diff --git a/mlir/lib/Dialect/Linalg/Transforms/Sparsification.cpp b/mlir/lib/Dialect/Linalg/Transforms/Sparsification.cpp
--- a/mlir/lib/Dialect/Linalg/Transforms/Sparsification.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/Sparsification.cpp
@@ -274,6 +274,11 @@
     return false;
   }
 
+  // Returns true if tensor has any sparse dimension.
+  bool isSparseTensor(unsigned t) const {
+    return llvm::any_of(dims[t], [](Dim d) { return d == Dim::kSparse; });
+  }
+
   // Setter
   void setDim(unsigned t, unsigned i, Dim d) { dims[t][i] = d; }
 
@@ -382,17 +387,22 @@
 /// for sparse storage formats since these only support access along fixed
 /// dimensions. Even for dense storage formats, however, the natural index
 /// order yields innermost unit-stride access with better spatial locality.
-static bool computeIterationGraph(linalg::GenericOp op,
-                                  std::vector<unsigned> &topSort) {
+static bool computeIterationGraph(Merger &merger, linalg::GenericOp op,
+                                  std::vector<unsigned> &topSort,
+                                  bool sparseOnly) {
   // Set up an n x n from/to adjacency matrix of the iteration graph
   // for the implicit loop indices i_0 .. i_n-1.
   unsigned n = op.getNumLoops();
   std::vector<std::vector<bool>> adjM(n, std::vector<bool>(n, false));
 
   // Iterate over the indexing maps of every tensor in the tensor expression.
-  for (auto imap : llvm::enumerate(op.indexing_maps())) {
-    auto map = imap.value().template cast<AffineMapAttr>().getValue();
+  unsigned numTensors = op.getNumShapedOperands();
+  for (unsigned t = 0; t < numTensors; t++) {
+    auto map = op.getIndexingMap(t);
     assert(map.getNumDims() == n);
+    // Skip dense tensor constraints when sparse only is requested.
+    if (sparseOnly && !merger.isSparseTensor(t))
+      continue;
     // At the moment, we take the index variables in the tensor access
     // expression in the order in which they appear (conceptually a
     // "row-major" layout of every tensor). So, a tensor access A_ijk
@@ -407,6 +417,7 @@
 
   // Topologically sort the iteration graph to determine loop order.
   // Report failure for a cyclic iteration graph.
+  topSort.clear();
   topSort.reserve(n);
   std::vector<unsigned> visit(n, 0);
   for (unsigned i = 0; i < n; i++)
@@ -1207,10 +1218,9 @@
     // tensors are visited in natural index order. Fails on cycles.
     // This assumes that higher-level passes have already put the
     // tensors in each tensor expression in a feasible order.
-    // TODO: try again without *dense* constraints on failure or
-    //       even try to insert sparse reorderings to resolve cycles
     std::vector<unsigned> topSort;
-    if (!computeIterationGraph(op, topSort))
+    if (!computeIterationGraph(merger, op, topSort, /*sparseOnly=*/false) &&
+        !computeIterationGraph(merger, op, topSort, /*sparseOnly=*/true))
       return failure();
 
     // Finds the terminating yield statement and builds the tensor
diff --git a/mlir/test/Dialect/Linalg/sparse_nd.mlir b/mlir/test/Dialect/Linalg/sparse_nd.mlir
new file mode 100644
--- /dev/null
+++ b/mlir/test/Dialect/Linalg/sparse_nd.mlir
@@ -0,0 +1,94 @@
+// NOTE: Assertions have been autogenerated by utils/generate-test-checks.py
+// RUN: mlir-opt %s -test-sparsification | FileCheck %s
+
+// Example with cyclic iteration graph with sparse and dense constraints,
+// but an acyclic iteration graph using sparse constraints only.
+#trait_mul = {
+  indexing_maps = [
+    affine_map<(i,j,k,l,m,n,o,p) -> (i,j,k,l,m,n,o,p)>,  // A
+    affine_map<(i,j,k,l,m,n,o,p) -> (p,o,n,m,l,k,j,i)>,  // B
+    affine_map<(i,j,k,l,m,n,o,p) -> (i,j,k,l,m,n,o,p)>   // X
+  ],
+  sparse = [
+    [ "D", "D", "D", "D", "D", "D", "D", "D" ],  // a
+    [ "D", "D", "D", "S", "S", "D", "D", "D" ],  // b
+    [ "D", "D", "D", "D", "D", "D", "D", "D" ]   // x
+  ],
+  iterator_types = ["parallel", "parallel", "parallel", "parallel",
+                    "parallel", "parallel", "parallel", "parallel"],
+  doc = "X(i,j,k,l,m,n,o,p) = A(i,j,k,l,m,n,o,p)  * B(p,o,n,m,l,k,j,i)"
+}
+
+// CHECK-LABEL:   func @mul(
+// CHECK-SAME:              %[[VAL_0:.*]]: tensor<100x200x300x400x500x600x700x800xf32>,
+// CHECK-SAME:              %[[VAL_1:.*]]: tensor<100x200x300x400x500x600x700x800xf32>) -> tensor<100x200x300x400x500x600x700x800xf32> {
+// CHECK:           %[[VAL_2:.*]] = constant 999 : index
+// CHECK:           %[[VAL_3:.*]] = constant 100 : index
+// CHECK:           %[[VAL_4:.*]] = constant 200 : index
+// CHECK:           %[[VAL_5:.*]] = constant 300 : index
+// CHECK:           %[[VAL_6:.*]] = constant 600 : index
+// CHECK:           %[[VAL_7:.*]] = constant 700 : index
+// CHECK:           %[[VAL_8:.*]] = constant 800 : index
+// CHECK:           %[[VAL_9:.*]] = constant 0 : index
+// CHECK:           %[[VAL_10:.*]] = constant 1 : index
+// CHECK:           %[[VAL_11:.*]] = alloca() : memref<100x200x300x400x500x600x700x800xf32>
+// CHECK:           %[[VAL_12:.*]] = alloca(%[[VAL_2]]) : memref<?xindex>
+// CHECK:           %[[VAL_13:.*]] = alloca(%[[VAL_2]]) : memref<?xindex>
+// CHECK:           %[[VAL_14:.*]] = alloca(%[[VAL_2]]) : memref<?xindex>
+// CHECK:           %[[VAL_15:.*]] = alloca(%[[VAL_2]]) : memref<?xindex>
+// CHECK:           %[[VAL_16:.*]] = alloca(%[[VAL_2]]) : memref<?xf32>
+// CHECK:           %[[VAL_17:.*]] = alloca() : memref<100x200x300x400x500x600x700x800xf32>
+// CHECK:           scf.for %[[VAL_18:.*]] = %[[VAL_9]] to %[[VAL_8]] step %[[VAL_10]] {
+// CHECK:             scf.for %[[VAL_19:.*]] = %[[VAL_9]] to %[[VAL_7]] step %[[VAL_10]] {
+// CHECK:               %[[VAL_20:.*]] = muli %[[VAL_18]], %[[VAL_7]] : index
+// CHECK:               %[[VAL_21:.*]] = addi %[[VAL_20]], %[[VAL_19]] : index
+// CHECK:               scf.for %[[VAL_22:.*]] = %[[VAL_9]] to %[[VAL_6]] step %[[VAL_10]] {
+// CHECK:                 %[[VAL_23:.*]] = muli %[[VAL_21]], %[[VAL_6]] : index
+// CHECK:                 %[[VAL_24:.*]] = addi %[[VAL_23]], %[[VAL_22]] : index
+// CHECK:                 %[[VAL_25:.*]] = load %[[VAL_12]]{{\[}}%[[VAL_24]]] : memref<?xindex>
+// CHECK:                 %[[VAL_26:.*]] = addi %[[VAL_24]], %[[VAL_10]] : index
+// CHECK:                 %[[VAL_27:.*]] = load %[[VAL_12]]{{\[}}%[[VAL_26]]] : memref<?xindex>
+// CHECK:                 scf.for %[[VAL_28:.*]] = %[[VAL_25]] to %[[VAL_27]] step %[[VAL_10]] {
+// CHECK:                   %[[VAL_29:.*]] = load %[[VAL_13]]{{\[}}%[[VAL_28]]] : memref<?xindex>
+// CHECK:                   %[[VAL_30:.*]] = load %[[VAL_14]]{{\[}}%[[VAL_28]]] : memref<?xindex>
+// CHECK:                   %[[VAL_31:.*]] = addi %[[VAL_28]], %[[VAL_10]] : index
+// CHECK:                   %[[VAL_32:.*]] = load %[[VAL_14]]{{\[}}%[[VAL_31]]] : memref<?xindex>
+// CHECK:                   scf.for %[[VAL_33:.*]] = %[[VAL_30]] to %[[VAL_32]] step %[[VAL_10]] {
+// CHECK:                     %[[VAL_34:.*]] = load %[[VAL_15]]{{\[}}%[[VAL_33]]] : memref<?xindex>
+// CHECK:                     scf.for %[[VAL_35:.*]] = %[[VAL_9]] to %[[VAL_5]] step %[[VAL_10]] {
+// CHECK:                       %[[VAL_36:.*]] = muli %[[VAL_33]], %[[VAL_5]] : index
+// CHECK:                       %[[VAL_37:.*]] = addi %[[VAL_36]], %[[VAL_35]] : index
+// CHECK:                       scf.for %[[VAL_38:.*]] = %[[VAL_9]] to %[[VAL_4]] step %[[VAL_10]] {
+// CHECK:                         %[[VAL_39:.*]] = muli %[[VAL_37]], %[[VAL_4]] : index
+// CHECK:                         %[[VAL_40:.*]] = addi %[[VAL_39]], %[[VAL_38]] : index
+// CHECK:                         scf.for %[[VAL_41:.*]] = %[[VAL_9]] to %[[VAL_3]] step %[[VAL_10]] {
+// CHECK:                           %[[VAL_42:.*]] = muli %[[VAL_40]], %[[VAL_3]] : index
+// CHECK:                           %[[VAL_43:.*]] = addi %[[VAL_42]], %[[VAL_41]] : index
+// CHECK:                           %[[VAL_44:.*]] = load %[[VAL_11]]{{\[}}%[[VAL_41]], %[[VAL_38]], %[[VAL_35]], %[[VAL_34]], %[[VAL_29]], %[[VAL_22]], %[[VAL_19]], %[[VAL_18]]] : memref<100x200x300x400x500x600x700x800xf32>
+// CHECK:                           %[[VAL_45:.*]] = load %[[VAL_16]]{{\[}}%[[VAL_43]]] : memref<?xf32>
+// CHECK:                           %[[VAL_46:.*]] = mulf %[[VAL_44]], %[[VAL_45]] : f32
+// CHECK:                           store %[[VAL_46]], %[[VAL_17]]{{\[}}%[[VAL_41]], %[[VAL_38]], %[[VAL_35]], %[[VAL_34]], %[[VAL_29]], %[[VAL_22]], %[[VAL_19]], %[[VAL_18]]] : memref<100x200x300x400x500x600x700x800xf32>
+// CHECK:                         }
+// CHECK:                       }
+// CHECK:                     }
+// CHECK:                   }
+// CHECK:                 }
+// CHECK:               }
+// CHECK:             }
+// CHECK:           }
+// CHECK:           %[[VAL_47:.*]] = tensor_load %[[VAL_17]] : memref<100x200x300x400x500x600x700x800xf32>
+// CHECK:           return %[[VAL_47]] : tensor<100x200x300x400x500x600x700x800xf32>
+// CHECK:         }
+func @mul(%arga: tensor<100x200x300x400x500x600x700x800xf32>,
+          %argb: tensor<100x200x300x400x500x600x700x800xf32>)
+	      -> tensor<100x200x300x400x500x600x700x800xf32> {
+  %0 = linalg.generic #trait_mul
+    ins(%arga, %argb: tensor<100x200x300x400x500x600x700x800xf32>,
+                      tensor<100x200x300x400x500x600x700x800xf32>)
+    outs(%arga: tensor<100x200x300x400x500x600x700x800xf32>) {
+      ^bb(%a: f32, %b: f32, %s : f32):
+        %0 = mulf %a, %b : f32
+        linalg.yield %0 : f32
+    }      -> tensor<100x200x300x400x500x600x700x800xf32>
+  return %0 : tensor<100x200x300x400x500x600x700x800xf32>
+}