diff --git a/mlir/lib/Dialect/Linalg/IR/LinalgInterfaces.cpp b/mlir/lib/Dialect/Linalg/IR/LinalgInterfaces.cpp --- a/mlir/lib/Dialect/Linalg/IR/LinalgInterfaces.cpp +++ b/mlir/lib/Dialect/Linalg/IR/LinalgInterfaces.cpp @@ -431,5 +431,26 @@ ++idx; } + // Check if shapes are valid + Optional> loopRanges = linalgOp.getStaticLoopRanges(); + if (!loopRanges) + return linalgOp.emitError("unable to find loop range for operation"); + for (int64_t &range : *loopRanges) + range -= 1; + for (unsigned i = 0; i < nShapedOperands; i++) { + auto shapedOperand = linalgOp.getShapedOperandTypes()[i]; + if (!shapedOperand.hasStaticShape()) + continue; + auto indices = indexingMaps[i].compose(*loopRanges); + for (unsigned j = 0; j < shapedOperand.getRank(); j++) { + if (indices[j] >= shapedOperand.getDimSize(j)) { + return linalgOp.emitOpError("Out-of-bound memory access in operand #") + << i + 1 << ". The range of it's rank #" << j + 1 + << " is from 0 through " << shapedOperand.getDimSize(j) - 1 + << ", but the operand tries to access index #" << indices[j]; + } + } + } + return success(); } diff --git a/mlir/test/Dialect/Linalg/generalize-named-ops.mlir b/mlir/test/Dialect/Linalg/generalize-named-ops.mlir --- a/mlir/test/Dialect/Linalg/generalize-named-ops.mlir +++ b/mlir/test/Dialect/Linalg/generalize-named-ops.mlir @@ -1,7 +1,7 @@ // RUN: mlir-opt %s -split-input-file -linalg-generalize-named-ops | FileCheck %s -func @generalize_conv(%input : memref<1x225x225x3xf32>, %filter: memref<3x3x3x32xf32>, %output: memref<1x112x112x32xf32>) { - linalg.conv(%filter, %input, %output) {dilations = [2, 3], strides = [4, 5]} : memref<3x3x3x32xf32>, memref<1x225x225x3xf32>, memref<1x112x112x32xf32> +func @generalize_conv(%input : memref<1x449x562x3xf32>, %filter: memref<3x3x3x32xf32>, %output: memref<1x112x112x32xf32>) { + linalg.conv(%filter, %input, %output) {dilations = [2, 3], strides = [4, 5]} : memref<3x3x3x32xf32>, memref<1x449x562x3xf32>, memref<1x112x112x32xf32> return } @@ -10,7 +10,7 @@ // CHECK: #[[OUTPUT_MAP:.+]] = affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d0, d1, d2, d3)> // CHECK: func @generalize_conv -// CHECK-SAME: %[[INPUT:.+]]: memref<1x225x225x3xf32> +// CHECK-SAME: %[[INPUT:.+]]: memref<1x449x562x3xf32> // CHECK-SAME: %[[FILTER:.+]]: memref<3x3x3x32xf32> // CHECK-SAME: %[[OUTPUT:.+]]: memref<1x112x112x32xf32> diff --git a/mlir/test/Dialect/Linalg/reshape_linearization_fusion.mlir b/mlir/test/Dialect/Linalg/reshape_linearization_fusion.mlir --- a/mlir/test/Dialect/Linalg/reshape_linearization_fusion.mlir +++ b/mlir/test/Dialect/Linalg/reshape_linearization_fusion.mlir @@ -168,8 +168,8 @@ #map0 = affine_map<(d0, d1, d2) -> (d0)> #map1 = affine_map<(d0, d1, d2) -> (d1, d2)> -#map2 = affine_map<(d0, d1, d2) -> (d1, d2, d0)> -#map3 = affine_map<(d0, d1, d2) -> (d0, d1, d2)> +#map2 = affine_map<(d0, d1, d2) -> (d1, d0, d2)> +#map3 = affine_map<(d0, d1, d2) -> (d0, d2, d1)> func @generic_op_120_permultation_reshape_producer_fusion(%arg0 : tensor<3x35xf32>) -> tensor<5x7x3xf32> { %0 = linalg.tensor_reshape %arg0 [#map0, #map1] : tensor<3x35xf32> into tensor<3x5x7xf32> %1 = linalg.init_tensor [5, 7, 3] : tensor<5x7x3xf32> @@ -183,8 +183,8 @@ return %2 : tensor<5x7x3xf32> } -// CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0, d1, d2) -> (d2, d0 * 7 + d1)> -// CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)> +// CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0, d1, d2) -> (d1, d0 * 7 + d2)> +// CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2) -> (d0, d2, d1)> // CHECK: func @generic_op_120_permultation_reshape_producer_fusion // CHECK-NOT: linalg.tensor_reshape // CHECK: linalg.generic diff --git a/mlir/test/Dialect/Linalg/sparse_nd.mlir b/mlir/test/Dialect/Linalg/sparse_nd.mlir --- a/mlir/test/Dialect/Linalg/sparse_nd.mlir +++ b/mlir/test/Dialect/Linalg/sparse_nd.mlir @@ -21,7 +21,7 @@ // CHECK-LABEL: func @mul( // CHECK-SAME: %[[VAL_0:.*0]]: tensor<10x20x30x40x50x60x70x80xf32>, -// CHECK-SAME: %[[VAL_1:.*1]]: tensor<10x20x30x40x50x60x70x80xf32>, +// CHECK-SAME: %[[VAL_1:.*1]]: tensor<80x70x60x50x40x30x20x10xf32>, // CHECK-SAME: %[[VAL_2:.*2]]: tensor<10x20x30x40x50x60x70x80xf32>) -> tensor<10x20x30x40x50x60x70x80xf32> { // CHECK: %[[VAL_3:.*]] = constant 3 : index // CHECK: %[[VAL_4:.*]] = constant 4 : index @@ -34,11 +34,11 @@ // CHECK: %[[VAL_11:.*]] = constant 0 : index // CHECK: %[[VAL_12:.*]] = constant 1 : index // CHECK: %[[VAL_13:.*]] = tensor_to_memref %[[VAL_0]] : memref<10x20x30x40x50x60x70x80xf32> -// CHECK: %[[VAL_14:.*]] = linalg.sparse_pointers %[[VAL_1]], %[[VAL_3]] : tensor<10x20x30x40x50x60x70x80xf32> to memref -// CHECK: %[[VAL_15:.*]] = linalg.sparse_indices %[[VAL_1]], %[[VAL_3]] : tensor<10x20x30x40x50x60x70x80xf32> to memref -// CHECK: %[[VAL_16:.*]] = linalg.sparse_pointers %[[VAL_1]], %[[VAL_4]] : tensor<10x20x30x40x50x60x70x80xf32> to memref -// CHECK: %[[VAL_17:.*]] = linalg.sparse_indices %[[VAL_1]], %[[VAL_4]] : tensor<10x20x30x40x50x60x70x80xf32> to memref -// CHECK: %[[VAL_18:.*]] = linalg.sparse_values %[[VAL_1]] : tensor<10x20x30x40x50x60x70x80xf32> to memref +// CHECK: %[[VAL_14:.*]] = linalg.sparse_pointers %[[VAL_1]], %[[VAL_3]] : tensor<80x70x60x50x40x30x20x10xf32> to memref +// CHECK: %[[VAL_15:.*]] = linalg.sparse_indices %[[VAL_1]], %[[VAL_3]] : tensor<80x70x60x50x40x30x20x10xf32> to memref +// CHECK: %[[VAL_16:.*]] = linalg.sparse_pointers %[[VAL_1]], %[[VAL_4]] : tensor<80x70x60x50x40x30x20x10xf32> to memref +// CHECK: %[[VAL_17:.*]] = linalg.sparse_indices %[[VAL_1]], %[[VAL_4]] : tensor<80x70x60x50x40x30x20x10xf32> to memref +// CHECK: %[[VAL_18:.*]] = linalg.sparse_values %[[VAL_1]] : tensor<80x70x60x50x40x30x20x10xf32> to memref // CHECK: %[[VAL_19:.*]] = tensor_to_memref %[[VAL_2]] : memref<10x20x30x40x50x60x70x80xf32> // CHECK: %[[VAL_20:.*]] = alloc() : memref<10x20x30x40x50x60x70x80xf32> // CHECK: linalg.copy(%[[VAL_19]], %[[VAL_20]]) : memref<10x20x30x40x50x60x70x80xf32>, memref<10x20x30x40x50x60x70x80xf32> @@ -84,12 +84,12 @@ // CHECK: return %[[VAL_50]] : tensor<10x20x30x40x50x60x70x80xf32> // CHECK: } func @mul(%arga: tensor<10x20x30x40x50x60x70x80xf32>, - %argb: tensor<10x20x30x40x50x60x70x80xf32>, + %argb: tensor<80x70x60x50x40x30x20x10xf32>, %argx: tensor<10x20x30x40x50x60x70x80xf32>) -> tensor<10x20x30x40x50x60x70x80xf32> { %0 = linalg.generic #trait_mul ins(%arga, %argb: tensor<10x20x30x40x50x60x70x80xf32>, - tensor<10x20x30x40x50x60x70x80xf32>) + tensor<80x70x60x50x40x30x20x10xf32>) outs(%argx: tensor<10x20x30x40x50x60x70x80xf32>) { ^bb(%a: f32, %b: f32, %x: f32): %0 = mulf %a, %b : f32