diff --git a/mlir/include/mlir/Dialect/Linalg/Transforms/Transforms.h b/mlir/include/mlir/Dialect/Linalg/Transforms/Transforms.h
--- a/mlir/include/mlir/Dialect/Linalg/Transforms/Transforms.h
+++ b/mlir/include/mlir/Dialect/Linalg/Transforms/Transforms.h
@@ -30,6 +30,10 @@
   SmallVector<Operation *, 8> loops;
 };
 
+/// Populates patterns for vectorization of all ConvN-D ops.
+void populateConvVectorizationPatterns(MLIRContext *context,
+                                       OwningRewritePatternList &patterns);
+
 /// Performs standalone tiling of a single LinalgOp by `tileSizes`.
 /// and permute the loop nest according to `interchangeVector`
 /// The permutation is expressed as a list of integers that specify
@@ -531,6 +535,53 @@
                                 PatternRewriter &rewriter) const override;
 };
 
+/// Converts Convolution op into vector contraction.
+///
+/// Conversion expects ConvOp to have dimensions marked in the *mask* as
+/// false of size 1. This ensures that the ConvOp can be lowered to vector
+/// contraction of dimensions marked in the *mask* as true.
+///
+/// A good example is ConvNHWCOp which is 2D Conv op with channels as the last
+/// dimension. For this op we contract last 3 dimensions.
+/// The initial op definition looks like this:
+/// ```
+/// linalg.conv_2d_nhwc  %arg0, %arg1, %arg2 :
+///   (memref<1x3x3x3xf32>, memref<1x3x3x3xf32>, memref<?x?x?x?xf32>)
+/// ```
+/// This op can be expressed as a dot product between %arg0 (input) and
+/// %arg1 (kernel) which is written into first entry of %arg2 (output). This is
+/// the ConvOp this pass expects and converts into:
+/// ```
+/// #map0 = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
+/// #map1 = affine_map<(d0, d1, d2) -> ()>
+/// .....
+/// %0 = vector.transfer_read %arg0[%c0, %c0, %c0, %c0], %c0_f32
+///   : memref<1x3x3x3xf32>, vector<3x3x3xf32>
+/// %1 = vector.transfer_read %arg1[%c0, %c0, %c0, %c0], %c0_f32
+///   : memref<1x3x3x3xf32>, vector<3x3x3xf32>
+/// %2 = vector.contract {indexing_maps = [#map0, #map0, #map1],
+///   iterator_types = ["reduction", "reduction", "reduction"]} %0, %1,
+///   %c0_f32 : vector<3x3x3xf32>, vector<3x3x3xf32> into f32
+/// store %2, %arg2[%c0, %c0, %c0, %c0] : memref<?x?x?x?xf32>
+/// ```
+/// where first 2 operations read input and kernel memory buffers into vectors.
+/// Subsequently, they are contracted together and the result is written to
+/// the first entry of the output buffer.
+template <typename ConvOp, int N>
+struct ConvOpVectorization : public OpRewritePattern<ConvOp> {
+  using OpRewritePattern<ConvOp>::OpRewritePattern;
+  SmallVector<bool, 4> mask;
+
+  ConvOpVectorization(MLIRContext *context, SmallVector<bool, 4> msk)
+      : OpRewritePattern<ConvOp>(context) {
+    assert(msk.size() == N && "Mask size does not match rank");
+    this->mask = msk;
+  }
+
+  LogicalResult matchAndRewrite(ConvOp minOp,
+                                PatternRewriter &rewriter) const override;
+};
+
 //===----------------------------------------------------------------------===//
 // Support for staged pattern application.
 //===----------------------------------------------------------------------===//
diff --git a/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp b/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
--- a/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
@@ -367,3 +367,98 @@
 
   return success();
 }
+
+template <class ConvOp, int N>
+LogicalResult ConvOpVectorization<ConvOp, N>::matchAndRewrite(
+    ConvOp op, PatternRewriter &rewriter) const {
+  const uint dimSize = 3;
+  Location loc = op.getLoc();
+  MLIRContext *context = op.getContext();
+  edsc::ScopedContext scope(rewriter, loc);
+
+  ShapedType inShapeType = op.getInputShapedType(0);
+  ShapedType kShapeType = op.getInputShapedType(1);
+
+  ArrayRef<int64_t> inShape = inShapeType.getShape();
+  ArrayRef<int64_t> kShape = kShapeType.getShape();
+
+  if (!inShapeType.hasStaticShape() || !kShapeType.hasStaticShape())
+    return failure();
+
+  SmallVector<AffineExpr, 4> mapping;
+  // Fail to apply when the size of not vectorized dimension is not 1 or
+  // when the size of vectorized dimension is not dimSize.
+  for (unsigned i = 0; i < N; i++) {
+    if (!mask[i] && (inShape[i] != 1 || kShape[i] != 1))
+      return failure();
+    if (mask[i] && (inShape[i] != dimSize || kShape[i] != dimSize))
+      return failure();
+
+    if (mask[i])
+      mapping.push_back(getAffineDimExpr(i, context));
+  }
+
+  Value input = op.getInput(0);
+  Value kernel = op.getInput(1);
+  Value output = op.getOutputBuffer(0);
+
+  uint rank = inShapeType.getRank();
+  uint numDims = mapping.size();
+  Type elemType = inShapeType.getElementType();
+
+  auto map = AffineMap::get(rank, 0, mapping, context);
+  SmallVector<Value, 4> zeros(rank, std_constant_index(0));
+  auto vecType =
+      VectorType::get(SmallVector<int64_t, 4>(numDims, dimSize), elemType);
+
+  auto inputVec = vector_transfer_read(vecType, input, zeros, map);
+  auto kernelVec = vector_transfer_read(vecType, kernel, zeros, map);
+
+  auto acc = std_constant(elemType, rewriter.getZeroAttr(elemType));
+
+  std::array<AffineMap, 3> indexingMaps{
+      AffineMap::getMultiDimIdentityMap(numDims, context),
+      AffineMap::getMultiDimIdentityMap(numDims, context),
+      AffineMap::get(numDims, 0, {}, context)};
+
+  std::vector<StringRef> iteratorTypes(numDims, "reduction");
+
+  auto result = rewriter.create<vector::ContractionOp>(
+      loc, inputVec, kernelVec, acc,
+      rewriter.getAffineMapArrayAttr(indexingMaps),
+      rewriter.getStrArrayAttr(iteratorTypes));
+
+  rewriter.create<StoreOp>(loc, result, output, ValueRange(zeros));
+  rewriter.eraseOp(op);
+  return success();
+}
+
+void mlir::linalg::populateConvVectorizationPatterns(
+    MLIRContext *context, OwningRewritePatternList &patterns) {
+  patterns.insert<ConvOpVectorization<linalg::ConvWOp, 1>>(
+      context, SmallVector<bool, 4>{true});
+
+  patterns.insert<ConvOpVectorization<linalg::ConvNWCOp, 3>>(
+      context, SmallVector<bool, 4>{false, true, true});
+
+  patterns.insert<ConvOpVectorization<linalg::ConvNCWOp, 3>>(
+      context, SmallVector<bool, 4>{false, true, true});
+
+  patterns.insert<ConvOpVectorization<linalg::ConvHWOp, 2>>(
+      context, SmallVector<bool, 4>{true, true});
+
+  patterns.insert<ConvOpVectorization<linalg::ConvNHWCOp, 4>>(
+      context, SmallVector<bool, 4>{false, true, true, true});
+
+  patterns.insert<ConvOpVectorization<linalg::ConvNCHWOp, 4>>(
+      context, SmallVector<bool, 4>{false, true, true, true});
+
+  patterns.insert<ConvOpVectorization<linalg::ConvDHWOp, 3>>(
+      context, SmallVector<bool, 4>{true, true, true});
+
+  patterns.insert<ConvOpVectorization<linalg::ConvNDHWCOp, 5>>(
+      context, SmallVector<bool, 4>{false, true, true, true, true});
+
+  patterns.insert<ConvOpVectorization<linalg::ConvNCDHWOp, 5>>(
+      context, SmallVector<bool, 4>{false, true, true, true, true});
+}
diff --git a/mlir/test/Conversion/LinalgToVector/linalg-to-vector.mlir b/mlir/test/Conversion/LinalgToVector/linalg-to-vector.mlir
new file mode 100644
--- /dev/null
+++ b/mlir/test/Conversion/LinalgToVector/linalg-to-vector.mlir
@@ -0,0 +1,167 @@
+// RUN: mlir-opt %s -test-conv-vectorization --cse | FileCheck %s
+
+// CHECK-DAG:  #[[$map0:.*]] = affine_map<(d0) -> (d0)>
+// CHECK-DAG:  #[[$map1:.*]] = affine_map<(d0) -> ()>
+// CHECK-DAG:  #[[$map2:.*]] = affine_map<(d0, d1, d2) -> (d1, d2)>
+// CHECK-DAG:  #[[$map3:.*]] = affine_map<(d0, d1) -> (d0, d1)>
+// CHECK-DAG:  #[[$map4:.*]] = affine_map<(d0, d1) -> ()>
+// CHECK-DAG:  #[[$map5:.*]] = affine_map<(d0, d1, d2, d3) -> (d1, d2, d3)>
+// CHECK-DAG:  #[[$map6:.*]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
+// CHECK-DAG:  #[[$map7:.*]] = affine_map<(d0, d1, d2) -> ()>
+// CHECK-DAG:  #[[$map8:.*]] = affine_map<(d0, d1, d2, d3, d4) -> (d1, d2, d3, d4)>
+// CHECK-DAG:  #[[$map9:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
+// CHECK-DAG:  #[[$map10:.*]] = affine_map<(d0, d1, d2, d3) -> ()>
+
+func @conv_1d(%arg0: memref<3xf32>, %arg1: memref<3xf32>, %arg2: memref<?xf32>) {
+  linalg.conv_1d %arg0, %arg1, %arg2 : (memref<3xf32>, memref<3xf32>, memref<?xf32>)
+  return
+}
+
+// CHECK-LABEL: @conv_1d
+//  CHECK-SAME: %[[arg0:[a-zA-Z0-9]+]]: memref<3xf32>
+//  CHECK-SAME: %[[arg1:[a-zA-Z0-9]+]]: memref<3xf32>
+//  CHECK-SAME: %[[arg2:[a-zA-Z0-9]+]]: memref<?xf32
+//       CHECK:   %[[c0:.*]] = constant 0 : index
+//       CHECK:   %[[cst:.*]] = constant 0.000000e+00 : f32
+//       CHECK:   %[[v0:.*]] = vector.transfer_read %[[arg0]][%[[c0]]], %[[cst]] : memref<3xf32>, vector<3xf32>
+//       CHECK:   %[[v1:.*]] = vector.transfer_read %[[arg1]][%[[c0]]], %[[cst]] : memref<3xf32>, vector<3xf32>
+//       CHECK:   %[[v2:.*]] = vector.contract {indexing_maps = [#[[$map0]], #[[$map0]], #[[$map1]]], iterator_types = ["reduction"]} %[[v0]], %[[v1]], %[[cst]] : vector<3xf32>, vector<3xf32> into f32
+//       CHECK:   store %[[v2]], %[[arg2]][%[[c0]]] : memref<?xf32>
+//       CHECK:   return
+
+func @conv_1d_ncw(%arg0: memref<1x3x3xf32>, %arg1: memref<1x3x3xf32>, %arg2: memref<?x?x?xf32>) {
+  linalg.conv_1d_ncw %arg0, %arg1, %arg2 : (memref<1x3x3xf32>, memref<1x3x3xf32>, memref<?x?x?xf32>)
+  return
+}
+
+// CHECK-LABEL: @conv_1d_ncw
+//  CHECK-SAME: %[[arg0:[a-zA-Z0-9]+]]: memref<1x3x3xf32>
+//  CHECK-SAME: %[[arg1:[a-zA-Z0-9]+]]: memref<1x3x3xf32>
+//  CHECK-SAME: %[[arg2:[a-zA-Z0-9]+]]: memref<?x?x?xf32
+//       CHECK:   %[[c0:.*]] = constant 0 : index
+//       CHECK:   %[[cst:.*]] = constant 0.000000e+00 : f32
+//       CHECK:   %[[v0:.*]] = vector.transfer_read %[[arg0]][%[[c0]], %[[c0]], %[[c0]]], %[[cst]] : memref<1x3x3xf32>, vector<3x3xf32>
+//       CHECK:   %[[v1:.*]] = vector.transfer_read %[[arg1]][%[[c0]], %[[c0]], %[[c0]]], %[[cst]] : memref<1x3x3xf32>, vector<3x3xf32>
+//       CHECK:   %[[v2:.*]] = vector.contract {indexing_maps = [#[[$map3]], #[[$map3]], #[[$map4]]], iterator_types = ["reduction", "reduction"]} %[[v0]], %[[v1]], %[[cst]] : vector<3x3xf32>, vector<3x3xf32> into f32
+//       CHECK:   store %[[v2]], %[[arg2]][%[[c0]], %[[c0]], %[[c0]]] : memref<?x?x?xf32>
+//       CHECK:   return
+
+
+func @conv_1d_nwc(%arg0: memref<1x3x3xf32>, %arg1: memref<1x3x3xf32>, %arg2: memref<?x?x?xf32>) {
+  linalg.conv_1d_nwc %arg0, %arg1, %arg2 : (memref<1x3x3xf32>, memref<1x3x3xf32>, memref<?x?x?xf32>)
+  return
+}
+
+// CHECK-LABEL: @conv_1d_nwc
+//  CHECK-SAME: %[[arg0:[a-zA-Z0-9]+]]: memref<1x3x3xf32>
+//  CHECK-SAME: %[[arg1:[a-zA-Z0-9]+]]: memref<1x3x3xf32>
+//  CHECK-SAME: %[[arg2:[a-zA-Z0-9]+]]: memref<?x?x?xf32
+//       CHECK:   %[[c0:.*]] = constant 0 : index
+//       CHECK:   %[[cst:.*]] = constant 0.000000e+00 : f32
+//       CHECK:   %[[v0:.*]] = vector.transfer_read %[[arg0]][%[[c0]], %[[c0]], %[[c0]]], %[[cst]] : memref<1x3x3xf32>, vector<3x3xf32>
+//       CHECK:   %[[v1:.*]] = vector.transfer_read %[[arg1]][%[[c0]], %[[c0]], %[[c0]]], %[[cst]] : memref<1x3x3xf32>, vector<3x3xf32>
+//       CHECK:   %[[v2:.*]] = vector.contract {indexing_maps = [#[[$map3]], #[[$map3]], #[[$map4]]], iterator_types = ["reduction", "reduction"]} %[[v0]], %[[v1]], %[[cst]] : vector<3x3xf32>, vector<3x3xf32> into f32
+//       CHECK:   store %[[v2]], %[[arg2]][%[[c0]], %[[c0]], %[[c0]]] : memref<?x?x?xf32>
+//       CHECK:   return
+
+func @conv_2d(%arg0: memref<3x3xf32>, %arg1: memref<3x3xf32>, %arg2: memref<?x?xf32>) {
+  linalg.conv_2d %arg0, %arg1, %arg2 : (memref<3x3xf32>, memref<3x3xf32>, memref<?x?xf32>)
+  return
+}
+
+// CHECK-LABEL: @conv_2d
+//  CHECK-SAME: %[[arg0:[a-zA-Z0-9]+]]: memref<3x3xf32>
+//  CHECK-SAME: %[[arg1:[a-zA-Z0-9]+]]: memref<3x3xf32>
+//  CHECK-SAME: %[[arg2:[a-zA-Z0-9]+]]: memref<?x?xf32
+//       CHECK:   %[[c0:.*]] = constant 0 : index
+//       CHECK:   %[[cst:.*]] = constant 0.000000e+00 : f32
+//       CHECK:   %[[v0:.*]] = vector.transfer_read %[[arg0]][%[[c0]], %[[c0]]], %[[cst]] : memref<3x3xf32>, vector<3x3xf32>
+//       CHECK:   %[[v1:.*]] = vector.transfer_read %[[arg1]][%[[c0]], %[[c0]]], %[[cst]] : memref<3x3xf32>, vector<3x3xf32>
+//       CHECK:   %[[v2:.*]] = vector.contract {indexing_maps = [#[[$map3]], #[[$map3]], #[[$map4]]], iterator_types = ["reduction", "reduction"]} %[[v0]], %[[v1]], %[[cst]] : vector<3x3xf32>, vector<3x3xf32> into f32
+//       CHECK:   store %[[v2]], %[[arg2]][%[[c0]], %[[c0]]] : memref<?x?xf32>
+//       CHECK:   return
+
+func @conv_2d_nchw(%arg0: memref<1x3x3x3xf32>, %arg1: memref<1x3x3x3xf32>, %arg2: memref<?x?x?x?xf32>) {
+  linalg.conv_2d_nchw %arg0, %arg1, %arg2 : (memref<1x3x3x3xf32>, memref<1x3x3x3xf32>, memref<?x?x?x?xf32>)
+  return
+}
+
+// CHECK-LABEL: @conv_2d_nchw
+//  CHECK-SAME: %[[arg0:[a-zA-Z0-9]+]]: memref<1x3x3x3xf32>
+//  CHECK-SAME: %[[arg1:[a-zA-Z0-9]+]]: memref<1x3x3x3xf32>
+//  CHECK-SAME: %[[arg2:[a-zA-Z0-9]+]]: memref<?x?x?x?xf32
+//       CHECK:   %[[c0:.*]] = constant 0 : index
+//       CHECK:   %[[cst:.*]] = constant 0.000000e+00 : f32
+//       CHECK:   %[[v0:.*]] = vector.transfer_read %[[arg0]][%[[c0]], %[[c0]], %[[c0]], %[[c0]]], %[[cst]] : memref<1x3x3x3xf32>, vector<3x3x3xf32>
+//       CHECK:   %[[v1:.*]] = vector.transfer_read %[[arg1]][%[[c0]], %[[c0]], %[[c0]], %[[c0]]], %[[cst]] : memref<1x3x3x3xf32>, vector<3x3x3xf32>
+//       CHECK:   %[[v2:.*]] = vector.contract {indexing_maps = [#[[$map6]], #[[$map6]], #[[$map7]]], iterator_types = ["reduction", "reduction", "reduction"]} %[[v0]], %[[v1]], %[[cst]] : vector<3x3x3xf32>, vector<3x3x3xf32> into f32
+//       CHECK:   store %[[v2]], %[[arg2]][%[[c0]], %[[c0]], %[[c0]], %[[c0]]] : memref<?x?x?x?xf32>
+//       CHECK:   return
+
+func @conv_2d_nhwc(%arg0: memref<1x3x3x3xf32>, %arg1: memref<1x3x3x3xf32>, %arg2: memref<?x?x?x?xf32>) {
+  linalg.conv_2d_nhwc %arg0, %arg1, %arg2 : (memref<1x3x3x3xf32>, memref<1x3x3x3xf32>, memref<?x?x?x?xf32>)
+  return
+}
+
+// CHECK-LABEL: @conv_2d_nhwc
+//  CHECK-SAME: %[[arg0:[a-zA-Z0-9]+]]: memref<1x3x3x3xf32>
+//  CHECK-SAME: %[[arg1:[a-zA-Z0-9]+]]: memref<1x3x3x3xf32>
+//  CHECK-SAME: %[[arg2:[a-zA-Z0-9]+]]: memref<?x?x?x?xf32
+//       CHECK:   %[[c0:.*]] = constant 0 : index
+//       CHECK:   %[[cst:.*]] = constant 0.000000e+00 : f32
+//       CHECK:   %[[v0:.*]] = vector.transfer_read %[[arg0]][%[[c0]], %[[c0]], %[[c0]], %[[c0]]], %[[cst]] : memref<1x3x3x3xf32>, vector<3x3x3xf32>
+//       CHECK:   %[[v1:.*]] = vector.transfer_read %[[arg1]][%[[c0]], %[[c0]], %[[c0]], %[[c0]]], %[[cst]] : memref<1x3x3x3xf32>, vector<3x3x3xf32>
+//       CHECK:   %[[v2:.*]] = vector.contract {indexing_maps = [#[[$map6]], #[[$map6]], #[[$map7]]], iterator_types = ["reduction", "reduction", "reduction"]} %[[v0]], %[[v1]], %[[cst]] : vector<3x3x3xf32>, vector<3x3x3xf32> into f32
+//       CHECK:   store %[[v2]], %[[arg2]][%[[c0]], %[[c0]], %[[c0]], %[[c0]]] : memref<?x?x?x?xf32>
+//       CHECK:   return
+
+func @conv_3d(%arg0: memref<3x3x3xf32>, %arg1: memref<3x3x3xf32>, %arg2: memref<?x?x?xf32>) {
+  linalg.conv_3d %arg0, %arg1, %arg2 : (memref<3x3x3xf32>, memref<3x3x3xf32>, memref<?x?x?xf32>)
+  return
+}
+
+// CHECK-LABEL: @conv_3d
+//  CHECK-SAME: %[[arg0:[a-zA-Z0-9]+]]: memref<3x3x3xf32>
+//  CHECK-SAME: %[[arg1:[a-zA-Z0-9]+]]: memref<3x3x3xf32>
+//  CHECK-SAME: %[[arg2:[a-zA-Z0-9]+]]: memref<?x?x?xf32
+//       CHECK:   %[[c0:.*]] = constant 0 : index
+//       CHECK:   %[[cst:.*]] = constant 0.000000e+00 : f32
+//       CHECK:   %[[v0:.*]] = vector.transfer_read %[[arg0]][%[[c0]], %[[c0]], %[[c0]]], %[[cst]] : memref<3x3x3xf32>, vector<3x3x3xf32>
+//       CHECK:   %[[v1:.*]] = vector.transfer_read %[[arg1]][%[[c0]], %[[c0]], %[[c0]]], %[[cst]] : memref<3x3x3xf32>, vector<3x3x3xf32>
+//       CHECK:   %[[v2:.*]] = vector.contract {indexing_maps = [#[[$map6]], #[[$map6]], #[[$map7]]], iterator_types = ["reduction", "reduction", "reduction"]} %[[v0]], %[[v1]], %[[cst]] : vector<3x3x3xf32>, vector<3x3x3xf32> into f32
+//       CHECK:   store %[[v2]], %[[arg2]][%[[c0]], %[[c0]], %[[c0]]] : memref<?x?x?xf32>
+//       CHECK:   return
+
+func @conv_3d_ncdhw(%arg0: memref<1x3x3x3x3xf32>, %arg1: memref<1x3x3x3x3xf32>, %arg2: memref<?x?x?x?x?xf32>) {
+  linalg.conv_3d_ncdhw %arg0, %arg1, %arg2 : (memref<1x3x3x3x3xf32>, memref<1x3x3x3x3xf32>, memref<?x?x?x?x?xf32>)
+  return
+}
+
+// CHECK-LABEL: @conv_3d_ncdhw
+//  CHECK-SAME: %[[arg0:[a-zA-Z0-9]+]]: memref<1x3x3x3x3xf32>
+//  CHECK-SAME: %[[arg1:[a-zA-Z0-9]+]]: memref<1x3x3x3x3xf32>
+//  CHECK-SAME: %[[arg2:[a-zA-Z0-9]+]]: memref<?x?x?x?x?xf32
+//       CHECK:   %[[c0:.*]] = constant 0 : index
+//       CHECK:   %[[cst:.*]] = constant 0.000000e+00 : f32
+//       CHECK:   %[[v0:.*]] = vector.transfer_read %[[arg0]][%[[c0]], %[[c0]], %[[c0]], %[[c0]], %[[c0]]], %[[cst]] : memref<1x3x3x3x3xf32>, vector<3x3x3x3xf32>
+//       CHECK:   %[[v1:.*]] = vector.transfer_read %[[arg1]][%[[c0]], %[[c0]], %[[c0]], %[[c0]], %[[c0]]], %[[cst]] : memref<1x3x3x3x3xf32>, vector<3x3x3x3xf32>
+//       CHECK:   %[[v2:.*]] = vector.contract {indexing_maps = [#[[$map9]], #[[$map9]], #[[$map10]]], iterator_types = ["reduction", "reduction", "reduction", "reduction"]} %[[v0]], %[[v1]], %[[cst]] : vector<3x3x3x3xf32>, vector<3x3x3x3xf32> into f32
+//       CHECK:   store %[[v2]], %[[arg2]][%[[c0]], %[[c0]], %[[c0]], %[[c0]], %[[c0]]] : memref<?x?x?x?x?xf32>
+//       CHECK:   return
+
+func @conv_3d_ndhwc(%arg0: memref<1x3x3x3x3xf32>, %arg1: memref<1x3x3x3x3xf32>, %arg2: memref<?x?x?x?x?xf32>) {
+  linalg.conv_3d_ndhwc %arg0, %arg1, %arg2 : (memref<1x3x3x3x3xf32>, memref<1x3x3x3x3xf32>, memref<?x?x?x?x?xf32>)
+  return
+}
+
+// CHECK-LABEL: @conv_3d_ndhwc
+//  CHECK-SAME: %[[arg0:[a-zA-Z0-9]+]]: memref<1x3x3x3x3xf32>
+//  CHECK-SAME: %[[arg1:[a-zA-Z0-9]+]]: memref<1x3x3x3x3xf32>
+//  CHECK-SAME: %[[arg2:[a-zA-Z0-9]+]]: memref<?x?x?x?x?xf32
+//       CHECK:   %[[c0:.*]] = constant 0 : index
+//       CHECK:   %[[cst:.*]] = constant 0.000000e+00 : f32
+//       CHECK:   %[[v0:.*]] = vector.transfer_read %[[arg0]][%[[c0]], %[[c0]], %[[c0]], %[[c0]], %[[c0]]], %[[cst]] : memref<1x3x3x3x3xf32>, vector<3x3x3x3xf32>
+//       CHECK:   %[[v1:.*]] = vector.transfer_read %[[arg1]][%[[c0]], %[[c0]], %[[c0]], %[[c0]], %[[c0]]], %[[cst]] : memref<1x3x3x3x3xf32>, vector<3x3x3x3xf32>
+//       CHECK:   %[[v2:.*]] = vector.contract {indexing_maps = [#[[$map9]], #[[$map9]], #[[$map10]]], iterator_types = ["reduction", "reduction", "reduction", "reduction"]} %[[v0]], %[[v1]], %[[cst]] : vector<3x3x3x3xf32>, vector<3x3x3x3xf32> into f32
+//       CHECK:   store %[[v2]], %[[arg2]][%[[c0]], %[[c0]], %[[c0]], %[[c0]], %[[c0]]] : memref<?x?x?x?x?xf32>
+//       CHECK:   return
diff --git a/mlir/test/lib/Transforms/CMakeLists.txt b/mlir/test/lib/Transforms/CMakeLists.txt
--- a/mlir/test/lib/Transforms/CMakeLists.txt
+++ b/mlir/test/lib/Transforms/CMakeLists.txt
@@ -5,6 +5,7 @@
   TestExpandTanh.cpp
   TestCallGraph.cpp
   TestConstantFold.cpp
+  TestConvVectorization.cpp
   TestConvertCallOp.cpp
   TestConvertGPUKernelToCubin.cpp
   TestConvertGPUKernelToHsaco.cpp
diff --git a/mlir/test/lib/Transforms/TestConvVectorization.cpp b/mlir/test/lib/Transforms/TestConvVectorization.cpp
new file mode 100644
--- /dev/null
+++ b/mlir/test/lib/Transforms/TestConvVectorization.cpp
@@ -0,0 +1,51 @@
+//===- TestConvVectorization.cpp - Linalg to Vector dialect conversion ----===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
+#include "mlir/Pass/Pass.h"
+#include "mlir/Transforms/DialectConversion.h"
+
+using namespace mlir;
+
+namespace {
+/// A pass converting MLIR Linalg ops into Vector ops.
+class TestConvVectorization
+    : public PassWrapper<TestConvVectorization, OperationPass<ModuleOp>> {
+  void runOnOperation() override;
+
+  void getDependentDialects(DialectRegistry &registry) const override {
+    registry.insert<vector::VectorDialect>();
+    registry.insert<linalg::LinalgDialect>();
+    registry.insert<StandardOpsDialect>();
+  }
+};
+} // namespace
+
+void TestConvVectorization::runOnOperation() {
+  MLIRContext *context = &getContext();
+  ModuleOp module = getOperation();
+
+  ConversionTarget target(*context);
+  target.addLegalDialect<AffineDialect, scf::SCFDialect, StandardOpsDialect,
+                         vector::VectorDialect>();
+  target.addLegalOp<ModuleOp, FuncOp, ModuleTerminatorOp, ReturnOp>();
+  target.addLegalOp<linalg::FillOp, linalg::YieldOp>();
+
+  OwningRewritePatternList patterns;
+  linalg::populateConvVectorizationPatterns(context, patterns);
+
+  if (failed(applyPartialConversion(module, target, patterns)))
+    return signalPassFailure();
+}
+
+namespace mlir {
+void registerTestConvVectorization() {
+  PassRegistration<TestConvVectorization> testTransformPatternsPass(
+      "test-conv-vectorization", "Test vectorization of convolutions");
+}
+} // namespace mlir
diff --git a/mlir/tools/mlir-opt/mlir-opt.cpp b/mlir/tools/mlir-opt/mlir-opt.cpp
--- a/mlir/tools/mlir-opt/mlir-opt.cpp
+++ b/mlir/tools/mlir-opt/mlir-opt.cpp
@@ -45,6 +45,7 @@
 void registerTestBufferPlacementPreparationPass();
 void registerTestCallGraphPass();
 void registerTestConstantFold();
+void registerTestConvVectorization();
 void registerTestConvertGPUKernelToCubinPass();
 void registerTestConvertGPUKernelToHsacoPass();
 void registerTestDominancePass();
@@ -93,6 +94,7 @@
   registerTestAffineLoopUnswitchingPass();
   registerTestLoopPermutationPass();
   registerTestCallGraphPass();
+  registerTestConvVectorization();
   registerTestConstantFold();
 #if MLIR_CUDA_CONVERSIONS_ENABLED
   registerTestConvertGPUKernelToCubinPass();