Index: lib/Target/Hexagon/CMakeLists.txt =================================================================== --- lib/Target/Hexagon/CMakeLists.txt +++ lib/Target/Hexagon/CMakeLists.txt @@ -15,6 +15,7 @@ HexagonAsmPrinter.cpp HexagonCFGOptimizer.cpp HexagonCopyToCombine.cpp + HexagonExpandCondsets.cpp HexagonExpandPredSpillCode.cpp HexagonFixupHwLoops.cpp HexagonFrameLowering.cpp Index: lib/Target/Hexagon/HexagonExpandCondsets.cpp =================================================================== --- /dev/null +++ lib/Target/Hexagon/HexagonExpandCondsets.cpp @@ -0,0 +1,1348 @@ +// Replace mux instructions with the corresponding legal instructions. +// It is meant to work post-SSA, but still on virtual registers. It was +// originally placed between register coalescing and machine instruction +// scheduler. +// In this place in the optimization sequence, live interval analysis had +// been performed, and the live intervals should be preserved. A large part +// of the code deals with preserving the liveness information. +// +// Liveness tracking aside, the main functionality of this pass is divided +// into two steps. The first step is to replace an instruction +// vreg0 = C2_mux vreg0, vreg1, vreg2 +// with a pair of conditional transfers +// vreg0 = A2_tfrt vreg0, vreg1 +// vreg0 = A2_tfrf vreg0, vreg2 +// It is the intention that the execution of this pass could be terminated +// after this step, and the code generated would be functionally correct. +// +// If the uses of the source values vreg1 and vreg2 are kills, and their +// definitions are predicable, then in the second step, the conditional +// transfers will then be rewritten as predicated instructions. E.g. +// vreg0 = A2_or vreg1, vreg2 +// vreg3 = A2_tfrt vreg99, vreg0 +// will be rewritten as +// vreg3 = A2_port vreg99, vreg1, vreg2 +// +// This replacement has two variants: "up" and "down". Consider this case: +// vreg0 = A2_or vreg1, vreg2 +// ... [intervening instructions] ... +// vreg3 = A2_tfrt vreg99, vreg0 +// variant "up": +// vreg3 = A2_port vreg99, vreg1, vreg2 +// ... [intervening instructions, vreg0->vreg3] ... +// [deleted] +// variant "down": +// [deleted] +// ... [intervening instructions] ... +// vreg3 = A2_port vreg99, vreg1, vreg2 +// +// Both, one or none of these variants may be valid, and checks are made +// to rule out inapplicable variants. +// +// As an additional optimization, before either of the two steps above is +// executed, the pass attempts to coalesce the target register with one of +// the source registers, e.g. given an instruction +// vreg3 = C2_mux vreg0, vreg1, vreg2 +// vreg3 will be coalesced with either vreg1 or vreg2. If this succeeds, +// the instruction would then be (for example) +// vreg3 = C2_mux vreg0, vreg3, vreg2 +// and, under certain circumstances, this could result in only one predica- +// ted instruction: +// vreg3 = A2_tfrf vreg0, vreg2 +// + +#define DEBUG_TYPE "expand-condsets" +#include "HexagonTargetMachine.h" + +#include "llvm/CodeGen/Passes.h" +#include "llvm/CodeGen/LiveInterval.h" +#include "llvm/CodeGen/LiveIntervalAnalysis.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/Target/TargetInstrInfo.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/Target/TargetRegisterInfo.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" + +using namespace llvm; + +static cl::opt OptTfrLimit("expand-condsets-tfr-limit", + cl::init(~0U), cl::Hidden, cl::desc("Max number of mux expansions")); +static cl::opt OptCoaLimit("expand-condsets-coa-limit", + cl::init(~0U), cl::Hidden, cl::desc("Max number of segment coalescings")); + +namespace llvm { + void initializeHexagonExpandCondsetsPass(PassRegistry&); + FunctionPass *createHexagonExpandCondsets(const HexagonTargetMachine &TM); +} + +namespace { + class HexagonExpandCondsets : public MachineFunctionPass { + public: + static char ID; + HexagonExpandCondsets(const HexagonTargetMachine& TM) : + MachineFunctionPass(ID), HTM(TM), + TII(*HTM.getSubtargetImpl()->getInstrInfo()), + TRI(*HTM.getSubtargetImpl()->getRegisterInfo()), + MRI(0), LIS(0), CoaLimitActive(false), + TfrLimitActive(false), CoaCounter(0), TfrCounter(0) { + if (OptCoaLimit.getPosition()) + CoaLimitActive = true, CoaLimit = OptCoaLimit; + if (OptTfrLimit.getPosition()) + TfrLimitActive = true, TfrLimit = OptTfrLimit; + initializeHexagonExpandCondsetsPass(*PassRegistry::getPassRegistry()); + } + + virtual const char *getPassName() const { + return "Hexagon Expand Condsets"; + } + virtual void getAnalysisUsage(AnalysisUsage &AU) const { + AU.addRequired(); + AU.addPreserved(); + AU.addPreserved(); + MachineFunctionPass::getAnalysisUsage(AU); + } + virtual bool runOnMachineFunction(MachineFunction &MF); + + private: + const HexagonTargetMachine& HTM; + const HexagonInstrInfo &TII; + const TargetRegisterInfo &TRI; + MachineRegisterInfo *MRI; + LiveIntervals *LIS; + + bool CoaLimitActive, TfrLimitActive; + unsigned CoaLimit, TfrLimit, CoaCounter, TfrCounter; + + struct RegisterRef { + RegisterRef(const MachineOperand &Op) : Reg(Op.getReg()), + Sub(Op.getSubReg()) {} + RegisterRef(unsigned R = 0, unsigned S = 0) : Reg(R), Sub(S) {} + bool operator== (RegisterRef RR) const { + return Reg == RR.Reg && Sub == RR.Sub; + } + bool operator!= (RegisterRef RR) const { return !operator==(RR); } + unsigned Reg, Sub; + }; + + typedef DenseMap ReferenceMap; + enum { Sub_Low = 0x1, Sub_High = 0x2, Sub_None = (Sub_Low | Sub_High) }; + enum { Exec_Then = 0x10, Exec_Else = 0x20 }; + unsigned getMaskForSub(unsigned Sub); + bool isCondset(const MachineInstr *MI); + + void addRefToMap(RegisterRef RR, ReferenceMap &Map, unsigned Exec); + bool isRefInMap(RegisterRef, ReferenceMap &Map, unsigned Exec); + + LiveInterval::iterator nextSegment(LiveInterval &LI, SlotIndex S); + LiveInterval::iterator prevSegment(LiveInterval &LI, SlotIndex S); + void makeDefined(unsigned Reg, SlotIndex S, bool SetDef); + void makeUndead(unsigned Reg, SlotIndex S); + void shrinkToUses(unsigned Reg, LiveInterval &LI); + void updateKillFlags(unsigned Reg, LiveInterval &LI); + void terminateSegment(LiveInterval::iterator LT, SlotIndex S, + LiveInterval &LI); + void addInstrToLiveness(MachineInstr *MI); + void removeInstrFromLiveness(MachineInstr *MI); + + unsigned getCondTfrOpcode(const MachineOperand &SO, bool Cond); + MachineInstr *genTfrFor(MachineOperand &SrcOp, unsigned DstR, + unsigned DstSR, const MachineOperand &PredOp, bool Cond); + bool split(MachineInstr *MI); + bool splitInBlock(MachineBasicBlock &B); + + bool isPredicable(MachineInstr *MI); + MachineInstr *getReachingDefForPred(RegisterRef RD, + MachineBasicBlock::iterator UseIt, unsigned PredR, bool Cond); + bool canMoveOver(MachineInstr *MI, ReferenceMap &Defs, ReferenceMap &Uses); + bool canMoveMemTo(MachineInstr *MI, MachineInstr *ToI, bool IsDown); + void predicateAt(RegisterRef RD, MachineInstr *MI, + MachineBasicBlock::iterator Where, unsigned PredR, bool Cond); + void renameInRange(RegisterRef RO, RegisterRef RN, unsigned PredR, + bool Cond, MachineBasicBlock::iterator First, + MachineBasicBlock::iterator Last); + bool predicate(MachineInstr *TfrI, bool Cond); + bool predicateInBlock(MachineBasicBlock &B); + + void postprocessUndefImplicitUses(MachineBasicBlock &B); + void removeImplicitUses(MachineInstr *MI); + void removeImplicitUses(MachineBasicBlock &B); + + bool isIntReg(RegisterRef RR, unsigned &BW); + bool isIntraBlocks(LiveInterval &LI); + bool coalesceRegisters(RegisterRef R1, RegisterRef R2); + bool coalesceSegments(MachineFunction &MF); + }; +} + +char HexagonExpandCondsets::ID = 0; + + +unsigned HexagonExpandCondsets::getMaskForSub(unsigned Sub) { + switch (Sub) { + case Hexagon::subreg_loreg: + return Sub_Low; + case Hexagon::subreg_hireg: + return Sub_High; + case Hexagon::NoSubRegister: + return Sub_None; + } + llvm_unreachable("Invalid subregister"); +} + + +bool HexagonExpandCondsets::isCondset(const MachineInstr *MI) { + unsigned Opc = MI->getOpcode(); + switch (Opc) { + case Hexagon::C2_mux: + case Hexagon::C2_muxii: + case Hexagon::C2_muxir: + case Hexagon::C2_muxri: + case Hexagon::MUX64_rr: + return true; + break; + } + return false; +} + + +void HexagonExpandCondsets::addRefToMap(RegisterRef RR, ReferenceMap &Map, + unsigned Exec) { + unsigned Mask = getMaskForSub(RR.Sub) | Exec; + ReferenceMap::iterator F = Map.find(RR.Reg); + if (F == Map.end()) + Map.insert(std::make_pair(RR.Reg, Mask)); + else + F->second |= Mask; +} + + +bool HexagonExpandCondsets::isRefInMap(RegisterRef RR, ReferenceMap &Map, + unsigned Exec) { + ReferenceMap::iterator F = Map.find(RR.Reg); + if (F == Map.end()) + return false; + unsigned Mask = getMaskForSub(RR.Sub) | Exec; + if (Mask & F->second) + return true; + return false; +} + + +LiveInterval::iterator HexagonExpandCondsets::nextSegment(LiveInterval &LI, + SlotIndex S) { + for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) { + if (I->start >= S) + return I; + } + return LI.end(); +} + + +LiveInterval::iterator HexagonExpandCondsets::prevSegment(LiveInterval &LI, + SlotIndex S) { + LiveInterval::iterator P = LI.end(); + for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) { + if (I->end > S) + return P; + P = I; + } + return P; +} + + +/// Find the implicit use of register Reg in slot index S, and make sure +/// that the "defined" flag is set to SetDef. While the mux expansion is +/// going on, predicated instructions will have implicit uses of the re- +/// gisters that are being defined. This is to keep any preceding defini- +/// tions live. If there is no preceding definition, the implicit use will +/// be marked as "undef", otherwise it will be "defined". This function +/// is used to update the flag. +void HexagonExpandCondsets::makeDefined(unsigned Reg, SlotIndex S, + bool SetDef) { + if (!S.isRegister()) + return; + MachineInstr *MI = LIS->getInstructionFromIndex(S); + assert(MI && "Expecting instruction"); + for (auto &Op : MI->operands()) { + if (!Op.isReg() || !Op.isUse() || Op.getReg() != Reg) + continue; + bool IsDef = !Op.isUndef(); + if (Op.isImplicit() && IsDef != SetDef) + Op.setIsUndef(!SetDef); + } +} + + +void HexagonExpandCondsets::makeUndead(unsigned Reg, SlotIndex S) { + // If S is a block boundary, then there can still be a dead def reaching + // this point. Instead of traversing the CFG, queue start points of all + // live segments that begin with a register, and end at a block boundary. + // This may "resurrect" some truly dead definitions, but doing so is + // harmless. + SmallVector Defs; + if (S.isBlock()) { + LiveInterval &LI = LIS->getInterval(Reg); + for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) { + if (!I->start.isRegister() || !I->end.isBlock()) + continue; + MachineInstr *MI = LIS->getInstructionFromIndex(I->start); + Defs.push_back(MI); + } + } else if (S.isRegister()) { + MachineInstr *MI = LIS->getInstructionFromIndex(S); + Defs.push_back(MI); + } + + for (unsigned i = 0, n = Defs.size(); i < n; ++i) { + MachineInstr *MI = Defs[i]; + for (auto &Op : MI->operands()) { + if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg) + continue; + Op.setIsDead(false); + } + } +} + + +/// Shrink the segments in the live interval for a given register to the last +/// use before each subsequent def. Unlike LiveIntervals::shrinkToUses, this +/// function will not mark any definitions of Reg as dead. The reason for this +/// is that this function is used while a MUX instruction is being expanded, +/// or while a conditional copy is undergoing predication. During these pro- +/// cesses, there may be defs present in the instruction sequence that have +/// not yet been removed, or there may be missing uses that have not yet been +/// added. We want to utilize LiveIntervals::shrinkToUses as much as possible, +/// but since it does not extend any intervals that are too short, we need to +/// pre-emptively extend them here in anticipation of further changes. +void HexagonExpandCondsets::shrinkToUses(unsigned Reg, LiveInterval &LI) { + SmallVector Deads; + LIS->shrinkToUses(&LI, &Deads); + // Need to undo the deadification made by "shrinkToUses". It's easier to + // do it here, since we have a list of all instructions that were just + // marked as dead. + for (unsigned i = 0, n = Deads.size(); i < n; ++i) { + MachineInstr *MI = Deads[i]; + // Clear the "dead" flag. + for (auto &Op : MI->operands()) { + if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg) + continue; + Op.setIsDead(false); + } + // Extend the live segment to the beginning of the next one. + LiveInterval::iterator End = LI.end(); + SlotIndex S = LIS->getInstructionIndex(MI).getRegSlot(); + LiveInterval::iterator T = LI.FindSegmentContaining(S); + assert(T != End); + LiveInterval::iterator N = std::next(T); + if (N != End) + T->end = N->start; + else + T->end = LIS->getMBBEndIdx(MI->getParent()); + } + updateKillFlags(Reg, LI); +} + + +/// Given an updated live interval LI for register Reg, update the kill flags +/// in instructions using Reg to reflect the liveness changes. +void HexagonExpandCondsets::updateKillFlags(unsigned Reg, LiveInterval &LI) { + MRI->clearKillFlags(Reg); + for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) { + SlotIndex EX = I->end; + if (!EX.isRegister()) + continue; + MachineInstr *MI = LIS->getInstructionFromIndex(EX); + for (auto &Op : MI->operands()) { + if (!Op.isReg() || !Op.isUse() || Op.getReg() != Reg) + continue; + // Only set the kill flag on the first encountered use of Reg in this + // instruction. + Op.setIsKill(true); + break; + } + } +} + + +/// When adding a new instruction to liveness, the newly added definition +/// will start a new live segment. This may happen at a position that falls +/// within an existing live segment. In such case that live segment needs to +/// be truncated to make room for the new segment. Ultimately, the truncation +/// will occur at the last use, but for now the segment can be terminated +/// right at the place where the new segment will start. The segments will be +/// shrunk-to-uses later. +void HexagonExpandCondsets::terminateSegment(LiveInterval::iterator LT, + SlotIndex S, LiveInterval &LI) { + // Terminate the live segment pointed to by LT within a live interval LI. + if (LT == LI.end()) + return; + + VNInfo *OldVN = LT->valno; + SlotIndex EX = LT->end; + LT->end = S; + // If LT does not end at a block boundary, the termination is done. + if (!EX.isBlock()) + return; + + // If LT ended at a block boundary, it's possible that its value number + // is picked up at the beginning other blocks. Create a new value number + // and change such blocks to use it instead. + VNInfo *NewVN = 0; + for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) { + if (!I->start.isBlock() || I->valno != OldVN) + continue; + // Generate on-demand a new value number that is defined by the + // block beginning (i.e. -phi). + if (!NewVN) + NewVN = LI.getNextValue(I->start, LIS->getVNInfoAllocator()); + I->valno = NewVN; + } +} + + +/// Add the specified instruction to live intervals. This function is used +/// to update the live intervals while the program code is being changed. +/// Neither the expansion of a MUX, nor the predication are atomic, and this +/// function is used to update the live intervals while these transformations +/// are being done. +void HexagonExpandCondsets::addInstrToLiveness(MachineInstr *MI) { + SlotIndex MX = LIS->isNotInMIMap(MI) ? LIS->InsertMachineInstrInMaps(MI) + : LIS->getInstructionIndex(MI); + DEBUG(dbgs() << "adding liveness info for instr\n " << MX << " " << *MI); + + MX = MX.getRegSlot(); + bool Predicated = TII.isPredicated(MI); + MachineBasicBlock *MB = MI->getParent(); + + // Strip all implicit uses from predicated instructions. They will be + // added again, according to the updated information. + if (Predicated) + removeImplicitUses(MI); + + // For each def in MI we need to insert a new live segment starting at MX + // into the interval. If there already exists a live segment in the inter- + // val that contains MX, we need to terminate it at MX. + SmallVector Defs; + for (auto &Op : MI->operands()) + if (Op.isReg() && Op.isDef()) + Defs.push_back(RegisterRef(Op)); + + for (unsigned i = 0, n = Defs.size(); i < n; ++i) { + unsigned DefR = Defs[i].Reg; + LiveInterval &LID = LIS->getInterval(DefR); + DEBUG(dbgs() << "adding def " << PrintReg(DefR, &TRI) + << " with interval\n " << LID << "\n"); + // If MX falls inside of an existing live segment, terminate it. + LiveInterval::iterator LT = LID.FindSegmentContaining(MX); + if (LT != LID.end()) + terminateSegment(LT, MX, LID); + DEBUG(dbgs() << "after terminating segment\n " << LID << "\n"); + + // Create a new segment starting from MX. + LiveInterval::iterator P = prevSegment(LID, MX), N = nextSegment(LID, MX); + SlotIndex EX; + VNInfo *VN = LID.getNextValue(MX, LIS->getVNInfoAllocator()); + if (N == LID.end()) { + // There is no live segment after MX. End this segment at the end of + // the block. + EX = LIS->getMBBEndIdx(MB); + } else { + // If the next segment starts at the block boundary, end the new segment + // at the boundary of the preceding block (i.e. the previous index). + // Otherwise, end the segment at the beginning of the next segment. In + // either case it will be "shrunk-to-uses" later. + EX = N->start.isBlock() ? N->start.getPrevIndex() : N->start; + } + if (Predicated) { + // Predicated instruction will have an implicit use of the defined + // register. This is necessary so that this definition will not make + // any previous definitions dead. If there are no previous live + // segments, still add the implicit use, but make it "undef". + // Because of the implicit use, the preceding definition is not + // dead. Mark is as such (if necessary). + MachineOperand ImpUse = MachineOperand::CreateReg(DefR, false, true); + ImpUse.setSubReg(Defs[i].Sub); + bool Undef = false; + if (P == LID.end()) + Undef = true; + else { + // If the previous segment extends to the end of the previous block, + // the end index may actually be the beginning of this block. If + // the previous segment ends at a block boundary, move it back by one, + // to get the proper block for it. + SlotIndex PE = P->end.isBlock() ? P->end.getPrevIndex() : P->end; + MachineBasicBlock *PB = LIS->getMBBFromIndex(PE); + if (PB != MB && !LIS->isLiveInToMBB(LID, MB)) + Undef = true; + } + if (!Undef) { + makeUndead(DefR, P->valno->def); + // We are adding a live use, so extend the previous segment to + // include it. + P->end = MX; + } else { + ImpUse.setIsUndef(true); + } + + if (!MI->readsRegister(DefR)) + MI->addOperand(ImpUse); + if (N != LID.end()) + makeDefined(DefR, N->start, true); + } + LiveRange::Segment NR = LiveRange::Segment(MX, EX, VN); + LID.addSegment(NR); + DEBUG(dbgs() << "added a new segment " << NR << "\n " << LID << "\n"); + shrinkToUses(DefR, LID); + DEBUG(dbgs() << "updated imp-uses: " << *MI); + LID.verify(); + } + + // For each use in MI: + // - If there is no live segment that contains MX for the used register, + // extend the previous one. Ignore implicit uses. + for (auto &Op : MI->operands()) { + if (!Op.isReg() || !Op.isUse() || Op.isImplicit() || Op.isUndef()) + continue; + unsigned UseR = Op.getReg(); + LiveInterval &LIU = LIS->getInterval(UseR); + // Find the last segment P that starts before MX. + LiveInterval::iterator P = LIU.FindSegmentContaining(MX); + if (P == LIU.end()) + P = prevSegment(LIU, MX); + + assert(P != LIU.end() && "MI uses undefined register?"); + SlotIndex EX = P->end; + // If P contains MX, there is not much to do. + if (EX > MX) { + Op.setIsKill(false); + continue; + } + // Otherwise, extend P to "next(MX)". + P->end = MX.getNextIndex(); + Op.setIsKill(true); + // Get the old "kill" instruction, and remove the kill flag. + if (MachineInstr *KI = LIS->getInstructionFromIndex(MX)) + KI->clearRegisterKills(UseR, nullptr); + shrinkToUses(UseR, LIU); + LIU.verify(); + } +} + + +/// Update the live interval information to reflect the removal of the given +/// instruction from the program. As with "addInstrToLiveness", this function +/// is called while the program code is being changed. +void HexagonExpandCondsets::removeInstrFromLiveness(MachineInstr *MI) { + SlotIndex MX = LIS->getInstructionIndex(MI).getRegSlot(); + DEBUG(dbgs() << "removing instr\n " << MX << " " << *MI); + + // For each def in MI: + // If MI starts a live segment, merge this segment with the previous segment. + // + for (auto &Op : MI->operands()) { + if (!Op.isReg() || !Op.isDef()) + continue; + unsigned DefR = Op.getReg(); + LiveInterval &LID = LIS->getInterval(DefR); + LiveInterval::iterator LT = LID.FindSegmentContaining(MX); + assert(LT != LID.end() && "Expecting live segments"); + DEBUG(dbgs() << "removing def at " << MX << " of " << PrintReg(DefR, &TRI) + << " with interval\n " << LID << "\n"); + if (LT->start != MX) + continue; + + VNInfo *MVN = LT->valno; + if (LT != LID.begin()) { + // If the current live segment is not the first, the task is easy. If + // the previous segment continues into the current block, extend it to + // the end of the current one, and merge the value numbers. + // Otherwise, remove the current segment, and make the end of it "undef". + LiveInterval::iterator P = std::prev(LT); + SlotIndex PE = P->end.isBlock() ? P->end.getPrevIndex() : P->end; + MachineBasicBlock *MB = MI->getParent(); + MachineBasicBlock *PB = LIS->getMBBFromIndex(PE); + if (PB != MB && !LIS->isLiveInToMBB(LID, MB)) { + makeDefined(DefR, LT->end, false); + LID.removeSegment(*LT); + } else { + // Make the segments adjacent, so that merge-vn can also merge the + // segments. + P->end = LT->start; + makeUndead(DefR, P->valno->def); + LID.MergeValueNumberInto(MVN, P->valno); + } + } else { + LiveInterval::iterator N = std::next(LT); + LiveInterval::iterator RmB = LT, RmE = N; + while (N != LID.end()) { + // Iterate until the first register-based definition is found + // (i.e. skip all block-boundary entries). + LiveInterval::iterator Next = std::next(N); + if (N->start.isRegister()) { + makeDefined(DefR, N->start, false); + break; + } + if (N->end.isRegister()) { + makeDefined(DefR, N->end, false); + RmE = Next; + break; + } + RmE = Next; + N = Next; + } + // Erase the segments in one shot to avoid invalidating iterators. + LID.segments.erase(RmB, RmE); + } + + bool VNUsed = false; + for (LiveInterval::iterator I = LID.begin(), E = LID.end(); I != E; ++I) { + if (I->valno != MVN) + continue; + VNUsed = true; + break; + } + if (!VNUsed) + MVN->markUnused(); + + DEBUG(dbgs() << "new interval: "); + if (!LID.empty()) { + DEBUG(dbgs() << LID << "\n"); + LID.verify(); + } else { + DEBUG(dbgs() << "\n"); + LIS->removeInterval(DefR); + } + } + + // For uses there is nothing to do. The intervals will be updated via + // shrinkToUses. + SmallVector Uses; + for (auto &Op : MI->operands()) { + if (!Op.isReg() || !Op.isUse()) + continue; + unsigned R = Op.getReg(); + if (!TargetRegisterInfo::isVirtualRegister(R)) + continue; + Uses.push_back(R); + } + LIS->RemoveMachineInstrFromMaps(MI); + MI->eraseFromParent(); + for (unsigned i = 0, n = Uses.size(); i < n; ++i) { + LiveInterval &LI = LIS->getInterval(Uses[i]); + shrinkToUses(Uses[i], LI); + } +} + + +/// Get the opcode for a conditional transfer of the value in SO (source ope- +/// rand). The condition (true/false) is given in Cond. +unsigned HexagonExpandCondsets::getCondTfrOpcode(const MachineOperand &SO, + bool Cond) { + using namespace Hexagon; + if (SO.isReg()) { + unsigned PhysR; + RegisterRef RS = SO; + if (TargetRegisterInfo::isVirtualRegister(RS.Reg)) { + const TargetRegisterClass *VC = MRI->getRegClass(RS.Reg); + assert(VC->begin() != VC->end() && "Empty register class"); + PhysR = *VC->begin(); + } else { + assert(TargetRegisterInfo::isPhysicalRegister(RS.Reg)); + PhysR = RS.Reg; + } + unsigned PhysS = (RS.Sub == 0) ? PhysR : TRI.getSubReg(PhysR, RS.Sub); + const TargetRegisterClass *RC = TRI.getMinimalPhysRegClass(PhysS); + switch (RC->getSize()) { + case 4: + return Cond ? A2_tfrt : A2_tfrf; + case 8: + return Cond ? A2_tfrpt : A2_tfrpf; + } + llvm_unreachable("Invalid register operand"); + } + if (SO.isImm() || SO.isFPImm()) + return Cond ? C2_cmoveit : C2_cmoveif; + llvm_unreachable("Unexpected source operand"); +} + + +/// Generate a conditional transfer, copying the value SrcOp to the destina- +/// tion register DstR:DstSR, and using the predicate register from PredOp. +/// The Cond argument specifies whether the predicate is to be if(PredOp), or +/// if(!PredOp). +MachineInstr *HexagonExpandCondsets::genTfrFor(MachineOperand &SrcOp, + unsigned DstR, unsigned DstSR, const MachineOperand &PredOp, bool Cond) { + MachineInstr *MI = SrcOp.getParent(); + MachineBasicBlock &B = *MI->getParent(); + MachineBasicBlock::iterator At = MI; + DebugLoc DL = MI->getDebugLoc(); + + // Don't avoid identity copies here (i.e. if the source and the destina- + // tion are the same registers). It is actually better to generate them + // here, since this would cause the copy to potentially be predicated + // in the next step. The predication will remove such a copy if it is + // unable to predicate. + + unsigned Opc = getCondTfrOpcode(SrcOp, Cond); + MachineInstr *TfrI = BuildMI(B, At, DL, TII.get(Opc)) + .addReg(DstR, RegState::Define, DstSR) + .addOperand(PredOp) + .addOperand(SrcOp); + // We don't want any kills yet. + TfrI->clearKillInfo(); + DEBUG(dbgs() << "created an initial copy: " << *TfrI); + return TfrI; +} + + +/// Replace a MUX instruction MI with a pair A2_tfrt/A2_tfrf. This function +/// performs all necessary changes to complete the replacement. +bool HexagonExpandCondsets::split(MachineInstr *MI) { + if (TfrLimitActive) { + if (TfrCounter >= TfrLimit) + return false; + TfrCounter++; + } + DEBUG(dbgs() << "\nsplitting BB#" << MI->getParent()->getNumber() + << ": " << *MI); + MachineOperand &MD = MI->getOperand(0); // Definition + MachineOperand &MP = MI->getOperand(1); // Predicate register + assert(MD.isDef()); + unsigned DR = MD.getReg(), DSR = MD.getSubReg(); + + // First, create the two invididual conditional transfers, and add each + // of them to the live intervals information. Do that first and then remove + // the old instruction from live intervals. + if (MachineInstr *TfrT = genTfrFor(MI->getOperand(2), DR, DSR, MP, true)) + addInstrToLiveness(TfrT); + if (MachineInstr *TfrF = genTfrFor(MI->getOperand(3), DR, DSR, MP, false)) + addInstrToLiveness(TfrF); + removeInstrFromLiveness(MI); + + return true; +} + + +/// Split all MUX instructions in the given block into pairs of contitional +/// transfers. +bool HexagonExpandCondsets::splitInBlock(MachineBasicBlock &B) { + bool Changed = false; + MachineBasicBlock::iterator I, E, NextI; + for (I = B.begin(), E = B.end(); I != E; I = NextI) { + NextI = std::next(I); + if (isCondset(I)) + Changed |= split(I); + } + return Changed; +} + + +bool HexagonExpandCondsets::isPredicable(MachineInstr *MI) { + if (TII.isPredicated(MI) || !TII.isPredicable(MI)) + return false; + if (MI->hasUnmodeledSideEffects() || MI->mayStore()) + return false; + // Reject instructions with multiple defs (e.g. post-increment loads). + bool HasDef = false; + for (auto &Op : MI->operands()) { + if (!Op.isReg() || !Op.isDef()) + continue; + if (HasDef) + return false; + HasDef = true; + } + for (auto &Mo : MI->memoperands()) + if (Mo->isVolatile()) + return false; + return true; +} + + +/// Find the reaching definition for a predicated use of RD. The RD is used +/// under the conditions given by PredR and Cond, and this function will ignore +/// definitions that set RD under the opposite conditions. +MachineInstr *HexagonExpandCondsets::getReachingDefForPred(RegisterRef RD, + MachineBasicBlock::iterator UseIt, unsigned PredR, bool Cond) { + MachineBasicBlock &B = *UseIt->getParent(); + MachineBasicBlock::iterator I = UseIt, S = B.begin(); + if (I == S) + return 0; + + bool PredValid = true; + do { + --I; + MachineInstr *MI = &*I; + // Check if this instruction can be ignored, i.e. if it is predicated + // on the complementary condition. + if (PredValid && TII.isPredicated(MI)) { + if (MI->readsRegister(PredR) && (Cond != TII.isPredicatedTrue(MI))) + continue; + } + + // Check the defs. If the PredR is defined, invalidate it. If RD is + // defined, return the instruction or 0, depending on the circumstances. + for (auto &Op : MI->operands()) { + if (!Op.isReg() || !Op.isDef()) + continue; + RegisterRef RR = Op; + if (RR.Reg == PredR) { + PredValid = false; + continue; + } + if (RR.Reg != RD.Reg) + continue; + // If the "Reg" part agrees, there is still the subregister to check. + // If we are looking for vreg1:loreg, we can skip vreg1:hireg, but + // not vreg1 (w/o subregisters). + if (RR.Sub == RD.Sub) + return MI; + if (RR.Sub == 0 || RD.Sub == 0) + return 0; + // We have different subregisters, so we can continue looking. + } + } while (I != S); + + return 0; +} + + +/// Check if the instruction MI can be safely moved over a set of instructions +/// whose side-effects (in terms of register defs and uses) are expressed in +/// the maps Defs and Uses. These maps reflect the conditional defs and uses +/// that depend on the same predicate register to allow moving instructions +/// over instructions predicated on the opposite condition. +bool HexagonExpandCondsets::canMoveOver(MachineInstr *MI, ReferenceMap &Defs, + ReferenceMap &Uses) { + // In order to be able to safely move MI over instructions that define + // "Defs" and use "Uses", no def operand from MI can be defined or used + // and no use operand can be defined. + for (auto &Op : MI->operands()) { + if (!Op.isReg()) + continue; + RegisterRef RR = Op; + // For physical register we would need to check register aliases, etc. + // and we don't want to bother with that. It would be of little value + // before the actual register rewriting (from virtual to physical). + if (!TargetRegisterInfo::isVirtualRegister(RR.Reg)) + return false; + // No redefs for any operand. + if (isRefInMap(RR, Defs, Exec_Then)) + return false; + // For defs, there cannot be uses. + if (Op.isDef() && isRefInMap(RR, Uses, Exec_Then)) + return false; + } + return true; +} + + +/// Check if the instruction accessing memory (TheI) can be moved to the loca- +/// tion ToI. +bool HexagonExpandCondsets::canMoveMemTo(MachineInstr *TheI, MachineInstr *ToI, + bool IsDown) { + bool IsLoad = TheI->mayLoad(), IsStore = TheI->mayStore(); + if (!IsLoad && !IsStore) + return true; + if (TII.areMemAccessesTriviallyDisjoint(TheI, ToI)) + return true; + if (TheI->hasUnmodeledSideEffects()) + return false; + + MachineBasicBlock::iterator StartI = IsDown ? TheI : ToI; + MachineBasicBlock::iterator EndI = IsDown ? ToI : TheI; + bool Ordered = TheI->hasOrderedMemoryRef(); + + // Search for aliased memory reference in (StartI, EndI). + for (MachineBasicBlock::iterator I = std::next(StartI); I != EndI; ++I) { + MachineInstr *MI = &*I; + if (MI->hasUnmodeledSideEffects()) + return false; + bool L = MI->mayLoad(), S = MI->mayStore(); + if (!L && !S) + continue; + if (Ordered && MI->hasOrderedMemoryRef()) + return false; + + bool Conflict = (L && IsStore) || S; + if (Conflict) + return false; + } + return true; +} + + +/// Generate a predicated version of MI (where the condition is given via +/// PredR and Cond) at the point indicated by Where. +void HexagonExpandCondsets::predicateAt(RegisterRef RD, MachineInstr *MI, + MachineBasicBlock::iterator Where, unsigned PredR, bool Cond) { + // The problem with updating live intervals is that we can move one def + // past another def. In particular, this can happen when moving an A2_tfrt + // over an A2_tfrf defining the same register. From the point of view of + // live intervals, these two instructions are two separate definitions, + // and each one starts another live segment. LiveIntervals's "handleMove" + // does not allow such moves, so we need to handle it ourselves. To avoid + // invalidating liveness data while we are using it, the move will be im- + // plemented in 4 steps: (1) add a clone of the instruction MI at the + // target location, (2) update liveness, (3) delete the old instruction, + // and (4) update liveness again. + + MachineBasicBlock &B = *MI->getParent(); + DebugLoc DL = Where->getDebugLoc(); // "Where" points to an instruction. + unsigned Opc = MI->getOpcode(); + unsigned PredOpc = TII.getCondOpcode(Opc, !Cond); + MachineInstrBuilder MB = BuildMI(B, Where, DL, TII.get(PredOpc)); + unsigned Ox = 0, NP = MI->getNumOperands(); + // Skip all defs from MI first. + while (Ox < NP) { + MachineOperand &MO = MI->getOperand(Ox); + if (!MO.isReg() || !MO.isDef()) + break; + Ox++; + } + // Add the new def, then the predicate register, then the rest of the + // operands. + MB.addReg(RD.Reg, RegState::Define, RD.Sub); + MB.addReg(PredR); + while (Ox < NP) { + MachineOperand &MO = MI->getOperand(Ox); + if (!MO.isReg() || !MO.isImplicit()) + MB.addOperand(MO); + Ox++; + } + + MachineFunction &MF = *B.getParent(); + MachineInstr::mmo_iterator I = MI->memoperands_begin(); + unsigned NR = std::distance(I, MI->memoperands_end()); + MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(NR); + for (unsigned i = 0; i < NR; ++i) + MemRefs[i] = *I++; + MB.setMemRefs(MemRefs, MemRefs+NR); + + MachineInstr *NewI = MB; + NewI->clearKillInfo(); + addInstrToLiveness(NewI); +} + + +/// In the range [First, Last], rename all references to the "old" register RO +/// to the "new" register RN, but only in instructions predicated on the given +/// condition. +void HexagonExpandCondsets::renameInRange(RegisterRef RO, RegisterRef RN, + unsigned PredR, bool Cond, MachineBasicBlock::iterator First, + MachineBasicBlock::iterator Last) { + MachineBasicBlock::iterator End = std::next(Last); + for (MachineBasicBlock::iterator I = First; I != End; ++I) { + MachineInstr *MI = &*I; + // Do not touch instructions that are not predicated, or are predicated + // on the opposite condition. + if (!TII.isPredicated(MI)) + continue; + if (!MI->readsRegister(PredR) || (Cond != TII.isPredicatedTrue(MI))) + continue; + + for (auto &Op : MI->operands()) { + if (!Op.isReg() || RO != RegisterRef(Op)) + continue; + Op.setReg(RN.Reg); + Op.setSubReg(RN.Sub); + // In practice, this isn't supposed to see any defs. + assert(!Op.isDef() && "Not expecting a def"); + } + } +} + + +/// For a given conditional copy, predicate the definition of the source of +/// the copy under the given condition (using the same predicate register as +/// the copy). +bool HexagonExpandCondsets::predicate(MachineInstr *TfrI, bool Cond) { + // TfrI - A2_tfr[tf] Instruction (not A2_tfrsi). + unsigned Opc = TfrI->getOpcode(); + assert(Opc == Hexagon::A2_tfrt || Opc == Hexagon::A2_tfrf); + DEBUG(dbgs() << "\nattempt to predicate if-" << (Cond ? "true" : "false") + << ": " << *TfrI); + + MachineOperand &MD = TfrI->getOperand(0); + MachineOperand &MP = TfrI->getOperand(1); + MachineOperand &MS = TfrI->getOperand(2); + // The source operand should be a . This is not strictly necessary, + // but it makes things a lot simpler. Otherwise, we would need to rename + // some registers, which would complicate the transformation considerably. + if (!MS.isKill()) + return false; + + RegisterRef RT(MS); + unsigned PredR = MP.getReg(); + MachineInstr *DefI = getReachingDefForPred(RT, TfrI, PredR, Cond); + if (!DefI || !isPredicable(DefI)) + return false; + + DEBUG(dbgs() << "Source def: " << *DefI); + + // Collect the information about registers defined and used between the + // DefI and the TfrI. + // Map: reg -> bitmask of subregs + ReferenceMap Uses, Defs; + MachineBasicBlock::iterator DefIt = DefI, TfrIt = TfrI; + + // Check if the predicate register is valid between DefI and TfrI. + // If it is, we can then ignore instructions predicated on the negated + // conditions when collecting def and use information. + bool PredValid = true; + for (MachineBasicBlock::iterator I = std::next(DefIt); I != TfrIt; ++I) { + if (!I->modifiesRegister(PredR, 0)) + continue; + PredValid = false; + break; + } + + for (MachineBasicBlock::iterator I = std::next(DefIt); I != TfrIt; ++I) { + MachineInstr *MI = &*I; + // If this instruction is predicated on the same register, it could + // potentially be ignored. + // By default assume that the instruction executes on the same condi- + // tion as TfrI (Exec_Then), and also on the opposite one (Exec_Else). + unsigned Exec = Exec_Then | Exec_Else; + if (PredValid && TII.isPredicated(MI) && MI->readsRegister(PredR)) + Exec = (Cond == TII.isPredicatedTrue(MI)) ? Exec_Then : Exec_Else; + + for (auto &Op : MI->operands()) { + if (!Op.isReg()) + continue; + // We don't want to deal with physical registers. The reason is that + // they can be aliased with other physical registers. Aliased virtual + // registers must share the same register number, and can only differ + // in the subregisters, which we are keeping track of. Physical regis- + // ters no longer have subregisters---their super- and subregisters + // are other physical registers, and we are not checking that. + RegisterRef RR = Op; + if (!TargetRegisterInfo::isVirtualRegister(RR.Reg)) + return false; + + ReferenceMap &Map = Op.isDef() ? Defs : Uses; + addRefToMap(RR, Map, Exec); + } + } + + // The situation: + // RT = DefI + // ... + // RD = TfrI ..., RT + + // If the register-in-the-middle (RT) is used or redefined between + // DefI and TfrI, we may not be able proceed with this transformation. + // We can ignore a def that will not execute together with TfrI, and a + // use that will. If there is such a use (that does execute together with + // TfrI), we will not be able to move DefI down. If there is a use that + // executed if TfrI's condition is false, then RT must be available un- + // conditionally (cannot be predicated). + // Essentially, we need to be able to rename RT to RD in this segment. + if (isRefInMap(RT, Defs, Exec_Then) || isRefInMap(RT, Uses, Exec_Else)) + return false; + RegisterRef RD = MD; + // If the predicate register is defined between DefI and TfrI, the only + // potential thing to do would be to move the DefI down to TfrI, and then + // predicate. The reaching def (DefI) must be movable down to the location + // of the TfrI. + // If the target register of the TfrI (RD) is not used or defined between + // DefI and TfrI, consider moving TfrI up to DefI. + bool CanUp = canMoveOver(TfrI, Defs, Uses); + bool CanDown = canMoveOver(DefI, Defs, Uses); + // The TfrI does not access memory, but DefI could. Check if it's safe + // to move DefI down to TfrI. + if (DefI->mayLoad() || DefI->mayStore()) + if (!canMoveMemTo(DefI, TfrI, true)) + CanDown = false; + + DEBUG(dbgs() << "Can move up: " << (CanUp ? "yes" : "no") + << ", can move down: " << (CanDown ? "yes\n" : "no\n")); + MachineBasicBlock::iterator PastDefIt = std::next(DefIt); + if (CanUp) + predicateAt(RD, DefI, PastDefIt, PredR, Cond); + else if (CanDown) + predicateAt(RD, DefI, TfrIt, PredR, Cond); + else + return false; + + if (RT != RD) + renameInRange(RT, RD, PredR, Cond, PastDefIt, TfrIt); + + // Delete the user of RT first (it should work either way, but this order + // of deleting is more natural). + removeInstrFromLiveness(TfrI); + removeInstrFromLiveness(DefI); + return true; +} + + +/// Predicate all cases of conditional copies in the specified block. +bool HexagonExpandCondsets::predicateInBlock(MachineBasicBlock &B) { + bool Changed = false; + MachineBasicBlock::iterator I, E, NextI; + for (I = B.begin(), E = B.end(); I != E; I = NextI) { + NextI = std::next(I); + unsigned Opc = I->getOpcode(); + if (Opc == Hexagon::A2_tfrt || Opc == Hexagon::A2_tfrf) { + bool Done = predicate(I, (Opc == Hexagon::A2_tfrt)); + if (!Done) { + // If we didn't predicate I, we may need to remove it in case it is + // an "identity" copy, e.g. vreg1 = A2_tfrt vreg2, vreg1. + if (RegisterRef(I->getOperand(0)) == RegisterRef(I->getOperand(2))) + removeInstrFromLiveness(I); + } + Changed |= Done; + } + } + return Changed; +} + + +void HexagonExpandCondsets::removeImplicitUses(MachineInstr *MI) { + for (unsigned i = MI->getNumOperands(); i > 0; --i) { + MachineOperand &MO = MI->getOperand(i-1); + if (MO.isReg() && MO.isUse() && MO.isImplicit()) + MI->RemoveOperand(i-1); + } +} + + +void HexagonExpandCondsets::removeImplicitUses(MachineBasicBlock &B) { + for (MachineBasicBlock::iterator I = B.begin(), E = B.end(); I != E; ++I) { + MachineInstr *MI = &*I; + if (TII.isPredicated(MI)) + removeImplicitUses(MI); + } +} + + +void HexagonExpandCondsets::postprocessUndefImplicitUses(MachineBasicBlock &B) { + // Implicit uses that are "undef" are only meaningful (outside of the + // internals of this pass) when the instruction defines a subregister, + // and the implicit-undef use applies to the defined register. In such + // cases, the proper way to record the information in the IR is to mark + // the definition as "undef", which will be interpreted as "read-undef". + typedef SmallSet RegisterSet; + for (MachineBasicBlock::iterator I = B.begin(), E = B.end(); I != E; ++I) { + MachineInstr *MI = &*I; + RegisterSet Undefs; + for (unsigned i = MI->getNumOperands(); i > 0; --i) { + MachineOperand &MO = MI->getOperand(i-1); + if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.isUndef()) { + MI->RemoveOperand(i-1); + Undefs.insert(MO.getReg()); + } + } + for (auto &Op : MI->operands()) { + if (!Op.isReg() || !Op.isDef() || !Op.getSubReg()) + continue; + if (Undefs.count(Op.getReg())) + Op.setIsUndef(true); + } + } +} + + +bool HexagonExpandCondsets::isIntReg(RegisterRef RR, unsigned &BW) { + if (!TargetRegisterInfo::isVirtualRegister(RR.Reg)) + return false; + const TargetRegisterClass *RC = MRI->getRegClass(RR.Reg); + if (RC == &Hexagon::IntRegsRegClass) { + BW = 32; + return true; + } + if (RC == &Hexagon::DoubleRegsRegClass) { + BW = (RR.Sub != 0) ? 32 : 64; + return true; + } + return false; +} + + +bool HexagonExpandCondsets::isIntraBlocks(LiveInterval &LI) { + for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) { + LiveRange::Segment &LR = *I; + // Range must start at a register... + if (!LR.start.isRegister()) + return false; + // ...and end in a register or in a dead slot. + if (!LR.end.isRegister() && !LR.end.isDead()) + return false; + } + return true; +} + + +bool HexagonExpandCondsets::coalesceRegisters(RegisterRef R1, RegisterRef R2) { + if (CoaLimitActive) { + if (CoaCounter >= CoaLimit) + return false; + CoaCounter++; + } + unsigned BW1, BW2; + if (!isIntReg(R1, BW1) || !isIntReg(R2, BW2) || BW1 != BW2) + return false; + if (MRI->isLiveIn(R1.Reg)) + return false; + if (MRI->isLiveIn(R2.Reg)) + return false; + + LiveInterval &L1 = LIS->getInterval(R1.Reg); + LiveInterval &L2 = LIS->getInterval(R2.Reg); + bool Overlap = L1.overlaps(L2); + + DEBUG(dbgs() << "compatible registers: (" + << (Overlap ? "overlap" : "disjoint") << ")\n " + << PrintReg(R1.Reg, &TRI, R1.Sub) << " " << L1 << "\n " + << PrintReg(R2.Reg, &TRI, R2.Sub) << " " << L2 << "\n"); + if (R1.Sub || R2.Sub) + return false; + if (Overlap) + return false; + + // Coalescing could have a negative impact on scheduling, so try to limit + // to some reasonable extent. Only consider coalescing segments, when one + // of them does not cross basic block boundaries. + if (!isIntraBlocks(L1) && !isIntraBlocks(L2)) + return false; + + MRI->replaceRegWith(R2.Reg, R1.Reg); + + // Move all live segments from L2 to L1. + typedef DenseMap ValueInfoMap; + ValueInfoMap VM; + for (LiveInterval::iterator I = L2.begin(), E = L2.end(); I != E; ++I) { + VNInfo *NewVN, *OldVN = I->valno; + ValueInfoMap::iterator F = VM.find(OldVN); + if (F == VM.end()) { + NewVN = L1.getNextValue(I->valno->def, LIS->getVNInfoAllocator()); + VM.insert(std::make_pair(OldVN, NewVN)); + } else { + NewVN = F->second; + } + L1.addSegment(LiveRange::Segment(I->start, I->end, NewVN)); + } + while (L2.begin() != L2.end()) + L2.removeSegment(*L2.begin()); + + updateKillFlags(R1.Reg, L1); + DEBUG(dbgs() << "coalesced: " << L1 << "\n"); + L1.verify(); + + return true; +} + + +/// Attempt to coalesce one of the source registers to a MUX intruction with +/// the destination register. This could lead to having only one predicated +/// instruction in the end instead of two. +bool HexagonExpandCondsets::coalesceSegments(MachineFunction &MF) { + SmallVector Condsets; + for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) { + MachineBasicBlock &B = *I; + for (MachineBasicBlock::iterator J = B.begin(), F = B.end(); J != F; ++J) { + MachineInstr *MI = &*J; + if (!isCondset(MI)) + continue; + MachineOperand &S1 = MI->getOperand(2), &S2 = MI->getOperand(3); + if (!S1.isReg() && !S2.isReg()) + continue; + Condsets.push_back(MI); + } + } + + bool Changed = false; + for (unsigned i = 0, n = Condsets.size(); i < n; ++i) { + MachineInstr *CI = Condsets[i]; + RegisterRef RD = CI->getOperand(0); + RegisterRef RP = CI->getOperand(1); + MachineOperand &S1 = CI->getOperand(2), &S2 = CI->getOperand(3); + bool Done = false; + // Consider this case: + // vreg1 = instr1 ... + // vreg2 = instr2 ... + // vreg0 = C2_mux ..., vreg1, vreg2 + // If vreg0 was coalesced with vreg1, we could end up with the following + // code: + // vreg0 = instr1 ... + // vreg2 = instr2 ... + // vreg0 = A2_tfrf ..., vreg2 + // which will later become: + // vreg0 = instr1 ... + // vreg0 = instr2_cNotPt ... + // i.e. there will be an unconditional definition (instr1) of vreg0 + // followed by a conditional one. The output dependency was there before + // and it unavoidable, but if instr1 is predicable, we will no longer be + // able to predicate it here. + // To avoid this scenario, don't coalesce the destination register with + // a source register that is defined by a predicable instruction. + if (S1.isReg()) { + RegisterRef RS = S1; + MachineInstr *RDef = getReachingDefForPred(RS, CI, RP.Reg, true); + if (!RDef || !TII.isPredicable(RDef)) + Done = coalesceRegisters(RD, RegisterRef(S1)); + } + if (!Done && S2.isReg()) { + RegisterRef RS = S2; + MachineInstr *RDef = getReachingDefForPred(RS, CI, RP.Reg, false); + if (!RDef || !TII.isPredicable(RDef)) + Done = coalesceRegisters(RD, RegisterRef(S2)); + } + Changed |= Done; + } + return Changed; +} + + +bool HexagonExpandCondsets::runOnMachineFunction(MachineFunction &MF) { + LIS = &getAnalysis(); + MRI = &MF.getRegInfo(); + + bool Changed = false; + + // Try to coalesce the target of a mux with one of its sources. + // This could eliminate a register copy in some circumstances. + Changed |= coalesceSegments(MF); + + for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) { + // First, simply split all muxes into a pair of conditional trans- + // fers, and update the live intervals to reflect the new arrangement. + // This is done mainly to make the live interval update simpler, than it + // would be while trying to predicate instructions at the same time. + Changed |= splitInBlock(*I); + // Traverse all blocks and collapse predicable instructions feeding + // conditional transfers into predicated instructions. + // Walk over all the instructions again, so we may catch pre-existing + // cases that were not created in the previous step. + Changed |= predicateInBlock(*I); + } + + for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) + postprocessUndefImplicitUses(*I); + return Changed; +} + + +//===----------------------------------------------------------------------===// +// Public Constructor Functions +//===----------------------------------------------------------------------===// + +static void initializePassOnce(PassRegistry &Registry) { + const char *Name = "Hexagon Expand Condsets"; + PassInfo *PI = new PassInfo(Name, "expand-condsets", + &HexagonExpandCondsets::ID, 0, false, false); + Registry.registerPass(*PI, true); +} + +void llvm::initializeHexagonExpandCondsetsPass(PassRegistry &Registry) { + CALL_ONCE_INITIALIZATION(initializePassOnce) +} + + +FunctionPass* +llvm::createHexagonExpandCondsets(const HexagonTargetMachine &TM) { + return new HexagonExpandCondsets(TM); +} Index: lib/Target/Hexagon/HexagonInstrInfo.h =================================================================== --- lib/Target/Hexagon/HexagonInstrInfo.h +++ lib/Target/Hexagon/HexagonInstrInfo.h @@ -216,9 +216,7 @@ short getNonExtOpcode(const MachineInstr *MI) const; bool PredOpcodeHasJMP_c(Opcode_t Opcode) const; bool PredOpcodeHasNot(Opcode_t Opcode) const; - -private: - int getMatchingCondBranchOpcode(int Opc, bool sense) const; + int getCondOpcode(int Opc, bool sense) const; }; Index: lib/Target/Hexagon/HexagonInstrInfo.cpp =================================================================== --- lib/Target/Hexagon/HexagonInstrInfo.cpp +++ lib/Target/Hexagon/HexagonInstrInfo.cpp @@ -845,8 +845,7 @@ return ((F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask); } -int HexagonInstrInfo:: -getMatchingCondBranchOpcode(int Opc, bool invertPredicate) const { +int HexagonInstrInfo::getCondOpcode(int Opc, bool invertPredicate) const { enum Hexagon::PredSense inPredSense; inPredSense = invertPredicate ? Hexagon::PredSense_false : Hexagon::PredSense_true; @@ -884,7 +883,7 @@ // This will change MI's opcode to its predicate version. // However, its operand list is still the old one, i.e. the // non-predicate one. - MI->setDesc(get(getMatchingCondBranchOpcode(Opc, invertJump))); + MI->setDesc(get(getCondOpcode(Opc, invertJump))); int oper = -1; unsigned int GAIdx = 0; Index: lib/Target/Hexagon/HexagonTargetMachine.cpp =================================================================== --- lib/Target/Hexagon/HexagonTargetMachine.cpp +++ lib/Target/Hexagon/HexagonTargetMachine.cpp @@ -27,11 +27,15 @@ using namespace llvm; static cl:: opt DisableHardwareLoops("disable-hexagon-hwloops", - cl::Hidden, cl::desc("Disable Hardware Loops for Hexagon target")); + cl::Hidden, cl::desc("Disable Hardware Loops for Hexagon target")); static cl::opt DisableHexagonCFGOpt("disable-hexagon-cfgopt", - cl::Hidden, cl::ZeroOrMore, cl::init(false), - cl::desc("Disable Hexagon CFG Optimization")); + cl::Hidden, cl::ZeroOrMore, cl::init(false), + cl::desc("Disable Hexagon CFG Optimization")); + +static cl::opt EnableExpandCondsets("hexagon-expand-condsets", + cl::init(true), cl::Hidden, cl::ZeroOrMore, + cl::desc("Early expansion of MUX")); /// HexagonTargetMachineModule - Note that this is used on hosts that @@ -55,6 +59,10 @@ SchedCustomRegistry("hexagon", "Run Hexagon's custom scheduler", createVLIWMachineSched); +namespace llvm { + FunctionPass *createHexagonExpandCondsets(const HexagonTargetMachine &TM); +} + /// HexagonTargetMachine ctor - Create an ILP32 architecture model. /// @@ -79,7 +87,15 @@ class HexagonPassConfig : public TargetPassConfig { public: HexagonPassConfig(HexagonTargetMachine *TM, PassManagerBase &PM) - : TargetPassConfig(TM, PM) {} + : TargetPassConfig(TM, PM) { + bool NoOpt = (TM->getOptLevel() == CodeGenOpt::None); + if (!NoOpt) { + if (EnableExpandCondsets) { + Pass *Exp = createHexagonExpandCondsets(*TM); + insertPass(&RegisterCoalescerID, IdentifyingPassPtr(Exp)); + } + } + } HexagonTargetMachine &getHexagonTargetMachine() const { return getTM(); Index: test/CodeGen/Hexagon/adde.ll =================================================================== --- test/CodeGen/Hexagon/adde.ll +++ test/CodeGen/Hexagon/adde.ll @@ -1,4 +1,4 @@ -; RUN: llc -march=hexagon < %s | FileCheck %s +; RUN: llc -march=hexagon -hexagon-expand-condsets=0 < %s | FileCheck %s ; CHECK: r{{[0-9]+:[0-9]+}} = #0 ; CHECK: r{{[0-9]+:[0-9]+}} = #1 Index: test/CodeGen/Hexagon/expand-condsets-basic.ll =================================================================== --- /dev/null +++ test/CodeGen/Hexagon/expand-condsets-basic.ll @@ -0,0 +1,11 @@ +; RUN: llc -march=hexagon < %s | FileCheck %s +; CHECK: if{{.*}}add +; CHECK: if{{.*}}sub + +define i32 @foo (i1 %a, i32 %b, i32 %c, i32 %d) nounwind { + %1 = add i32 %b, %d + %2 = sub i32 %c, %d + %3 = select i1 %a, i32 %1, i32 %2 + ret i32 %3 +} + Index: test/CodeGen/Hexagon/expand-condsets-rm-segment.ll =================================================================== --- /dev/null +++ test/CodeGen/Hexagon/expand-condsets-rm-segment.ll @@ -0,0 +1,131 @@ +; RUN: llc -O2 < %s +; REQUIRES: asserts + +target datalayout = "e-m:e-p:32:32-i1:32-i64:64-a:0-v32:32-n16:32" +target triple = "hexagon-unknown--elf" + +%struct.cpumask = type { [1 x i32] } +%struct.load_weight = type { i32, i32 } + +@sysctl_sched_latency = global i32 6000000, align 4 +@normalized_sysctl_sched_latency = global i32 6000000, align 4 +@sysctl_sched_tunable_scaling = global i8 1, align 1 +@sysctl_sched_min_granularity = global i32 750000, align 4 +@normalized_sysctl_sched_min_granularity = global i32 750000, align 4 +@sysctl_sched_wakeup_granularity = global i32 1000000, align 4 +@normalized_sysctl_sched_wakeup_granularity = global i32 1000000, align 4 +@sysctl_sched_migration_cost = constant i32 500000, align 4 +@sysctl_sched_shares_window = global i32 10000000, align 4 +@sysctl_sched_child_runs_first = common global i32 0, align 4 +@cpu_online_mask = external constant %struct.cpumask* + +; Function Attrs: noinline nounwind +define void @sched_init_granularity() #0 { +entry: + tail call fastcc void @update_sysctl() + ret void +} + +; Function Attrs: noinline nounwind +define internal fastcc void @update_sysctl() #0 { +entry: + %call = tail call i32 @get_update_sysctl_factor() + %0 = load i32, i32* @normalized_sysctl_sched_min_granularity, align 4, !tbaa !1 + %mul = mul i32 %0, %call + store i32 %mul, i32* @sysctl_sched_min_granularity, align 4, !tbaa !1 + %1 = load i32, i32* @normalized_sysctl_sched_latency, align 4, !tbaa !1 + %mul1 = mul i32 %1, %call + store i32 %mul1, i32* @sysctl_sched_latency, align 4, !tbaa !1 + %2 = load i32, i32* @normalized_sysctl_sched_wakeup_granularity, align 4, !tbaa !1 + %mul2 = mul i32 %2, %call + store i32 %mul2, i32* @sysctl_sched_wakeup_granularity, align 4, !tbaa !1 + ret void +} + +; Function Attrs: noinline nounwind +define i32 @calc_delta_mine(i32 %delta_exec, i32 %weight, %struct.load_weight* nocapture %lw) #0 { +entry: + %cmp = icmp ugt i32 %weight, 1 + %conv = zext i32 %delta_exec to i64 + br i1 %cmp, label %if.then, label %if.end, !prof !5 + +if.then: ; preds = %entry + %conv2 = zext i32 %weight to i64 + %mul = mul i64 %conv2, %conv + br label %if.end + +if.end: ; preds = %entry, %if.then + %tmp.0 = phi i64 [ %mul, %if.then ], [ %conv, %entry ] + %inv_weight = getelementptr inbounds %struct.load_weight, %struct.load_weight* %lw, i32 0, i32 1 + %0 = load i32, i32* %inv_weight, align 4, !tbaa !6 + %tobool4 = icmp eq i32 %0, 0 + br i1 %tobool4, label %if.then5, label %if.end22 + +if.then5: ; preds = %if.end + %weight7 = getelementptr inbounds %struct.load_weight, %struct.load_weight* %lw, i32 0, i32 0 + %1 = load i32, i32* %weight7, align 4, !tbaa !9 + %lnot9 = icmp eq i32 %1, 0 + br i1 %lnot9, label %if.then17, label %if.else19, !prof !10 + +if.then17: ; preds = %if.then5 + store i32 -1, i32* %inv_weight, align 4, !tbaa !6 + br label %if.end22 + +if.else19: ; preds = %if.then5 + %div = udiv i32 -1, %1 + store i32 %div, i32* %inv_weight, align 4, !tbaa !6 + br label %if.end22 + +if.end22: ; preds = %if.end, %if.then17, %if.else19 + %2 = phi i32 [ %0, %if.end ], [ -1, %if.then17 ], [ %div, %if.else19 ] + %cmp23 = icmp ugt i64 %tmp.0, 4294967295 + br i1 %cmp23, label %if.then31, label %if.else37, !prof !10 + +if.then31: ; preds = %if.end22 + %add = add i64 %tmp.0, 32768 + %shr = lshr i64 %add, 16 + %conv33 = zext i32 %2 to i64 + %mul34 = mul i64 %conv33, %shr + %add35 = add i64 %mul34, 32768 + %shr36 = lshr i64 %add35, 16 + br label %if.end43 + +if.else37: ; preds = %if.end22 + %conv39 = zext i32 %2 to i64 + %mul40 = mul i64 %conv39, %tmp.0 + %add41 = add i64 %mul40, 2147483648 + %shr42 = lshr i64 %add41, 32 + br label %if.end43 + +if.end43: ; preds = %if.else37, %if.then31 + %tmp.1 = phi i64 [ %shr36, %if.then31 ], [ %shr42, %if.else37 ] + %cmp49 = icmp ult i64 %tmp.1, 2147483647 + %3 = trunc i64 %tmp.1 to i32 + %conv51 = select i1 %cmp49, i32 %3, i32 2147483647 + ret i32 %conv51 +} + +declare i32 @get_update_sysctl_factor() #0 +declare i32 @__bitmap_weight(i32*, i32) #1 + +attributes #0 = { noinline nounwind "less-precise-fpmad"="false" "no-frame-pointer-elim"="true" "no-frame-pointer-elim-non-leaf" "no-infs-fp-math"="false" "no-nans-fp-math"="false" "stack-protector-buffer-size"="8" "unsafe-fp-math"="false" "use-soft-float"="false" } +attributes #1 = { "less-precise-fpmad"="false" "no-frame-pointer-elim"="true" "no-frame-pointer-elim-non-leaf" "no-infs-fp-math"="false" "no-nans-fp-math"="false" "stack-protector-buffer-size"="8" "unsafe-fp-math"="false" "use-soft-float"="false" } +attributes #2 = { nounwind } + +!llvm.ident = !{!0} + +!0 = !{!"Clang 3.1"} +!1 = !{!2, !2, i64 0} +!2 = !{!"int", !3, i64 0} +!3 = !{!"omnipotent char", !4, i64 0} +!4 = !{!"Simple C/C++ TBAA"} +!5 = !{!"branch_weights", i32 64, i32 4} +!6 = !{!7, !8, i64 4} +!7 = !{!"load_weight", !8, i64 0, !8, i64 4} +!8 = !{!"long", !3, i64 0} +!9 = !{!7, !8, i64 0} +!10 = !{!"branch_weights", i32 4, i32 64} +!11 = !{!12, !12, i64 0} +!12 = !{!"any pointer", !3, i64 0} +!13 = !{!3, !3, i64 0} +!14 = !{i32 45854, i32 45878} Index: test/CodeGen/Hexagon/expand-condsets-undef.ll =================================================================== --- /dev/null +++ test/CodeGen/Hexagon/expand-condsets-undef.ll @@ -0,0 +1,28 @@ +; RUN: llc -O2 < %s +; REQUIRES: asserts + +target datalayout = "e-m:e-p:32:32-i64:64-a:0-v32:32-n16:32" +target triple = "hexagon" + +; Function Attrs: nounwind optsize ssp +define internal fastcc void @foo() nounwind { +if.else473: + %0 = load i64, i64* undef, align 8 + %sub = sub nsw i64 undef, %0 + %conv476 = sitofp i64 %sub to double + %mul477 = fmul double %conv476, 0x3F50624DE0000000 + br i1 undef, label %cond.true540, label %cond.end548 + +cond.true540: + %1 = fptrunc double %mul477 to float + %2 = fptosi float %1 to i32 + br label %cond.end548 + +cond.end548: + %cond549 = phi i32 [ %2, %cond.true540 ], [ undef, %if.else473 ] + call void @bar(i32 %cond549) nounwind + unreachable +} + +declare void @bar(i32) nounwind + Index: test/CodeGen/Hexagon/sube.ll =================================================================== --- test/CodeGen/Hexagon/sube.ll +++ test/CodeGen/Hexagon/sube.ll @@ -1,4 +1,4 @@ -; RUN: llc -march=hexagon < %s | FileCheck %s +; RUN: llc -march=hexagon -hexagon-expand-condsets=0 < %s | FileCheck %s ; CHECK: r{{[0-9]+:[0-9]+}} = #0 ; CHECK: r{{[0-9]+:[0-9]+}} = #1 Index: test/MC/Hexagon/inst_select.ll =================================================================== --- test/MC/Hexagon/inst_select.ll +++ test/MC/Hexagon/inst_select.ll @@ -7,4 +7,4 @@ ret i32 %1 } -; CHECK: 0000 00400085 004201f4 00c09f52 +; CHECK: 0000 00400085 00600174 00608274 00c09f52