Index: lib/Support/APInt.cpp =================================================================== --- lib/Support/APInt.cpp +++ lib/Support/APInt.cpp @@ -1503,21 +1503,18 @@ assert(u && "Must provide dividend"); assert(v && "Must provide divisor"); assert(q && "Must provide quotient"); - assert(u != v && u != q && v != q && "Must us different memory"); + assert(u != v && u != q && v != q && "Must use different memory"); assert(n>1 && "n must be > 1"); - // Knuth uses the value b as the base of the number system. In our case b - // is 2^31 so we just set it to -1u. - uint64_t b = uint64_t(1) << 32; + // b denotes the base of the number system. In our case b is 2^32. + static const uint64_t b = uint64_t(1) << 32; -#if 0 DEBUG(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n'); DEBUG(dbgs() << "KnuthDiv: original:"); DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]); DEBUG(dbgs() << " by"); DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]); DEBUG(dbgs() << '\n'); -#endif // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of // u and v by d. Note that we have taken Knuth's advice here to use a power // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of @@ -1542,13 +1539,12 @@ } } u[m+n] = u_carry; -#if 0 + DEBUG(dbgs() << "KnuthDiv: normal:"); DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]); DEBUG(dbgs() << " by"); DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]); DEBUG(dbgs() << '\n'); -#endif // D2. [Initialize j.] Set j to m. This is the loop counter over the places. int j = m; @@ -1578,46 +1574,35 @@ // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation // consists of a simple multiplication by a one-place number, combined with // a subtraction. + // The digits (u[j+n]...u[j]) should be kept positive; if the result of + // this step is actually negative, (u[j+n]...u[j]) should be left as the + // true value plus b**(n+1), namely as the b's complement of + // the true value, and a "borrow" to the left should be remembered. bool isNeg = false; for (unsigned i = 0; i < n; ++i) { - uint64_t u_tmp = uint64_t(u[j+i]) | (uint64_t(u[j+i+1]) << 32); + uint64_t u_tmp = (uint64_t(u[j+i+1]) << 32) | uint64_t(u[j+i]); uint64_t subtrahend = uint64_t(qp) * uint64_t(v[i]); bool borrow = subtrahend > u_tmp; - DEBUG(dbgs() << "KnuthDiv: u_tmp == " << u_tmp - << ", subtrahend == " << subtrahend + DEBUG(dbgs() << "KnuthDiv: u_tmp = " << u_tmp + << ", subtrahend = " << subtrahend << ", borrow = " << borrow << '\n'); uint64_t result = u_tmp - subtrahend; unsigned k = j + i; - u[k++] = (unsigned)(result & (b-1)); // subtract low word - u[k++] = (unsigned)(result >> 32); // subtract high word - while (borrow && k <= m+n) { // deal with borrow to the left + u[k++] = (unsigned)result; // subtraction low word + u[k++] = (unsigned)(result >> 32); // subtraction high word + while (borrow && k <= m+n) { // deal with borrow to the left borrow = u[k] == 0; u[k]--; k++; } isNeg |= borrow; - DEBUG(dbgs() << "KnuthDiv: u[j+i] == " << u[j+i] << ", u[j+i+1] == " << - u[j+i+1] << '\n'); + DEBUG(dbgs() << "KnuthDiv: u[j+i] = " << u[j+i] + << ", u[j+i+1] = " << u[j+i+1] << '\n'); } DEBUG(dbgs() << "KnuthDiv: after subtraction:"); DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]); DEBUG(dbgs() << '\n'); - // The digits (u[j+n]...u[j]) should be kept positive; if the result of - // this step is actually negative, (u[j+n]...u[j]) should be left as the - // true value plus b**(n+1), namely as the b's complement of - // the true value, and a "borrow" to the left should be remembered. - // - if (isNeg) { - bool carry = true; // true because b's complement is "complement + 1" - for (unsigned i = 0; i <= m+n; ++i) { - u[i] = ~u[i] + carry; // b's complement - carry = carry && u[i] == 0; - } - } - DEBUG(dbgs() << "KnuthDiv: after complement:"); - DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]); - DEBUG(dbgs() << '\n'); // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was // negative, go to step D6; otherwise go on to step D7. @@ -1639,7 +1624,7 @@ u[j+n] += carry; } DEBUG(dbgs() << "KnuthDiv: after correction:"); - DEBUG(for (int i = m+n; i >=0; i--) dbgs() <<" " << u[i]); + DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]); DEBUG(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n'); // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3. @@ -1672,9 +1657,7 @@ } DEBUG(dbgs() << '\n'); } -#if 0 DEBUG(dbgs() << '\n'); -#endif } void APInt::divide(const APInt LHS, unsigned lhsWords, @@ -1798,7 +1781,7 @@ // The quotient is in Q. Reconstitute the quotient into Quotient's low // order words. - if (lhsWords == 1) { + if (lhsWords == 1) { // FIXME: Probably a dead case, lshWords is never 1 uint64_t tmp = uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2)); if (Quotient->isSingleWord()) Index: unittests/ADT/APIntTest.cpp =================================================================== --- unittests/ADT/APIntTest.cpp +++ unittests/ADT/APIntTest.cpp @@ -209,6 +209,206 @@ } } +TEST(APIntTest, divrem_big1) { + // Tests KnuthDiv rare step D6 + APInt a{256, "1ffffffffffffffff", 16}; + APInt b{256, "1ffffffffffffffff", 16}; + APInt c{256, 0}; + + auto p = a * b + c; + auto q = p.udiv(a); + auto r = p.urem(a); + EXPECT_EQ(q, b); + EXPECT_EQ(r, c); + APInt::udivrem(p, a, q, r); + EXPECT_EQ(q, b); + EXPECT_EQ(r, c); + q = p.udiv(b); + r = p.urem(b); + EXPECT_EQ(q, a); + EXPECT_EQ(r, c); + APInt::udivrem(p, b, q, r); + EXPECT_EQ(q, a); + EXPECT_EQ(r, c); + q = p.sdiv(a); + r = p.srem(a); + EXPECT_EQ(q, b); + EXPECT_EQ(r, c); + APInt::sdivrem(p, a, q, r); + EXPECT_EQ(q, b); + EXPECT_EQ(r, c); + q = p.sdiv(b); + r = p.srem(b); + EXPECT_EQ(q, a); + EXPECT_EQ(r, c); + APInt::sdivrem(p, b, q, r); + EXPECT_EQ(q, a); + EXPECT_EQ(r, c); +} + +TEST(APIntTest, divrem_big2) { + // Tests KnuthDiv rare step D6 + APInt a{1024, "111111ffffffffffffffff" + "ffffffffffffffffffffffffffffffff" + "fffffffffffffffffffffffffffffccf" + "ffffffffffffffffffffffffffffff00", 16}; + APInt b{1024, "112233ceff" + "cecece000000ffffffffffffffffffff" + "ffffffffffffffffffffffffffffffff" + "ffffffffffffffffffffffffffffffff" + "ffffffffffffffffffffffffffffff33", 16}; + APInt c{1024, 7919}; + + auto p = a * b + c; + auto q = p.udiv(a); + auto r = p.urem(a); + EXPECT_EQ(q, b); + EXPECT_EQ(r, c); + APInt::udivrem(p, a, q, r); + EXPECT_EQ(q, b); + EXPECT_EQ(r, c); + q = p.udiv(b); + r = p.urem(b); + EXPECT_EQ(q, a); + EXPECT_EQ(r, c); + APInt::udivrem(p, b, q, r); + EXPECT_EQ(q, a); + EXPECT_EQ(r, c); + q = p.sdiv(a); + r = p.srem(a); + EXPECT_EQ(q, b); + EXPECT_EQ(r, c); + APInt::sdivrem(p, a, q, r); + EXPECT_EQ(q, b); + EXPECT_EQ(r, c); + q = p.sdiv(b); + r = p.srem(b); + EXPECT_EQ(q, a); + EXPECT_EQ(r, c); + APInt::sdivrem(p, b, q, r); + EXPECT_EQ(q, a); + EXPECT_EQ(r, c); +} + +TEST(APIntTest, divrem_big3) { + // Tests KnuthDiv case without shift + APInt a{256, "ffffffffffffff0000000", 16}; + APInt b{256, "80000001ffffffffffffffff", 16}; + APInt c{256, 4219}; + + auto p = a * b + c; + auto q = p.udiv(a); + auto r = p.urem(a); + EXPECT_EQ(q, b); + EXPECT_EQ(r, c); + APInt::udivrem(p, a, q, r); + EXPECT_EQ(q, b); + EXPECT_EQ(r, c); + q = p.udiv(b); + r = p.urem(b); + EXPECT_EQ(q, a); + EXPECT_EQ(r, c); + APInt::udivrem(p, b, q, r); + EXPECT_EQ(q, a); + EXPECT_EQ(r, c); + q = p.sdiv(a); + r = p.srem(a); + EXPECT_EQ(q, b); + EXPECT_EQ(r, c); + APInt::sdivrem(p, a, q, r); + EXPECT_EQ(q, b); + EXPECT_EQ(r, c); + q = p.sdiv(b); + r = p.srem(b); + EXPECT_EQ(q, a); + EXPECT_EQ(r, c); + APInt::sdivrem(p, b, q, r); + EXPECT_EQ(q, a); + EXPECT_EQ(r, c); +} + +TEST(APIntTest, divrem_big4) { + // Tests heap allocation in divide() enfoced by huge numbers + auto a = APInt{4096, 1}.shl(2000); + auto b = APInt{4096, 5}.shl(2001); + auto c = APInt{4096, 4219*13}; + + auto p = a * b + c; + auto q = p.udiv(a); + auto r = p.urem(a); + EXPECT_EQ(q, b); + EXPECT_EQ(r, c); + q = APInt{1024, 0}; // test non-single word APInt conversion in divide() + r = APInt{1024, 0}; + APInt::udivrem(p, a, q, r); + EXPECT_EQ(q, b); + EXPECT_EQ(r, c); + q = p.udiv(b); + r = p.urem(b); + EXPECT_EQ(q, a); + EXPECT_EQ(r, c); + q = APInt{1024, 0}; + r = APInt{1024, 0}; + APInt::udivrem(p, b, q, r); + EXPECT_EQ(q, a); + EXPECT_EQ(r, c); + q = p.sdiv(a); + r = p.srem(a); + EXPECT_EQ(q, b); + EXPECT_EQ(r, c); + q = APInt{1024, 0}; + r = APInt{1024, 0}; + APInt::sdivrem(p, a, q, r); + EXPECT_EQ(q, b); + EXPECT_EQ(r, c); + q = p.sdiv(b); + r = p.srem(b); + EXPECT_EQ(q, a); + EXPECT_EQ(r, c); + q = APInt{1024, 0}; + r = APInt{1024, 0}; + APInt::sdivrem(p, b, q, r); + EXPECT_EQ(q, a); + EXPECT_EQ(r, c); +} + +TEST(APIntTest, divrem_big5) { + // Tests one word divisor case of divide() + auto a = APInt{1024, 19}.shl(811); + auto b = APInt{1024, 4356013}; // one word + auto c = APInt{1024, 1}; + + auto p = a * b + c; + auto q = p.udiv(a); + auto r = p.urem(a); + EXPECT_EQ(q, b); + EXPECT_EQ(r, c); + APInt::udivrem(p, a, q, r); + EXPECT_EQ(q, b); + EXPECT_EQ(r, c); + q = p.udiv(b); + r = p.urem(b); + EXPECT_EQ(q, a); + EXPECT_EQ(r, c); + APInt::udivrem(p, b, q, r); + EXPECT_EQ(q, a); + EXPECT_EQ(r, c); + q = p.sdiv(a); + r = p.srem(a); + EXPECT_EQ(q, b); + EXPECT_EQ(r, c); + APInt::sdivrem(p, a, q, r); + EXPECT_EQ(q, b); + EXPECT_EQ(r, c); + q = p.sdiv(b); + r = p.srem(b); + EXPECT_EQ(q, a); + EXPECT_EQ(r, c); + APInt::sdivrem(p, b, q, r); + EXPECT_EQ(q, a); + EXPECT_EQ(r, c); +} + TEST(APIntTest, fromString) { EXPECT_EQ(APInt(32, 0), APInt(32, "0", 2)); EXPECT_EQ(APInt(32, 1), APInt(32, "1", 2));