diff --git a/mlir/docs/Dialects/Linalg.md b/mlir/docs/Dialects/Linalg.md --- a/mlir/docs/Dialects/Linalg.md +++ b/mlir/docs/Dialects/Linalg.md @@ -60,35 +60,54 @@ according to their type. This notion of IR localization bears some resemblance to [URUK](http://icps.u-strasbg.fr/~bastoul/research/papers/GVBCPST06-IJPP.pdf). -Consider the following, partially specified, `linalg.generic` example: -``` -#attrs = {args_in: 1, args_out: 1} -func @example(%A: memref, - %B: memref>) { - linalg.generic #attrs (%2, %3): memref, - memref> +Consider the following fully specified `linalg.generic` example: + +```mlir +// File name: example1.mlir +#accesses = [ + affine_map<(d0) -> (d0)>, + affine_map<(d0) -> (d0)> +] +#attrs = { + args_in = 1, + args_out = 1, + indexing_maps = #accesses, + iterator_types = ["parallel"] +} + +// This function operates on two `memref` objects that store scalar and +// vector respectively, by an arbitrary function named "some_compute". +// "some_compute" applies on elements from both `memref`s in a pair-wise manner. +func @example(%A: memref, + %B: memref>) { + linalg.generic #attrs %A, %B { + ^bb0(%a: f32, %b: vector<4xf32>): + %c = "some_compute"(%a, %b): (f32, vector<4xf32>) -> (vector<4xf32>) + linalg.yield %c: vector<4xf32> + } : memref, memref> return } ``` The property "*Input and Output Operands Define The Iteration Space*" is materialized by a lowering into a form that will resemble: -``` -func @example(%A: memref, - %B: memref>) { - %M = "dim" %A, 0: index - %N = "dim" %B, 0: index - %eq = eq %M, %N: i1 // iteration space is consistent with data - assert(%eq): (i1) -> () - for %i = 0 to %M { - %a = load %A[%i]: memref - %b = load %B[%i]: memref, layout2> + +```mlir +// Run: mlir-opt example1.mlir -allow-unregistered-dialect -convert-linalg-to-loops +// This converted representation is in the `scf` dialect. +// It's syntax can be found here: https://mlir.llvm.org/docs/Dialects/SCFDialect/ +func @example(%arg0: memref, %arg1: memref>) { + %c0 = constant 0 : index + %c1 = constant 1 : index + %0 = dim %arg0, %c0 : memref + scf.for %arg2 = %c0 to %0 step %c1 { + %1 = load %arg0[%arg2] : memref + %2 = load %arg1[%arg2] : memref> // compute arg types match elemental tensor types - %c = "some_compute"(%a, %b): (f32, vector<4xf32>) -> (vector<4xf32>) - store %c, %B[%i]: memref, layout2> + %3 = "some_compute"(%1, %2) : (f32, vector<4xf32>) -> vector<4xf32> + store %3, %arg1[%arg2] : memref> } return -} ``` The property participates in simplifying analyses and transformations. For @@ -123,17 +142,27 @@ A `linalg.generic` *defines* the mapping between the iteration space (i.e. the loops) and the data. -Consider the following, partially specified, `linalg.generic` example: +Consider the following fully specified `linalg.generic` example: + ``` -#indexing_maps = { - (i, j) -> (j, i), - (i, j) -> (j) +// File name: example2.mlir +#indexing_maps = [ + affine_map<(i, j) -> (j, i)>, + affine_map<(i, j) -> (j)> +] +#attrs = { + args_in = 1, + args_out = 1, + indexing_maps = #indexing_maps, + iterator_types = ["parallel", "parallel"] } -#attrs = {args_in: 1, args_out: 1, indexings: indexing_maps} -func @example(%A: memref<8x?xf32, layout1>, - %B: memref>) { - linalg.generic #attrs (%A, %B): memref<8x?xf32, layout1>, - memref> +func @example(%A: memref<8x?xf32>, + %B: memref>) { + linalg.generic #attrs %A, %B { + ^bb0(%a: f32, %b: vector<4xf32>): + %c = "some_compute"(%a, %b): (f32, vector<4xf32>) -> (vector<4xf32>) + linalg.yield %c: vector<4xf32> + }: memref<8x?xf32>, memref> return } ``` @@ -141,22 +170,18 @@ The property "*Reversible Mappings Between Control and Data Structures*" is materialized by a lowering into a form that will resemble: ``` -#attrs = {args_in: 1, args_out: 1, indexings: indexing_maps} -func @example(%A: memref<8x?xf32, layout1>, - %B: memref>) { - // loop bounds determined from data sizes by “inverting the map” - %J = "dim" %A, 0: index - %I = "dim" %A, 1: index - %J2 = "dim" %B, 0: index - // iteration space is consistent with data + mapping inference - %eq = "eq" %J, %J2: i1 - "assert" %eq: (i1) -> () - for %i = 0 to %I { // loop order is fully defined by indexing maps - for %j = 0 to %J { // arbitrary permutations are possible - %a = "load" %A, %j, %i: memref<8x?xf32> - %b = "load" %B, %j: memref> - %c = "some_compute"(%a, %b): (f32, vector<4xf32>) -> (vector<4xf32>) - "store" %c, %B, %j: memref> +// Run: mlir-opt example2.mlir -allow-unregistered-dialect -convert-linalg-to-loops +func @example(%arg0: memref<8x?xf32>, %arg1: memref>) { + %c8 = constant 8 : index + %c0 = constant 0 : index + %c1 = constant 1 : index + %0 = dim %arg0, %c1 : memref<8x?xf32> + scf.for %arg2 = %c0 to %0 step %c1 { + scf.for %arg3 = %c0 to %c8 step %c1 { + %1 = load %arg0[%arg3, %arg2] : memref<8x?xf32> + %2 = load %arg1[%arg3] : memref> + %3 = "some_compute"(%1, %2) : (f32, vector<4xf32>) -> vector<4xf32> + store %3, %arg1[%arg3] : memref> } } return @@ -174,7 +199,7 @@ implement transformations such as tiling, tiled producer-consumer fusion, and promotion to temporary buffers in fast memory. -In the current implementation, `linalg.generic` uses a list of [AffineMaps](). +In the current implementation, `linalg.generic` uses a list of [AffineMaps](https://mlir.llvm.org/docs/LangRef/#affinemap-attribute) (see the `#indexing_maps` attribute in the previous examples). This is a pragmatic short-term solution, but in the longer term note that this property could be even evaluated dynamically, similarly to inspector-executor algorithms. @@ -234,38 +259,53 @@ buffers arbitrarily and write into them. If this conflicts with some parallel iterator requirement, this is undefined behavior. -Concretely, consider the following, partially specified, `linalg.generic` -example: +Previous examples already ellaborate compute payloads with an unregistered function `"some_compute"`. The following code snippet shows what the result will be when using a concrete operation `addf`: ``` -#indexing_maps = { - (i, j) -> (i, j), - (i, j) -> (i, j) +// File name: example3.mlir +#indexing_maps = [ + affine_map<(i, j) -> (i, j)>, + affine_map<(i, j) -> (i, j)>, + affine_map<(i, j) -> (i, j)> +] +#attrs = { + args_in = 2, + args_out = 1, + indexing_maps = #indexing_maps, + iterator_types = ["parallel", "parallel"] } -#attrs = {args_in: 2, args_out: 1, indexings: #indexing_maps} func @example(%A: memref, %B: memref, %C: memref) { - linalg.generic #attrs (%A, %B, %C) { - ^bb0(%a: f32, %b: f32): - %c = addf %a, %b : f32 - return %c : f32 + linalg.generic #attrs %A, %B, %C { + ^bb0(%a: f32, %b: f32, %c: f32): + %d = addf %a, %b : f32 + linalg.yield %d : f32 }: memref, memref, memref return } ``` +This function basically element-wise adds up two matrices (`%A` and `%B`) and stores the result into another one (`%C`). + The property "*The Compute Payload is Specified With a Region*" is materialized by a lowering into a form that will resemble: ``` +// Run: mlir-opt example3.mlir -convert-linalg-to-loops +#indexing_maps = [ + affine_map<(i, j) -> (i, j)>, + affine_map<(i, j) -> (i, j)>, + affine_map<(i, j) -> (i, j)> +] +#attrs = { + args_in = 2, + args_out = 1, + indexing_maps = #indexing_maps, + iterator_types = ["parallel", "parallel"] +} func @example(%A: memref, %B: memref, %C: memref) { - %M = dim %A, 0: index - %N = dim %B, 1: index - for %i = 0 to %M { - for %j = 0 to %N { - %a = load %A[%i, %j]: memref - %b = load %B[%i, %j]: memref> - %c = addf %a, %b : f32 - store %c, %C[%i, %j]: memref - } - } + linalg.generic #attrs %A, %B, %C { + ^bb0(%a: f32, %b: f32, %c: f32): + %d = addf %a, %b : f32 + linalg.yield %d : f32 + }: memref, memref, memref return } ``` @@ -287,20 +327,27 @@ external library calls or a custom ISA, the problem for codegen is similar: preservation of a fixed granularity. -Consider the following, partially specified, `linalg.generic` -example: +Consider the following example that adds an additional attribute `library_call="pointwise_add"` +that specifies the name of an external library call we intend to use: ``` -#fun_attr = "pointwise_add" -#indexing_maps = { - (i, j) -> (i, j), - (i, j) -> (i, j) +// File name: example4.mlir +#indexing_maps = [ + affine_map<(i, j) -> (i, j)>, + affine_map<(i, j) -> (i, j)>, + affine_map<(i, j) -> (i, j)> +] +#attrs = { + args_in = 2, + args_out = 1, + indexing_maps = #indexing_maps, + iterator_types = ["parallel", "parallel"], + library_call = "pointwise_add" } -#attrs = {args_in: 2, args_out: 1, indexings: #indexing_maps, fun: #fun_attr} func @example(%A: memref, %B: memref, %C: memref) { - linalg.generic #attrs (%A, %B, %C) { - ^bb0(%a: f32, %b: f32): - %c = addf %a, %b : f32 - return %c : f32 + linalg.generic #attrs %A, %B, %C { + ^bb0(%a: f32, %b: f32, %c: f32): + %d = addf %a, %b : f32 + linalg.yield %d : f32 }: memref, memref, memref return } @@ -310,28 +357,39 @@ materialized by a lowering into a form that will resemble: ``` -func @pointwise_add_sxsxf32_sxsxf32(memref, memref, memref) -> () +// Run: mlir-opt example4.mlir -convert-linalg-to-std +// Note that we lower the Linalg dialect directly to the Standard dialect. +// See this doc: https://mlir.llvm.org/docs/Dialects/Standard/ -func @example(%A: memref, %B: memref, %C: memref) { - call @pointwise_add_sxsxf32_sxsxf32 (%A, %B, %C): - (memref, memref, memref) -> () +#map0 = affine_map<(d0, d1)[s0, s1, s2] -> (d0 * s1 + s0 + d1 * s2)> + +func @example(%arg0: memref, %arg1: memref, %arg2: memref) { + %0 = memref_cast %arg0 : memref to memref + %1 = memref_cast %arg1 : memref to memref + %2 = memref_cast %arg2 : memref to memref + call @pointwise_add(%0, %1, %2) : (memref, memref, memref) -> () return } +func @pointwise_add(memref, memref, memref) attributes {llvm.emit_c_interface} ``` Which, after lowering to LLVM resembles: ``` -func @pointwise_add_sxsxf32_sxsxf32(!llvm<"{ float*, i64, [2 x i64], [3 x i64] }*">, - !llvm<"{ float*, i64, [2 x i64], [3 x i64] }*">, - !llvm<"{ float*, i64, [2 x i64], [3 x i64] }*">) -> () - -func @example(%A: !llvm<"{ float*, i64, [2 x i64], [3 x i64] }*">, - %B: !llvm<"{ float*, i64, [2 x i64], [3 x i64] }*">, - %C: !llvm<"{ float*, i64, [2 x i64], [3 x i64] }*">) { - llvm.call @pointwise_add_sxsxf32_sxsxf32 (%A, %B, %C): - (!llvm<"{ float*, i64, [2 x i64], [3 x i64] }*">...) -> () +// Run: mlir-opt example4.mlir -convert-linalg-to-std | mlir-opt -convert-std-to-llvm +// Some generated code are omitted here. +func @example(%arg0: !llvm<"float*">, ...) { + ... + llvm.call @pointwise_add(...) : (!llvm<"float*">, ...) -> () return } + +llvm.func @pointwise_add(%arg0: !llvm<"float*">, ...) attributes {llvm.emit_c_interface} { + ... + llvm.call @_mlir_ciface_pointwise_add(%9, %19, %29) : (!llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }*">, !llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }*">, !llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] } +*">) -> () + llvm.return +} +llvm.func @_mlir_ciface_pointwise_add(!llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }*">, !llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }*">, !llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }*">) attributes {llvm.emit_c_interface} ``` ##### Convention For External Library Interoperability