetPC();
else
{
frame = exe_ctx->GetFramePtr();
if (!frame)
return false;
RegisterContextSP reg_ctx_sp = frame->GetRegisterContext();
if (!reg_ctx_sp)
return false;
pc = reg_ctx_sp->GetPC();
}
if (loclist_base_load_addr != LLDB_INVALID_ADDRESS)
{
if (pc == LLDB_INVALID_ADDRESS)
{
if (error_ptr)
error_ptr->SetErrorString("Invalid PC in frame.");
return false;
}
addr_t curr_loclist_base_load_addr = loclist_base_load_addr;
while (m_data.ValidOffset(offset))
{
// We need to figure out what the value is for the location.
addr_t lo_pc = m_data.GetAddress(&offset);
addr_t hi_pc = m_data.GetAddress(&offset);
if (lo_pc == 0 && hi_pc == 0)
{
break;
}
else
{
lo_pc += curr_loclist_base_load_addr - m_loclist_slide;
hi_pc += curr_loclist_base_load_addr - m_loclist_slide;
uint16_t length = m_data.GetU16(&offset);
if (length > 0 && lo_pc <= pc && pc < hi_pc)
{
return DWARFExpression::Evaluate (exe_ctx, expr_locals, decl_map, reg_ctx, module_sp, m_data, offset, length, m_reg_kind, initial_value_ptr, result, error_ptr);
}
offset += length;
}
}
}
if (error_ptr)
error_ptr->SetErrorString ("variable not available");
return false;
}
// Not a location list, just a single expression.
return DWARFExpression::Evaluate (exe_ctx, expr_locals, decl_map, reg_ctx, module_sp, m_data, 0, m_data.GetByteSize(), m_reg_kind, initial_value_ptr, result, error_ptr);
}
bool
DWARFExpression::Evaluate
(
ExecutionContext *exe_ctx,
ClangExpressionVariableList *expr_locals,
ClangExpressionDeclMap *decl_map,
RegisterContext *reg_ctx,
lldb::ModuleSP opcode_ctx,
const DataExtractor& opcodes,
const lldb::offset_t opcodes_offset,
const lldb::offset_t opcodes_length,
const lldb::RegisterKind reg_kind,
const Value* initial_value_ptr,
Value& result,
Error *error_ptr
)
{
if (opcodes_length == 0)
{
if (error_ptr)
error_ptr->SetErrorString ("no location, value may have been optimized out");
return false;
}
std::vector<Value> stack;
Process *process = NULL;
StackFrame *frame = NULL;
if (exe_ctx)
{
process = exe_ctx->GetProcessPtr();
frame = exe_ctx->GetFramePtr();
}
if (reg_ctx == NULL && frame)
reg_ctx = frame->GetRegisterContext().get();
if (initial_value_ptr)
stack.push_back(*initial_value_ptr);
lldb::offset_t offset = opcodes_offset;
const lldb::offset_t end_offset = opcodes_offset + opcodes_length;
Value tmp;
uint32_t reg_num;
/// Insertion point for evaluating multi-piece expression.
uint64_t op_piece_offset = 0;
// Make sure all of the data is available in opcodes.
if (!opcodes.ValidOffsetForDataOfSize(opcodes_offset, opcodes_length))
{
if (error_ptr)
error_ptr->SetErrorString ("invalid offset and/or length for opcodes buffer.");
return false;
}
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));
while (opcodes.ValidOffset(offset) && offset < end_offset)
{
const lldb::offset_t op_offset = offset;
const uint8_t op = opcodes.GetU8(&offset);
if (log && log->GetVerbose())
{
size_t count = stack.size();
log->Printf("Stack before operation has %" PRIu64 " values:", (uint64_t)count);
for (size_t i=0; i<count; ++i)
{
StreamString new_value;
new_value.Printf("[%" PRIu64 "]", (uint64_t)i);
stack[i].Dump(&new_value);
log->Printf(" %s", new_value.GetData());
}
log->Printf("0x%8.8" PRIx64 ": %s", op_offset, DW_OP_value_to_name(op));
}
switch (op)
{
//----------------------------------------------------------------------
// The DW_OP_addr operation has a single operand that encodes a machine
// address and whose size is the size of an address on the target machine.
//----------------------------------------------------------------------
case DW_OP_addr:
stack.push_back(Scalar(opcodes.GetAddress(&offset)));
stack.back().SetValueType (Value::eValueTypeFileAddress);
break;
//----------------------------------------------------------------------
// The DW_OP_addr_sect_offset4 is used for any location expressions in
// shared libraries that have a location like:
// DW_OP_addr(0x1000)
// If this address resides in a shared library, then this virtual
// address won't make sense when it is evaluated in the context of a
// running process where shared libraries have been slid. To account for
// this, this new address type where we can store the section pointer
// and a 4 byte offset.
//----------------------------------------------------------------------
// case DW_OP_addr_sect_offset4:
// {
// result_type = eResultTypeFileAddress;
// lldb::Section *sect = (lldb::Section *)opcodes.GetMaxU64(&offset, sizeof(void *));
// lldb::addr_t sect_offset = opcodes.GetU32(&offset);
//
// Address so_addr (sect, sect_offset);
// lldb::addr_t load_addr = so_addr.GetLoadAddress();
// if (load_addr != LLDB_INVALID_ADDRESS)
// {
// // We successfully resolve a file address to a load
// // address.
// stack.push_back(load_addr);
// break;
// }
// else
// {
// // We were able
// if (error_ptr)
// error_ptr->SetErrorStringWithFormat ("Section %s in %s is not currently loaded.\n", sect->GetName().AsCString(), sect->GetModule()->GetFileSpec().GetFilename().AsCString());
// return false;
// }
// }
// break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_deref
// OPERANDS: none
// DESCRIPTION: Pops the top stack entry and treats it as an address.
// The value retrieved from that address is pushed. The size of the
// data retrieved from the dereferenced address is the size of an
// address on the target machine.
//----------------------------------------------------------------------
case DW_OP_deref:
{
if (stack.empty())
{
if (error_ptr)
error_ptr->SetErrorString("Expression stack empty for DW_OP_deref.");
return false;
}
Value::ValueType value_type = stack.back().GetValueType();
switch (value_type)
{
case Value::eValueTypeHostAddress:
{
void *src = (void *)stack.back().GetScalar().ULongLong();
intptr_t ptr;
::memcpy (&ptr, src, sizeof(void *));
stack.back().GetScalar() = ptr;
stack.back().ClearContext();
}
break;
case Value::eValueTypeLoadAddress:
if (exe_ctx)
{
if (process)
{
lldb::addr_t pointer_addr = stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
Error error;
- lldb:addr_t pointer_value = process->ReadPointerFromMemory(pointer_addr, error);
+ lldb::addr_t pointer_value = process->ReadPointerFromMemory(pointer_addr, error);
if (pointer_value != LLDB_INVALID_ADDRESS)
{
stack.back().GetScalar() = pointer_value;
stack.back().ClearContext();
}
else
{
if (error_ptr)
error_ptr->SetErrorStringWithFormat ("Failed to dereference pointer from 0x%" PRIx64 " for DW_OP_deref: %s\n",
pointer_addr,
error.AsCString());
return false;
}
}
else
{
if (error_ptr)
error_ptr->SetErrorStringWithFormat ("NULL process for DW_OP_deref.\n");
return false;
}
}
else
{
if (error_ptr)
error_ptr->SetErrorStringWithFormat ("NULL execution context for DW_OP_deref.\n");
return false;
}
break;
default:
break;
}
}
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_deref_size
// OPERANDS: 1
// 1 - uint8_t that specifies the size of the data to dereference.
// DESCRIPTION: Behaves like the DW_OP_deref operation: it pops the top
// stack entry and treats it as an address. The value retrieved from that
// address is pushed. In the DW_OP_deref_size operation, however, the
// size in bytes of the data retrieved from the dereferenced address is
// specified by the single operand. This operand is a 1-byte unsigned
// integral constant whose value may not be larger than the size of an
// address on the target machine. The data retrieved is zero extended
// to the size of an address on the target machine before being pushed
// on the expression stack.
//----------------------------------------------------------------------
case DW_OP_deref_size:
{
if (stack.empty())
{
if (error_ptr)
error_ptr->SetErrorString("Expression stack empty for DW_OP_deref_size.");
return false;
}
uint8_t size = opcodes.GetU8(&offset);
Value::ValueType value_type = stack.back().GetValueType();
switch (value_type)
{
case Value::eValueTypeHostAddress:
{
void *src = (void *)stack.back().GetScalar().ULongLong();
intptr_t ptr;
::memcpy (&ptr, src, sizeof(void *));
// I can't decide whether the size operand should apply to the bytes in their
// lldb-host endianness or the target endianness.. I doubt this'll ever come up
// but I'll opt for assuming big endian regardless.
switch (size)
{
case 1: ptr = ptr & 0xff; break;
case 2: ptr = ptr & 0xffff; break;
case 3: ptr = ptr & 0xffffff; break;
case 4: ptr = ptr & 0xffffffff; break;
// the casts are added to work around the case where intptr_t is a 32 bit quantity;
// presumably we won't hit the 5..7 cases if (void*) is 32-bits in this program.
case 5: ptr = (intptr_t) ptr & 0xffffffffffULL; break;
case 6: ptr = (intptr_t) ptr & 0xffffffffffffULL; break;
case 7: ptr = (intptr_t) ptr & 0xffffffffffffffULL; break;
default: break;
}
stack.back().GetScalar() = ptr;
stack.back().ClearContext();
}
break;
case Value::eValueTypeLoadAddress:
if (exe_ctx)
{
if (process)
{
lldb::addr_t pointer_addr = stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
uint8_t addr_bytes[sizeof(lldb::addr_t)];
Error error;
if (process->ReadMemory(pointer_addr, &addr_bytes, size, error) == size)
{
DataExtractor addr_data(addr_bytes, sizeof(addr_bytes), process->GetByteOrder(), size);
lldb::offset_t addr_data_offset = 0;
switch (size)
{
case 1: stack.back().GetScalar() = addr_data.GetU8(&addr_data_offset); break;
case 2: stack.back().GetScalar() = addr_data.GetU16(&addr_data_offset); break;
case 4: stack.back().GetScalar() = addr_data.GetU32(&addr_data_offset); break;
case 8: stack.back().GetScalar() = addr_data.GetU64(&addr_data_offset); break;
default: stack.back().GetScalar() = addr_data.GetPointer(&addr_data_offset);
}
stack.back().ClearContext();
}
else
{
if (error_ptr)
error_ptr->SetErrorStringWithFormat ("Failed to dereference pointer from 0x%" PRIx64 " for DW_OP_deref: %s\n",
pointer_addr,
error.AsCString());
return false;
}
}
else
{
if (error_ptr)
error_ptr->SetErrorStringWithFormat ("NULL process for DW_OP_deref.\n");
return false;
}
}
else
{
if (error_ptr)
error_ptr->SetErrorStringWithFormat ("NULL execution context for DW_OP_deref.\n");
return false;
}
break;
default:
break;
}
}
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_xderef_size
// OPERANDS: 1
// 1 - uint8_t that specifies the size of the data to dereference.
// DESCRIPTION: Behaves like the DW_OP_xderef operation: the entry at
// the top of the stack is treated as an address. The second stack
// entry is treated as an "address space identifier" for those
// architectures that support multiple address spaces. The top two
// stack elements are popped, a data item is retrieved through an
// implementation-defined address calculation and pushed as the new
// stack top. In the DW_OP_xderef_size operation, however, the size in
// bytes of the data retrieved from the dereferenced address is
// specified by the single operand. This operand is a 1-byte unsigned
// integral constant whose value may not be larger than the size of an
// address on the target machine. The data retrieved is zero extended
// to the size of an address on the target machine before being pushed
// on the expression stack.
//----------------------------------------------------------------------
case DW_OP_xderef_size:
if (error_ptr)
error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef_size.");
return false;
//----------------------------------------------------------------------
// OPCODE: DW_OP_xderef
// OPERANDS: none
// DESCRIPTION: Provides an extended dereference mechanism. The entry at
// the top of the stack is treated as an address. The second stack entry
// is treated as an "address space identifier" for those architectures
// that support multiple address spaces. The top two stack elements are
// popped, a data item is retrieved through an implementation-defined
// address calculation and pushed as the new stack top. The size of the
// data retrieved from the dereferenced address is the size of an address
// on the target machine.
//----------------------------------------------------------------------
case DW_OP_xderef:
if (error_ptr)
error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef.");
return false;
//----------------------------------------------------------------------
// All DW_OP_constXXX opcodes have a single operand as noted below:
//
// Opcode Operand 1
// --------------- ----------------------------------------------------
// DW_OP_const1u 1-byte unsigned integer constant
// DW_OP_const1s 1-byte signed integer constant
// DW_OP_const2u 2-byte unsigned integer constant
// DW_OP_const2s 2-byte signed integer constant
// DW_OP_const4u 4-byte unsigned integer constant
// DW_OP_const4s 4-byte signed integer constant
// DW_OP_const8u 8-byte unsigned integer constant
// DW_OP_const8s 8-byte signed integer constant
// DW_OP_constu unsigned LEB128 integer constant
// DW_OP_consts signed LEB128 integer constant
//----------------------------------------------------------------------
case DW_OP_const1u : stack.push_back(Scalar(( uint8_t)opcodes.GetU8 (&offset))); break;
case DW_OP_const1s : stack.push_back(Scalar(( int8_t)opcodes.GetU8 (&offset))); break;
case DW_OP_const2u : stack.push_back(Scalar((uint16_t)opcodes.GetU16 (&offset))); break;
case DW_OP_const2s : stack.push_back(Scalar(( int16_t)opcodes.GetU16 (&offset))); break;
case DW_OP_const4u : stack.push_back(Scalar((uint32_t)opcodes.GetU32 (&offset))); break;
case DW_OP_const4s : stack.push_back(Scalar(( int32_t)opcodes.GetU32 (&offset))); break;
case DW_OP_const8u : stack.push_back(Scalar((uint64_t)opcodes.GetU64 (&offset))); break;
case DW_OP_const8s : stack.push_back(Scalar(( int64_t)opcodes.GetU64 (&offset))); break;
case DW_OP_constu : stack.push_back(Scalar(opcodes.GetULEB128 (&offset))); break;
case DW_OP_consts : stack.push_back(Scalar(opcodes.GetSLEB128 (&offset))); break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_dup
// OPERANDS: none
// DESCRIPTION: duplicates the value at the top of the stack
//----------------------------------------------------------------------
case DW_OP_dup:
if (stack.empty())
{
if (error_ptr)
error_ptr->SetErrorString("Expression stack empty for DW_OP_dup.");
return false;
}
else
stack.push_back(stack.back());
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_drop
// OPERANDS: none
// DESCRIPTION: pops the value at the top of the stack
//----------------------------------------------------------------------
case DW_OP_drop:
if (stack.empty())
{
if (error_ptr)
error_ptr->SetErrorString("Expression stack empty for DW_OP_drop.");
return false;
}
else
stack.pop_back();
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_over
// OPERANDS: none
// DESCRIPTION: Duplicates the entry currently second in the stack at
// the top of the stack.
//----------------------------------------------------------------------
case DW_OP_over:
if (stack.size() < 2)
{
if (error_ptr)
error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_over.");
return false;
}
else
stack.push_back(stack[stack.size() - 2]);
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_pick
// OPERANDS: uint8_t index into the current stack
// DESCRIPTION: The stack entry with the specified index (0 through 255,
// inclusive) is pushed on the stack
//----------------------------------------------------------------------
case DW_OP_pick:
{
uint8_t pick_idx = opcodes.GetU8(&offset);
if (pick_idx < stack.size())
stack.push_back(stack[pick_idx]);
else
{
if (error_ptr)
error_ptr->SetErrorStringWithFormat("Index %u out of range for DW_OP_pick.\n", pick_idx);
return false;
}
}
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_swap
// OPERANDS: none
// DESCRIPTION: swaps the top two stack entries. The entry at the top
// of the stack becomes the second stack entry, and the second entry
// becomes the top of the stack
//----------------------------------------------------------------------
case DW_OP_swap:
if (stack.size() < 2)
{
if (error_ptr)
error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_swap.");
return false;
}
else
{
tmp = stack.back();
stack.back() = stack[stack.size() - 2];
stack[stack.size() - 2] = tmp;
}
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_rot
// OPERANDS: none
// DESCRIPTION: Rotates the first three stack entries. The entry at
// the top of the stack becomes the third stack entry, the second
// entry becomes the top of the stack, and the third entry becomes
// the second entry.
//----------------------------------------------------------------------
case DW_OP_rot:
if (stack.size() < 3)
{
if (error_ptr)
error_ptr->SetErrorString("Expression stack needs at least 3 items for DW_OP_rot.");
return false;
}
else
{
size_t last_idx = stack.size() - 1;
Value old_top = stack[last_idx];
stack[last_idx] = stack[last_idx - 1];
stack[last_idx - 1] = stack[last_idx - 2];
stack[last_idx - 2] = old_top;
}
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_abs
// OPERANDS: none
// DESCRIPTION: pops the top stack entry, interprets it as a signed
// value and pushes its absolute value. If the absolute value can not be
// represented, the result is undefined.
//----------------------------------------------------------------------
case DW_OP_abs:
if (stack.empty())
{
if (error_ptr)
error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_abs.");
return false;
}
else if (stack.back().ResolveValue(exe_ctx).AbsoluteValue() == false)
{
if (error_ptr)
error_ptr->SetErrorString("Failed to take the absolute value of the first stack item.");
return false;
}
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_and
// OPERANDS: none
// DESCRIPTION: pops the top two stack values, performs a bitwise and
// operation on the two, and pushes the result.
//----------------------------------------------------------------------
case DW_OP_and:
if (stack.size() < 2)
{
if (error_ptr)
error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_and.");
return false;
}
else
{
tmp = stack.back();
stack.pop_back();
stack.back().ResolveValue(exe_ctx) = stack.back().ResolveValue(exe_ctx) & tmp.ResolveValue(exe_ctx);
}
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_div
// OPERANDS: none
// DESCRIPTION: pops the top two stack values, divides the former second
// entry by the former top of the stack using signed division, and
// pushes the result.
//----------------------------------------------------------------------
case DW_OP_div:
if (stack.size() < 2)
{
if (error_ptr)
error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_div.");
return false;
}
else
{
tmp = stack.back();
if (tmp.ResolveValue(exe_ctx).IsZero())
{
if (error_ptr)
error_ptr->SetErrorString("Divide by zero.");
return false;
}
else
{
stack.pop_back();
stack.back() = stack.back().ResolveValue(exe_ctx) / tmp.ResolveValue(exe_ctx);
if (!stack.back().ResolveValue(exe_ctx).IsValid())
{
if (error_ptr)
error_ptr->SetErrorString("Divide failed.");
return false;
}
}
}
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_minus
// OPERANDS: none
// DESCRIPTION: pops the top two stack values, subtracts the former top
// of the stack from the former second entry, and pushes the result.
//----------------------------------------------------------------------
case DW_OP_minus:
if (stack.size() < 2)
{
if (error_ptr)
error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_minus.");
return false;
}
else
{
tmp = stack.back();
stack.pop_back();
stack.back().ResolveValue(exe_ctx) = stack.back().ResolveValue(exe_ctx) - tmp.ResolveValue(exe_ctx);
}
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_mod
// OPERANDS: none
// DESCRIPTION: pops the top two stack values and pushes the result of
// the calculation: former second stack entry modulo the former top of
// the stack.
//----------------------------------------------------------------------
case DW_OP_mod:
if (stack.size() < 2)
{
if (error_ptr)
error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_mod.");
return false;
}
else
{
tmp = stack.back();
stack.pop_back();
stack.back().ResolveValue(exe_ctx) = stack.back().ResolveValue(exe_ctx) % tmp.ResolveValue(exe_ctx);
}
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_mul
// OPERANDS: none
// DESCRIPTION: pops the top two stack entries, multiplies them
// together, and pushes the result.
//----------------------------------------------------------------------
case DW_OP_mul:
if (stack.size() < 2)
{
if (error_ptr)
error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_mul.");
return false;
}
else
{
tmp = stack.back();
stack.pop_back();
stack.back().ResolveValue(exe_ctx) = stack.back().ResolveValue(exe_ctx) * tmp.ResolveValue(exe_ctx);
}
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_neg
// OPERANDS: none
// DESCRIPTION: pops the top stack entry, and pushes its negation.
//----------------------------------------------------------------------
case DW_OP_neg:
if (stack.empty())
{
if (error_ptr)
error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_neg.");
return false;
}
else
{
if (stack.back().ResolveValue(exe_ctx).UnaryNegate() == false)
{
if (error_ptr)
error_ptr->SetErrorString("Unary negate failed.");
return false;
}
}
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_not
// OPERANDS: none
// DESCRIPTION: pops the top stack entry, and pushes its bitwise
// complement
//----------------------------------------------------------------------
case DW_OP_not:
if (stack.empty())
{
if (error_ptr)
error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_not.");
return false;
}
else
{
if (stack.back().ResolveValue(exe_ctx).OnesComplement() == false)
{
if (error_ptr)
error_ptr->SetErrorString("Logical NOT failed.");
return false;
}
}
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_or
// OPERANDS: none
// DESCRIPTION: pops the top two stack entries, performs a bitwise or
// operation on the two, and pushes the result.
//----------------------------------------------------------------------
case DW_OP_or:
if (stack.size() < 2)
{
if (error_ptr)
error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_or.");
return false;
}
else
{
tmp = stack.back();
stack.pop_back();
stack.back().ResolveValue(exe_ctx) = stack.back().ResolveValue(exe_ctx) | tmp.ResolveValue(exe_ctx);
}
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_plus
// OPERANDS: none
// DESCRIPTION: pops the top two stack entries, adds them together, and
// pushes the result.
//----------------------------------------------------------------------
case DW_OP_plus:
if (stack.size() < 2)
{
if (error_ptr)
error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_plus.");
return false;
}
else
{
tmp = stack.back();
stack.pop_back();
stack.back().ResolveValue(exe_ctx) = stack.back().ResolveValue(exe_ctx) + tmp.ResolveValue(exe_ctx);
}
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_plus_uconst
// OPERANDS: none
// DESCRIPTION: pops the top stack entry, adds it to the unsigned LEB128
// constant operand and pushes the result.
//----------------------------------------------------------------------
case DW_OP_plus_uconst:
if (stack.empty())
{
if (error_ptr)
error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_plus_uconst.");
return false;
}
else
{
const uint64_t uconst_value = opcodes.GetULEB128(&offset);
// Implicit conversion from a UINT to a Scalar...
stack.back().ResolveValue(exe_ctx) += uconst_value;
if (!stack.back().ResolveValue(exe_ctx).IsValid())
{
if (error_ptr)
error_ptr->SetErrorString("DW_OP_plus_uconst failed.");
return false;
}
}
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_shl
// OPERANDS: none
// DESCRIPTION: pops the top two stack entries, shifts the former
// second entry left by the number of bits specified by the former top
// of the stack, and pushes the result.
//----------------------------------------------------------------------
case DW_OP_shl:
if (stack.size() < 2)
{
if (error_ptr)
error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_shl.");
return false;
}
else
{
tmp = stack.back();
stack.pop_back();
stack.back().ResolveValue(exe_ctx) <<= tmp.ResolveValue(exe_ctx);
}
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_shr
// OPERANDS: none
// DESCRIPTION: pops the top two stack entries, shifts the former second
// entry right logically (filling with zero bits) by the number of bits
// specified by the former top of the stack, and pushes the result.
//----------------------------------------------------------------------
case DW_OP_shr:
if (stack.size() < 2)
{
if (error_ptr)
error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_shr.");
return false;
}
else
{
tmp = stack.back();
stack.pop_back();
if (stack.back().ResolveValue(exe_ctx).ShiftRightLogical(tmp.ResolveValue(exe_ctx)) == false)
{
if (error_ptr)
error_ptr->SetErrorString("DW_OP_shr failed.");
return false;
}
}
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_shra
// OPERANDS: none
// DESCRIPTION: pops the top two stack entries, shifts the former second
// entry right arithmetically (divide the magnitude by 2, keep the same
// sign for the result) by the number of bits specified by the former
// top of the stack, and pushes the result.
//----------------------------------------------------------------------
case DW_OP_shra:
if (stack.size() < 2)
{
if (error_ptr)
error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_shra.");
return false;
}
else
{
tmp = stack.back();
stack.pop_back();
stack.back().ResolveValue(exe_ctx) >>= tmp.ResolveValue(exe_ctx);
}
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_xor
// OPERANDS: none
// DESCRIPTION: pops the top two stack entries, performs the bitwise
// exclusive-or operation on the two, and pushes the result.
//----------------------------------------------------------------------
case DW_OP_xor:
if (stack.size() < 2)
{
if (error_ptr)
error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_xor.");
return false;
}
else
{
tmp = stack.back();
stack.pop_back();
stack.back().ResolveValue(exe_ctx) = stack.back().ResolveValue(exe_ctx) ^ tmp.ResolveValue(exe_ctx);
}
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_skip
// OPERANDS: int16_t
// DESCRIPTION: An unconditional branch. Its single operand is a 2-byte
// signed integer constant. The 2-byte constant is the number of bytes
// of the DWARF expression to skip forward or backward from the current
// operation, beginning after the 2-byte constant.
//----------------------------------------------------------------------
case DW_OP_skip:
{
int16_t skip_offset = (int16_t)opcodes.GetU16(&offset);
lldb::offset_t new_offset = offset + skip_offset;
if (new_offset >= opcodes_offset && new_offset < end_offset)
offset = new_offset;
else
{
if (error_ptr)
error_ptr->SetErrorString("Invalid opcode offset in DW_OP_skip.");
return false;
}
}
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_bra
// OPERANDS: int16_t
// DESCRIPTION: A conditional branch. Its single operand is a 2-byte
// signed integer constant. This operation pops the top of stack. If
// the value popped is not the constant 0, the 2-byte constant operand
// is the number of bytes of the DWARF expression to skip forward or
// backward from the current operation, beginning after the 2-byte
// constant.
//----------------------------------------------------------------------
case DW_OP_bra:
{
tmp = stack.back();
stack.pop_back();
int16_t bra_offset = (int16_t)opcodes.GetU16(&offset);
Scalar zero(0);
if (tmp.ResolveValue(exe_ctx) != zero)
{
lldb::offset_t new_offset = offset + bra_offset;
if (new_offset >= opcodes_offset && new_offset < end_offset)
offset = new_offset;
else
{
if (error_ptr)
error_ptr->SetErrorString("Invalid opcode offset in DW_OP_bra.");
return false;
}
}
}
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_eq
// OPERANDS: none
// DESCRIPTION: pops the top two stack values, compares using the
// equals (==) operator.
// STACK RESULT: push the constant value 1 onto the stack if the result
// of the operation is true or the constant value 0 if the result of the
// operation is false.
//----------------------------------------------------------------------
case DW_OP_eq:
if (stack.size() < 2)
{
if (error_ptr)
error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_eq.");
return false;
}
else
{
tmp = stack.back();
stack.pop_back();
stack.back().ResolveValue(exe_ctx) = stack.back().ResolveValue(exe_ctx) == tmp.ResolveValue(exe_ctx);
}
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_ge
// OPERANDS: none
// DESCRIPTION: pops the top two stack values, compares using the
// greater than or equal to (>=) operator.
// STACK RESULT: push the constant value 1 onto the stack if the result
// of the operation is true or the constant value 0 if the result of the
// operation is false.
//----------------------------------------------------------------------
case DW_OP_ge:
if (stack.size() < 2)
{
if (error_ptr)
error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_ge.");
return false;
}
else
{
tmp = stack.back();
stack.pop_back();
stack.back().ResolveValue(exe_ctx) = stack.back().ResolveValue(exe_ctx) >= tmp.ResolveValue(exe_ctx);
}
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_gt
// OPERANDS: none
// DESCRIPTION: pops the top two stack values, compares using the
// greater than (>) operator.
// STACK RESULT: push the constant value 1 onto the stack if the result
// of the operation is true or the constant value 0 if the result of the
// operation is false.
//----------------------------------------------------------------------
case DW_OP_gt:
if (stack.size() < 2)
{
if (error_ptr)
error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_gt.");
return false;
}
else
{
tmp = stack.back();
stack.pop_back();
stack.back().ResolveValue(exe_ctx) = stack.back().ResolveValue(exe_ctx) > tmp.ResolveValue(exe_ctx);
}
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_le
// OPERANDS: none
// DESCRIPTION: pops the top two stack values, compares using the
// less than or equal to (<=) operator.
// STACK RESULT: push the constant value 1 onto the stack if the result
// of the operation is true or the constant value 0 if the result of the
// operation is false.
//----------------------------------------------------------------------
case DW_OP_le:
if (stack.size() < 2)
{
if (error_ptr)
error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_le.");
return false;
}
else
{
tmp = stack.back();
stack.pop_back();
stack.back().ResolveValue(exe_ctx) = stack.back().ResolveValue(exe_ctx) <= tmp.ResolveValue(exe_ctx);
}
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_lt
// OPERANDS: none
// DESCRIPTION: pops the top two stack values, compares using the
// less than (<) operator.
// STACK RESULT: push the constant value 1 onto the stack if the result
// of the operation is true or the constant value 0 if the result of the
// operation is false.
//----------------------------------------------------------------------
case DW_OP_lt:
if (stack.size() < 2)
{
if (error_ptr)
error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_lt.");
return false;
}
else
{
tmp = stack.back();
stack.pop_back();
stack.back().ResolveValue(exe_ctx) = stack.back().ResolveValue(exe_ctx) < tmp.ResolveValue(exe_ctx);
}
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_ne
// OPERANDS: none
// DESCRIPTION: pops the top two stack values, compares using the
// not equal (!=) operator.
// STACK RESULT: push the constant value 1 onto the stack if the result
// of the operation is true or the constant value 0 if the result of the
// operation is false.
//----------------------------------------------------------------------
case DW_OP_ne:
if (stack.size() < 2)
{
if (error_ptr)
error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_ne.");
return false;
}
else
{
tmp = stack.back();
stack.pop_back();
stack.back().ResolveValue(exe_ctx) = stack.back().ResolveValue(exe_ctx) != tmp.ResolveValue(exe_ctx);
}
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_litn
// OPERANDS: none
// DESCRIPTION: encode the unsigned literal values from 0 through 31.
// STACK RESULT: push the unsigned literal constant value onto the top
// of the stack.
//----------------------------------------------------------------------
case DW_OP_lit0:
case DW_OP_lit1:
case DW_OP_lit2:
case DW_OP_lit3:
case DW_OP_lit4:
case DW_OP_lit5:
case DW_OP_lit6:
case DW_OP_lit7:
case DW_OP_lit8:
case DW_OP_lit9:
case DW_OP_lit10:
case DW_OP_lit11:
case DW_OP_lit12:
case DW_OP_lit13:
case DW_OP_lit14:
case DW_OP_lit15:
case DW_OP_lit16:
case DW_OP_lit17:
case DW_OP_lit18:
case DW_OP_lit19:
case DW_OP_lit20:
case DW_OP_lit21:
case DW_OP_lit22:
case DW_OP_lit23:
case DW_OP_lit24:
case DW_OP_lit25:
case DW_OP_lit26:
case DW_OP_lit27:
case DW_OP_lit28:
case DW_OP_lit29:
case DW_OP_lit30:
case DW_OP_lit31:
stack.push_back(Scalar(op - DW_OP_lit0));
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_regN
// OPERANDS: none
// DESCRIPTION: Push the value in register n on the top of the stack.
//----------------------------------------------------------------------
case DW_OP_reg0:
case DW_OP_reg1:
case DW_OP_reg2:
case DW_OP_reg3:
case DW_OP_reg4:
case DW_OP_reg5:
case DW_OP_reg6:
case DW_OP_reg7:
case DW_OP_reg8:
case DW_OP_reg9:
case DW_OP_reg10:
case DW_OP_reg11:
case DW_OP_reg12:
case DW_OP_reg13:
case DW_OP_reg14:
case DW_OP_reg15:
case DW_OP_reg16:
case DW_OP_reg17:
case DW_OP_reg18:
case DW_OP_reg19:
case DW_OP_reg20:
case DW_OP_reg21:
case DW_OP_reg22:
case DW_OP_reg23:
case DW_OP_reg24:
case DW_OP_reg25:
case DW_OP_reg26:
case DW_OP_reg27:
case DW_OP_reg28:
case DW_OP_reg29:
case DW_OP_reg30:
case DW_OP_reg31:
{
reg_num = op - DW_OP_reg0;
if (ReadRegisterValueAsScalar (reg_ctx, reg_kind, reg_num, error_ptr, tmp))
stack.push_back(tmp);
else
return false;
}
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_regx
// OPERANDS:
// ULEB128 literal operand that encodes the register.
// DESCRIPTION: Push the value in register on the top of the stack.
//----------------------------------------------------------------------
case DW_OP_regx:
{
reg_num = opcodes.GetULEB128(&offset);
if (ReadRegisterValueAsScalar (reg_ctx, reg_kind, reg_num, error_ptr, tmp))
stack.push_back(tmp);
else
return false;
}
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_bregN
// OPERANDS:
// SLEB128 offset from register N
// DESCRIPTION: Value is in memory at the address specified by register
// N plus an offset.
//----------------------------------------------------------------------
case DW_OP_breg0:
case DW_OP_breg1:
case DW_OP_breg2:
case DW_OP_breg3:
case DW_OP_breg4:
case DW_OP_breg5:
case DW_OP_breg6:
case DW_OP_breg7:
case DW_OP_breg8:
case DW_OP_breg9:
case DW_OP_breg10:
case DW_OP_breg11:
case DW_OP_breg12:
case DW_OP_breg13:
case DW_OP_breg14:
case DW_OP_breg15:
case DW_OP_breg16:
case DW_OP_breg17:
case DW_OP_breg18:
case DW_OP_breg19:
case DW_OP_breg20:
case DW_OP_breg21:
case DW_OP_breg22:
case DW_OP_breg23:
case DW_OP_breg24:
case DW_OP_breg25:
case DW_OP_breg26:
case DW_OP_breg27:
case DW_OP_breg28:
case DW_OP_breg29:
case DW_OP_breg30:
case DW_OP_breg31:
{
reg_num = op - DW_OP_breg0;
if (ReadRegisterValueAsScalar (reg_ctx, reg_kind, reg_num, error_ptr, tmp))
{
int64_t breg_offset = opcodes.GetSLEB128(&offset);
tmp.ResolveValue(exe_ctx) += (uint64_t)breg_offset;
tmp.ClearContext();
stack.push_back(tmp);
stack.back().SetValueType (Value::eValueTypeLoadAddress);
}
else
return false;
}
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_bregx
// OPERANDS: 2
// ULEB128 literal operand that encodes the register.
// SLEB128 offset from register N
// DESCRIPTION: Value is in memory at the address specified by register
// N plus an offset.
//----------------------------------------------------------------------
case DW_OP_bregx:
{
reg_num = opcodes.GetULEB128(&offset);
if (ReadRegisterValueAsScalar (reg_ctx, reg_kind, reg_num, error_ptr, tmp))
{
int64_t breg_offset = opcodes.GetSLEB128(&offset);
tmp.ResolveValue(exe_ctx) += (uint64_t)breg_offset;
tmp.ClearContext();
stack.push_back(tmp);
stack.back().SetValueType (Value::eValueTypeLoadAddress);
}
else
return false;
}
break;
case DW_OP_fbreg:
if (exe_ctx)
{
if (frame)
{
Scalar value;
if (frame->GetFrameBaseValue(value, error_ptr))
{
int64_t fbreg_offset = opcodes.GetSLEB128(&offset);
value += fbreg_offset;
stack.push_back(value);
stack.back().SetValueType (Value::eValueTypeLoadAddress);
}
else
return false;
}
else
{
if (error_ptr)
error_ptr->SetErrorString ("Invalid stack frame in context for DW_OP_fbreg opcode.");
return false;
}
}
else
{
if (error_ptr)
error_ptr->SetErrorStringWithFormat ("NULL execution context for DW_OP_fbreg.\n");
return false;
}
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_nop
// OPERANDS: none
// DESCRIPTION: A place holder. It has no effect on the location stack
// or any of its values.
//----------------------------------------------------------------------
case DW_OP_nop:
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_piece
// OPERANDS: 1
// ULEB128: byte size of the piece
// DESCRIPTION: The operand describes the size in bytes of the piece of
// the object referenced by the DWARF expression whose result is at the
// top of the stack. If the piece is located in a register, but does not
// occupy the entire register, the placement of the piece within that
// register is defined by the ABI.
//
// Many compilers store a single variable in sets of registers, or store
// a variable partially in memory and partially in registers.
// DW_OP_piece provides a way of describing how large a part of a
// variable a particular DWARF expression refers to.
//----------------------------------------------------------------------
case DW_OP_piece:
if (stack.size() < 1 ||
(op_piece_offset > 0 && stack.size() < 2))
{
// In a multi-piece expression, this means that the current piece is not available.
// We don't have a way to signal partial availabilty.
if (error_ptr)
error_ptr->SetErrorString("Partially unavailable DW_OP_piece expressions are not yet supported.");
return false;
}
else
{
const uint64_t piece_byte_size = opcodes.GetULEB128(&offset);
switch (stack.back().GetValueType())
{
case Value::eValueTypeScalar:
case Value::eValueTypeFileAddress:
case Value::eValueTypeLoadAddress:
case Value::eValueTypeHostAddress:
{
uint32_t bit_size = piece_byte_size * 8;
uint32_t bit_offset = 0;
if (!stack.back().GetScalar().ExtractBitfield (bit_size, bit_offset))
{
if (error_ptr)
error_ptr->SetErrorStringWithFormat("unable to extract %" PRIu64 " bytes from a %" PRIu64 " byte scalar value.", piece_byte_size, (uint64_t)stack.back().GetScalar().GetByteSize());
return false;
}
// Multiple pieces of a large value are assembled in a memory buffer value.
if (op_piece_offset)
{
Error error;
Scalar cur_piece = stack.back().GetScalar();
stack.pop_back();
switch (stack.back().GetValueType())
{
case Value::eValueTypeScalar:
{
// We already have something on the stack that will becomes the first
// bytes of our buffer, we need to populate these bytes into the buffer
// and then we will add the current bytes to it.
// Promote top of stack to a memory buffer.
Scalar prev_piece = stack.back().GetScalar();
stack.pop_back();
stack.push_back(Value());
Value &piece_value = stack.back();
piece_value.ResizeData(op_piece_offset);
prev_piece.GetAsMemoryData(piece_value.GetBuffer().GetBytes(), op_piece_offset, lldb::endian::InlHostByteOrder(), error);
if (error.Fail())
{
if (error_ptr)
error_ptr->SetErrorString(error.AsCString());
return false;
}
}
// Fall through to host address case...
case Value::eValueTypeHostAddress:
{
if (stack.back().GetBuffer().GetByteSize() != op_piece_offset)
{
if (error_ptr)
error_ptr->SetErrorStringWithFormat ("DW_OP_piece for offset %" PRIu64 " but top of stack is of size %" PRIu64,
op_piece_offset,
stack.back().GetBuffer().GetByteSize());
return false;
}
// Append the current piece to the buffer.
size_t len = op_piece_offset + piece_byte_size;
stack.back().ResizeData(len);
cur_piece.GetAsMemoryData (stack.back().GetBuffer().GetBytes() + op_piece_offset,
piece_byte_size,
lldb::endian::InlHostByteOrder(),
error);
if (error.Fail())
{
if (error_ptr)
error_ptr->SetErrorString(error.AsCString());
return false;
}
}
break;
default:
// Expect top of stack to be a memory buffer.
if (error_ptr)
error_ptr->SetErrorStringWithFormat("DW_OP_piece for offset %" PRIu64 ": top of stack is not a piece", op_piece_offset);
return false;
}
}
op_piece_offset += piece_byte_size;
}
break;
case Value::eValueTypeVector:
{
if (stack.back().GetVector().length >= piece_byte_size)
stack.back().GetVector().length = piece_byte_size;
else
{
if (error_ptr)
error_ptr->SetErrorStringWithFormat("unable to extract %" PRIu64 " bytes from a %" PRIu64 " byte vector value.", piece_byte_size, (uint64_t)stack.back().GetVector().length);
return false;
}
}
break;
}
}
break;
case DW_OP_bit_piece: // 0x9d ULEB128 bit size, ULEB128 bit offset (DWARF3);
if (stack.size() < 1)
{
if (error_ptr)
error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_bit_piece.");
return false;
}
else
{
const uint64_t piece_bit_size = opcodes.GetULEB128(&offset);
const uint64_t piece_bit_offset = opcodes.GetULEB128(&offset);
switch (stack.back().GetValueType())
{
case Value::eValueTypeScalar:
case Value::eValueTypeFileAddress:
case Value::eValueTypeLoadAddress:
case Value::eValueTypeHostAddress:
{
if (!stack.back().GetScalar().ExtractBitfield (piece_bit_size, piece_bit_offset))
{
if (error_ptr)
error_ptr->SetErrorStringWithFormat("unable to extract %" PRIu64 " bit value with %" PRIu64 " bit offset from a %" PRIu64 " bit scalar value.",
piece_bit_size,
piece_bit_offset,
(uint64_t)(stack.back().GetScalar().GetByteSize()*8));
return false;
}
}
break;
case Value::eValueTypeVector:
if (error_ptr)
{
error_ptr->SetErrorStringWithFormat ("unable to extract %" PRIu64 " bit value with %" PRIu64 " bit offset from a vector value.",
piece_bit_size,
piece_bit_offset);
}
return false;
}
}
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_push_object_address
// OPERANDS: none
// DESCRIPTION: Pushes the address of the object currently being
// evaluated as part of evaluation of a user presented expression.
// This object may correspond to an independent variable described by
// its own DIE or it may be a component of an array, structure, or class
// whose address has been dynamically determined by an earlier step
// during user expression evaluation.
//----------------------------------------------------------------------
case DW_OP_push_object_address:
if (error_ptr)
error_ptr->SetErrorString ("Unimplemented opcode DW_OP_push_object_address.");
return false;
//----------------------------------------------------------------------
// OPCODE: DW_OP_call2
// OPERANDS:
// uint16_t compile unit relative offset of a DIE
// DESCRIPTION: Performs subroutine calls during evaluation
// of a DWARF expression. The operand is the 2-byte unsigned offset
// of a debugging information entry in the current compilation unit.
//
// Operand interpretation is exactly like that for DW_FORM_ref2.
//
// This operation transfers control of DWARF expression evaluation
// to the DW_AT_location attribute of the referenced DIE. If there is
// no such attribute, then there is no effect. Execution of the DWARF
// expression of a DW_AT_location attribute may add to and/or remove from
// values on the stack. Execution returns to the point following the call
// when the end of the attribute is reached. Values on the stack at the
// time of the call may be used as parameters by the called expression
// and values left on the stack by the called expression may be used as
// return values by prior agreement between the calling and called
// expressions.
//----------------------------------------------------------------------
case DW_OP_call2:
if (error_ptr)
error_ptr->SetErrorString ("Unimplemented opcode DW_OP_call2.");
return false;
//----------------------------------------------------------------------
// OPCODE: DW_OP_call4
// OPERANDS: 1
// uint32_t compile unit relative offset of a DIE
// DESCRIPTION: Performs a subroutine call during evaluation of a DWARF
// expression. For DW_OP_call4, the operand is a 4-byte unsigned offset
// of a debugging information entry in the current compilation unit.
//
// Operand interpretation DW_OP_call4 is exactly like that for
// DW_FORM_ref4.
//
// This operation transfers control of DWARF expression evaluation
// to the DW_AT_location attribute of the referenced DIE. If there is
// no such attribute, then there is no effect. Execution of the DWARF
// expression of a DW_AT_location attribute may add to and/or remove from
// values on the stack. Execution returns to the point following the call
// when the end of the attribute is reached. Values on the stack at the
// time of the call may be used as parameters by the called expression
// and values left on the stack by the called expression may be used as
// return values by prior agreement between the calling and called
// expressions.
//----------------------------------------------------------------------
case DW_OP_call4:
if (error_ptr)
error_ptr->SetErrorString ("Unimplemented opcode DW_OP_call4.");
return false;
//----------------------------------------------------------------------
// OPCODE: DW_OP_stack_value
// OPERANDS: None
// DESCRIPTION: Specifies that the object does not exist in memory but
// rather is a constant value. The value from the top of the stack is
// the value to be used. This is the actual object value and not the
// location.
//----------------------------------------------------------------------
case DW_OP_stack_value:
stack.back().SetValueType(Value::eValueTypeScalar);
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_call_frame_cfa
// OPERANDS: None
// DESCRIPTION: Specifies a DWARF expression that pushes the value of
// the canonical frame address consistent with the call frame information
// located in .debug_frame (or in the FDEs of the eh_frame section).
//----------------------------------------------------------------------
case DW_OP_call_frame_cfa:
if (frame)
{
// Note that we don't have to parse FDEs because this DWARF expression
// is commonly evaluated with a valid stack frame.
StackID id = frame->GetStackID();
addr_t cfa = id.GetCallFrameAddress();
if (cfa != LLDB_INVALID_ADDRESS)
{
stack.push_back(Scalar(cfa));
stack.back().SetValueType (Value::eValueTypeHostAddress);
}
else
if (error_ptr)
error_ptr->SetErrorString ("Stack frame does not include a canonical frame address for DW_OP_call_frame_cfa opcode.");
}
else
{
if (error_ptr)
error_ptr->SetErrorString ("Invalid stack frame in context for DW_OP_call_frame_cfa opcode.");
return false;
}
break;
//----------------------------------------------------------------------
// OPCODE: DW_OP_GNU_push_tls_address
// OPERANDS: none
// DESCRIPTION: Pops a TLS offset from the stack, converts it to
// an absolute value, and pushes it back on.
//----------------------------------------------------------------------
case DW_OP_GNU_push_tls_address:
{
if (stack.size() < 1)
{
if (error_ptr)
error_ptr->SetErrorString("DW_OP_GNU_push_tls_address needs an argument.");
return false;
}
if (!exe_ctx || !opcode_ctx)
{
if (error_ptr)
error_ptr->SetErrorString("No context to evaluate TLS within.");
return false;
}
Thread *thread = exe_ctx->GetThreadPtr();
if (!thread)
{
if (error_ptr)
error_ptr->SetErrorString("No thread to evaluate TLS within.");
return false;
}
// Lookup the TLS block address for this thread and module.
addr_t tls_addr = thread->GetThreadLocalData (opcode_ctx);
if (tls_addr == LLDB_INVALID_ADDRESS)
{
if (error_ptr)
error_ptr->SetErrorString ("No TLS data currently exists for this thread.");
return false;
}
// Convert the TLS offset into the absolute address.
Scalar tmp = stack.back().ResolveValue(exe_ctx);
stack.back() = tmp + tls_addr;
stack.back().SetValueType (Value::eValueTypeLoadAddress);
}
break;
default:
if (log)
log->Printf("Unhandled opcode %s in DWARFExpression.", DW_OP_value_to_name(op));
break;
}
}
if (stack.empty())
{
if (error_ptr)
error_ptr->SetErrorString ("Stack empty after evaluation.");
return false;
}
else if (log && log->GetVerbose())
{
size_t count = stack.size();
log->Printf("Stack after operation has %" PRIu64 " values:", (uint64_t)count);
for (size_t i=0; i<count; ++i)
{
StreamString new_value;
new_value.Printf("[%" PRIu64 "]", (uint64_t)i);
stack[i].Dump(&new_value);
log->Printf(" %s", new_value.GetData());
}
}
result = stack.back();
return true; // Return true on success
}

Event Timeline