Index: llvm/trunk/lib/Target/Sparc/SparcInstrInfo.td =================================================================== --- llvm/trunk/lib/Target/Sparc/SparcInstrInfo.td +++ llvm/trunk/lib/Target/Sparc/SparcInstrInfo.td @@ -353,13 +353,6 @@ [(flushw)]>; } -let isBarrier = 1, isTerminator = 1, rd = 0b01000, rs1 = 0, simm13 = 5 in - def TA5 : F3_2<0b10, 0b111010, (outs), (ins), "ta 5", [(trap)]>; - -let rd = 0 in - def UNIMP : F2_1<0b000, (outs), (ins i32imm:$imm22), - "unimp $imm22", []>; - // SELECT_CC_* - Used to implement the SELECT_CC DAG operation. Expanded after // instruction selection into a branch sequence. This has to handle all // permutations of selection between i32/f32/f64 on ICC and FCC. @@ -406,36 +399,6 @@ [(set f128:$dst, (SPselectfcc f128:$T, f128:$F, imm:$Cond))]>; } -// JMPL Instruction. -let isTerminator = 1, hasDelaySlot = 1, isBarrier = 1, - DecoderMethod = "DecodeJMPL" in { - def JMPLrr: F3_1<2, 0b111000, (outs IntRegs:$dst), (ins MEMrr:$addr), - "jmpl $addr, $dst", []>; - def JMPLri: F3_2<2, 0b111000, (outs IntRegs:$dst), (ins MEMri:$addr), - "jmpl $addr, $dst", []>; -} - -// Section A.3 - Synthetic Instructions, p. 85 -// special cases of JMPL: -let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, isBarrier = 1, - isCodeGenOnly = 1 in { - let rd = 0, rs1 = 15 in - def RETL: F3_2<2, 0b111000, (outs), (ins i32imm:$val), - "jmp %o7+$val", [(retflag simm13:$val)]>; - - let rd = 0, rs1 = 31 in - def RET: F3_2<2, 0b111000, (outs), (ins i32imm:$val), - "jmp %i7+$val", []>; -} - -let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, - isBarrier = 1, rd = 0, DecoderMethod = "DecodeReturn" in { - def RETTrr : F3_1<2, 0b111001, (outs), (ins MEMrr:$addr), - "rett $addr", []>; - def RETTri : F3_2<2, 0b111001, (outs), (ins MEMri:$addr), - "rett $addr", []>; -} - // Section B.1 - Load Integer Instructions, p. 90 let DecoderMethod = "DecodeLoadInt" in { defm LDSB : LoadA<"ldsb", 0b001001, 0b011001, sextloadi8, IntRegs, i32>; @@ -470,6 +433,24 @@ defm STQF : Store<"stq", 0b100110, store, QFPRegs, f128>, Requires<[HasV9, HasHardQuad]>; +// Section B.8 - SWAP Register with Memory Instruction +// (Atomic swap) +let Constraints = "$val = $dst", DecoderMethod = "DecodeSWAP" in { + def SWAPrr : F3_1<3, 0b001111, + (outs IntRegs:$dst), (ins MEMrr:$addr, IntRegs:$val), + "swap [$addr], $dst", + [(set i32:$dst, (atomic_swap_32 ADDRrr:$addr, i32:$val))]>; + def SWAPri : F3_2<3, 0b001111, + (outs IntRegs:$dst), (ins MEMri:$addr, IntRegs:$val), + "swap [$addr], $dst", + [(set i32:$dst, (atomic_swap_32 ADDRri:$addr, i32:$val))]>; + def SWAPArr : F3_1_asi<3, 0b011111, + (outs IntRegs:$dst), (ins MEMrr:$addr, i8imm:$asi, IntRegs:$val), + "swapa [$addr] $asi, $dst", + [/*FIXME: pattern?*/]>; +} + + // Section B.9 - SETHI Instruction, p. 104 def SETHIi: F2_1<0b100, (outs IntRegs:$rd), (ins i32imm:$imm22), @@ -725,6 +706,56 @@ } } +// Section B.25 - Jump and Link Instruction + +// JMPL Instruction. +let isTerminator = 1, hasDelaySlot = 1, isBarrier = 1, + DecoderMethod = "DecodeJMPL" in { + def JMPLrr: F3_1<2, 0b111000, (outs IntRegs:$dst), (ins MEMrr:$addr), + "jmpl $addr, $dst", []>; + def JMPLri: F3_2<2, 0b111000, (outs IntRegs:$dst), (ins MEMri:$addr), + "jmpl $addr, $dst", []>; +} + +// Section A.3 - Synthetic Instructions, p. 85 +// special cases of JMPL: +let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, isBarrier = 1, + isCodeGenOnly = 1 in { + let rd = 0, rs1 = 15 in + def RETL: F3_2<2, 0b111000, (outs), (ins i32imm:$val), + "jmp %o7+$val", [(retflag simm13:$val)]>; + + let rd = 0, rs1 = 31 in + def RET: F3_2<2, 0b111000, (outs), (ins i32imm:$val), + "jmp %i7+$val", []>; +} + +// Section B.26 - Return from Trap Instruction +let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, + isBarrier = 1, rd = 0, DecoderMethod = "DecodeReturn" in { + def RETTrr : F3_1<2, 0b111001, (outs), (ins MEMrr:$addr), + "rett $addr", []>; + def RETTri : F3_2<2, 0b111001, (outs), (ins MEMri:$addr), + "rett $addr", []>; +} + + +// Section B.27 - Trap on Integer Condition Codes Instruction +multiclass TRAP { + def rr : TRAPSPrr<0b111010, (outs), (ins IntRegs:$rs1, IntRegs:$rs2, + CCOp:$cond), + !strconcat(!strconcat("t$cond ", regStr), ", $rs1 + $rs2"), []>; + def ri : TRAPSPri<0b111010, (outs), (ins IntRegs:$rs1, i32imm:$imm, + CCOp:$cond), + !strconcat(!strconcat("t$cond ", regStr), ", $rs1 + $imm"), []>; +} + +let hasSideEffects = 1, Uses = [ICC], cc = 0b00 in + defm TICC : TRAP<"%icc">; + +let isBarrier = 1, isTerminator = 1, rd = 0b01000, rs1 = 0, simm13 = 5 in + def TA5 : F3_2<0b10, 0b111010, (outs), (ins), "ta 5", [(trap)]>; + // Section B.28 - Read State Register Instructions let rs2 = 0 in def RDASR : F3_1<2, 0b101000, @@ -787,6 +818,18 @@ } } +// Section B.30 - STBAR Instruction +let hasSideEffects = 1, rd = 0, rs1 = 0b01111, rs2 = 0 in + def STBAR : F3_1<2, 0b101000, (outs), (ins), "stbar", []>; + + +// Section B.31 - Unimplmented Instruction +let rd = 0 in + def UNIMP : F2_1<0b000, (outs), (ins i32imm:$imm22), + "unimp $imm22", []>; + +// Section B.33 - Floating-point Operate (FPop) Instructions + // Convert Integer to Floating-point Instructions, p. 141 def FITOS : F3_3u<2, 0b110100, 0b011000100, (outs FPRegs:$rd), (ins FPRegs:$rs2), @@ -1168,29 +1211,10 @@ def : Pat<(ctpop i32:$src), (POPCrr (SRLri $src, 0))>; -// Atomic swap. -let hasSideEffects =1, rd = 0, rs1 = 0b01111, rs2 = 0 in - def STBAR : F3_1<2, 0b101000, (outs), (ins), "stbar", []>; - let Predicates = [HasV9], hasSideEffects = 1, rd = 0, rs1 = 0b01111 in def MEMBARi : F3_2<2, 0b101000, (outs), (ins simm13Op:$simm13), "membar $simm13", []>; -let Constraints = "$val = $dst", DecoderMethod = "DecodeSWAP" in { - def SWAPrr : F3_1<3, 0b001111, - (outs IntRegs:$dst), (ins MEMrr:$addr, IntRegs:$val), - "swap [$addr], $dst", - [(set i32:$dst, (atomic_swap_32 ADDRrr:$addr, i32:$val))]>; - def SWAPri : F3_2<3, 0b001111, - (outs IntRegs:$dst), (ins MEMri:$addr, IntRegs:$val), - "swap [$addr], $dst", - [(set i32:$dst, (atomic_swap_32 ADDRri:$addr, i32:$val))]>; - def SWAPArr : F3_1_asi<3, 0b011111, - (outs IntRegs:$dst), (ins MEMrr:$addr, i8imm:$asi, IntRegs:$val), - "swapa [$addr] $asi, $dst", - [/*FIXME: pattern?*/]>; -} - // TODO: Should add a CASArr variant. In fact, the CAS instruction, // unlike other instructions, only comes in a form which requires an // ASI be provided. The ASI value hardcoded here is ASI_PRIMARY, the @@ -1215,18 +1239,6 @@ } } -multiclass TRAP { - def rr : TRAPSPrr<0b111010, (outs), (ins IntRegs:$rs1, IntRegs:$rs2, - CCOp:$cond), - !strconcat(!strconcat("t$cond ", regStr), ", $rs1 + $rs2"), []>; - def ri : TRAPSPri<0b111010, (outs), (ins IntRegs:$rs1, i32imm:$imm, - CCOp:$cond), - !strconcat(!strconcat("t$cond ", regStr), ", $rs1 + $imm"), []>; -} - -let hasSideEffects = 1, Uses = [ICC], cc = 0b00 in - defm TICC : TRAP<"%icc">; - //===----------------------------------------------------------------------===// // Non-Instruction Patterns //===----------------------------------------------------------------------===//