diff --git a/mlir/include/mlir/Dialect/Linalg/IR/LinalgOps.h b/mlir/include/mlir/Dialect/Linalg/IR/LinalgOps.h --- a/mlir/include/mlir/Dialect/Linalg/IR/LinalgOps.h +++ b/mlir/include/mlir/Dialect/Linalg/IR/LinalgOps.h @@ -11,6 +11,7 @@ #include "mlir/Dialect/Linalg/IR/LinalgTraits.h" #include "mlir/Dialect/Linalg/IR/LinalgTypes.h" +#include "mlir/Dialect/StandardOps/IR/Ops.h" #include "mlir/Dialect/Utils/StructuredOpsUtils.h" #include "mlir/IR/AffineExpr.h" #include "mlir/IR/AffineMap.h" @@ -32,10 +33,32 @@ namespace linalg { class ConvOp; +class LinalgOp; class PoolingMaxOp; class PoolingMinOp; class PoolingSumOp; +using ShapeBuilder = + std::function(OpBuilder &, Location, ValueRange)>; +using LoopRangeBuilder = + std::function(OpBuilder &, Location, ValueRange)>; + +/// Returns the values obtained by applying `map` to the list of values. +SmallVector applyMapToValues(OpBuilder &b, Location loc, + AffineMap map, ValueRange values); + +/// Provide a simple shape inference procedure where +ShapeBuilder defaultShapeBuilder(LinalgOp op); + +/// Provide a very simple inference procedure to build the loop ranges from the +/// op and its operands. This only works with permutation affine maps and +/// patterns of the form `(m, n)[s] -> (m + n - s floordiv 2)`. +/// A more advanced Tensor-Comprehension like inference is possible but has +/// proven to be ambiguous in unfavorable case. +/// As a consequence, we relax the default behavior very conservatively and +/// provide an op-specified hook so that Linalg ops may override the behavior. +LoopRangeBuilder defaultLoopRangesBuilder(LinalgOp op); + using ReassociationIndices = SmallVector; using ReassociationExprs = SmallVector; diff --git a/mlir/include/mlir/Dialect/Linalg/IR/LinalgStructuredOpsInterface.td b/mlir/include/mlir/Dialect/Linalg/IR/LinalgStructuredOpsInterface.td --- a/mlir/include/mlir/Dialect/Linalg/IR/LinalgStructuredOpsInterface.td +++ b/mlir/include/mlir/Dialect/Linalg/IR/LinalgStructuredOpsInterface.td @@ -765,6 +765,76 @@ }] >, + //===------------------------------------------------------------------===// + // Linalg generalization hooks. + //===------------------------------------------------------------------===// + InterfaceMethod< + /*desc=*/[{ + Hook to provide a custom method to build the linearized output shapes. + The custom method must create the linearized list of all view dimensions + in the order they appear in the operands. + `enclosingLoopIvs` is meant to allow non-hyperrectangular loops + (potentially including sparse). It is currently unused in the default + implementation. + }], + /*retTy=*/"std::function(OpBuilder &, Location, ValueRange)>", + /*methodName=*/"getShapeBuilder", + /*args=*/(ins), + /*methodBody=*/"", + /*defaultImplementation=*/[{ + return defaultShapeBuilder($_op); + }] + >, + InterfaceMethod< + /*desc=*/[{ + Hook to provide a custom method to build the loop ranges from the op and + its operands. This is used in various places such as conversion to + loops, tiling and fusion. + When left unspecified, the default behavior is based on a very simple + inference procedure that only works with permutation affine maps. + A more advanced Tensor-Comprehension like inference is possible but has + proven to be ambiguous in unfavorable case. + A safer and more robust alternative is to allow each each op to define + its own loop ranges builder in the context of `enclosingLoopIvs`. + `enclosingLoopIvs` is meant to allow non-hyperrectangular loops + (potentially including sparse). It is currently unused in the default + implementation. + }], + /*retTy=*/"std::function(OpBuilder &, Location, ValueRange)>", + /*methodName=*/"getLoopRangesBuilder", + /*args=*/(ins), + /*methodBody=*/"", + /*defaultImplementation=*/[{ + return defaultLoopRangesBuilder($_op); + }] + >, + InterfaceMethod< + /*desc=*/[{ + Hook to provide a custom method to build the AffineMap that computes the + loop bounds form the shape of the operands. Return the empty AffineMap + when such an AffineMap cannot be constructed. + The default behavior is based on a very simple inference procedure that + only works with permutation affine maps. + A more advanced Tensor-Comprehension like inference is possible but has + proven to be ambiguous in unfavorable case. + A safer and more robust alternative is to allow each each op to define + its own AffineMap. + In the future, we will want to evolve this to return data-dependent + information in in the context of some `enclosingLoopIvs` or more general + data-dependent context. + }], + /*retTy=*/"AffineMap", + /*methodName=*/"getShapeToLoopsMap", + /*args=*/(ins), + /*methodBody=*/"", + /*defaultImplementation=*/[{ + auto r = $_op.indexing_maps().template getAsRange(); + auto maps = llvm::to_vector<8>( + llvm::map_range(r, [](AffineMapAttr a) { return a.getValue(); })); + return inversePermutation(concatAffineMaps(maps)); + }] + >, + //===------------------------------------------------------------------===// // Other static interface methods. //===------------------------------------------------------------------===// diff --git a/mlir/include/mlir/Dialect/Linalg/Transforms/Transforms.h b/mlir/include/mlir/Dialect/Linalg/Transforms/Transforms.h --- a/mlir/include/mlir/Dialect/Linalg/Transforms/Transforms.h +++ b/mlir/include/mlir/Dialect/Linalg/Transforms/Transforms.h @@ -256,16 +256,6 @@ LinalgPromotionOptions options, OperationFolder *folder = nullptr); -/// Creates a number of ranges equal to the number of dimensions in the `map`. -/// The returned ranges correspond to the loop ranges, in the proper order, for -/// which new loops will be created. -/// The function supports only maps that are invertible and have results of type -/// DimExpr or (DimExpr + DimExpr - SymbolExpr floordiv ConstExpr). -/// It expects a non-inverted, concatenated map and last values in -/// allViewSizes will be applied to the symbols in the map if it contains any. -SmallVector emitLoopRanges(OpBuilder &b, Location loc, AffineMap map, - ValueRange viewSizes); - /// Emit a suitable vector form for a Linalg op with fully static shape. void vectorizeLinalgOp(OpBuilder &builder, Operation *op); diff --git a/mlir/include/mlir/Dialect/Linalg/Utils/Utils.h b/mlir/include/mlir/Dialect/Linalg/Utils/Utils.h --- a/mlir/include/mlir/Dialect/Linalg/Utils/Utils.h +++ b/mlir/include/mlir/Dialect/Linalg/Utils/Utils.h @@ -105,25 +105,6 @@ Operation *consumer, unsigned consumerIdx); -/// Returns the linearized list of all shape dimensions in a `linalgOp`. -/// Applying the inverse, concatenated loopToOperandRangeMaps to this list -/// allows the derivation of loop ranges for any linalgOp. -SmallVector getShape(OpBuilder &builder, LinalgOp linalgOp); -template -SmallVector getShape(OpBuilder &builder, ConcreteOpTy linalgOp) { - return getShape(builder, cast(linalgOp.getOperation())); -} - -/// Returns the loop ranges of the `linalgOp`. Applies the inverse of the -/// concatenated indexing maps to the result of `getShape`. Returns None if -/// the bounds computation fails. -Optional> getLoopRanges(OpBuilder &builder, - LinalgOp linalgOp); - -/// Returns the values obtained by applying `map` to the list of values. -SmallVector applyMapToValues(OpBuilder &b, Location loc, - AffineMap map, ValueRange values); - /// Apply the permutation defined by `permutation` to `inVec`. /// Element `i` in `inVec` is mapped to location `j = permutation[i]`. /// E.g.: for an input vector `inVec = ['a', 'b', 'c']` and a permutation vector diff --git a/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp b/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp --- a/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp +++ b/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp @@ -11,6 +11,7 @@ //===----------------------------------------------------------------------===// #include "mlir/Dialect/Linalg/IR/LinalgOps.h" +#include "mlir/Dialect/Affine/IR/AffineOps.h" #include "mlir/Dialect/Linalg/EDSC/Intrinsics.h" #include "mlir/Dialect/Linalg/IR/LinalgTypes.h" #include "mlir/Dialect/StandardOps/IR/Ops.h" @@ -34,6 +35,141 @@ using namespace mlir; using namespace mlir::linalg; +static Value createFoldedComposedAffineApply(OpBuilder &b, Location loc, + AffineMap map, + ValueRange operandsRef) { + SmallVector operands(operandsRef.begin(), operandsRef.end()); + fullyComposeAffineMapAndOperands(&map, &operands); + canonicalizeMapAndOperands(&map, &operands); + return b.createOrFold(loc, map, operands); +} + +SmallVector mlir::linalg::applyMapToValues(OpBuilder &b, Location loc, + AffineMap map, + ValueRange values) { + SmallVector res; + res.reserve(map.getNumResults()); + unsigned numDims = map.getNumDims(), numSym = map.getNumSymbols(); + // For each `expr` in `map`, applies the `expr` to the values extracted from + // ranges. If the resulting application can be folded into a Value, the + // folding occurs eagerly. + for (auto expr : map.getResults()) { + AffineMap map = AffineMap::get(numDims, numSym, expr); + res.push_back(createFoldedComposedAffineApply(b, loc, map, values)); + } + return res; +} + +std::function(OpBuilder &, Location, ValueRange)> +mlir::linalg::defaultShapeBuilder(LinalgOp op) { + Operation *pOp = op.getOperation(); + return [pOp](OpBuilder &b, Location loc, + ValueRange enclosingLoopIvs) -> SmallVector { + LinalgOp op = cast(pOp); + SmallVector res; + SmallVector ranks; + for (Value v : op.getShapedOperands()) { + ShapedType t = v.getType().template cast(); + ranks.push_back(t.getRank()); + for (unsigned i = 0; i < t.getRank(); ++i) + res.push_back(b.create(loc, v, i)); + } + auto attr = op.template getAttrOfType("symbol_source"); + if (attr) { + // Find the correct position for inserting values for symbols. + unsigned numSymb = ranks[attr.getInt()], symbolsPos = 0; + for (unsigned idx = 0; idx < attr.getInt(); idx++) + symbolsPos += ranks[idx]; + + // Append the end of the value list that corresponds to the + // values mapping to symbols. Since inside concatenated map symbols + // are repeated we have to repeat the sizes as well. + + // Reserve is mandatory to avoid a potential undefined behavior with + // pushing back to smallvector from itself. + res.reserve(res.size() + ranks.size() * numSymb); + for (unsigned idx = 0, s = ranks.size(); idx < s; ++idx) + for (unsigned idx2 = 0; idx2 < numSymb; ++idx2) + res.push_back(res[symbolsPos + idx2]); + } + return res; + }; +} + +std::function(OpBuilder &, Location, ValueRange)> +mlir::linalg::defaultLoopRangesBuilder(LinalgOp op) { + Operation *pOp = op.getOperation(); + return [pOp](OpBuilder &b, Location loc, ValueRange enclosingLoopIvs) { + LinalgOp op = cast(pOp); + auto mapsRange = op.indexing_maps().template getAsRange(); + auto maps = llvm::to_vector<8>(llvm::map_range( + mapsRange, [](AffineMapAttr a) { return a.getValue(); })); + AffineMap map = concatAffineMaps(maps); + unsigned numDims = map.getNumDims(), numRes = map.getNumResults(); + // TODO: drop numSym once symbol_source is deleted. + unsigned numSym = map.getNumSymbols(); + auto viewSizes = op.getShapeBuilder()(b, loc, enclosingLoopIvs); + SmallVector res(numDims); + Value zeroVal = b.create(loc, 0); + Value oneVal = b.create(loc, 1); + for (unsigned idx = 0; idx < numRes; ++idx) { + auto result = map.getResult(idx); + if (auto d = result.dyn_cast()) { + if (res[d.getPosition()].offset) + continue; + res[d.getPosition()] = Range{zeroVal, viewSizes[idx], oneVal}; + } + + // TODO: the following once symbol_source is deleted. + // If the access pattern is of form (m, n)[s] -> (m + n - s floordiv 2), + // then the bounds are: + // (s floordiv 2) <= m <= (size(m) + s floordiv 2 - s + 1). + // where size(n) is applied to the symbol s. + // This is done statically now. + if (auto binOp = result.dyn_cast()) { + auto lhs = binOp.getLHS().dyn_cast(); + auto rhs = binOp.getRHS().dyn_cast(); + if (!lhs || !rhs || binOp.getKind() != AffineExprKind::Add || + lhs.getKind() != AffineExprKind::Add || + rhs.getKind() != mlir::AffineExprKind::Mul) + continue; + + auto m = lhs.getLHS().dyn_cast(); + auto n = lhs.getRHS().dyn_cast(); + auto fDiv = rhs.getLHS().dyn_cast(); + auto minusOne = rhs.getRHS().dyn_cast(); + if (!m || !n || !fDiv || !minusOne || + fDiv.getKind() != AffineExprKind::FloorDiv || + fDiv.getLHS().getKind() != AffineExprKind::SymbolId || + fDiv.getRHS().getKind() != AffineExprKind::Constant) + continue; + + auto s = fDiv.getLHS().dyn_cast(); + if (minusOne.getValue() != -1) + continue; + + int mPos = m.getPosition(); + AffineExpr one = getAffineConstantExpr(1, s.getContext()); + AffineExpr sizeOfM = getAffineSymbolExpr(numSym, s.getContext()); + // Construction of upper bound (size(m) + s floordiv 2 - s + 1). + AffineExpr upperOffsetExpr = sizeOfM + fDiv + one - s; + AffineMap fromMap = AffineMap::get(numDims, numSym + 1, fDiv); + AffineMap toMap = AffineMap::get(numDims, numSym + 1, upperOffsetExpr); + SmallVector values(viewSizes.begin(), + viewSizes.begin() + numDims); + values.insert(values.end(), viewSizes.begin() + numRes, + viewSizes.end()); + values.push_back(viewSizes[mPos]); + // Construction of the lower bound (s floordiv 2). + Value from = applyMapToValues(b, loc, fromMap, values).front(); + Value to = applyMapToValues(b, loc, toMap, values).front(); + res[mPos] = Range{from, to, oneVal}; + } + } + return res; + }; +} + /// Forward declarations. template static void buildNamedStructuredOpRegionAndAttributes( @@ -504,11 +640,15 @@ << idx << " results to match view rank: " << view; } + // TODO: symbol_source prevents us to just write: + // if (!op.getShapeToLoopsMap()) + // return op.emitOpError("expected the shape-to-loops map to be non-null"); + // + // Update when symbol_source is deleted. auto concatMap = concatAffineMaps(indexingMaps); // TODO: Bound inference for maps with symbols if (!concatMap.getNumSymbols() && !inversePermutation(concatMap)) - return op.emitOpError("expected the concatenation of maps in indexing_map " - "to be invertible"); + return op.emitOpError("expected the shape-to-loops map to be non-null"); if (failed(AnnotationsVerifier::verify(op))) return failure(); diff --git a/mlir/lib/Dialect/Linalg/Transforms/Bufferize.cpp b/mlir/lib/Dialect/Linalg/Transforms/Bufferize.cpp --- a/mlir/lib/Dialect/Linalg/Transforms/Bufferize.cpp +++ b/mlir/lib/Dialect/Linalg/Transforms/Bufferize.cpp @@ -21,19 +21,6 @@ using namespace ::mlir; using namespace ::mlir::linalg; -static SmallVector computeLoopRanges(Location loc, LinalgOp linalgOp, - OpBuilder &b) { - auto indexingMaps = llvm::to_vector<4>( - linalgOp.indexing_maps().getAsValueRange()); - auto inputIndexingMaps = - llvm::makeArrayRef(indexingMaps).take_front(linalgOp.getNumInputs()); - - mlir::edsc::ScopedContext scope(b, loc); - return emitLoopRanges(scope.getBuilderRef(), loc, - concatAffineMaps(inputIndexingMaps), - getShape(b, linalgOp)); -} - static Value maybeConvertToIndex(Location loc, Value val, OpBuilder &b) { if (val.getType().isIndex()) return val; @@ -97,7 +84,8 @@ auto resultIndexingMap = linalgOp.getOutputIndexingMap(resultIndex); for (auto shapeElement : llvm::enumerate(tensorType.getShape())) { if (loopRanges.empty()) - loopRanges = computeLoopRanges(loc, linalgOp, b); + loopRanges = + linalgOp.getLoopRangesBuilder()(b, loc, /*enclosingLoopIvs=*/{}); if (shapeElement.value() != ShapedType::kDynamicSize) continue; @@ -284,7 +272,7 @@ /// Convert `subtensor_insert %source into %dest [offsets][sizes][strides] -> /// %t` to an tensor_to_memref + subview + copy + tensor_load pattern. -/// tensor_to_memref and tensor_load are inserted automatically by the +/// tensor_to_memref and tensor_load are inserted automatically by the /// conversion infra: /// ``` /// %sv = subview %dest [offsets][sizes][strides] diff --git a/mlir/lib/Dialect/Linalg/Transforms/Loops.cpp b/mlir/lib/Dialect/Linalg/Transforms/Loops.cpp --- a/mlir/lib/Dialect/Linalg/Transforms/Loops.cpp +++ b/mlir/lib/Dialect/Linalg/Transforms/Loops.cpp @@ -526,14 +526,9 @@ auto linalgOp = cast(op); assert(linalgOp.hasBufferSemantics() && "expected linalg op with buffer semantics"); - auto mapsRange = - linalgOp.indexing_maps().template getAsRange(); - auto maps = llvm::to_vector<8>( - llvm::map_range(mapsRange, [](AffineMapAttr a) { return a.getValue(); })); - SmallVector sizes = getShape(builder, linalgOp); - AffineMap map = concatAffineMaps(maps); - auto loopRanges = emitLoopRanges(scope.getBuilderRef(), scope.getLocation(), - map, getShape(builder, linalgOp)); + auto loopRangesBuilder = linalgOp.getLoopRangesBuilder(); + auto loopRanges = loopRangesBuilder( + scope.getBuilderRef(), scope.getLocation(), /*enclosingLoopIvs=*/{}); SmallVector allIvs; GenerateLoopNest::doit( loopRanges, /*iterInitArgs*/ {}, linalgOp.iterator_types().getValue(), @@ -669,70 +664,6 @@ return std::make_unique(); } -SmallVector mlir::linalg::emitLoopRanges(OpBuilder &b, Location loc, - AffineMap map, - ValueRange viewSizes) { - unsigned numDims = map.getNumDims(), numRes = map.getNumResults(); - unsigned numSym = map.getNumSymbols(); - assert(viewSizes.size() == numRes + numSym && - "viewSizes must contain sizes of all views and values for symbols"); - SmallVector res(numDims); - for (unsigned idx = 0; idx < numRes; ++idx) { - auto result = map.getResult(idx); - if (auto d = result.dyn_cast()) { - if (res[d.getPosition()].offset) - continue; - res[d.getPosition()] = - Range{std_constant_index(0), viewSizes[idx], std_constant_index(1)}; - } - - // If the access pattern is of form (m, n)[s] -> (m + n - s floordiv 2), - // then the bounds are: - // (s floordiv 2) <= m <= (size(m) + s floordiv 2 - s + 1). - // where size(n) is applied to the symbol s. - // This is done statically now. - if (auto binOp = result.dyn_cast()) { - auto lhs = binOp.getLHS().dyn_cast(); - auto rhs = binOp.getRHS().dyn_cast(); - if (!lhs || !rhs || binOp.getKind() != AffineExprKind::Add || - lhs.getKind() != AffineExprKind::Add || - rhs.getKind() != mlir::AffineExprKind::Mul) - continue; - - auto m = lhs.getLHS().dyn_cast(); - auto n = lhs.getRHS().dyn_cast(); - auto fDiv = rhs.getLHS().dyn_cast(); - auto minusOne = rhs.getRHS().dyn_cast(); - if (!m || !n || !fDiv || !minusOne || - fDiv.getKind() != AffineExprKind::FloorDiv || - fDiv.getLHS().getKind() != AffineExprKind::SymbolId || - fDiv.getRHS().getKind() != AffineExprKind::Constant) - continue; - - auto s = fDiv.getLHS().dyn_cast(); - if (minusOne.getValue() != -1) - continue; - - int mPos = m.getPosition(); - AffineExpr one = getAffineConstantExpr(1, s.getContext()); - AffineExpr sizeOfM = getAffineSymbolExpr(numSym, s.getContext()); - // Construction of upper bound (size(m) + s floordiv 2 - s + 1). - AffineExpr upperOffsetExpr = sizeOfM + fDiv + one - s; - AffineMap fromMap = AffineMap::get(numDims, numSym + 1, fDiv); - AffineMap toMap = AffineMap::get(numDims, numSym + 1, upperOffsetExpr); - SmallVector values(viewSizes.begin(), - viewSizes.begin() + numDims); - values.insert(values.end(), viewSizes.begin() + numRes, viewSizes.end()); - values.push_back(viewSizes[mPos]); - // Construction of the lower bound (s floordiv 2). - Value from = applyMapToValues(b, loc, fromMap, values).front(); - Value to = applyMapToValues(b, loc, toMap, values).front(); - res[mPos] = Range{from, to, std_constant_index(1)}; - } - } - return res; -} - /// Emits a loop nest with the proper body for `op`. template Optional mlir::linalg::linalgLowerOpToLoops(OpBuilder &builder, diff --git a/mlir/lib/Dialect/Linalg/Transforms/Tiling.cpp b/mlir/lib/Dialect/Linalg/Transforms/Tiling.cpp --- a/mlir/lib/Dialect/Linalg/Transforms/Tiling.cpp +++ b/mlir/lib/Dialect/Linalg/Transforms/Tiling.cpp @@ -332,13 +332,9 @@ } // 1. Build the tiled loop ranges. - auto allShapeSizes = getShape(b, op); - // The flattened loopToOperandRangesMaps is expected to be an invertible - // permutation map (asserted in the inverse calculation). - auto mapsRange = op.indexing_maps().getAsRange(); - auto maps = llvm::to_vector<8>( - llvm::map_range(mapsRange, [](AffineMapAttr a) { return a.getValue(); })); - auto shapeSizesToLoopsMap = inversePermutation(concatAffineMaps(maps)); + auto allShapeSizes = + op.getShapeBuilder()(b, op.getLoc(), /*enclosingLoopIvs=*/{}); + auto shapeSizesToLoopsMap = op.getShapeToLoopsMap(); if (!shapeSizesToLoopsMap) return llvm::None; @@ -367,10 +363,11 @@ continue; interchangeVector.push_back(it->second); } + // Interchange vector is guaranteed to be a permutation, + // `inversePermutation` must succeed. invPermutationMap = inversePermutation( AffineMap::getPermutationMap(interchangeVector, b.getContext())); - if (!invPermutationMap) - return llvm::None; + assert(invPermutationMap); applyPermutationToVector(loopRanges, interchangeVector); applyPermutationToVector(iteratorTypes, interchangeVector); } diff --git a/mlir/lib/Dialect/Linalg/Utils/Utils.cpp b/mlir/lib/Dialect/Linalg/Utils/Utils.cpp --- a/mlir/lib/Dialect/Linalg/Utils/Utils.cpp +++ b/mlir/lib/Dialect/Linalg/Utils/Utils.cpp @@ -57,31 +57,6 @@ return llvm::None; } -static Value createFoldedComposedAffineApply(OpBuilder &b, Location loc, - AffineMap map, - ValueRange operandsRef) { - SmallVector operands(operandsRef.begin(), operandsRef.end()); - fullyComposeAffineMapAndOperands(&map, &operands); - canonicalizeMapAndOperands(&map, &operands); - return b.createOrFold(loc, map, operands); -} - -SmallVector mlir::linalg::applyMapToValues(OpBuilder &b, Location loc, - AffineMap map, - ValueRange values) { - SmallVector res; - res.reserve(map.getNumResults()); - unsigned numDims = map.getNumDims(), numSym = map.getNumSymbols(); - // For each `expr` in `map`, applies the `expr` to the values extracted from - // ranges. If the resulting application can be folded into a Value, the - // folding occurs eagerly. - for (auto expr : map.getResults()) { - AffineMap map = AffineMap::get(numDims, numSym, expr); - res.push_back(createFoldedComposedAffineApply(b, loc, map, values)); - } - return res; -} - bool mlir::linalg::isParallelIteratorType(Attribute attr) { if (auto strAttr = attr.dyn_cast()) { return strAttr.getValue() == getParallelIteratorTypeName(); @@ -156,16 +131,6 @@ return res; } -Optional> getLoopRanges(OpBuilder &builder, - LinalgOp linalgOp) { - SmallVector viewSizes = getShape(builder, linalgOp); - AffineMap invertedMap = - inversePermutation(concatAffineMaps(linalgOp.getIndexingMaps())); - if (!invertedMap) - return {}; - return applyMapToValues(builder, linalgOp.getLoc(), invertedMap, viewSizes); -} - /// Specialization to build an scf "for" nest. template <> void GenerateLoopNest::doit( diff --git a/mlir/test/Dialect/Linalg/invalid.mlir b/mlir/test/Dialect/Linalg/invalid.mlir --- a/mlir/test/Dialect/Linalg/invalid.mlir +++ b/mlir/test/Dialect/Linalg/invalid.mlir @@ -131,7 +131,7 @@ // ----- func @generic_singular_maps(%arg0: memref(off + i)>>, %arg1: memref(off + i)>>) { - // expected-error @+1 {{op expected the concatenation of maps in indexing_map to be invertible}} + // expected-error @+1 {{expected the shape-to-loops map to be non-null}} linalg.generic { indexing_maps = [ affine_map<(i, j) -> (i + j)>,