Index: llvm/lib/Transforms/Vectorize/LoopVectorizationLegality.cpp =================================================================== --- llvm/lib/Transforms/Vectorize/LoopVectorizationLegality.cpp +++ llvm/lib/Transforms/Vectorize/LoopVectorizationLegality.cpp @@ -1095,9 +1095,14 @@ return false; } - // We must have a single exiting block. - if (!Lp->getExitingBlock()) { - reportVectorizationFailure("The loop must have an exiting block", + // We must have a single exiting block. Note that this allows multiple + // exits provided they all exit to the same block. + // TODO: This restriction can be relaxed in the near future, it's here solely + // to allow separation of changes for review. We need to generalize the phi + // update logic in a number of places. + BasicBlock *ExitBB = Lp->getUniqueExitBlock(); + if (!ExitBB) { + reportVectorizationFailure("The loop must have an unique exit block", "loop control flow is not understood by vectorizer", "CFGNotUnderstood", ORE, TheLoop); if (DoExtraAnalysis) @@ -1106,19 +1111,21 @@ return false; } - // We only handle bottom-tested loops, i.e. loop in which the condition is - // checked at the end of each iteration. With that we can assume that all - // instructions in the loop are executed the same number of times. - if (Lp->getExitingBlock() != Lp->getLoopLatch()) { - reportVectorizationFailure("The exiting block is not the loop latch", + // The existing code assumes that LCSSA implies that phis are single entry + // (which was true when we had at most a single exiting edge from the latch). + // In general, there's nothing which prevents an LCSSA phi in exit block from + // having two or more values if there are multiple exiting edges leading to + // the exit block. (TODO: implement general case) + if (!empty(ExitBB->phis()) && !ExitBB->getSinglePredecessor()) { + reportVectorizationFailure("The loop must have an unique exit block", "loop control flow is not understood by vectorizer", "CFGNotUnderstood", ORE, TheLoop); if (DoExtraAnalysis) Result = false; else return false; - } - + } + return Result; } Index: llvm/lib/Transforms/Vectorize/LoopVectorize.cpp =================================================================== --- llvm/lib/Transforms/Vectorize/LoopVectorize.cpp +++ llvm/lib/Transforms/Vectorize/LoopVectorize.cpp @@ -836,7 +836,8 @@ /// Middle Block between the vector and the scalar. BasicBlock *LoopMiddleBlock; - /// The ExitBlock of the scalar loop. + /// The (unique) ExitBlock of the scalar loop. Note that + /// there can be multiple exiting edges reaching this block. BasicBlock *LoopExitBlock; /// The vector loop body. @@ -1544,11 +1545,16 @@ return InterleaveInfo.getInterleaveGroup(Instr); } - /// Returns true if an interleaved group requires a scalar iteration - /// to handle accesses with gaps, and there is nothing preventing us from - /// creating a scalar epilogue. + /// Returns true if we're required to use a scalar epilogue for at least + /// the final iteration of the original loop. bool requiresScalarEpilogue() const { - return isScalarEpilogueAllowed() && InterleaveInfo.requiresScalarEpilogue(); + if (!isScalarEpilogueAllowed()) + return false; + // If we might exit from anywhere but the latch, must run the exiting + // iteration in scalar form. + if (!TheLoop->getExitingBlock() || !TheLoop->isRotatedForm()) + return true; + return InterleaveInfo.requiresScalarEpilogue(); } /// Returns true if a scalar epilogue is not allowed due to optsize or a @@ -2905,7 +2911,7 @@ Induction->addIncoming(Next, Latch); // Create the compare. Value *ICmp = Builder.CreateICmpEQ(Next, End); - Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); + Builder.CreateCondBr(ICmp, L->getUniqueExitBlock(), Header); // Now we have two terminators. Remove the old one from the block. Latch->getTerminator()->eraseFromParent(); @@ -2993,13 +2999,16 @@ // unroll factor (number of SIMD instructions). Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); - // If there is a non-reversed interleaved group that may speculatively access - // memory out-of-bounds, we need to ensure that there will be at least one - // iteration of the scalar epilogue loop. Thus, if the step evenly divides + // There are two cases where we need to ensure (at least) the last iteration + // runs in the scalar remainder loop. Thus, if the step evenly divides // the trip count, we set the remainder to be equal to the step. If the step // does not evenly divide the trip count, no adjustment is necessary since // there will already be scalar iterations. Note that the minimum iterations - // check ensures that N >= Step. + // check ensures that N >= Step. The cases are: + // 1) If there is a non-reversed interleaved group that may speculatively + // access memory out-of-bounds. + // 2) If any instruction may follow a conditionally taken exit. (e.g. due to + // a multi exit loop, or a non-bottom tested single exit loop) if (VF.isVector() && Cost->requiresScalarEpilogue()) { auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); R = Builder.CreateSelect(IsZero, Step, R); @@ -3294,7 +3303,7 @@ Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { LoopScalarBody = OrigLoop->getHeader(); LoopVectorPreHeader = OrigLoop->getLoopPreheader(); - LoopExitBlock = OrigLoop->getExitBlock(); + LoopExitBlock = OrigLoop->getUniqueExitBlock(); assert(LoopExitBlock && "Must have an exit block"); assert(LoopVectorPreHeader && "Invalid loop structure"); @@ -3567,7 +3576,7 @@ // value (the value that feeds into the phi from the loop latch). // We allow both, but they, obviously, have different values. - assert(OrigLoop->getExitBlock() && "Expected a single exit block"); + assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block"); DenseMap MissingVals; @@ -5483,11 +5492,17 @@ // for size. if (runtimeChecksRequired()) return None; + break; } - // Now try the tail folding + // We can't vectorize anything but a bottom tested loop without a scalar + // epilogue. Unless this is bottom tested, bail out. + if (!TheLoop->getExitingBlock() || !TheLoop->isRotatedForm()) + return None; + // Now try the tail folding + // Invalidate interleave groups that require an epilogue if we can't mask // the interleave-group. if (!useMaskedInterleavedAccesses(TTI)) { @@ -8863,6 +8878,14 @@ if (PredicateOptDisabled) return CM_ScalarEpilogueAllowed; + + // For tail folding of loops which aren't solely bottom tested , we'd have + // to handle the fact that not every instruction executes on the last + // ieration. This will require a lane mask which varies through the + // vector loop body. (TODO) + if (!L->getExitingBlock() || !L->isRotatedForm()) + return CM_ScalarEpilogueAllowed; + // 3) and 4) look if enabling predication is requested on the command line, // with a loop hint, or if the TTI hook indicates this is profitable, request // predication. Index: llvm/test/Transforms/LoopVectorize/control-flow.ll =================================================================== --- llvm/test/Transforms/LoopVectorize/control-flow.ll +++ llvm/test/Transforms/LoopVectorize/control-flow.ll @@ -10,7 +10,7 @@ ; return 0; ; } -; CHECK: remark: source.cpp:5:9: loop not vectorized: loop control flow is not understood by vectorizer +; CHECK: remark: source.cpp:5:9: loop not vectorized: could not determine number of loop iterations ; CHECK: remark: source.cpp:5:9: loop not vectorized ; CHECK: _Z4testPii Index: llvm/test/Transforms/LoopVectorize/loop-form.ll =================================================================== --- llvm/test/Transforms/LoopVectorize/loop-form.ll +++ llvm/test/Transforms/LoopVectorize/loop-form.ll @@ -61,17 +61,50 @@ define void @early_exit(i16* %p, i32 %n) { ; CHECK-LABEL: @early_exit( ; CHECK-NEXT: entry: +; CHECK-NEXT: [[TMP0:%.*]] = icmp sgt i32 [[N:%.*]], 0 +; CHECK-NEXT: [[SMAX:%.*]] = select i1 [[TMP0]], i32 [[N]], i32 0 +; CHECK-NEXT: [[TMP1:%.*]] = add nuw i32 [[SMAX]], 1 +; CHECK-NEXT: [[MIN_ITERS_CHECK:%.*]] = icmp ule i32 [[TMP1]], 2 +; CHECK-NEXT: br i1 [[MIN_ITERS_CHECK]], label [[SCALAR_PH:%.*]], label [[VECTOR_PH:%.*]] +; CHECK: vector.ph: +; CHECK-NEXT: [[N_MOD_VF:%.*]] = urem i32 [[TMP1]], 2 +; CHECK-NEXT: [[TMP2:%.*]] = icmp eq i32 [[N_MOD_VF]], 0 +; CHECK-NEXT: [[TMP3:%.*]] = select i1 [[TMP2]], i32 2, i32 [[N_MOD_VF]] +; CHECK-NEXT: [[N_VEC:%.*]] = sub i32 [[TMP1]], [[TMP3]] +; CHECK-NEXT: [[BROADCAST_SPLATINSERT:%.*]] = insertelement <2 x i32> undef, i32 [[N]], i32 0 +; CHECK-NEXT: [[BROADCAST_SPLAT:%.*]] = shufflevector <2 x i32> [[BROADCAST_SPLATINSERT]], <2 x i32> undef, <2 x i32> zeroinitializer +; CHECK-NEXT: br label [[VECTOR_BODY:%.*]] +; CHECK: vector.body: +; CHECK-NEXT: [[INDEX:%.*]] = phi i32 [ 0, [[VECTOR_PH]] ], [ [[INDEX_NEXT:%.*]], [[VECTOR_BODY]] ] +; CHECK-NEXT: [[VEC_IND:%.*]] = phi <2 x i32> [ , [[VECTOR_PH]] ], [ [[VEC_IND_NEXT:%.*]], [[VECTOR_BODY]] ] +; CHECK-NEXT: [[TMP4:%.*]] = add i32 [[INDEX]], 0 +; CHECK-NEXT: [[TMP5:%.*]] = add i32 [[INDEX]], 1 +; CHECK-NEXT: [[TMP6:%.*]] = icmp slt <2 x i32> [[VEC_IND]], [[BROADCAST_SPLAT]] +; CHECK-NEXT: [[TMP7:%.*]] = sext i32 [[TMP4]] to i64 +; CHECK-NEXT: [[TMP8:%.*]] = getelementptr inbounds i16, i16* [[P:%.*]], i64 [[TMP7]] +; CHECK-NEXT: [[TMP9:%.*]] = getelementptr inbounds i16, i16* [[TMP8]], i32 0 +; CHECK-NEXT: [[TMP10:%.*]] = bitcast i16* [[TMP9]] to <2 x i16>* +; CHECK-NEXT: store <2 x i16> zeroinitializer, <2 x i16>* [[TMP10]], align 4 +; CHECK-NEXT: [[INDEX_NEXT]] = add i32 [[INDEX]], 2 +; CHECK-NEXT: [[VEC_IND_NEXT]] = add <2 x i32> [[VEC_IND]], +; CHECK-NEXT: [[TMP11:%.*]] = icmp eq i32 [[INDEX_NEXT]], [[N_VEC]] +; CHECK-NEXT: br i1 [[TMP11]], label [[MIDDLE_BLOCK:%.*]], label [[VECTOR_BODY]], [[LOOP4:!llvm.loop !.*]] +; CHECK: middle.block: +; CHECK-NEXT: [[CMP_N:%.*]] = icmp eq i32 [[TMP1]], [[N_VEC]] +; CHECK-NEXT: br i1 [[CMP_N]], label [[IF_END:%.*]], label [[SCALAR_PH]] +; CHECK: scalar.ph: +; CHECK-NEXT: [[BC_RESUME_VAL:%.*]] = phi i32 [ [[N_VEC]], [[MIDDLE_BLOCK]] ], [ 0, [[ENTRY:%.*]] ] ; CHECK-NEXT: br label [[FOR_COND:%.*]] ; CHECK: for.cond: -; CHECK-NEXT: [[I:%.*]] = phi i32 [ 0, [[ENTRY:%.*]] ], [ [[INC:%.*]], [[FOR_BODY:%.*]] ] -; CHECK-NEXT: [[CMP:%.*]] = icmp slt i32 [[I]], [[N:%.*]] -; CHECK-NEXT: br i1 [[CMP]], label [[FOR_BODY]], label [[IF_END:%.*]] +; CHECK-NEXT: [[I:%.*]] = phi i32 [ [[BC_RESUME_VAL]], [[SCALAR_PH]] ], [ [[INC:%.*]], [[FOR_BODY:%.*]] ] +; CHECK-NEXT: [[CMP:%.*]] = icmp slt i32 [[I]], [[N]] +; CHECK-NEXT: br i1 [[CMP]], label [[FOR_BODY]], label [[IF_END]] ; CHECK: for.body: ; CHECK-NEXT: [[IPROM:%.*]] = sext i32 [[I]] to i64 -; CHECK-NEXT: [[B:%.*]] = getelementptr inbounds i16, i16* [[P:%.*]], i64 [[IPROM]] +; CHECK-NEXT: [[B:%.*]] = getelementptr inbounds i16, i16* [[P]], i64 [[IPROM]] ; CHECK-NEXT: store i16 0, i16* [[B]], align 4 ; CHECK-NEXT: [[INC]] = add nsw i32 [[I]], 1 -; CHECK-NEXT: br label [[FOR_COND]] +; CHECK-NEXT: br label [[FOR_COND]], [[LOOP5:!llvm.loop !.*]] ; CHECK: if.end: ; CHECK-NEXT: ret void ; @@ -99,18 +132,53 @@ define void @multiple_unique_exit(i16* %p, i32 %n) { ; CHECK-LABEL: @multiple_unique_exit( ; CHECK-NEXT: entry: +; CHECK-NEXT: [[TMP0:%.*]] = icmp sgt i32 [[N:%.*]], 0 +; CHECK-NEXT: [[SMAX:%.*]] = select i1 [[TMP0]], i32 [[N]], i32 0 +; CHECK-NEXT: [[TMP1:%.*]] = icmp ult i32 [[SMAX]], 2096 +; CHECK-NEXT: [[UMIN:%.*]] = select i1 [[TMP1]], i32 [[SMAX]], i32 2096 +; CHECK-NEXT: [[TMP2:%.*]] = add nuw nsw i32 [[UMIN]], 1 +; CHECK-NEXT: [[MIN_ITERS_CHECK:%.*]] = icmp ule i32 [[TMP2]], 2 +; CHECK-NEXT: br i1 [[MIN_ITERS_CHECK]], label [[SCALAR_PH:%.*]], label [[VECTOR_PH:%.*]] +; CHECK: vector.ph: +; CHECK-NEXT: [[N_MOD_VF:%.*]] = urem i32 [[TMP2]], 2 +; CHECK-NEXT: [[TMP3:%.*]] = icmp eq i32 [[N_MOD_VF]], 0 +; CHECK-NEXT: [[TMP4:%.*]] = select i1 [[TMP3]], i32 2, i32 [[N_MOD_VF]] +; CHECK-NEXT: [[N_VEC:%.*]] = sub i32 [[TMP2]], [[TMP4]] +; CHECK-NEXT: [[BROADCAST_SPLATINSERT:%.*]] = insertelement <2 x i32> undef, i32 [[N]], i32 0 +; CHECK-NEXT: [[BROADCAST_SPLAT:%.*]] = shufflevector <2 x i32> [[BROADCAST_SPLATINSERT]], <2 x i32> undef, <2 x i32> zeroinitializer +; CHECK-NEXT: br label [[VECTOR_BODY:%.*]] +; CHECK: vector.body: +; CHECK-NEXT: [[INDEX:%.*]] = phi i32 [ 0, [[VECTOR_PH]] ], [ [[INDEX_NEXT:%.*]], [[VECTOR_BODY]] ] +; CHECK-NEXT: [[VEC_IND:%.*]] = phi <2 x i32> [ , [[VECTOR_PH]] ], [ [[VEC_IND_NEXT:%.*]], [[VECTOR_BODY]] ] +; CHECK-NEXT: [[TMP5:%.*]] = add i32 [[INDEX]], 0 +; CHECK-NEXT: [[TMP6:%.*]] = add i32 [[INDEX]], 1 +; CHECK-NEXT: [[TMP7:%.*]] = icmp slt <2 x i32> [[VEC_IND]], [[BROADCAST_SPLAT]] +; CHECK-NEXT: [[TMP8:%.*]] = sext i32 [[TMP5]] to i64 +; CHECK-NEXT: [[TMP9:%.*]] = getelementptr inbounds i16, i16* [[P:%.*]], i64 [[TMP8]] +; CHECK-NEXT: [[TMP10:%.*]] = getelementptr inbounds i16, i16* [[TMP9]], i32 0 +; CHECK-NEXT: [[TMP11:%.*]] = bitcast i16* [[TMP10]] to <2 x i16>* +; CHECK-NEXT: store <2 x i16> zeroinitializer, <2 x i16>* [[TMP11]], align 4 +; CHECK-NEXT: [[INDEX_NEXT]] = add i32 [[INDEX]], 2 +; CHECK-NEXT: [[VEC_IND_NEXT]] = add <2 x i32> [[VEC_IND]], +; CHECK-NEXT: [[TMP12:%.*]] = icmp eq i32 [[INDEX_NEXT]], [[N_VEC]] +; CHECK-NEXT: br i1 [[TMP12]], label [[MIDDLE_BLOCK:%.*]], label [[VECTOR_BODY]], [[LOOP6:!llvm.loop !.*]] +; CHECK: middle.block: +; CHECK-NEXT: [[CMP_N:%.*]] = icmp eq i32 [[TMP2]], [[N_VEC]] +; CHECK-NEXT: br i1 [[CMP_N]], label [[IF_END:%.*]], label [[SCALAR_PH]] +; CHECK: scalar.ph: +; CHECK-NEXT: [[BC_RESUME_VAL:%.*]] = phi i32 [ [[N_VEC]], [[MIDDLE_BLOCK]] ], [ 0, [[ENTRY:%.*]] ] ; CHECK-NEXT: br label [[FOR_COND:%.*]] ; CHECK: for.cond: -; CHECK-NEXT: [[I:%.*]] = phi i32 [ 0, [[ENTRY:%.*]] ], [ [[INC:%.*]], [[FOR_BODY:%.*]] ] -; CHECK-NEXT: [[CMP:%.*]] = icmp slt i32 [[I]], [[N:%.*]] -; CHECK-NEXT: br i1 [[CMP]], label [[FOR_BODY]], label [[IF_END:%.*]] +; CHECK-NEXT: [[I:%.*]] = phi i32 [ [[BC_RESUME_VAL]], [[SCALAR_PH]] ], [ [[INC:%.*]], [[FOR_BODY:%.*]] ] +; CHECK-NEXT: [[CMP:%.*]] = icmp slt i32 [[I]], [[N]] +; CHECK-NEXT: br i1 [[CMP]], label [[FOR_BODY]], label [[IF_END]] ; CHECK: for.body: ; CHECK-NEXT: [[IPROM:%.*]] = sext i32 [[I]] to i64 -; CHECK-NEXT: [[B:%.*]] = getelementptr inbounds i16, i16* [[P:%.*]], i64 [[IPROM]] +; CHECK-NEXT: [[B:%.*]] = getelementptr inbounds i16, i16* [[P]], i64 [[IPROM]] ; CHECK-NEXT: store i16 0, i16* [[B]], align 4 ; CHECK-NEXT: [[INC]] = add nsw i32 [[I]], 1 ; CHECK-NEXT: [[CMP2:%.*]] = icmp slt i32 [[I]], 2096 -; CHECK-NEXT: br i1 [[CMP2]], label [[FOR_COND]], label [[IF_END]] +; CHECK-NEXT: br i1 [[CMP2]], label [[FOR_COND]], label [[IF_END]], [[LOOP7:!llvm.loop !.*]] ; CHECK: if.end: ; CHECK-NEXT: ret void ; Index: llvm/test/Transforms/LoopVectorize/loop-legality-checks.ll =================================================================== --- llvm/test/Transforms/LoopVectorize/loop-legality-checks.ll +++ llvm/test/Transforms/LoopVectorize/loop-legality-checks.ll @@ -1,30 +1,9 @@ ; RUN: opt < %s -loop-vectorize -debug-only=loop-vectorize -S -disable-output 2>&1 | FileCheck %s ; REQUIRES: asserts -; Make sure LV legal bails out when the exiting block != loop latch. -; CHECK-LABEL: "latch_is_not_exiting" -; CHECK: LV: Not vectorizing: The exiting block is not the loop latch. -define i32 @latch_is_not_exiting() { -entry: - br label %for.body - -for.body: - %i.02 = phi i32 [ 0, %entry ], [ %inc, %for.body ], [%inc, %for.second] - %inc = add nsw i32 %i.02, 1 - %cmp = icmp slt i32 %inc, 16 - br i1 %cmp, label %for.body, label %for.second - -for.second: - %cmps = icmp sgt i32 %inc, 16 - br i1 %cmps, label %for.body, label %for.end - -for.end: - ret i32 0 -} - ; Make sure LV legal bails out when there is no exiting block ; CHECK-LABEL: "no_exiting_block" -; CHECK: LV: Not vectorizing: The loop must have an exiting block. +; CHECK: LV: Not vectorizing: The loop must have an unique exit block. define i32 @no_exiting_block() { entry: br label %for.body