diff --git a/mlir/docs/Dialects/Linalg.md b/mlir/docs/Dialects/Linalg.md
--- a/mlir/docs/Dialects/Linalg.md
+++ b/mlir/docs/Dialects/Linalg.md
@@ -21,8 +21,8 @@
one-off op knowledge.
The textual form description of these transformations is left for future work.
-Still, it is useful to at least the key transformations that are performed on
-the Linalg IR and that have influenced its design:
+Still, it is useful to list the key transformations that are performed on the
+Linalg IR and that have influenced its design:
1. Progressive Buffer Allocation.
1. Parametric Tiling.
@@ -42,8 +42,25 @@
[key transformations](#key_transformations), including lowering to scalar
load/store and other operations or to external library calls and intrinsics.
-These ops can have ***either tensor or buffer operands***, subject to
-[conventions and limitations](#tensors_and_buffers).
+These ops can have ***either tensor or buffer*** as both input and output
+operands. Output tensors operands serve the purpose of providing a unifying
+abstraction and give a shape to the results. Output tensors can come in 2
+flavors and are always associated with a corresponding op result:
+
+1. an "init tensor" output value which provides an initial value for a tensor
+ that is created by iteratively updating the result (also called "destructive
+ updates"). Such tensor is always materialized in some form. If enough fusion
+ occurs it may end up being materialized only as a register-level SSA value.
+ It is expected (but not required) that the destructive update pattern can be
+ rewritten as an inplace update on buffers.
+
+2. a "shape-only" tensor output value whose underlying elements are not used in
+ the payload computation and only serves the purpose of carrying shape
+ information to lower levels of abstraction. In the future this will be
+ replaced by an appropriate shape type when it is available as a builtin type
+ (see the discourse discussion
+ [Linalg and Shapes](https://llvm.discourse.group/t/linalg-and-shapes/2421)
+ for more details).
### Payload-Carrying Ops
@@ -125,14 +142,15 @@
(assuming dynamic operand dimensions agree with each other, which is the purpose
of the `assert` runtime check).
-Before lowering to loop form, loop induction variables and iterators are *not
-yet materialized*. This is a necessary property if we want an abstraction that
-works on both tensor values and buffers because ***values don’t escape
-loops/nesting***.
+Before lowering to loop form, loop induction variables and iterators are
+implicit (i.e. *not yet materialized*).
-The main implications are that: 1. The semantics of the ops are *restricted to
-operate on structured data types*, on which we can define an iterator. 2. This
-does not model arbitrary code with side-effects.
+The main implications are that:
+
+1. The semantics of the ops are *restricted to operate on structured data
+ types*, on which we can define an iterator.
+
+2. This does not model arbitrary code with side-effects.
We do not think these are serious limitations in practice because MLIR is all
about mixing different levels of abstractions in the same IR. As long as Linalg
@@ -483,76 +501,6 @@
compilers. As we lay those down and engage more with the community, we expect
multiple rounds of discussions and design changes to the original architecture.
-### Tensors and Buffers: Conventions and Limitations
-
-Tensors are immutable SSA values, buffers are mutable regions of memory subject
-to side-effects and aliasing. As a consequence, output buffers are passed as
-operands whereas output tensors are new SSA values corresponding to op results.
-Inputs can be arbitrary tensors or buffers and are always passed as operands.
-
-The following convention is currently in-flight and is in the process of
-replacing other existing conventions. The following convention currently applies
-to "named" structured ops which are auto-generated by the linalg-ods tool.
-
-The convention adopted is as follows:
-
-1. A first block of `ins` op operands hold read-only inputs of ShapedType.
-2. An optional second block of `outs` op operands hold read-write output
- buffers of MemRefType.
-3. An optional third block of `init` operands hold initialization tensors of
- RankedTensorType. Such tensors can appear when the op performs a reduction
- and returns a tensor.
-
-Structured ops with fully parallel semantics, have empty `init`. They may either
-write in-place into `outs` buffers or return new tensors.
-
-Structured ops with reduction semantics and output tensor(s) however have
-additional restrictions:
-
-1. They can only return a single tensor for now.
-2. They cannot have any output buffer operand (i.e. `outs` is empty).
-3. They have exactly one `init` tensor of the same type as the unique output
- tensor. Such an `init` tensor does not have an explicit associate indexing
- map. Instead the map of the result tensor is used to signify that the `init`
- and the `result` are "tied".
-
-Points 1. and 2. keep complexity of the representation in check by allowing only
-a single result tensor, when reductions are present.
-
-Point 3. is related to the fact that SSA values cannot represent in-place
-updates. Instead, linalg adopts a similar convention that exists in e.g.
-`vector.outerproduct`: the value that is reduced into is passed as an explicit
-argument and a new result of the same shape is produced.
-
-It is expected buffer allocation will fold this last input onto the result in a
-single output buffer argument, which is why the same indexing map is required:
-the last input operand is said to be "tied" to the result.
-
-Alternative, more complex representations, would allow for:
-
-1. Multiple results and `init` tensors in arbitrary orders, which could be
- captured by an extra ArrayAttr of position pairs.
-2. Relaxing the conditions on the indexing map equalities on the each pair and
- e.g. allow implicit broadcasts of the input.
-
-These representations are deemed unnecessarily complex for now and are left for
-future discussion.
-
-As an illustration, the syntax for a `linalg.matmul` writing into a buffer is:
-
-```
-linalg.matmul ins(%a, %b : memref, tensor)
- outs(%c : memref)
-```
-
-, whereas the syntax for a `linalg.matmul` returning a new tensor is:
-
-```
-%d = linalg.matmul ins(%a, %b : tensor, memref)
- init(%c : tensor)
- -> tensor
-```
-
### Data Representation: Views
The current implementation uses the
diff --git a/mlir/include/mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h b/mlir/include/mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h
--- a/mlir/include/mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h
+++ b/mlir/include/mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h
@@ -45,19 +45,17 @@
class LinalgDependenceGraph {
public:
enum DependenceType { RAR = 0, RAW, WAR, WAW, NumTypes };
- struct LinalgOpView {
- Operation *op;
- unsigned operandIndex;
- };
+ // TODO: OpOperand tracks dependencies on buffer operands. Tensor result will
+ // need an extension to use OpResult.
struct LinalgDependenceGraphElem {
// dependentOpView may be either:
// 1. src in the case of dependencesIntoGraphs.
// 2. dst in the case of dependencesFromDstGraphs.
- LinalgOpView dependentOpView;
+ OpOperand *dependentOpView;
// View in the op that is used to index in the graph:
// 1. src in the case of dependencesFromDstGraphs.
// 2. dst in the case of dependencesIntoGraphs.
- LinalgOpView indexingOpView;
+ OpOperand *indexingOpView;
// Type of the dependence.
DependenceType dependenceType;
};
@@ -161,8 +159,8 @@
// Uses std::pair to keep operations and view together and avoid usage errors
// related to src/dst and producer/consumer terminology in the context of
// dependences.
- void addDependenceElem(DependenceType dt, LinalgOpView indexingOpView,
- LinalgOpView dependentOpView);
+ void addDependenceElem(DependenceType dt, OpOperand *indexingOpView,
+ OpOperand *dependentOpView);
/// Implementation detail for findCoveringxxx.
SmallVector
diff --git a/mlir/include/mlir/Dialect/Linalg/EDSC/Builders.h b/mlir/include/mlir/Dialect/Linalg/EDSC/Builders.h
--- a/mlir/include/mlir/Dialect/Linalg/EDSC/Builders.h
+++ b/mlir/include/mlir/Dialect/Linalg/EDSC/Builders.h
@@ -30,8 +30,8 @@
namespace edsc {
inline void defaultRegionBuilder(ValueRange args) {}
-/// Build a `linalg.generic` op with the specified `inputs`, `outputBuffers`,
-/// `initTensors`, `resultTensorsTypes` and `region`.
+/// Build a `linalg.generic` op with the specified `inputs`, `outputs`,
+/// `resultTensorsTypes` and `region`.
///
/// `otherValues` and `otherAttributes` may be passed and will be appended as
/// operands and attributes respectively.
@@ -41,15 +41,12 @@
///
/// 1. `inputs` may contain StructuredIndexed that capture either buffer or
/// tensor values.
-/// 2. `outputsBuffers` may contain StructuredIndexed that capture buffer
-/// values.
-/// 3. `initTensors` contain tensor values, without indexing maps.
-/// 4. `resultTensorTypes` may contain StructuredIndexed that capture return
-/// tensor types.
+/// 2. `outputs` may contain StructuredIndexed that capture either buffer or
+/// tensor values. In the future this will be extended with ranked shape values.
+/// 4. `resultTensorTypes` may contain return tensor types.
Operation *makeGenericLinalgOp(
ArrayRef iteratorTypes, ArrayRef inputs,
- ArrayRef outputBuffers, ArrayRef initTensors,
- ArrayRef resultTensorTypes,
+ ArrayRef outputs, TypeRange resultTensorTypes,
function_ref regionBuilder = defaultRegionBuilder,
ArrayRef otherValues = {}, ArrayRef otherAttributes = {});
diff --git a/mlir/include/mlir/Dialect/Linalg/IR/LinalgOps.h b/mlir/include/mlir/Dialect/Linalg/IR/LinalgOps.h
--- a/mlir/include/mlir/Dialect/Linalg/IR/LinalgOps.h
+++ b/mlir/include/mlir/Dialect/Linalg/IR/LinalgOps.h
@@ -9,7 +9,6 @@
#ifndef MLIR_DIALECT_LINALG_LINALGOPS_H_
#define MLIR_DIALECT_LINALG_LINALGOPS_H_
-#include "mlir/Dialect/Linalg/IR/LinalgTraits.h"
#include "mlir/Dialect/Linalg/IR/LinalgTypes.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/Dialect/Utils/StructuredOpsUtils.h"
@@ -111,9 +110,17 @@
void getDimsOfType(Operation *op, StringRef iteratorTypeName,
SmallVectorImpl &res);
+namespace detail {
+LogicalResult verifyStructuredOpInterface(Operation *op);
+} // namespace detail
} // namespace linalg
} // namespace mlir
+namespace mlir {
+namespace linalg {
+class IndexedGenericOp;
+} // namespace linalg
+} // namespace mlir
#include "mlir/Dialect/Linalg/IR/LinalgStructuredOpsInterfaces.h.inc"
#define GET_OP_CLASSES
diff --git a/mlir/include/mlir/Dialect/Linalg/IR/LinalgStructuredOps.td b/mlir/include/mlir/Dialect/Linalg/IR/LinalgStructuredOps.td
--- a/mlir/include/mlir/Dialect/Linalg/IR/LinalgStructuredOps.td
+++ b/mlir/include/mlir/Dialect/Linalg/IR/LinalgStructuredOps.td
@@ -19,26 +19,6 @@
include "mlir/Interfaces/CopyOpInterface.td"
include "mlir/Interfaces/SideEffectInterfaces.td"
-// The Linalg `NInputs` trait provides the API for ops that are known
-// to have a specified number of inputs, all passed as operands.
-// See Linalg/LinalgTraits.h for implementation details and usage.
-class NInputs :
- NativeOpTrait<"linalg::NInputs<" # !cast(n) # ">::Impl"> {}
-
-// The Linalg `ZeroInitTensors` trait provides the API for ops that are known
-// to not have input tensor operands.
-// See Linalg/LinalgTraits.h for implementation details and usage.
-def ZeroInitTensors : NativeOpTrait<"linalg::ZeroInitTensors"> {}
-
-// The Linalg `NOutputs` trait provides the API for ops that are known
-// to have a specified number of outputs, all passed as operands.
-// See Linalg/LinalgTraits.h for implementation details and usage.
-class NOutputs :
- NativeOpTrait<"linalg::NOutputs<" # !cast(n) # ">::Impl"> {}
-
-def StructuredOpTraits : NativeOpTrait<"linalg::StructuredOpTraits">;
-def NamedStructuredOpTrait : NativeOpTrait<"linalg::NamedStructuredOpTrait">;
-
// Base Tablegen class for Linalg ops.
// Linalg ops that correspond to library calls operate on ShapedType as their
// first operands. These may be optionally followed by non-view operands
@@ -50,7 +30,6 @@
class LinalgStructured_Op props>
: LinalgStructuredBase_Op])> {
code libraryCallName = [{
std::string getLibraryCallName() {
@@ -65,12 +44,7 @@
//===----------------------------------------------------------------------===//
// At the moment these are not declarative and require a bunch of C++ code.
// In the future, these should be migrated to a declarative specification.
-def CopyOp : LinalgStructured_Op<"copy", [
- CopyOpInterface,
- NInputs<1>,
- ZeroInitTensors,
- NOutputs<1>
- ]> {
+def CopyOp : LinalgStructured_Op<"copy", [CopyOpInterface]> {
let description = [{
Copies the data in the input view into the output view.
@@ -137,6 +111,14 @@
}]>];
let extraClassDeclaration = libraryCallName # [{
+ ValueRange inputs() {
+ return OperandRange{getOperands().begin(), getOperands().begin() + 1};
+ }
+
+ ValueRange outputs() {
+ return OperandRange{getOperands().begin() + 1, getOperands().begin() + 2};
+ }
+
// Rank-polymorphic.
// filling_value -> O(ivs) with parallel iterators.
ArrayAttr iterator_types() {
@@ -170,14 +152,16 @@
let hasCanonicalizer = 1;
}
-def FillOp : LinalgStructured_Op<"fill", [
- NInputs<0>,
- ZeroInitTensors,
- NOutputs<1>]> {
-
+def FillOp : LinalgStructured_Op<"fill", []> {
let arguments = (ins AnyStridedMemRef:$output,
AnyTypeOf<[AnyFloat, AnySignlessInteger, AnyVector]>:$value);
let extraClassDeclaration = libraryCallName # [{
+ ValueRange inputs() { return {}; }
+
+ ValueRange outputs() {
+ return OperandRange{getOperands().begin(), getOperands().begin() + 1};
+ }
+
// Rank-polymorphic.
// filling_value -> O(ivs) with parallel iterators.
ArrayAttr iterator_types() {
@@ -276,13 +260,8 @@
}];
}
-def ConvOp : PoolingBase_Op<"conv", [
- NInputs<2>,
- // Despite having reductions, this manually defined ConvOp may only take
- // memref operands and can never have init tensors.
- ZeroInitTensors,
- NOutputs<1>]> {
-
+// Only support buffer semantics.
+def ConvOp : PoolingBase_Op<"conv", []> {
let description = [{
Generic n-D convolution as described in the TF documentation:
https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/nn/convolution
@@ -313,6 +292,14 @@
OptionalAttr:$padding);
let extraClassDeclaration = commonUtils # [{
+ ValueRange inputs() {
+ return OperandRange{getOperands().begin(), getOperands().begin() + 2};
+ }
+
+ ValueRange outputs() {
+ return OperandRange{getOperands().begin() + 2, getOperands().begin() + 3};
+ }
+
// TODO: extend to support more than 1 dimensions and potentially grouping
// too.
unsigned getNumBatchDimensions() { return 1; }
@@ -335,6 +322,11 @@
// parallelized across; i.e. [zs] in the TF notation above whose number
// match `xs` (i.e. 1 window loop per "image" dimension).
// This may evolve in the future.
+ // Conditionally check nWin for cases of ill-formed op: this avoids
+ // overflows before hitting the verifier.
+ assert(nPar > getNumBatchDimensions() + getNumInputFeatureDimensions() &&
+ "expected at least one window dimension (i.e. memref ranks greater "
+ "than 2)");
unsigned nWin =
nPar - getNumBatchDimensions() - getNumInputFeatureDimensions();
SmallVector iters(nPar, getParallelIteratorTypeName());
@@ -352,7 +344,8 @@
ArrayAttr indexing_maps() {
MLIRContext *context = getContext();
auto nWin = getNumWindowLoops();
- assert(nWin > 0 && "expected at least one window dimension");
+ assert(nWin > 0 && "expected at least one window dimension (i.e. memref "
+ "ranks greater than 2)");
unsigned idx = 0;
// In the following, AffineDimExprs are indexed in loop order:
// [ b, xs, k, q, zs]
@@ -394,13 +387,9 @@
let hasCanonicalizer = 1;
}
+// Only support buffer semantics.
class SingleInputPoolingBase_Op
- : PoolingBase_Op,
- // Despite having reductions, this manually defined ConvOp may only take
- // memref operands and can never have init tensors.
- ZeroInitTensors,
- NOutputs<1>]> {
+ : PoolingBase_Op {
let description = [{
A base class for single input pooling function.
@@ -420,6 +409,14 @@
OptionalAttr:$padding);
let extraClassDeclaration = commonUtils# [{
+ ValueRange inputs() {
+ return OperandRange{getOperands().begin(), getOperands().begin() + 2};
+ }
+
+ ValueRange outputs() {
+ return OperandRange{getOperands().begin() + 2, getOperands().begin() + 3};
+ }
+
ArrayAttr iterator_types() {
// Outer parallel loops are always the number of output dimensions.
unsigned nPar = getOutputShapedType(0).getRank();
@@ -493,11 +490,9 @@
class GenericOpBase : LinalgStructuredBase_Op,
- NamedStructuredOpTrait,
SingleBlockImplicitTerminator<"YieldOp">]> {
let arguments = (ins Variadic:$inputs,
- Variadic:$output_buffers,
- Variadic:$init_tensors,
+ Variadic:$outputs,
AffineMapArrayAttr:$indexing_maps,
ArrayAttr:$iterator_types,
OptionalAttr:$doc,
@@ -622,34 +617,26 @@
```mlir
%C = linalg.generic #trait_attribute
ins(%A, %B : tensor, memref)
- init(%C : tensor)
+ outs(%C : tensor)
{other-optional-attributes}
{region}
-> (tensor)
```
-
- The `init` operand and the conventions around mixing tensors and buffers are
- described in more detail in the "Tensors and Buffers: Conventions and
- Limitations" section in the [Linalg Document](../docs/Linalg.md)
-
- Tensor values must be legalized by a buffer allocation pass before most
- transformations can be applied. Such legalizations move tensor return values
- into output buffer operands and updates the region arguments accordingly.
}];
let builders = [
OpBuilderDAG<(ins "TypeRange":$resultTensorTypes, "ValueRange":$inputs,
- "ValueRange":$outputBuffers, "ValueRange":$initTensors,
- "ArrayRef":$indexingMaps, "ArrayRef":$iteratorTypes,
- "StringRef":$doc, "StringRef":$libraryCall,
+ "ValueRange":$outputs, "ArrayRef":$indexingMaps,
+ "ArrayRef":$iteratorTypes, "StringRef":$doc,
+ "StringRef":$libraryCall,
CArg<"function_ref", "nullptr">)>,
OpBuilderDAG<(ins "ValueRange":$inputs, "ValueRange":$outputBuffers,
"ArrayRef":$indexingMaps, "ArrayRef":$iteratorTypes,
"StringRef":$doc, "StringRef":$libraryCall,
CArg<"function_ref", "nullptr">)>,
OpBuilderDAG<(ins "TypeRange":$resultTensorTypes, "ValueRange":$inputs,
- "ValueRange":$outputBuffers, "ValueRange":$initTensors,
- "ArrayRef":$indexingMaps, "ArrayRef":$iteratorTypes,
+ "ValueRange":$outputs, "ArrayRef":$indexingMaps,
+ "ArrayRef":$iteratorTypes,
CArg<"function_ref", "nullptr">)>,
OpBuilderDAG<(ins "ValueRange":$inputs, "ValueRange":$outputBuffers,
"ArrayRef":$indexingMaps, "ArrayRef":$iteratorTypes,
@@ -714,8 +701,8 @@
```mlir
linalg.indexed_generic #matmul_trait
- ins(%A, %B : memref,
- memref)
+ ins(%A, %B : memref,
+ memref)
outs(%C : memref) {
(%offset_m: index, %offset_n: index, %offset_k: index,
%a: f32, %b: f32, %c: f32) :
@@ -761,27 +748,19 @@
```mlir
%C = linalg.indexed_generic #trait_attribute
- ins(%A, %B : tensor, memref)
- init(%C : tensor)
+ ins(%A, %B : tensor, memref)
+ outs(%C : tensor)
{other-optional-attributes}
{region_with_index_arguments}
-> (tensor)
```
-
- The `init` operand and the conventions around mixing tensors and buffers are
- described in more detail in the "Tensors and Buffers: Conventions and
- Limitations" section in the [Linalg Document](../docs/Linalg.md)
-
- Tensor values must be legalized by a buffer allocation pass before most
- transformations can be applied. Such legalizations move tensor return values
- into output buffer operands and update the region arguments accordingly.
}];
let builders = [
OpBuilderDAG<(ins "TypeRange":$resultTensorTypes, "ValueRange":$inputs,
- "ValueRange":$outputBuffers, "ValueRange":$initTensors,
- "ArrayRef":$indexingMaps, "ArrayRef":$iteratorTypes,
- "StringRef":$doc, "StringRef":$libraryCall,
+ "ValueRange":$outputs, "ArrayRef":$indexingMaps,
+ "ArrayRef":$iteratorTypes, "StringRef":$doc,
+ "StringRef":$libraryCall,
CArg<"function_ref",
"nullptr">)>,
OpBuilderDAG<(ins "ValueRange":$inputs, "ValueRange":$outputBuffers,
@@ -790,8 +769,8 @@
CArg<"function_ref",
"nullptr">)>,
OpBuilderDAG<(ins "TypeRange":$resultTensorTypes, "ValueRange":$inputs,
- "ValueRange":$outputBuffers, "ValueRange":$initTensors,
- "ArrayRef":$indexingMaps, "ArrayRef":$iteratorTypes,
+ "ValueRange":$outputs, "ArrayRef":$indexingMaps,
+ "ArrayRef":$iteratorTypes,
CArg<"function_ref",
"nullptr">)>,
OpBuilderDAG<(ins "ValueRange":$inputs, "ValueRange":$outputBuffers,
diff --git a/mlir/include/mlir/Dialect/Linalg/IR/LinalgStructuredOpsInterface.td b/mlir/include/mlir/Dialect/Linalg/IR/LinalgStructuredOpsInterface.td
--- a/mlir/include/mlir/Dialect/Linalg/IR/LinalgStructuredOpsInterface.td
+++ b/mlir/include/mlir/Dialect/Linalg/IR/LinalgStructuredOpsInterface.td
@@ -20,6 +20,24 @@
def LinalgStructuredInterface : OpInterface<"LinalgOp"> {
let cppNamespace = "::mlir::linalg";
let methods = [
+ //===------------------------------------------------------------------===//
+ // Loop types handling.
+ //===------------------------------------------------------------------===//
+ InterfaceMethod<
+ /*desc=*/[{
+ Return the number of induction variables in the basic block. This should
+ always be 0 for index-free linalg ops. For IndexedGeneric, this must be
+ equal to numLoops
+ }],
+ /*retTy=*/"unsigned",
+ /*methodName=*/"getNumPayloadInductionVariables",
+ /*args=*/(ins),
+ /*methodBody=*/"",
+ /*defaultImplementation=*/[{
+ return isa(this->getOperation()) ?
+ $_op.getNumLoops() : 0;
+ }]
+ >,
//===------------------------------------------------------------------===//
// Loop types handling.
//===------------------------------------------------------------------===//
@@ -125,42 +143,40 @@
getNumIterators(getReductionIteratorTypeName(), iters) == 1;
}]>,
//===------------------------------------------------------------------===//
- // Num input/output/initTensors arguments handling.
+ // Num input/output arguments handling.
//===------------------------------------------------------------------===//
- // These special methods must be defined by each op that wants to implement
- // the LinalgStructuredInterface. For now, this is either:
- // - Explicitly specified in the op definition.
- // - Derived from variadic attributes (for "named" ops, linalg.generic and
- // linalg.indexed_generic ops).
+ // These special methods rely on `inputs` and `outputs` being defined by
+ // each op that wants to implement the LinalgStructuredInterface.
InterfaceMethod<
/*desc=*/[{
Return the number of inputs.
}],
/*retTy=*/"unsigned",
- /*methodName=*/"getNumInputs"
- >,
- InterfaceMethod<
- /*desc=*/[{
- Return the number of init tensors.
- }],
- /*retTy=*/"unsigned",
- /*methodName=*/"getNumInitTensors"
+ /*methodName=*/"getNumInputs",
+ /*args=*/(ins),
+ /*methodBody=*/"",
+ /*defaultImplementation=*/[{
+ return $_op.inputs().size();
+ }]
>,
InterfaceMethod<
/*desc=*/[{
Return the number of outputs.
}],
/*retTy=*/"unsigned",
- /*methodName=*/"getNumOutputs"
+ /*methodName=*/"getNumOutputs",
+ /*args=*/(ins),
+ /*methodBody=*/"",
+ /*defaultImplementation=*/[{
+ return $_op.outputs().size();
+ }]
>,
//===------------------------------------------------------------------===//
- // Input arguments handling.
+ // Input operands handling.
//===------------------------------------------------------------------===//
InterfaceMethod<
/*desc=*/[{
- Return the `i`-th input value.
- The `i^th` input argument is always the `i^th` operand regardless of
- whether we have tensors or buffers.
+ Return the `i`-th input operand.
}],
/*retTy=*/"Value",
/*methodName=*/"getInput",
@@ -173,24 +189,7 @@
>,
InterfaceMethod<
/*desc=*/[{
- Return the index of the given input value `v`, or `None` if the value is
- not an input.
- }],
- /*retTy=*/"llvm::Optional",
- /*methodName=*/"getIndexOfInput",
- /*args=*/(ins "Value":$value),
- /*methodBody=*/"",
- /*defaultImplementation=*/[{
- auto it = llvm::find(getInputs(), value);
- if (it != getInputs().end())
- return it - getInputs().begin();
- return llvm::None;
- }]
- >,
- InterfaceMethod<
- /*desc=*/[{
- Return the `i`-th input shaped type, irrespective of buffer or tensor
- type.
+ Return the `i`-th input shaped type
}],
/*retTy=*/"ShapedType",
/*methodName=*/"getInputShapedType",
@@ -202,7 +201,7 @@
>,
InterfaceMethod<
/*desc=*/[{
- Return the input operands.
+ Return the range of input operands.
}],
/*retTy=*/"Operation::operand_range",
/*methodName=*/"getInputs",
@@ -215,7 +214,19 @@
>,
InterfaceMethod<
/*desc=*/[{
- Return the range over the input operands that are of buffer type.
+ Return the OpOperands for the input operands.
+ }],
+ /*retTy=*/" MutableArrayRef",
+ /*methodName=*/"getInputOpOperands",
+ /*args=*/(ins),
+ /*methodBody=*/"",
+ /*defaultImplementation=*/[{
+ return this->getOperation()->getOpOperands().take_front(getNumInputs());
+ }]
+ >,
+ InterfaceMethod<
+ /*desc=*/[{
+ Return the subset of input operands that are of buffer type.
}],
/*retTy=*/"SmallVector",
/*methodName=*/"getInputBuffers",
@@ -223,417 +234,500 @@
/*methodBody=*/"",
/*defaultImplementation=*/[{
return llvm::to_vector<4>(llvm::make_filter_range(
- getInputs(), [](Value in){ return in.getType().isa(); }));
+ getInputs(), [](Value in){ return in.getType().template isa(); }));
}]
>,
InterfaceMethod<
/*desc=*/[{
- Return the subset of input operands that are of ranked tensor type.
+ Return the number of input buffer operands.
}],
- /*retTy=*/"SmallVector",
- /*methodName=*/"getInputTensorTypes" ,
+ /*retTy=*/"unsigned",
+ /*methodName=*/"getNumInputBuffers",
/*args=*/(ins),
/*methodBody=*/"",
/*defaultImplementation=*/[{
- SmallVector res;
- for (Type type : getInputs().getTypes())
- if (auto t = type.template dyn_cast())
- res.push_back(t);
- return res;
+ return $_op.getInputBuffers().size();
}]
>,
- //===------------------------------------------------------------------===//
- // Output arguments handling.
- //===------------------------------------------------------------------===//
InterfaceMethod<
/*desc=*/[{
- Return the output buffer at the given index, asserts that this is a
- buffer operand and not a tensor result.
- The `i^th` output argument is an operand (resp. a return value) iff it
- is a value of buffer type (resp. a return value of tensor type).
+ Return the `index`^th input buffer.
}],
/*retTy=*/"Value",
- /*methodName=*/"getOutputBuffer",
- /*args=*/(ins "unsigned":$i),
+ /*methodName=*/"getInputBuffer",
+ /*args=*/(ins "unsigned":$index),
/*methodBody=*/"",
/*defaultImplementation=*/[{
- // Output buffers are passed as output buffer operands (side-effecting).
- // Output tensors are results.
- // The union of the 2 are all the outputs and we want to ensure i does
- // not overflow the buffer operands.
- assert(i + this->getOperation()->getNumResults() < $_op.getNumOutputs()
- && "overflowing output buffer index");
- return this->getOperation()->getOperand($_op.getNumInputs() + i);
+ assert(index < getNumInputBuffers());
+ return getInputBuffers()[index];
}]
>,
InterfaceMethod<
/*desc=*/[{
- Return the index of the given buffer value, or `None` if the value is
- not part of the output buffers.
+ Return the subset of input operands that are of buffer type.
}],
- /*retTy=*/"llvm::Optional",
- /*methodName=*/"getIndexOfOutputBuffer",
- /*args=*/(ins "Value":$value),
+ /*retTy=*/"SmallVector",
+ /*methodName=*/"getInputBuffersOpOperands",
+ /*args=*/(ins),
/*methodBody=*/"",
/*defaultImplementation=*/[{
- auto it = llvm::find(getOutputBuffers(), value);
- if (it != getOutputBuffers().end())
- return it - getOutputBuffers().begin();
- return llvm::None;
+ SmallVector res;
+ res.reserve(getNumInputs());
+ for (OpOperand &o : getInputOpOperands())
+ if (o.get().getType().isa())
+ res.push_back(&o);
+ return res;
}]
>,
InterfaceMethod<
/*desc=*/[{
- Return the type of the output buffer at the given index.
+ Return the subset of input operands that are of tensor type.
}],
- /*retTy=*/"MemRefType",
- /*methodName=*/"getOutputBufferType",
- /*args=*/(ins "unsigned":$i),
+ /*retTy=*/"SmallVector",
+ /*methodName=*/"getInputTensors",
+ /*args=*/(ins),
/*methodBody=*/"",
/*defaultImplementation=*/[{
- return getOutputBuffer(i).getType().template cast();
- }]>,
+ return llvm::to_vector<4>(llvm::make_filter_range(
+ getInputs(),
+ [](Value in){ return in.getType().template isa(); }));
+ }]
+ >,
InterfaceMethod<
/*desc=*/[{
- Return the `i`-th output shaped type, irrespective of buffer or tensor
- type.
+ Return the subset of input operands that are of buffer type.
}],
- /*retTy=*/"ShapedType",
- /*methodName=*/"getOutputShapedType",
- /*args=*/(ins "unsigned":$i),
+ /*retTy=*/"SmallVector",
+ /*methodName=*/"getInputTensorsOpOperands",
+ /*args=*/(ins),
/*methodBody=*/"",
/*defaultImplementation=*/[{
- return getShapedType(i + $_op.getNumInputs());
- }]>,
+ SmallVector res;
+ res.reserve(getNumInputs());
+ for (OpOperand &o : getInputOpOperands())
+ if (o.get().getType().isa())
+ res.push_back(&o);
+ return res;
+ }]
+ >,
InterfaceMethod<
/*desc=*/[{
- Return the results that are of ranked tensor type.
+ Return the types of the subset of input operands that are of buffer type.
}],
- /*retTy=*/"SmallVector",
- /*methodName=*/"getOutputTensorTypes",
+ /*retTy=*/"SmallVector",
+ /*methodName=*/"getInputBufferTypes" ,
/*args=*/(ins),
/*methodBody=*/"",
/*defaultImplementation=*/[{
- SmallVector res;
- for (Type type : this->getOperation()->getResults().getTypes())
- res.push_back(type.template cast());
- return res;
- }]>,
+ return llvm::to_vector<4>(
+ llvm::map_range(
+ llvm::make_filter_range(
+ ValueRange(getInputs()).getTypes(),
+ [](Type in){ return in.isa(); }),
+ [](Type in){ return in.cast(); }));
+ }]
+ >,
InterfaceMethod<
/*desc=*/[{
- Return the output buffers (operands).
+ Return the types of the subset of input operands that are of ranked
+ tensor type.
}],
- /*retTy=*/"Operation::operand_range",
- /*methodName=*/"getOutputBuffers",
+ /*retTy=*/"SmallVector",
+ /*methodName=*/"getInputTensorTypes" ,
/*args=*/(ins),
/*methodBody=*/"",
/*defaultImplementation=*/[{
- auto range = this->getOperation()->getOperands();
- return {range.begin() + $_op.getNumInputs(),
- range.begin() + getNumInputsAndOutputBuffers()};
+ return llvm::to_vector<4>(
+ llvm::map_range(
+ llvm::make_filter_range(
+ ValueRange(getInputs()).getTypes(),
+ [](Type in){ return in.isa(); }),
+ [](Type in){ return in.cast(); }));
}]
>,
//===------------------------------------------------------------------===//
- // Input and Output arguments handling.
+ // Output operands handling.
//===------------------------------------------------------------------===//
InterfaceMethod<
/*desc=*/[{
- Return one single buffer at position `$i`.
+ Return the `i`-th output operand.
}],
/*retTy=*/"Value",
- /*methodName=*/"getBuffer",
+ /*methodName=*/"getOutput",
/*args=*/(ins "unsigned":$i),
/*methodBody=*/"",
/*defaultImplementation=*/[{
- assert(i < getNumInputsAndOutputBuffers() && "overflowing buffers index");
- return this->getOperation()->getOperand(i);
+ assert(i < $_op.getNumOutputs());
+ return this->getOperation()->getOperand(i + $_op.getNumInputs());
}]
>,
InterfaceMethod<
/*desc=*/[{
- Return the number of output buffers
+ Return the `i`-th output shaped type
}],
- /*retTy=*/"unsigned",
- /*methodName=*/"getNumOutputBuffers",
+ /*retTy=*/"ShapedType",
+ /*methodName=*/"getOutputShapedType",
+ /*args=*/(ins "unsigned":$i),
+ /*methodBody=*/"",
+ /*defaultImplementation=*/[{
+ return getOutput(i).getType().template cast();
+ }]
+ >,
+ InterfaceMethod<
+ /*desc=*/[{
+ Return the range of output operands.
+ }],
+ /*retTy=*/"Operation::operand_range",
+ /*methodName=*/"getOutputs",
/*args=*/(ins),
/*methodBody=*/"",
/*defaultImplementation=*/[{
- return $_op.getNumOutputs() - this->getOperation()->getNumResults();
+ auto start =
+ this->getOperation()->getOperands().begin() + $_op.getNumInputs();
+ return {start, start + $_op.getNumOutputs()};
}]
>,
InterfaceMethod<
/*desc=*/[{
- Return the number of inputs and outputs, irrespective of their buffer or
- tensor type.
+ Return the OpOperands for the output operandss.
}],
- /*retTy=*/"unsigned",
- /*methodName=*/"getNumInputsAndOutputs",
+ /*retTy=*/" MutableArrayRef",
+ /*methodName=*/"getOutputOpOperands",
/*args=*/(ins),
/*methodBody=*/"",
/*defaultImplementation=*/[{
- return $_op.getNumInputs() + $_op.getNumOutputs();
+ return this->getOperation()->getOpOperands().slice(
+ getNumInputs(), getNumOutputs());
}]
>,
InterfaceMethod<
/*desc=*/[{
- Return the number of inputs, irrespective of their buffer or tensor type
- and output buffers
+ Return the subset of output operands that are of buffer type.
}],
- /*retTy=*/"unsigned",
- /*methodName=*/"getNumInputsAndOutputBuffers",
+ /*retTy=*/"SmallVector",
+ /*methodName=*/"getOutputBuffers",
/*args=*/(ins),
/*methodBody=*/"",
/*defaultImplementation=*/[{
- return $_op.getNumInputs() + $_op.getNumOutputs() -
- this->getOperation()->getNumResults();
+ return llvm::to_vector<4>(llvm::make_filter_range(
+ getOutputs(), [](Value in){ return in.getType().template isa(); }));
}]
>,
InterfaceMethod<
/*desc=*/[{
- Return the range over inputs (irrespective of type) and output buffers.
+ Return the `index`^th output buffer.
}],
- /*retTy=*/"Operation::operand_range",
- /*methodName=*/"getInputsAndOutputBuffers",
+ /*retTy=*/"Value",
+ /*methodName=*/"getOutputBuffer",
+ /*args=*/(ins "unsigned":$index),
+ /*methodBody=*/"",
+ /*defaultImplementation=*/[{
+ assert(index < getNumOutputBuffers());
+ return getOutputBuffers()[index];
+ }]
+ >,
+ InterfaceMethod<
+ /*desc=*/[{
+ Return the subset of output operands that are of buffer type.
+ }],
+ /*retTy=*/"SmallVector",
+ /*methodName=*/"getOutputBuffersOpOperands",
/*args=*/(ins),
/*methodBody=*/"",
/*defaultImplementation=*/[{
- auto range = this->getOperation()->getOperands();
- return {range.begin(), range.begin() + getNumInputsAndOutputBuffers()};
+ SmallVector res;
+ res.reserve(getNumOutputs());
+ for (OpOperand &o : getOutputOpOperands())
+ if (o.get().getType().isa())
+ res.push_back(&o);
+ return res;
}]
>,
InterfaceMethod<
/*desc=*/[{
- Return the range over init tensors.
+ Return the number of output buffer operands.
}],
- /*retTy=*/"Operation::operand_range",
- /*methodName=*/"getInitTensors",
+ /*retTy=*/"unsigned",
+ /*methodName=*/"getNumOutputBuffers",
/*args=*/(ins),
/*methodBody=*/"",
/*defaultImplementation=*/[{
- auto range = this->getOperation()->getOperands();
- auto base = range.begin() + getNumInputsAndOutputBuffers();
- return {base, base + $_op.getNumInitTensors()};
+ return $_op.getOutputBuffers().size();
}]
>,
InterfaceMethod<
/*desc=*/[{
- Return one single init tensor at position `$i`.
+ Return the subset of output operands that are of tensor type.
}],
- /*retTy=*/"Value",
- /*methodName=*/"getInitTensor",
- /*args=*/(ins "unsigned":$i),
+ /*retTy=*/"SmallVector",
+ /*methodName=*/"getOutputTensors",
+ /*args=*/(ins),
/*methodBody=*/"",
/*defaultImplementation=*/[{
- assert(i < $_op.getNumInitTensors() && "overflowing init tensor index");
- return getInitTensors()[i];
+ return llvm::to_vector<4>(llvm::make_filter_range(
+ getOutputs(),
+ [](Value in){ return in.getType().template isa(); }));
}]
>,
InterfaceMethod<
/*desc=*/[{
- Return true if the shaped operand index `i` is the index of an init
- tensor.
+ Return the subset of output operands that are of tensor type.
}],
- /*retTy=*/"bool",
- /*methodName=*/"isIndexOfAnInitTensor",
- /*args=*/(ins "unsigned":$i),
+ /*retTy=*/"SmallVector",
+ /*methodName=*/"getOutputTensorsOpOperands",
+ /*args=*/(ins),
/*methodBody=*/"",
/*defaultImplementation=*/[{
- assert(i < $_op.getNumShapedOperands() && "overflowing shaped operand index");
- return i >= $_op.getNumInputs() + getNumOutputBuffers();
+ SmallVector res;
+ res.reserve(getNumOutputs());
+ for (OpOperand &o : getOutputOpOperands())
+ if (o.get().getType().isa())
+ res.push_back(&o);
+ return res;
}]
>,
InterfaceMethod<
/*desc=*/[{
- Return the relative init tensor index of the shaped operand index.
+ Return the number of output tensor operands.
}],
/*retTy=*/"unsigned",
- /*methodName=*/"getInitTensorIndexFromShapedIndex",
- /*args=*/(ins "unsigned":$i),
+ /*methodName=*/"getNumOutputTensors",
+ /*args=*/(ins),
/*methodBody=*/"",
/*defaultImplementation=*/[{
- assert(isIndexOfAnInitTensor(i) && "expected an init tensor index");
- return i - $_op.getNumInputs() - getNumOutputBuffers();
+ return $_op.getOutputTensors().size();
}]
>,
InterfaceMethod<
/*desc=*/[{
- Return the index of the given init tensor value, or `None` if the value
- is not part of the init tensors.
+ Return the types of the subset of output operands that are of buffer type.
}],
- /*retTy=*/"llvm::Optional",
- /*methodName=*/"getIndexOfInitTensor",
- /*args=*/(ins "Value":$value),
+ /*retTy=*/"SmallVector",
+ /*methodName=*/"getOutputBufferTypes" ,
+ /*args=*/(ins),
/*methodBody=*/"",
/*defaultImplementation=*/[{
- auto it = llvm::find(getInitTensors(), value);
- if (it != getInitTensors().end())
- return it - getInitTensors().begin();
- return llvm::None;
+ return llvm::to_vector<4>(
+ llvm::map_range(
+ llvm::make_filter_range(
+ ValueRange(getOutputs()).getTypes(),
+ [](Type in){ return in.isa(); }),
+ [](Type in){ return in.cast(); }));
}]
>,
InterfaceMethod<
/*desc=*/[{
- Return the number of inputs, output buffers and init tensors operands.
+ Return the types of the subset of output operands that are of ranked
+ tensor type.
}],
- /*retTy=*/"unsigned",
- /*methodName=*/"getNumShapedOperands",
+ /*retTy=*/"SmallVector",
+ /*methodName=*/"getOutputTensorTypes" ,
/*args=*/(ins),
/*methodBody=*/"",
/*defaultImplementation=*/[{
- return getNumInputsAndOutputBuffers() + $_op.getNumInitTensors();
+ return llvm::to_vector<4>(
+ llvm::map_range(
+ llvm::make_filter_range(
+ ValueRange(getOutputs()).getTypes(),
+ [](Type in){ return in.isa(); }),
+ [](Type in){ return in.cast(); }));
}]
>,
+
+ //===------------------------------------------------------------------===//
+ // Input and Output arguments handling.
+ //===------------------------------------------------------------------===//
InterfaceMethod<
/*desc=*/[{
- Return the `i`-th shaped operand value, which can be an arbitrary input
- tensor/buffer, init tensor or output buffer.
+ Return true if the payload uses the value loaded from `opOperand`. This
+ is useful to avoid loading from "write-only" memory that may be
+ uninitialized, as well as properly cloning "read-write" operands.
}],
- /*retTy=*/"Value",
- /*methodName=*/"getShapedOperand",
- /*args=*/(ins "unsigned":$i),
+ /*retTy=*/"bool",
+ /*methodName=*/"payloadUsesValueFromOpOperand",
+ /*args=*/(ins "OpOperand *":$opOperand),
/*methodBody=*/"",
/*defaultImplementation=*/[{
- assert(i < $_op.getNumShapedOperands());
- return this->getOperation()->getOperand(i);
+ unsigned bbArgNumber =
+ getNumPayloadInductionVariables() + opOperand->getOperandNumber();
+ // Safeguard against the named linalg ops that are manually defined and
+ // that only support buffer semantics: we should not be there.
+ assert(this->getOperation()->getNumRegions() == 1);
+ Block &block = this->getOperation()->getRegion(0).front();
+ // Init tensors have uses.
+ return !block.getArgument(bbArgNumber).use_empty();
}]
>,
InterfaceMethod<
/*desc=*/[{
- Return the range over inputs, output buffers and init tensors.
+ Return true if the payload uses the value loaded from input operand
+ `index`.
}],
- /*retTy=*/"Operation::operand_range",
- /*methodName=*/"getShapedOperands",
- /*args=*/(ins),
+ /*retTy=*/"bool",
+ /*methodName=*/"payloadUsesValueFromInputOperandIndex",
+ /*args=*/(ins "unsigned":$index),
/*methodBody=*/"",
/*defaultImplementation=*/[{
- auto range = this->getOperation()->getOperands();
- return {range.begin(), range.begin() + getNumShapedOperands()};
+ return payloadUsesValueFromOpOperand(&getInputOpOperands()[index]);
}]
>,
InterfaceMethod<
/*desc=*/[{
- Return the `i`-th shaped type, there are 3 cases:
- 1. if `i < $_op.getNumInputs()` then return `getInputShapedType(i)`;
- otherwise
- 2. if `i < getNumInputsAndOutputBuffers()` then return the
- `getOutputBufferType(i - $_op.getNumInputs())`; otherwise
- 3. return the `i - getNumInputsAndOutputBuffers()` result type.
+ Return true if the payload uses the value loaded from output operand
+ `index`.
}],
- /*retTy=*/"ShapedType",
- /*methodName=*/"getShapedType",
- /*args=*/(ins "unsigned":$i),
+ /*retTy=*/"bool",
+ /*methodName=*/"payloadUsesValueFromOutputOperandIndex",
+ /*args=*/(ins "unsigned":$index),
/*methodBody=*/"",
/*defaultImplementation=*/[{
- if (i < $_op.getNumInputs())
- return getInputShapedType(i);
- if (i < getNumInputsAndOutputBuffers())
- return getOutputBufferType(i - $_op.getNumInputs());
- return this->getOperation()->getResult(
- i - getNumInputsAndOutputBuffers()).
- getType().template cast();
- }]>,
+ return payloadUsesValueFromOpOperand(&getOutputOpOperands()[index]);
+ }]
+ >,
InterfaceMethod<
/*desc=*/[{
- Return the shaped types for all the inputs and outputs
+ Return true if `opOperand` is an init tensor. This is true when it is
+ an output tensor operand whose value is used in the payload region.
}],
- /*retTy=*/"SmallVector",
- /*methodName=*/"getInputOutputShapedTypes",
+ /*retTy=*/"bool",
+ /*methodName=*/"isInitTensor",
+ /*args=*/(ins "OpOperand *":$opOperand),
+ /*methodBody=*/"",
+ /*defaultImplementation=*/[{
+ if (!opOperand->get().getType().template isa())
+ return false;
+ if (opOperand->getOperandNumber() < $_op.getNumInputs())
+ return false;
+ return payloadUsesValueFromOpOperand(opOperand);
+ }]
+ >,
+ InterfaceMethod<
+ /*desc=*/[{
+ Return true if the operand at output index `index` is an init tensor.
+ }],
+ /*retTy=*/"bool",
+ /*methodName=*/"isIndexOfInitTensor",
+ /*args=*/(ins "unsigned":$index),
+ /*methodBody=*/"",
+ /*defaultImplementation=*/[{
+ assert(index < getNumOutputs());
+ return isInitTensor(
+ &this->getOperation()->getOpOperands()[$_op.getNumInputs() + index]);
+ }]
+ >,
+ InterfaceMethod<
+ /*desc=*/[{
+ Return the output operands that are init tensors.
+ }],
+ /*retTy=*/"SmallVector",
+ /*methodName=*/"getInitTensors",
/*args=*/(ins),
/*methodBody=*/"",
/*defaultImplementation=*/[{
- SmallVector inputOutputTypes(
- this->getOperation()->operand_type_begin(),
- this->getOperation()->operand_type_end());
- inputOutputTypes.append(this->getOperation()->result_type_begin(),
- this->getOperation()->result_type_end());
+ auto start =
+ this->getOperation()->getOpOperands().begin() + $_op.getNumInputs();
return llvm::to_vector<4>(
- llvm::map_range(inputOutputTypes, [](Type type) -> ShapedType {
- return type.cast();
- }));
+ llvm::map_range(
+ llvm::make_filter_range(
+ llvm::make_range(start, start + $_op.getNumOutputs()),
+ [&](OpOperand &opOperand) {
+ return $_op.isInitTensor(&opOperand);
+ }),
+ [&](OpOperand &opOperand) {
+ return opOperand.get();
+ }));
}]
>,
InterfaceMethod<
/*desc=*/[{
- Return the first position of the shaped operand in the operand list.
+ Return the number of init tensor operands.
}],
- /*retTy=*/"Optional",
- /*methodName=*/"getIndexOfShapedOperand",
- /*args=*/(ins "Value":$value),
+ /*retTy=*/"unsigned",
+ /*methodName=*/"getNumInitTensors",
+ /*args=*/(ins),
+ /*methodBody=*/"",
+ /*defaultImplementation=*/[{
+ return getInitTensors().size();
+ }]
+ >,
+ InterfaceMethod<
+ /*desc=*/[{
+ Return the number of input and output operands.
+ }],
+ /*retTy=*/"unsigned",
+ /*methodName=*/"getNumShapedOperands",
+ /*args=*/(ins),
/*methodBody=*/"",
/*defaultImplementation=*/[{
- Optional inputIndex = getIndexOfInput(value);
- if (inputIndex.hasValue()) return inputIndex.getValue();
- Optional outputIndex = getIndexOfOutputBuffer(value);
- if (outputIndex.hasValue())
- return $_op.getNumInputs() + outputIndex.getValue();
- Optional initTensorIndex = getIndexOfInitTensor(value);
- if (initTensorIndex.hasValue())
- return $_op.getNumInputs() + $_op.getNumOutputBuffers() + initTensorIndex.getValue();
- return llvm::None;
+ return $_op.getNumInputs() + $_op.getNumOutputs();
}]
>,
InterfaceMethod<
/*desc=*/[{
- Returns the operand index given the input index. Returns None
- of the input index is invalid.
+ Return the `i`-th shaped operand value.
}],
- /*retTy=*/"Optional",
- /*methodName=*/"getOperandIndexForInputIndex",
- /*args=*/(ins "unsigned":$input_index),
+ /*retTy=*/"Value",
+ /*methodName=*/"getShapedOperand",
+ /*args=*/(ins "unsigned":$i),
/*methodBody=*/"",
/*defaultImplementation=*/[{
- if (input_index >= $_op.getNumInputs())
- return llvm::None;
- return input_index;
+ assert(i < $_op.getNumShapedOperands());
+ return this->getOperation()->getOperand(i);
}]
>,
InterfaceMethod<
/*desc=*/[{
- Returns the operand index given the output index. Returns None
- of the output index is invalid.
+ Return the range over input and output operands.
}],
- /*retTy=*/"Optional",
- /*methodName=*/"getOperandIndexForOutputIndex",
- /*args=*/(ins "unsigned":$output_index),
+ /*retTy=*/"Operation::operand_range",
+ /*methodName=*/"getShapedOperands",
+ /*args=*/(ins),
/*methodBody=*/"",
/*defaultImplementation=*/[{
- if (output_index >= $_op.getNumOutputs())
- return llvm::None;
- return output_index + $_op.getNumInputs();
+ auto range = this->getOperation()->getOperands();
+ return {range.begin(), range.begin() + getNumShapedOperands()};
}]
>,
InterfaceMethod<
/*desc=*/[{
- Returns the input index given the operand index. Return None
- if the operand index doesnt corresponding to an input.
+ Return the OpOperands for all the shaped operands.
}],
- /*retTy=*/"Optional",
- /*methodName=*/"getInputIndex",
- /*args=*/(ins "unsigned":$operand_index),
+ /*retTy=*/" MutableArrayRef",
+ /*methodName=*/"getShapedOpOperands",
+ /*args=*/(ins),
/*methodBody=*/"",
/*defaultImplementation=*/[{
- if (operand_index >= $_op.getNumInputs())
- return llvm::None;
- return operand_index;
+ return this->getOperation()->getOpOperands().take_front(
+ getNumShapedOperands());
}]
>,
InterfaceMethod<
/*desc=*/[{
- Returns the output index given the operand index. Return None
- if the operand index doesnt corresponding to an output.
+ Return the range over input and output operands.
}],
- /*retTy=*/"Optional",
- /*methodName=*/"getOutputIndex",
- /*args=*/(ins "unsigned":$operand_index),
+ /*retTy=*/"SmallVector",
+ /*methodName=*/"getShapedOperandTypes",
+ /*args=*/(ins),
/*methodBody=*/"",
/*defaultImplementation=*/[{
- if (operand_index < $_op.getNumInputs() ||
- operand_index >= $_op.getNumInputs() + $_op.getNumOutputs())
- return llvm::None;
- return operand_index - $_op.getNumInputs();
+ return llvm::to_vector<4>(
+ llvm::map_range(
+ getShapedOperands(),
+ [](Value v) { return v.getType().cast(); }));
}]
>,
+ InterfaceMethod<
+ /*desc=*/[{
+ Return the `i`-th shaped type
+ }],
+ /*retTy=*/"ShapedType",
+ /*methodName=*/"getShapedType",
+ /*args=*/(ins "unsigned":$i),
+ /*methodBody=*/"",
+ /*defaultImplementation=*/[{
+ return $_op.getShapedOperand(i).getType().template cast();
+ }]>,
//===------------------------------------------------------------------===//
// Other interface methods.
@@ -679,7 +773,7 @@
/*args=*/(ins "unsigned":$i),
/*methodBody=*/"",
/*defaultImplementation=*/[{
- assert(i < getNumInputsAndOutputs());
+ assert(i < $_op.getNumShapedOperands());
return getIndexingMaps()[i];
}]
>,
@@ -719,8 +813,8 @@
/*methodBody=*/"",
/*defaultImplementation=*/[{
return this->getOperation()->getNumResults() == 0 &&
- llvm::all_of(getInputs(),
- [](Value v) { return v.getType().isa(); });
+ llvm::all_of(getShapedOperands(), [](Value v) {
+ return v.getType().template isa(); });
}]
>,
InterfaceMethod<
@@ -732,11 +826,9 @@
/*args=*/(ins),
/*methodBody=*/"",
/*defaultImplementation=*/[{
- auto isTensorType = [](Value v) {
- return v.getType().isa();
- };
- return llvm::all_of(getInputs(), isTensorType) &&
- llvm::all_of(this->getOperation()->getResults(), isTensorType);
+ return llvm::all_of(getShapedOperands(), [](Value v) {
+ return v.getType().template isa();
+ });
}]
>,
InterfaceMethod<
@@ -748,7 +840,8 @@
/*args=*/(ins),
/*methodBody=*/"",
/*defaultImplementation=*/[{
- return $_op->getAttr(getSparseAttrName()).template dyn_cast_or_null() != nullptr;
+ return $_op->getAttr(getSparseAttrName()).
+ template dyn_cast_or_null() != nullptr;
}]
>,
InterfaceMethod<
@@ -871,7 +964,7 @@
];
let extraClassDeclaration = [{
- /// Return the flat list of all operand dimension sizes in the order they
+ /// Return the flat list of all operand dimension sizes in the order they
/// appear in the operands.
SmallVector createFlatListOfOperandDims(OpBuilder &, Location);
@@ -893,7 +986,7 @@
for (unsigned i = 0; i < nExtraOperands; ++i) {
res.push_back(getOperation()->getOperand(numShapedOperands + i));
assert((res.back().getType().isSignlessIntOrIndexOrFloat()
- || res.back().getType().isa()) &&
+ || res.back().getType().template isa()) &&
"expected scalar or vector type");
}
return res;
@@ -904,7 +997,6 @@
//========================================================================//
void setNumInputs(unsigned num) { setOperandSegmentAt(0, num); }
void setNumOutputBuffers(unsigned num) { setOperandSegmentAt(1, num); }
- void setNumInitTensors(unsigned num) { setOperandSegmentAt(2, num); }
private:
void setOperandSegmentAt(unsigned idx, unsigned val) {
@@ -916,6 +1008,8 @@
getOperation()->setAttr("operand_segment_sizes", newAttr);
}
}];
+
+ let verify = [{ return detail::verifyStructuredOpInterface($_op); }];
}
#endif // LINALG_IR_STRUCTURED_OPS_INTERFACE
diff --git a/mlir/include/mlir/Dialect/Linalg/IR/LinalgTraits.h b/mlir/include/mlir/Dialect/Linalg/IR/LinalgTraits.h
deleted file mode 100644
--- a/mlir/include/mlir/Dialect/Linalg/IR/LinalgTraits.h
+++ /dev/null
@@ -1,166 +0,0 @@
-//===- LinalgTraits.h - Linalg Traits ---------------------------*- C++ -*-===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef MLIR_DIALECT_LINALG_LINALGTRAITS_H_
-#define MLIR_DIALECT_LINALG_LINALGTRAITS_H_
-
-#include "mlir/Dialect/Linalg/IR/LinalgTypes.h"
-#include "mlir/Dialect/Utils/StructuredOpsUtils.h"
-#include "mlir/IR/AffineMap.h"
-#include "mlir/IR/BuiltinOps.h"
-#include "mlir/IR/BuiltinTypes.h"
-#include "mlir/IR/OpDefinition.h"
-#include "mlir/Support/LLVM.h"
-
-namespace mlir {
-namespace OpTrait {
-namespace linalg {
-
-/// This class provides the API for ops that are known to have a specified
-/// number of inputs, all passed as operands. Use as a trait as follows:
-///
-/// class DotOp : public Op::Impl> {
-///
-template class NInputs {
-public:
- template
- class Impl : public OpTrait::TraitBase::Impl> {
- public:
- static unsigned getNumInputs() { return N; }
- };
-};
-
-/// This class provides the API for ops that are known to not have init tensor
-/// operands. Use as a trait as follows:
-///
-/// class CopyOp : public Op {
-///
-template
-class ZeroInitTensors : public TraitBase {
-public:
- static unsigned getNumInitTensors() { return 0; }
-};
-
-/// This class provides the API for ops that are known to have a specified
-/// number of outputs, all passed as operands. Use as a trait as follows:
-///
-/// class DotOp : public Op::Impl> {
-///
-template class NOutputs {
-public:
- template
- class Impl : public OpTrait::TraitBase::Impl> {
- public:
- static unsigned getNumOutputs() { return N; }
- };
-};
-
-/// This class provides a verifier for structured ops that are known to operate
-/// on buffers or tensors. This trait must be used in conjunction with an op
-/// definition or a trait that provides the methods `getNumInputs` and
-/// `getNumOutputs`. Use as a trait as follows:
-///
-/// class DotOp : public Op {
-///
-template
-class StructuredOpTraits
- : public OpTrait::TraitBase {
-public:
- static LogicalResult verifyTrait(Operation *op) {
- ConcreteType concreteOp = cast(op);
- auto nOperands = concreteOp.getNumInputsAndOutputBuffers();
- if (failed(OpTrait::impl::verifyAtLeastNOperands(op, nOperands)))
- return failure();
- if (op->getNumResults() > concreteOp.getNumOutputs())
- return op->emitError("unexpected #results > #outputs");
- return success();
- }
-};
-
-/// This class provides a verifier for structured ops that are known to operate
-/// on buffers or tensors and that support `ins`, `outs` and `init` arguments.
-/// This trait must be used in conjunction with an op definition or a trait that
-/// provides the methods `getNumInputs` and `getNumOutputs`.
-///
-/// Use as a trait as follows:
-///
-/// class MatmulOp : public Op {
-///
-template
-class NamedStructuredOpTrait
- : public OpTrait::TraitBase {
-public:
- unsigned getNumInputs() {
- return cast(this->getOperation()).inputs().size();
- }
- unsigned getNumInitTensors() {
- return cast(this->getOperation()).init_tensors().size();
- }
- unsigned getNumOutputs() {
- ConcreteType concreteOp = cast(this->getOperation());
- return concreteOp.output_buffers().size() +
- concreteOp.result_tensors().size();
- }
- static LogicalResult verifyTrait(Operation *op) {
- ConcreteType concreteOp = cast(op);
- unsigned nInputAndBufferOperands =
- concreteOp.getNumInputsAndOutputBuffers();
- if (failed(
- OpTrait::impl::verifyAtLeastNOperands(op, nInputAndBufferOperands)))
- return failure();
-
- SmallVector redDims;
- concreteOp.getReductionDims(redDims);
- // If no result and no reduction, only check there is no init tensor and we
- // are done.
- if (redDims.empty() || op->getNumResults() == 0) {
- if (!concreteOp.init_tensors().empty())
- return op->emitError("expected empty `init` when op has no "
- "results or no reduction dims");
- return success();
- }
-
- // Only a single tensor result supported atm.
- if (op->getNumResults() != 1)
- return op->emitError(
- "expected single tensor result when reduction present");
-
- if (concreteOp.init_tensors().size() != op->getNumResults())
- return op->emitError(
- "expected #init tensors to match #results when reduction present");
-
- for (unsigned idx = 0, e = op->getNumResults(); idx < e; ++idx)
- if (concreteOp.init_tensors()[idx].getType() != op->getResultTypes()[idx])
- return op->emitError("expected init tensor #")
- << idx << " of the same type as result #" << idx;
-
- // Output tensor indexing map may not depend on reduction index.
- // TODO: this is not yet tested. Add a test when linalg.generic switches to
- // this representation.
- for (unsigned idx = 0, e = concreteOp.getNumOutputs(); idx < e; ++idx) {
- AffineMap outputMap = concreteOp.getOutputIndexingMap(idx);
- for (auto expr : outputMap.getResults()) {
- for (auto dim : redDims) {
- unsigned pos = dim.cast().getPosition();
- if (expr.isFunctionOfDim(pos))
- return op->emitError(
- "unexpected single tensor output indexing map ")
- << "is function of reduction dim @" << pos;
- }
- }
- }
-
- return success();
- }
-};
-
-} // namespace linalg
-} // namespace OpTrait
-} // namespace mlir
-
-#endif // MLIR_DIALECT_LINALG_LINALGTRAITS_H_
diff --git a/mlir/include/mlir/IR/OpBase.td b/mlir/include/mlir/IR/OpBase.td
--- a/mlir/include/mlir/IR/OpBase.td
+++ b/mlir/include/mlir/IR/OpBase.td
@@ -673,6 +673,11 @@
MemRefRankOf<[AnyType], [rank]>.predicate]>,
AnyStridedMemRef.description # " of rank " # rank>;
+class StridedMemRefRankOf allowedTypes, list ranks> :
+ Type.predicate, HasAnyRankOfPred]>,
+ StrJoin.result # " " #
+ MemRefOf.description>;
+
// This represents a generic tuple without any constraints on element type.
def AnyTuple : Type;
diff --git a/mlir/integration_test/Dialect/Linalg/CPU/test-tensor-matmul.mlir b/mlir/integration_test/Dialect/Linalg/CPU/test-tensor-matmul.mlir
--- a/mlir/integration_test/Dialect/Linalg/CPU/test-tensor-matmul.mlir
+++ b/mlir/integration_test/Dialect/Linalg/CPU/test-tensor-matmul.mlir
@@ -22,7 +22,7 @@
%C = constant dense<1000.0> : tensor<2x4xf32>
%D = linalg.matmul ins(%A, %B: tensor<2x3xf32>, tensor<3x4xf32>)
- init(%C: tensor<2x4xf32>) -> tensor<2x4xf32>
+ outs(%C: tensor<2x4xf32>) -> tensor<2x4xf32>
%unranked = tensor.cast %D : tensor<2x4xf32> to tensor<*xf32>
call @print_memref_f32(%unranked) : (tensor<*xf32>) -> ()
diff --git a/mlir/lib/Dialect/Linalg/Analysis/DependenceAnalysis.cpp b/mlir/lib/Dialect/Linalg/Analysis/DependenceAnalysis.cpp
--- a/mlir/lib/Dialect/Linalg/Analysis/DependenceAnalysis.cpp
+++ b/mlir/lib/Dialect/Linalg/Analysis/DependenceAnalysis.cpp
@@ -13,6 +13,7 @@
#include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h"
#include "mlir/Dialect/Linalg/IR/LinalgOps.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
+#include "mlir/IR/BuiltinOps.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
@@ -113,15 +114,16 @@
}
void LinalgDependenceGraph::addDependenceElem(DependenceType dt,
- LinalgOpView indexingOpView,
- LinalgOpView dependentOpView) {
+ OpOperand *indexingOpView,
+ OpOperand *dependentOpView) {
LLVM_DEBUG(dbgs() << "\nAdd dep type " << getDependenceTypeStr(dt) << ":\t ("
- << *indexingOpView.op << ", " << indexingOpView.operandIndex
- << ") -> \n\t\t(" << *dependentOpView.op << ", "
- << dependentOpView.operandIndex << ")");
- dependencesFromGraphs[dt][indexingOpView.op].push_back(
+ << indexingOpView->get() << " @"
+ << indexingOpView->getOperandNumber() << ") -> \n\t\t("
+ << dependentOpView->get() << " @"
+ << dependentOpView->getOperandNumber() << ")");
+ dependencesFromGraphs[dt][indexingOpView->getOwner()].push_back(
LinalgDependenceGraphElem{dependentOpView, indexingOpView, dt});
- dependencesIntoGraphs[dt][dependentOpView.op].push_back(
+ dependencesIntoGraphs[dt][dependentOpView->getOwner()].push_back(
LinalgDependenceGraphElem{indexingOpView, dependentOpView, dt});
}
@@ -156,57 +158,25 @@
}
void LinalgDependenceGraph::addDependencesBetween(LinalgOp src, LinalgOp dst) {
- for (auto srcView : llvm::enumerate(src.getOutputBuffers())) { // W
- unsigned srcIndex =
- src.getOperandIndexForOutputIndex(srcView.index()).getValue();
+ for (OpOperand *srcOpOperand : src.getOutputBuffersOpOperands()) { // W
// RAW graph
- for (auto dstView : llvm::enumerate(dst.getInputBuffers())) { // R
- if (aliases.alias(srcView.value(),
- dstView.value())) { // if alias, fill RAW
- unsigned dstIndex =
- dst.getOperandIndexForInputIndex(dstView.index()).getValue();
- addDependenceElem(DependenceType::RAW,
- LinalgOpView{src.getOperation(), srcIndex},
- LinalgOpView{dst.getOperation(), dstIndex});
- }
- }
+ for (OpOperand *dstOpOperand : dst.getInputBuffersOpOperands()) // R
+ if (aliases.alias(srcOpOperand->get(), dstOpOperand->get())) // RAW alias
+ addDependenceElem(DependenceType::RAW, srcOpOperand, dstOpOperand);
// WAW graph
- for (auto dstView : llvm::enumerate(dst.getOutputBuffers())) { // W
- if (aliases.alias(srcView.value(),
- dstView.value())) { // if alias, fill WAW
- unsigned dstIndex =
- dst.getOperandIndexForOutputIndex(dstView.index()).getValue();
- addDependenceElem(DependenceType::WAW,
- LinalgOpView{src.getOperation(), srcIndex},
- LinalgOpView{dst.getOperation(), dstIndex});
- }
- }
+ for (OpOperand *dstOpOperand : dst.getOutputBuffersOpOperands()) // W
+ if (aliases.alias(srcOpOperand->get(), dstOpOperand->get())) // WAW alias
+ addDependenceElem(DependenceType::WAW, srcOpOperand, dstOpOperand);
}
- for (auto srcView : llvm::enumerate(src.getInputBuffers())) { // R
- unsigned srcIndex =
- src.getOperandIndexForInputIndex(srcView.index()).getValue();
+ for (OpOperand *srcOpOperand : src.getInputBuffersOpOperands()) { // R
// RAR graph
- for (auto dstView : llvm::enumerate(dst.getInputBuffers())) { // R
- if (aliases.alias(srcView.value(),
- dstView.value())) { // if alias, fill RAR
- unsigned dstIndex =
- dst.getOperandIndexForInputIndex(dstView.index()).getValue();
- addDependenceElem(DependenceType::RAR,
- LinalgOpView{src.getOperation(), srcIndex},
- LinalgOpView{dst.getOperation(), dstIndex});
- }
- }
+ for (OpOperand *dstOpOperand : dst.getInputBuffersOpOperands()) // R
+ if (aliases.alias(srcOpOperand->get(), dstOpOperand->get())) // RAR alias
+ addDependenceElem(DependenceType::RAR, srcOpOperand, dstOpOperand);
// WAR graph
- for (auto dstView : llvm::enumerate(dst.getOutputBuffers())) { // W
- if (aliases.alias(srcView.value(),
- dstView.value())) { // if alias, fill WAR
- unsigned dstIndex =
- dst.getOperandIndexForOutputIndex(dstView.index()).getValue();
- addDependenceElem(DependenceType::WAR,
- LinalgOpView{src.getOperation(), srcIndex},
- LinalgOpView{dst.getOperation(), dstIndex});
- }
- }
+ for (OpOperand *dstOpOperand : dst.getOutputBuffersOpOperands()) // W
+ if (aliases.alias(srcOpOperand->get(), dstOpOperand->get())) // WAR alias
+ addDependenceElem(DependenceType::WAR, srcOpOperand, dstOpOperand);
}
}
@@ -248,17 +218,15 @@
// TODO: we are not considering paths yet, just interleaved positions.
for (auto dt : types) {
for (auto dependence : getDependencesFrom(src, dt)) {
- auto interimPos = linalgOpPositions.lookup(dependence.dependentOpView.op);
+ auto interimPos =
+ linalgOpPositions.lookup(dependence.dependentOpView->getOwner());
// Skip if not interleaved.
if (interimPos >= dstPos || interimPos <= srcPos)
continue;
- linalg::LinalgOp consumer =
- cast(dependence.indexingOpView.op);
- Value consumerView =
- consumer.getShapedOperand(dependence.indexingOpView.operandIndex);
+ Value consumerView = dependence.indexingOpView->get();
if (view && !aliases.alias(view, consumerView))
continue;
- auto *op = dependence.dependentOpView.op;
+ auto *op = dependence.dependentOpView->getOwner();
LLVM_DEBUG(dbgs() << "\n***Found covering dependence of type "
<< getDependenceTypeStr(dt) << ": " << *src << " -> "
<< *op << " on " << consumerView);
@@ -271,12 +239,10 @@
bool LinalgDependenceGraph::hasDependenceFrom(
LinalgOp srcLinalgOp, LinalgOp dstLinalgOp,
ArrayRef depTypes) const {
- for (auto dep : depTypes) {
- for (auto dependence : getDependencesInto(dstLinalgOp, dep)) {
- if (dependence.dependentOpView.op == srcLinalgOp)
+ for (auto dep : depTypes)
+ for (auto dependence : getDependencesInto(dstLinalgOp, dep))
+ if (dependence.dependentOpView->getOwner() == srcLinalgOp)
return true;
- }
- }
return false;
}
diff --git a/mlir/lib/Dialect/Linalg/EDSC/Builders.cpp b/mlir/lib/Dialect/Linalg/EDSC/Builders.cpp
--- a/mlir/lib/Dialect/Linalg/EDSC/Builders.cpp
+++ b/mlir/lib/Dialect/Linalg/EDSC/Builders.cpp
@@ -23,36 +23,25 @@
Operation *mlir::edsc::makeGenericLinalgOp(
ArrayRef iteratorTypes, ArrayRef inputs,
- ArrayRef outputBuffers, ArrayRef initTensors,
- ArrayRef resultTensorTypes,
+ ArrayRef outputs, TypeRange resultTensorTypes,
function_ref regionBuilder, ArrayRef otherValues,
ArrayRef otherAttributes) {
OpBuilder &builder = edsc::ScopedContext::getBuilderRef();
// Build maps
SmallVector, 4> exprsList;
- exprsList.reserve(inputs.size() + outputBuffers.size() + initTensors.size());
- for (auto container : {inputs, outputBuffers, resultTensorTypes})
+ exprsList.reserve(inputs.size() + outputs.size());
+
+ for (auto container : {inputs, outputs})
for (const StructuredIndexed &s : container)
exprsList.emplace_back(s.getExprs().begin(), s.getExprs().end());
auto maps = AffineMap::inferFromExprList(exprsList);
- SmallVector types;
- assert(llvm::all_of(resultTensorTypes, [](const StructuredIndexed &s) {
- return !s.hasValue();
- }));
- std::copy(resultTensorTypes.begin(), resultTensorTypes.end(),
- std::back_inserter(types));
-
- SmallVector inputValues, outputBufferValues, initTensorValues;
+ SmallVector inputValues, outputValues;
inputValues.reserve(inputs.size());
- outputBufferValues.reserve(outputBuffers.size());
- initTensorValues.reserve(initTensors.size());
+ outputValues.reserve(outputs.size());
std::copy(inputs.begin(), inputs.end(), std::back_inserter(inputValues));
- std::copy(outputBuffers.begin(), outputBuffers.end(),
- std::back_inserter(outputBufferValues));
- std::copy(initTensors.begin(), initTensors.end(),
- std::back_inserter(initTensorValues));
+ std::copy(outputs.begin(), outputs.end(), std::back_inserter(outputValues));
auto iteratorStrTypes =
llvm::to_vector<8>(llvm::map_range(iteratorTypes, toString));
@@ -61,10 +50,9 @@
edsc::ScopedContext::getBuilderRef()
.create(
edsc::ScopedContext::getLocation(),
- types,
+ resultTensorTypes,
inputValues,
- outputBufferValues,
- initTensorValues,
+ outputValues,
builder.getAffineMapArrayAttr(maps),
builder.getStrArrayAttr(iteratorStrTypes),
StringAttr() /*doc*/,
@@ -77,12 +65,10 @@
using namespace edsc;
SmallVector blockTypes;
- blockTypes.reserve(inputs.size() + outputBuffers.size() + initTensors.size());
- for (auto container : {inputs, outputBuffers})
+ blockTypes.reserve(inputs.size() + outputs.size());
+ for (auto container : {inputs, outputs})
for (const StructuredIndexed &s : container)
blockTypes.push_back(getElementTypeOrSelf(s.getType()));
- for (Value v : initTensors)
- blockTypes.push_back(getElementTypeOrSelf(v.getType()));
assert(op->getNumRegions() == 1);
assert(op->getRegion(0).empty());
@@ -119,11 +105,10 @@
linalg_yield(unaryOp(a));
};
if (O.getType().isa())
- return makeGenericLinalgOp(iterTypes, /*inputs=*/{I}, /*outputBuffers=*/{},
- /*initTensors=*/{}, /*resultTensorTypes=*/{O},
- fun);
- return makeGenericLinalgOp(iterTypes, /*inputs=*/{I}, /*outputBuffers=*/{O},
- /*initTensors=*/{}, /*resultTensorTypes=*/{}, fun);
+ return makeGenericLinalgOp(iterTypes, /*inputs=*/{I}, /*outputs=*/{O},
+ /*resultTensorTypes=*/{O}, fun);
+ return makeGenericLinalgOp(iterTypes, /*inputs=*/{I}, /*outputs=*/{O},
+ /*resultTensorTypes=*/{}, fun);
}
Operation *mlir::edsc::ops::linalg_generic_pointwise_tanh(StructuredIndexed I,
@@ -144,12 +129,10 @@
linalg_yield(binaryOp(a, b));
};
if (O.getType().isa())
- return makeGenericLinalgOp(
- iterTypes, /*inputs=*/{I1, I2}, /*outputBuffers=*/{},
- /*initTensors=*/{}, /*resultTensorTypes=*/{O}, fun);
+ return makeGenericLinalgOp(iterTypes, /*inputs=*/{I1, I2}, /*outputs=*/{O},
+ /*resultTensorTypes=*/{O}, fun);
return makeGenericLinalgOp(iterTypes, /*inputs=*/{I1, I2},
- /*outputBuffers=*/{O},
- /*initTensors=*/{}, /*resultTensorTypes=*/{}, fun);
+ /*outputs=*/{O}, /*resultTensorTypes=*/{}, fun);
}
Operation *mlir::edsc::ops::linalg_generic_pointwise_add(StructuredIndexed I1,
@@ -181,8 +164,7 @@
return makeGenericLinalgOp(
{IteratorType::Parallel, IteratorType::Parallel, IteratorType::Reduction},
/*inputs=*/{A({m, k}), B({k, n})},
- /*outputBuffers=*/{C({m, n})},
- /*initTensors=*/{},
+ /*outputs=*/{C({m, n})},
/*resultTensorTypes=*/{},
regionBuilder);
// clang-format on
@@ -199,8 +181,7 @@
return makeGenericLinalgOp(
{IteratorType::Parallel, IteratorType::Parallel, IteratorType::Reduction},
/*inputs=*/{A({m, k}), B({k, n})},
- /*outputBuffers=*/{},
- /*initTensors=*/{C({m, n})},
+ /*outputs=*/{C({m, n})},
/*resultTensorTypes=*/{D({m, n})},
regionBuilder);
// clang-format on
@@ -236,8 +217,7 @@
simplifyAffineExpr(s[1] * w + d[1] * kw, numDims, 0),
c}),
W({kh, kw, c, f}) },
- /*outputBuffers=*/{ O({b, h, w, f}) },
- /*initTensors=*/{},
+ /*outputs=*/{ O({b, h, w, f}) },
/*resultTensorTypes=*/{},
macRegionBuilder);
// clang-format on
@@ -272,9 +252,8 @@
simplifyAffineExpr(s[1] * w + d[1] * kw, numDims, 0),
c}),
W({kh, kw, c, dm})},
- /*outputBuffers=*/{
+ /*outputs=*/{
O({b, h, w, simplifyAffineExpr(c * depth_multiplier + dm, numDims, 0)})},
- /*initTensors=*/{},
/*resultTensorTypes=*/{},
macRegionBuilder);
// clang-format on
diff --git a/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp b/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
--- a/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
+++ b/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
@@ -88,22 +88,20 @@
/// Forward declarations.
template
-static void buildNamedStructuredOpRegionAndAttributes(
- OpBuilder &opBuilder, OperationState &result, TypeRange inputTypes,
- TypeRange outputBufferTypes, TypeRange initTensorTypes,
- TypeRange resultTypes);
+static void buildNamedStructuredOpRegionAndAttributes(OpBuilder &opBuilder,
+ OperationState &result,
+ TypeRange inputTypes,
+ TypeRange outputTypes);
static ParseResult
parseCommonStructuredOpParts(OpAsmParser &parser, OperationState &result,
SmallVectorImpl &inputTypes,
- SmallVectorImpl &outputBufferTypes,
- SmallVectorImpl &initTensorTypes);
+ SmallVectorImpl &outputTypes);
template
static ParseResult
parseNamedStructuredOpRegion(OpAsmParser &parser, Region ®ion,
- TypeRange inputTypes, TypeRange outputBufferTypes,
- TypeRange initTensorTypes, TypeRange resultTypes);
+ TypeRange inputTypes, TypeRange outputTypes);
static ParseResult
parseNamedStructuredOpResults(OpAsmParser &parser,
SmallVectorImpl &resultTypes);
@@ -122,9 +120,6 @@
template
static void printNamedStructuredOp(OpAsmPrinter &p, NamedStructuredOpType op);
-template
-static LogicalResult verifyNamedStructuredOp(NamedStructuredOpType op);
-
/// This is a common class used for patterns of the form
/// ```
/// someop(memrefcast) -> someop
@@ -152,11 +147,10 @@
//===----------------------------------------------------------------------===//
void GenericOp::build(
OpBuilder &builder, OperationState &result, TypeRange resultTensorTypes,
- ValueRange inputs, ValueRange outputBuffers, ValueRange initTensors,
- ArrayRef indexingMaps, ArrayRef iteratorTypes,
- StringRef doc, StringRef libraryCall,
+ ValueRange inputs, ValueRange outputs, ArrayRef indexingMaps,
+ ArrayRef iteratorTypes, StringRef doc, StringRef libraryCall,
function_ref bodyBuild) {
- build(builder, result, resultTensorTypes, inputs, outputBuffers, initTensors,
+ build(builder, result, resultTensorTypes, inputs, outputs,
builder.getAffineMapArrayAttr(indexingMaps),
builder.getStrArrayAttr(iteratorTypes),
doc.empty() ? StringAttr() : builder.getStringAttr(doc),
@@ -166,7 +160,7 @@
return;
SmallVector blockArgTypes;
- for (ValueRange container : {inputs, outputBuffers, initTensors})
+ for (ValueRange container : {inputs, outputs})
for (Value v : container)
blockArgTypes.push_back(v.getType().cast().getElementType());
@@ -178,41 +172,40 @@
void GenericOp::build(
OpBuilder &builder, OperationState &result, ValueRange inputs,
- ValueRange outputBuffers, ArrayRef indexingMaps,
+ ValueRange outputs, ArrayRef indexingMaps,
ArrayRef iteratorTypes, StringRef doc, StringRef libraryCall,
function_ref bodyBuild) {
- build(builder, result, TypeRange{}, inputs, outputBuffers, ValueRange{},
- indexingMaps, iteratorTypes, doc, libraryCall, bodyBuild);
+ build(builder, result, TypeRange{}, inputs, outputs, indexingMaps,
+ iteratorTypes, doc, libraryCall, bodyBuild);
}
void GenericOp::build(
OpBuilder &builder, OperationState &result, ValueRange inputs,
- ValueRange outputBuffers, ArrayRef indexingMaps,
+ ValueRange outputs, ArrayRef indexingMaps,
ArrayRef iteratorTypes,
function_ref bodyBuild) {
- build(builder, result, inputs, outputBuffers, indexingMaps, iteratorTypes,
+ build(builder, result, inputs, outputs, indexingMaps, iteratorTypes,
/*doc=*/"",
/*libraryCall=*/"", bodyBuild);
}
void GenericOp::build(
OpBuilder &builder, OperationState &result, TypeRange resultTensorTypes,
- ValueRange inputs, ValueRange outputBuffers, ValueRange initTensors,
- ArrayRef indexingMaps, ArrayRef iteratorTypes,
+ ValueRange inputs, ValueRange outputs, ArrayRef indexingMaps,
+ ArrayRef iteratorTypes,
function_ref bodyBuild) {
- build(builder, result, resultTensorTypes, inputs, outputBuffers, initTensors,
- indexingMaps, iteratorTypes,
+ build(builder, result, resultTensorTypes, inputs, outputs, indexingMaps,
+ iteratorTypes,
/*doc=*/"",
/*libraryCall=*/"", bodyBuild);
}
void IndexedGenericOp::build(
OpBuilder &builder, OperationState &result, TypeRange resultTensorTypes,
- ValueRange inputs, ValueRange outputBuffers, ValueRange initTensors,
- ArrayRef indexingMaps, ArrayRef iteratorTypes,
- StringRef doc, StringRef libraryCall,
+ ValueRange inputs, ValueRange outputs, ArrayRef indexingMaps,
+ ArrayRef iteratorTypes, StringRef doc, StringRef libraryCall,
function_ref
bodyBuild) {
- build(builder, result, resultTensorTypes, inputs, outputBuffers, initTensors,
+ build(builder, result, resultTensorTypes, inputs, outputs,
builder.getAffineMapArrayAttr(indexingMaps),
builder.getStrArrayAttr(iteratorTypes),
doc.empty() ? StringAttr() : builder.getStringAttr(doc),
@@ -223,7 +216,7 @@
unsigned nLoops = iteratorTypes.size();
SmallVector blockArgTypes(nLoops, builder.getIndexType());
- for (ValueRange container : {inputs, outputBuffers, initTensors})
+ for (ValueRange container : {inputs, outputs})
for (Value v : container)
blockArgTypes.push_back(v.getType().cast().getElementType());
@@ -237,32 +230,32 @@
void IndexedGenericOp::build(
OpBuilder &builder, OperationState &result, ValueRange inputs,
- ValueRange outputBuffers, ArrayRef indexingMaps,
+ ValueRange outputs, ArrayRef indexingMaps,
ArrayRef iteratorTypes, StringRef doc, StringRef libraryCall,
function_ref
bodyBuild) {
- build(builder, result, TypeRange{}, inputs, outputBuffers, ValueRange{},
- indexingMaps, iteratorTypes, doc, libraryCall, bodyBuild);
+ build(builder, result, TypeRange{}, inputs, outputs, indexingMaps,
+ iteratorTypes, doc, libraryCall, bodyBuild);
}
void IndexedGenericOp::build(
OpBuilder &builder, OperationState &result, ValueRange inputs,
- ValueRange outputBuffers, ArrayRef indexingMaps,
+ ValueRange outputs, ArrayRef indexingMaps,
ArrayRef iteratorTypes,
function_ref
bodyBuild) {
- build(builder, result, inputs, outputBuffers, indexingMaps, iteratorTypes,
+ build(builder, result, inputs, outputs, indexingMaps, iteratorTypes,
/*doc=*/"", /*libraryCall=*/"", bodyBuild);
}
void IndexedGenericOp::build(
OpBuilder &builder, OperationState &result, TypeRange resultTensorTypes,
- ValueRange inputs, ValueRange outputBuffers, ValueRange initTensors,
- ArrayRef indexingMaps, ArrayRef iteratorTypes,
+ ValueRange inputs, ValueRange outputs, ArrayRef indexingMaps,
+ ArrayRef iteratorTypes,
function_ref
bodyBuild) {
- build(builder, result, resultTensorTypes, inputs, outputBuffers, initTensors,
- indexingMaps, iteratorTypes,
+ build(builder, result, resultTensorTypes, inputs, outputs, indexingMaps,
+ iteratorTypes,
/*doc=*/"",
/*libraryCall=*/"", bodyBuild);
}
@@ -327,9 +320,8 @@
dictAttr.getValue().end());
// Parsing is shared with named ops, except for the region.
- SmallVector inputTypes, outputBufferTypes, initTensorTypes;
- if (parseCommonStructuredOpParts(parser, result, inputTypes,
- outputBufferTypes, initTensorTypes))
+ SmallVector inputTypes, outputTypes;
+ if (parseCommonStructuredOpParts(parser, result, inputTypes, outputTypes))
return failure();
// Optional attributes may be added.
@@ -360,7 +352,7 @@
static void getGenericEffectsImpl(
SmallVectorImpl>
&effects,
- ValueRange results, ValueRange inputBuffers, ValueRange outputBuffers) {
+ ValueRange results, ValueRange inputBuffers, ValueRange outputs) {
for (Value value : results) {
effects.emplace_back(MemoryEffects::Allocate::get(), value,
SideEffects::DefaultResource::get());
@@ -369,7 +361,7 @@
effects.emplace_back(MemoryEffects::Read::get(), value,
SideEffects::DefaultResource::get());
}
- for (Value value : outputBuffers) {
+ for (Value value : outputs) {
effects.emplace_back(MemoryEffects::Read::get(), value,
SideEffects::DefaultResource::get());
effects.emplace_back(MemoryEffects::Write::get(), value,
@@ -391,65 +383,151 @@
getInputBuffers(), getOutputBuffers());
}
-namespace {
+LogicalResult mlir::linalg::detail::verifyStructuredOpInterface(Operation *op) {
+ LinalgOp linalgOp = cast(op);
+ // Expect at least one shaped operand.
+ // This means an op that constructs a tensor out of indices cannot be a
+ // LinalgOp at the moment. For now this will have to be a special op until we
+ // have output shape operands that are not tensors.
+ auto nShapedOperands = linalgOp.getNumShapedOperands();
+ if (nShapedOperands == 0)
+ return linalgOp.emitOpError("expected at least 1 Shaped operand");
+ if (failed(OpTrait::impl::verifyAtLeastNOperands(op, nShapedOperands)))
+ return failure();
+ // Should have at least one output tensor per result tensor.
+ // Can also have outbut buffers that do not correspond to results.
+ if (op->getNumResults() > linalgOp.getNumOutputs())
+ return op->emitError("unexpected #results > #outputs");
+
+ // All shaped operands must be indexed.
+ if (linalgOp.indexing_maps().size() != linalgOp.getNumShapedOperands())
+ return linalgOp.emitOpError("expected the number of indexing_map (")
+ << linalgOp.indexing_maps().size()
+ << ") to be equal to the number of shaped operands ("
+ << linalgOp.getNumShapedOperands() << ")";
-template
-struct BlockArgsVerifier {
- static LogicalResult verify(GenericOpType op, Block &block);
-};
+ SmallVector indexingMaps;
+ indexingMaps.reserve(linalgOp.indexing_maps().size());
+ for (auto en : llvm::enumerate(linalgOp.indexing_maps())) {
+ auto idx = en.index();
+ auto m = en.value().template cast().getValue();
+ indexingMaps.push_back(m); // Save reference to map for further checks.
+ auto shapedValue = linalgOp.getShapedType(idx);
-template
-LogicalResult BlockArgsVerifier::verify(GenericOpType op,
- Block &block) {
- auto nOperands = op.getNumOperands();
- if (block.getNumArguments() != nOperands)
- return op.emitOpError("expected number of block arguments to match number "
- "of operands");
+ // Symbols disallowed.
+ if (m.getNumSymbols() != 0)
+ return linalgOp.emitOpError("unexpected symbols in indexing_map #")
+ << idx;
- // Note: the number and type of yield values are checked in the YieldOp.
- auto nInputViews = op.getNumInputs();
- for (unsigned i = 0; i < nOperands; ++i) {
- auto viewType = op.getShapedType(i);
- if (viewType.getElementType() != block.getArgument(i).getType())
- return op.emitOpError("expected block argument ")
- << (i + 1) << " of the same type as elemental type of "
- << ((i < nInputViews) ? "input " : "output ")
- << "operand: " << viewType;
+ // Domain must be consistent.
+ auto nLoops = linalgOp.getNumLoops();
+ if (m.getNumDims() != nLoops)
+ return linalgOp.emitOpError("expected indexing_map #")
+ << idx << " to have " << nLoops
+ << " dim(s) to match the number of loops";
+
+ if (m.getNumResults() != shapedValue.getRank())
+ return linalgOp.emitOpError("expected shaped value rank (")
+ << shapedValue << ") to match the result rank of indexing_map #"
+ << idx << " (" << m.getNumResults() << ")";
}
- return success();
-}
-template <>
-LogicalResult BlockArgsVerifier::verify(IndexedGenericOp op,
- Block &block) {
- auto nInputViews = op.getNumInputs();
- auto nLoops = op.getNumLoops();
- auto nOperands = op.getNumOperands();
- if (block.getNumArguments() != nOperands + nLoops)
- return op.emitOpError(
- "expected number of block arguments to match number of operands + "
- "number of loops");
+ SmallVector redDims;
+ linalgOp.getReductionDims(redDims);
+
+ // Simplifying assumption: either full tensor or full buffer mode.
+ // This allows simpler verification of output operands vs result types
+ // without premature tracking of which operand is what in mixed-mode.
+ // TODO: relax when mixed-mode needs to pass verification.
+ if (linalgOp.getNumOutputBuffers() > 0 && linalgOp.getNumOutputTensors() > 0)
+ return op->emitError("expected output operands to all have tensor type or "
+ "all have buffer type");
+
+ if (op->getNumResults() != linalgOp.getNumOutputTensors())
+ return op->emitError("expected as many output tensor operands as results");
+ for (auto it :
+ llvm::zip(linalgOp.getOutputOpOperands(), op->getResultTypes())) {
+ if (!std::get<0>(it).get().getType().isa())
+ continue;
+ if (std::get<0>(it).get().getType() != std::get<1>(it))
+ return op->emitError("expected type of operand #")
+ << std::get<0>(it).getOperandNumber() << " ("
+ << std::get<0>(it).get().getType() << ")"
+ << " to match type of corresponding result (" << std::get<1>(it)
+ << ")";
+ }
+
+ // Output tensor indexing map may not depend on reduction indices.
+ for (OpOperand &opOperand : linalgOp.getOutputOpOperands()) {
+ AffineMap outputMap = linalgOp.getIndexingMap(opOperand.getOperandNumber());
+ for (auto expr : outputMap.getResults()) {
+ for (auto dim : redDims) {
+ unsigned pos = dim.cast().getPosition();
+ if (expr.isFunctionOfDim(pos)) {
+ std::string exprStr;
+ {
+ llvm::raw_string_ostream os(exprStr);
+ os << expr;
+ }
+ return op->emitError(
+ "unexpected output tensor expression in indexing map #")
+ << (opOperand.getOperandNumber() - linalgOp.getNumInputs())
+ << " a.k.a '" << exprStr
+ << "' is function of reduction iterator 'd" << pos << "'";
+ }
+ }
+ }
+ }
+
+ // Named ops that are defined manually have a region builder but no region at
+ // this time. Assume the region is well-formed by specification.
+ // TODO: use linalg-ods-gen for all ops when we have enough expressive power.
+ if (linalgOp->getNumRegions() == 0) {
+ assert(!linalgOp.getRegionBuilder() && "regionBuilder but no region");
+ return success();
+ }
+
+ auto ®ion = linalgOp->getRegion(0);
+ if (linalgOp->getNumRegions() > 1 || !llvm::hasSingleElement(region))
+ return op->emitOpError("expected 1 region with 1 block");
+
+ if (!linalgOp.getShapesToLoopsMap())
+ return op->emitOpError("expected the shape-to-loops map to be non-null");
+
+ // Simplifying assumption: bbargs match 1-1 with shape operands elemental
+ // types.
+ // TODO: once ranked shape types are plugged in, we may want to drop the
+ // corresponding bbargs, that can never be read from. This will be subject to
+ // consistency discussions (i.e. what to do with output tensors whose bbarg is
+ // not used).
+ Block &block = linalgOp->getRegion(0).front();
+ unsigned numBBIvs = linalgOp.getNumPayloadInductionVariables();
+
+ if (linalgOp.getNumShapedOperands() + numBBIvs != block.getNumArguments())
+ return op->emitError("expected as many non-induction variable region basic "
+ "block arguments as the number of shaped operands");
// Note: the number and type of yield values are checked in the YieldOp.
- for (unsigned i = 0; i < nLoops; ++i)
+ for (unsigned i = 0; i < numBBIvs; ++i)
if (!block.getArgument(i).getType().isIndex())
- return op.emitOpError("expected block argument ")
- << (i + 1) << " to be an index";
-
- for (unsigned i = 0; i < nOperands; ++i) {
- unsigned memrefArgIndex = i + nLoops;
- auto viewType = op.getShapedType(i);
- if (viewType.getElementType() !=
- block.getArgument(memrefArgIndex).getType())
- return op.emitOpError("expected block argument ")
- << (memrefArgIndex + 1)
- << " of the same type as elemental type of "
- << ((i < nInputViews) ? "input " : "output ")
- << "operand: " << viewType;
+ return op->emitOpError("expected index block argument #") << i;
+
+ unsigned idx = 0;
+ for (auto it : llvm::zip(linalgOp.getShapedOperandTypes(),
+ block.getArguments().drop_front(numBBIvs))) {
+ if (std::get<0>(it).getElementType() != std::get<1>(it).getType())
+ return op->emitError("expected type of bb argument #")
+ << (idx + numBBIvs) << " (" << std::get<1>(it).getType() << ")"
+ << " to match element type of corresponding shaped operand ("
+ << std::get<0>(it).getElementType() << ")";
+ ++idx;
}
+
return success();
}
+namespace {
+
template
struct AnnotationsVerifier {
static LogicalResult verify(GenericOpType op) { return success(); }
@@ -465,7 +543,7 @@
return op.emitOpError("expected sparse annotations on tensors only");
if (op.getNumOutputs() != 1)
return op.emitOpError("expected single output tensor");
- unsigned numTensors = op.getNumInputsAndOutputs();
+ unsigned numTensors = op.getNumShapedOperands();
if (sparseAttr.size() != numTensors)
return op.emitOpError("expected one sparse annotation for each tensor");
for (unsigned t = 0; t < numTensors; t++) {
@@ -497,49 +575,6 @@
template
static LogicalResult verifyGenericOp(GenericOpType op) {
- auto nLoops = op.getNumLoops();
-
- if (op.inputs().size() + op.output_buffers().size() +
- op.init_tensors().size() + op.getNumResults() ==
- 0)
- return op.emitOpError("expected at least 1 Shaped operand or return");
-
- auto ®ion = op.region();
- if (!llvm::hasSingleElement(region))
- return op.emitOpError("expected region with 1 block");
- if (failed(BlockArgsVerifier::verify(op, region.front())))
- return failure();
-
- if (op.indexing_maps().size() != op.getNumInputsAndOutputs())
- return op.emitOpError("expected the number of indexing_map (")
- << op.indexing_maps().size()
- << ") to be equal to the number of inputs and outputs ("
- << op.getNumInputsAndOutputs() << ")";
-
- SmallVector indexingMaps;
- indexingMaps.reserve(op.indexing_maps().size());
- for (auto en : llvm::enumerate(op.indexing_maps())) {
- auto idx = en.index();
- auto m = en.value().template cast().getValue();
- indexingMaps.push_back(m); // Save reference to map for further checks.
- auto view = op.getShapedType(idx);
-
- if (m.getNumSymbols() != 0)
- return op.emitOpError("unexpected symbols in indexing_map #") << idx;
-
- if (m.getNumDims() != nLoops)
- return op.emitOpError("expected indexing_map #")
- << idx << " to have " << nLoops
- << " dim(s) to match the number of loops";
-
- if (m.getNumResults() != view.getRank())
- return op.emitOpError("expected indexing_map #")
- << idx << " results to match view rank: " << view;
- }
-
- if (!op.getShapesToLoopsMap())
- return op.emitOpError("expected the shape-to-loops map to be non-null");
-
if (failed(AnnotationsVerifier::verify(op)))
return failure();
@@ -1380,8 +1415,6 @@
return op.emitOpError("expects memref elemental types to match");
if (oType.getRank() != iType.getRank() || oType.getRank() != fType.getRank())
return op.emitOpError("expects memref ranks to match");
- if (oType.getRank() <= 2)
- return op.emitOpError("expects memref ranks to be greater than 2");
if (auto strides = op.strides()) {
if (failed(
verifyStrideOrDilation(op, strides->getValue(), /*isStride=*/true)))
@@ -1591,13 +1624,12 @@
template
static void buildNamedStructuredOpRegionAndAttributesImpl(
OpBuilder &opBuilder, Region ®ion, TypeRange inputTypes,
- TypeRange outputBufferTypes, TypeRange initTensorTypes,
- TypeRange resultTypes,
+ TypeRange outputTypes,
std::function errorHandler) {
// TODO: atm all operands go through getElementTypeOrSelf,
// reconsider when we have evidence we need to.
SmallVector argTypes;
- for (auto containers : {inputTypes, outputBufferTypes, resultTypes})
+ for (auto containers : {inputTypes, outputTypes})
for (auto t : containers)
argTypes.push_back(getElementTypeOrSelf(t));
@@ -1622,13 +1654,11 @@
void buildNamedStructuredOpRegionAndAttributes(OpBuilder &opBuilder,
OperationState &result,
TypeRange inputTypes,
- TypeRange outputBufferTypes,
- TypeRange initTensorTypes,
- TypeRange resultTypes) {
+ TypeRange outputTypes) {
Region ®ion = *result.addRegion();
buildNamedStructuredOpRegionAndAttributesImpl(
- opBuilder, region, inputTypes, outputBufferTypes, initTensorTypes,
- resultTypes, [&](unsigned expected, unsigned actual) {
+ opBuilder, region, inputTypes, outputTypes,
+ [&](unsigned expected, unsigned actual) {
llvm::errs() << "region expects " << expected << " args, got "
<< actual;
assert(expected != actual && "incorrect number of arguments");
@@ -1638,13 +1668,12 @@
template
static ParseResult
parseNamedStructuredOpRegion(OpAsmParser &parser, Region ®ion,
- TypeRange inputTypes, TypeRange outputBufferTypes,
- TypeRange initTensorTypes, TypeRange resultTypes) {
+ TypeRange inputTypes, TypeRange outputTypes) {
ParseResult res = success();
OpBuilder opBuilder(parser.getBuilder().getContext());
buildNamedStructuredOpRegionAndAttributesImpl(
- opBuilder, region, inputTypes, outputBufferTypes, initTensorTypes,
- resultTypes, [&](unsigned expected, unsigned actual) {
+ opBuilder, region, inputTypes, outputTypes,
+ [&](unsigned expected, unsigned actual) {
res = parser.emitError(parser.getCurrentLocation(),
llvm::formatv("region expects {0} args, got {1}",
expected, actual));
@@ -1664,12 +1693,9 @@
static ParseResult
parseCommonStructuredOpParts(OpAsmParser &parser, OperationState &result,
SmallVectorImpl &inputTypes,
- SmallVectorImpl