diff --git a/clang/docs/LanguageExtensions.rst b/clang/docs/LanguageExtensions.rst --- a/clang/docs/LanguageExtensions.rst +++ b/clang/docs/LanguageExtensions.rst @@ -2420,6 +2420,47 @@ Note that the `size` argument must be a compile time constant. +Clang provides versions of the following functions which are overloaded based on +the pointer parameter types: + +* ``__builtin_memcpy_overloaded(QUAL0 T *dst, QUAL1 const U *src, size_t byte_size, size_t byte_element_size = )`` +* ``__builtin_memmove_overloaded(QUAL0 T *dst, QUAL1 const U *src, size_t byte_size, size_t byte_element_size = )`` +* ``__builtin_memset_overloaded(QUAL T *dst, unsigned char val, size_t byte_size, size_t byte_element_size = )`` + +These overloads support destinations and sources which are a mix of the +following qualifiers: + +* ``volatile`` +* ``restrict`` +* ``__unaligned`` +* non-default address spaces + +The ``_Atomic`` qualifier is not supported. Rather, an optional last function +parameter can be provided to specify element access size in bytes. Element size +must be a compile-time constant. When the element size is provided, the memory +will be accessed with a sequence of operations of size equal to or a multiple of +the requested element size. The order of operations is unspecified, and each +access has unordered atomic semantics. This means that reads and writes do not +tear at the individual element level, and they each occur exactly once, but the +order in which they occur (and in which they are observable) can only be +guaranteed using appropriate fences around the function call. Element size must +therefore be a lock-free size for the target architecture. It is a runtime +constraint violation to provide a memory locations which is aligned to less than +the element size. It is a runtime constraint violation to provide a size which +is not evenly divided by the specified element size. + +When the element size parameter is not provided, the access size is unspecified +and might be non-uniform throughout the operation. + +The builtins can be used as building blocks for different facilities: + +* Using ``volatile`` to copy data a single time from untrusted buffers, avoiding + Time-of-Check Time-of-Use security issues. +* Using ``volatile`` to implement memory operations which will not be eliminated + by the optimizer, such as C's Annex K ``memset_s``. +* Implement an atomic memory with atomic operations of a particular size, + similar to that presented in C++ proposal [p1478](https://wg21.link/p1478). + Clang provides constant expression evaluation support for builtin forms of the following functions from the C standard library headers ```` and ````: diff --git a/clang/include/clang/Basic/Builtins.def b/clang/include/clang/Basic/Builtins.def --- a/clang/include/clang/Basic/Builtins.def +++ b/clang/include/clang/Basic/Builtins.def @@ -488,7 +488,6 @@ BUILTIN(__builtin_memchr, "v*vC*iz", "nF") BUILTIN(__builtin_memcmp, "ivC*vC*z", "nF") BUILTIN(__builtin_memcpy, "v*v*vC*z", "nF") -BUILTIN(__builtin_memcpy_inline, "vv*vC*Iz", "nt") BUILTIN(__builtin_memmove, "v*v*vC*z", "nF") BUILTIN(__builtin_mempcpy, "v*v*vC*z", "nF") BUILTIN(__builtin_memset, "v*v*iz", "nF") @@ -1491,6 +1490,10 @@ BUILTIN(__builtin_char_memchr, "c*cC*iz", "n") BUILTIN(__builtin_dump_struct, "ivC*v*", "tn") BUILTIN(__builtin_preserve_access_index, "v.", "t") +BUILTIN(__builtin_memcpy_inline, "vv*vC*Iz", "nt") +BUILTIN(__builtin_memcpy_overloaded, "v*v*vC*z", "nt") +BUILTIN(__builtin_memmove_overloaded, "v*v*vC*z", "nt") +BUILTIN(__builtin_memset_overloaded, "v*v*iz", "nt") // Alignment builtins (uses custom parsing to support pointers and integers) BUILTIN(__builtin_is_aligned, "bvC*z", "nct") diff --git a/clang/include/clang/Basic/DiagnosticASTKinds.td b/clang/include/clang/Basic/DiagnosticASTKinds.td --- a/clang/include/clang/Basic/DiagnosticASTKinds.td +++ b/clang/include/clang/Basic/DiagnosticASTKinds.td @@ -282,6 +282,9 @@ "size to copy (%4) is not a multiple of size of element type %3 (%5)|" "source is not a contiguous array of at least %4 elements of type %3|" "destination is not a contiguous array of at least %4 elements of type %3}2">; +def note_constexpr_mem_overloaded_bad_size : Note< + "size parameter is %0, expected a size that is evenly divisible by " + "element size %1">; def note_constexpr_bit_cast_unsupported_type : Note< "constexpr bit_cast involving type %0 is not yet supported">; def note_constexpr_bit_cast_unsupported_bitfield : Note< diff --git a/clang/include/clang/Basic/DiagnosticSemaKinds.td b/clang/include/clang/Basic/DiagnosticSemaKinds.td --- a/clang/include/clang/Basic/DiagnosticSemaKinds.td +++ b/clang/include/clang/Basic/DiagnosticSemaKinds.td @@ -7932,6 +7932,8 @@ def warn_call_wrong_number_of_arguments : Warning< "too %select{few|many}0 arguments in call to %1">; +def err_atomic_qualifier_invalid : Error< + "parameter cannot have the _Atomic qualifier (%0 invalid)">; def err_atomic_builtin_must_be_pointer : Error< "address argument to atomic builtin must be a pointer (%0 invalid)">; def err_atomic_builtin_must_be_pointer_intptr : Error< @@ -8931,6 +8933,18 @@ "null returned from %select{function|method}0 that requires a non-null return value">, InGroup; +def err_const_arg : Error< + "argument must be non-const, got %0">; + +def err_sized_volatile_unsupported : Error< + "specifying an access size for volatile memory operations is unsupported " + "(%0 is volatile)">; +def err_elsz_must_be_lock_free : Error< + "element size must be a lock-free size, %0 exceeds %1 bytes">; +def err_atomic_builtin_ext_size_mismatches_el : Error< + "number of bytes to copy must be a multiple of pointer element size, " + "got %0 bytes to copy with element size %1 for %2">; + def err_lifetimebound_no_object_param : Error< "'lifetimebound' attribute cannot be applied; %select{static |non-}0member " "function has no implicit object parameter">; diff --git a/clang/include/clang/Sema/Sema.h b/clang/include/clang/Sema/Sema.h --- a/clang/include/clang/Sema/Sema.h +++ b/clang/include/clang/Sema/Sema.h @@ -12204,6 +12204,8 @@ bool SemaBuiltinSetjmp(CallExpr *TheCall); ExprResult SemaBuiltinAtomicOverloaded(ExprResult TheCallResult); ExprResult SemaBuiltinNontemporalOverloaded(ExprResult TheCallResult); + ExprResult SemaBuiltinMemcpyOverloaded(ExprResult TheCallResult); + ExprResult SemaBuiltinMemsetOverloaded(ExprResult TheCallResult); ExprResult SemaAtomicOpsOverloaded(ExprResult TheCallResult, AtomicExpr::AtomicOp Op); ExprResult SemaBuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult, diff --git a/clang/lib/AST/ExprConstant.cpp b/clang/lib/AST/ExprConstant.cpp --- a/clang/lib/AST/ExprConstant.cpp +++ b/clang/lib/AST/ExprConstant.cpp @@ -8778,6 +8778,8 @@ LLVM_FALLTHROUGH; case Builtin::BI__builtin_memcpy: case Builtin::BI__builtin_memmove: + case Builtin::BI__builtin_memcpy_overloaded: + case Builtin::BI__builtin_memmove_overloaded: case Builtin::BI__builtin_wmemcpy: case Builtin::BI__builtin_wmemmove: { bool WChar = BuiltinOp == Builtin::BIwmemcpy || @@ -8787,6 +8789,7 @@ bool Move = BuiltinOp == Builtin::BImemmove || BuiltinOp == Builtin::BIwmemmove || BuiltinOp == Builtin::BI__builtin_memmove || + BuiltinOp == Builtin::BI__builtin_memmove_overloaded || BuiltinOp == Builtin::BI__builtin_wmemmove; // The result of mem* is the first argument. @@ -8841,6 +8844,21 @@ return false; } + if (E->getNumArgs() == 4) { + // Overloaded mem* functions have an optional 4th parameter which denotes + // atomic element size in bytes. Constexpr interpretation doesn't care + // about atomicity, but needs to check runtime constraints on size. We + // can't check the alignment runtime constraints. + APSInt ElSz; + if (!EvaluateInteger(E->getArg(3), ElSz, Info)) + return false; + if (N.urem(ElSz.getLimitedValue()) != 0) { + Info.FFDiag(E, diag::note_constexpr_mem_overloaded_bad_size) + << (int)N.getLimitedValue() << (int)ElSz.getLimitedValue(); + return false; + } + } + // Figure out how many T's we're copying. uint64_t TSize = Info.Ctx.getTypeSizeInChars(T).getQuantity(); if (!WChar) { diff --git a/clang/lib/CodeGen/CGBuilder.h b/clang/lib/CodeGen/CGBuilder.h --- a/clang/lib/CodeGen/CGBuilder.h +++ b/clang/lib/CodeGen/CGBuilder.h @@ -279,6 +279,15 @@ IsVolatile); } + using CGBuilderBaseTy::CreateElementUnorderedAtomicMemCpy; + llvm::CallInst *CreateElementUnorderedAtomicMemCpy(Address Dest, Address Src, + llvm::Value *Size, + CharUnits ElementSize) { + return CreateElementUnorderedAtomicMemCpy( + Dest.getPointer(), Dest.getAlignment().getAsAlign(), Src.getPointer(), + Src.getAlignment().getAsAlign(), Size, ElementSize.getQuantity()); + } + using CGBuilderBaseTy::CreateMemCpyInline; llvm::CallInst *CreateMemCpyInline(Address Dest, Address Src, uint64_t Size) { return CreateMemCpyInline( @@ -294,6 +303,15 @@ Size, IsVolatile); } + using CGBuilderBaseTy::CreateElementUnorderedAtomicMemMove; + llvm::CallInst *CreateElementUnorderedAtomicMemMove(Address Dest, Address Src, + llvm::Value *Size, + CharUnits ElementSize) { + return CreateElementUnorderedAtomicMemMove( + Dest.getPointer(), Dest.getAlignment().getAsAlign(), Src.getPointer(), + Src.getAlignment().getAsAlign(), Size, ElementSize.getQuantity()); + } + using CGBuilderBaseTy::CreateMemSet; llvm::CallInst *CreateMemSet(Address Dest, llvm::Value *Value, llvm::Value *Size, bool IsVolatile = false) { @@ -301,6 +319,16 @@ Dest.getAlignment().getAsAlign(), IsVolatile); } + using CGBuilderBaseTy::CreateElementUnorderedAtomicMemSet; + llvm::CallInst *CreateElementUnorderedAtomicMemSet(Address Dest, + llvm::Value *Value, + llvm::Value *Size, + CharUnits ElementSize) { + return CreateElementUnorderedAtomicMemSet(Dest.getPointer(), Value, Size, + Dest.getAlignment().getAsAlign(), + ElementSize.getQuantity()); + } + using CGBuilderBaseTy::CreatePreserveStructAccessIndex; Address CreatePreserveStructAccessIndex(Address Addr, unsigned Index, diff --git a/clang/lib/CodeGen/CGBuiltin.cpp b/clang/lib/CodeGen/CGBuiltin.cpp --- a/clang/lib/CodeGen/CGBuiltin.cpp +++ b/clang/lib/CodeGen/CGBuiltin.cpp @@ -625,6 +625,16 @@ return {Width, Signed}; } +static QualType getPtrArgType(CodeGenModule &CGM, const CallExpr *E, + unsigned ArgNo) { + QualType ArgTy = E->getArg(ArgNo)->IgnoreImpCasts()->getType(); + if (ArgTy->isArrayType()) + return CGM.getContext().getAsArrayType(ArgTy)->getElementType(); + if (ArgTy->isObjCObjectPointerType()) + return ArgTy->castAs()->getPointeeType(); + return ArgTy->castAs()->getPointeeType(); +} + Value *CodeGenFunction::EmitVAStartEnd(Value *ArgValue, bool IsStart) { llvm::Type *DestType = Int8PtrTy; if (ArgValue->getType() != DestType) @@ -2623,16 +2633,30 @@ } case Builtin::BImemcpy: case Builtin::BI__builtin_memcpy: + case Builtin::BI__builtin_memcpy_overloaded: case Builtin::BImempcpy: case Builtin::BI__builtin_mempcpy: { + QualType DestTy = getPtrArgType(CGM, E, 0); + QualType SrcTy = getPtrArgType(CGM, E, 1); Address Dest = EmitPointerWithAlignment(E->getArg(0)); Address Src = EmitPointerWithAlignment(E->getArg(1)); + bool isVolatile = + DestTy.isVolatileQualified() || SrcTy.isVolatileQualified(); + bool isAtomic = E->getNumArgs() == 4; Value *SizeVal = EmitScalarExpr(E->getArg(2)); EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(), E->getArg(0)->getExprLoc(), FD, 0); EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(), E->getArg(1)->getExprLoc(), FD, 1); - Builder.CreateMemCpy(Dest, Src, SizeVal, false); + if (isAtomic) { + // FIXME add UBSan builtin check for alignment and Size / ElSz. + auto ElSz = + CharUnits::fromQuantity(E->getArg(3) + ->getIntegerConstantExpr(CGM.getContext()) + ->getLimitedValue()); + Builder.CreateElementUnorderedAtomicMemCpy(Dest, Src, SizeVal, ElSz); + } else + Builder.CreateMemCpy(Dest, Src, SizeVal, isVolatile); if (BuiltinID == Builtin::BImempcpy || BuiltinID == Builtin::BI__builtin_mempcpy) return RValue::get(Builder.CreateInBoundsGEP(Dest.getPointer(), SizeVal)); @@ -2701,26 +2725,52 @@ } case Builtin::BImemmove: - case Builtin::BI__builtin_memmove: { + case Builtin::BI__builtin_memmove: + case Builtin::BI__builtin_memmove_overloaded: { + QualType DestTy = getPtrArgType(CGM, E, 0); + QualType SrcTy = getPtrArgType(CGM, E, 1); Address Dest = EmitPointerWithAlignment(E->getArg(0)); Address Src = EmitPointerWithAlignment(E->getArg(1)); + bool isVolatile = + DestTy.isVolatileQualified() || SrcTy.isVolatileQualified(); + bool isAtomic = E->getNumArgs() == 4; Value *SizeVal = EmitScalarExpr(E->getArg(2)); EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(), E->getArg(0)->getExprLoc(), FD, 0); EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(), E->getArg(1)->getExprLoc(), FD, 1); - Builder.CreateMemMove(Dest, Src, SizeVal, false); + if (isAtomic) { + // FIXME add UBSan builtin check for alignment and Size / ElSz. + auto ElSz = + CharUnits::fromQuantity(E->getArg(3) + ->getIntegerConstantExpr(CGM.getContext()) + ->getLimitedValue()); + Builder.CreateElementUnorderedAtomicMemMove(Dest, Src, SizeVal, ElSz); + } else + Builder.CreateMemMove(Dest, Src, SizeVal, isVolatile); return RValue::get(Dest.getPointer()); } case Builtin::BImemset: - case Builtin::BI__builtin_memset: { + case Builtin::BI__builtin_memset: + case Builtin::BI__builtin_memset_overloaded: { + QualType DestTy = getPtrArgType(CGM, E, 0); Address Dest = EmitPointerWithAlignment(E->getArg(0)); Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)), Builder.getInt8Ty()); + bool isVolatile = DestTy.isVolatileQualified(); + bool isAtomic = E->getNumArgs() == 4; Value *SizeVal = EmitScalarExpr(E->getArg(2)); EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(), E->getArg(0)->getExprLoc(), FD, 0); - Builder.CreateMemSet(Dest, ByteVal, SizeVal, false); + if (isAtomic) { + // FIXME add UBSan builtin check for alignment and Size / ElSz. + auto ElSz = + CharUnits::fromQuantity(E->getArg(3) + ->getIntegerConstantExpr(CGM.getContext()) + ->getLimitedValue()); + Builder.CreateElementUnorderedAtomicMemSet(Dest, ByteVal, SizeVal, ElSz); + } else + Builder.CreateMemSet(Dest, ByteVal, SizeVal, isVolatile); return RValue::get(Dest.getPointer()); } case Builtin::BI__builtin___memset_chk: { diff --git a/clang/lib/CodeGen/CGExpr.cpp b/clang/lib/CodeGen/CGExpr.cpp --- a/clang/lib/CodeGen/CGExpr.cpp +++ b/clang/lib/CodeGen/CGExpr.cpp @@ -1061,8 +1061,8 @@ // LValue Expression Emission //===----------------------------------------------------------------------===// -/// EmitPointerWithAlignment - Given an expression of pointer type, try to -/// derive a more accurate bound on the alignment of the pointer. +/// Given an expression of pointer type, try to derive a more accurate bound on +/// the alignment of the pointer. Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { @@ -1164,6 +1164,9 @@ // TODO: conditional operators, comma. + if (E->getType()->isArrayType()) + return EmitArrayToPointerDecay(E, BaseInfo, TBAAInfo); + // Otherwise, use the alignment of the type. CharUnits Align = CGM.getNaturalPointeeTypeAlignment(E->getType(), BaseInfo, TBAAInfo); diff --git a/clang/lib/Sema/SemaChecking.cpp b/clang/lib/Sema/SemaChecking.cpp --- a/clang/lib/Sema/SemaChecking.cpp +++ b/clang/lib/Sema/SemaChecking.cpp @@ -1716,6 +1716,11 @@ } break; } + case Builtin::BI__builtin_memcpy_overloaded: + case Builtin::BI__builtin_memmove_overloaded: + return SemaBuiltinMemcpyOverloaded(TheCallResult); + case Builtin::BI__builtin_memset_overloaded: + return SemaBuiltinMemsetOverloaded(TheCallResult); #define BUILTIN(ID, TYPE, ATTRS) #define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \ case Builtin::BI##ID: \ @@ -5428,6 +5433,266 @@ return TheCallResult; } +/// Perform semantic checking for __builtin_memcpy_overloaded and +/// __builtin_memmove_overloaded, which are overloaded based on the pointer +/// types of the destination and source arguments. +ExprResult Sema::SemaBuiltinMemcpyOverloaded(ExprResult TheCallResult) { + CallExpr *TheCall = (CallExpr *)TheCallResult.get(); + + unsigned argCount = TheCall->getNumArgs(); + if (argCount != 3 && argCount != 4) { + if (argCount < 3) + return ExprError( + Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args) + << 0 /*function call*/ << 3 << argCount << TheCall->getSourceRange()); + SourceRange excessRange(TheCall->getArg(4)->getBeginLoc(), + TheCall->getArg(argCount - 1)->getEndLoc()); + return ExprError( + Diag(excessRange.getBegin(), diag::err_typecheck_call_too_many_args) + << 0 /*function call*/ << 4 << argCount + << TheCall->getArg(1)->getSourceRange()); + } + + bool HasElSz = argCount == 4; + + ExprResult DstPtr = DefaultFunctionArrayLvalueConversion(TheCall->getArg(0)); + if (DstPtr.isInvalid()) + return ExprError(); + clang::Expr *DstOp = DstPtr.get(); + TheCall->setArg(0, DstOp); + + ExprResult SrcPtr = DefaultFunctionArrayLvalueConversion(TheCall->getArg(1)); + if (SrcPtr.isInvalid()) + return ExprError(); + clang::Expr *SrcOp = SrcPtr.get(); + TheCall->setArg(1, SrcOp); + + const PointerType *DstTy = DstOp->getType()->getAs(); + const PointerType *SrcTy = SrcOp->getType()->getAs(); + if (!DstTy) + return ExprError( + Diag(TheCall->getBeginLoc(), diag::err_init_conversion_failed) + << InitializedEntity::EK_Parameter << Context.VoidPtrTy + << DstOp->isLValue() << DstOp->getType() << /*no difference*/ 0 + << DstOp->getSourceRange()); + if (!SrcTy) + return ExprError( + Diag(TheCall->getBeginLoc(), diag::err_init_conversion_failed) + << InitializedEntity::EK_Parameter << Context.VoidPtrTy + << SrcOp->isLValue() << SrcOp->getType() << /*no difference*/ 0 + << SrcOp->getSourceRange()); + + QualType DstValTy = DstTy->getPointeeType(); + QualType SrcValTy = SrcTy->getPointeeType(); + + if (DstValTy.isConstQualified()) + return ExprError(Diag(TheCall->getBeginLoc(), PDiag(diag::err_const_arg)) + << DstValTy << DstOp->getSourceRange()); + if (DstValTy->isAtomicType()) + return ExprError( + Diag(TheCall->getBeginLoc(), PDiag(diag::err_atomic_qualifier_invalid)) + << DstValTy << DstOp->getSourceRange()); + if (SrcValTy->isAtomicType()) + return ExprError( + Diag(TheCall->getBeginLoc(), PDiag(diag::err_atomic_qualifier_invalid)) + << SrcValTy << SrcOp->getSourceRange()); + + ExprResult SizeRes(TheCall->getArg(2)); + InitializedEntity SizeEntity = InitializedEntity::InitializeParameter( + Context, Context.getSizeType(), false); + SizeRes = PerformCopyInitialization(SizeEntity, SourceLocation(), SizeRes); + if (SizeRes.isInvalid()) + return ExprError(); + TheCall->setArg(2, SizeRes.get()); + + bool IsNonZero; + if (!SizeRes.get()->isValueDependent() && + SizeRes.get()->EvaluateAsBooleanCondition(IsNonZero, Context) && + IsNonZero) { + CheckNonNullArgument(*this, DstOp, TheCall->getExprLoc()); + CheckNonNullArgument(*this, SrcOp, TheCall->getExprLoc()); + } + + if (HasElSz) { + clang::Expr *Arg = TheCall->getArg(3); + + if (!DstValTy.isTriviallyCopyableType(Context)) + return ExprError(Diag(TheCall->getBeginLoc(), + PDiag(diag::err_atomic_op_needs_trivial_copy)) + << DstValTy << DstOp->getSourceRange()); + if (!SrcValTy.isTriviallyCopyableType(Context)) + return ExprError(Diag(TheCall->getBeginLoc(), + PDiag(diag::err_atomic_op_needs_trivial_copy)) + << SrcValTy << SrcOp->getSourceRange()); + if (DstValTy.isVolatileQualified()) + return ExprError(Diag(TheCall->getBeginLoc(), + PDiag(diag::err_sized_volatile_unsupported)) + << DstValTy << DstOp->getSourceRange()); + if (SrcValTy.isVolatileQualified()) + return ExprError(Diag(TheCall->getBeginLoc(), + PDiag(diag::err_sized_volatile_unsupported)) + << SrcValTy << SrcOp->getSourceRange()); + + if (!Arg->isValueDependent()) { + llvm::APSInt ElSz; + ExprResult ElSzRes(VerifyIntegerConstantExpression(Arg, &ElSz)); + if (ElSzRes.isInvalid()) + return ExprError(); + TheCall->setArg(3, ElSzRes.get()); + + if (!ElSz.isStrictlyPositive() || !ElSz.isPowerOf2()) + return ExprError( + Diag(TheCall->getBeginLoc(), diag::err_argument_not_power_of_2) + << Arg->getSourceRange()); + int InlineWidth = + Context + .toCharUnitsFromBits( + Context.getTargetInfo().getMaxAtomicInlineWidth()) + .getQuantity(); + if (ElSz.ugt(InlineWidth)) + return ExprError(Diag(TheCall->getBeginLoc(), + PDiag(diag::err_elsz_must_be_lock_free)) + << (int)ElSz.getLimitedValue() << InlineWidth + << Arg->getSourceRange()); + + if (int DstElSz = Context.getTypeSizeInChars(DstValTy).getQuantity()) { + if (ElSz.urem(DstElSz) != 0) + return ExprError( + Diag(TheCall->getBeginLoc(), + PDiag(diag::err_atomic_builtin_ext_size_mismatches_el)) + << (int)ElSz.getLimitedValue() << DstElSz << DstValTy + << DstOp->getSourceRange() << Arg->getSourceRange()); + } + + if (int SrcElSz = Context.getTypeSizeInChars(SrcValTy).getQuantity()) { + if (ElSz.urem(SrcElSz) != 0) + return ExprError( + Diag(TheCall->getBeginLoc(), + PDiag(diag::err_atomic_builtin_ext_size_mismatches_el)) + << (int)ElSz.getLimitedValue() << SrcElSz << SrcValTy + << SrcOp->getSourceRange() << Arg->getSourceRange()); + } + } + } + + return TheCallResult; +} + +/// Perform semantic checking for __builtin_memset_overloaded and +/// __builtin_memset_overloaded, which is overloaded based on the pointer type +/// of the destination argument. +ExprResult Sema::SemaBuiltinMemsetOverloaded(ExprResult TheCallResult) { + CallExpr *TheCall = (CallExpr *)TheCallResult.get(); + + unsigned argCount = TheCall->getNumArgs(); + if (argCount != 3 && argCount != 4) { + if (argCount < 3) + return ExprError( + Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args) + << 0 /*function call*/ << 3 << argCount << TheCall->getSourceRange()); + SourceRange excessRange(TheCall->getArg(4)->getBeginLoc(), + TheCall->getArg(argCount - 1)->getEndLoc()); + return ExprError( + Diag(excessRange.getBegin(), diag::err_typecheck_call_too_many_args) + << 0 /*function call*/ << 4 << argCount + << TheCall->getArg(1)->getSourceRange()); + } + + bool HasElSz = argCount == 4; + + ExprResult DstPtr = DefaultFunctionArrayLvalueConversion(TheCall->getArg(0)); + if (DstPtr.isInvalid()) + return ExprError(); + clang::Expr *DstOp = DstPtr.get(); + TheCall->setArg(0, DstOp); + + const PointerType *DstTy = DstOp->getType()->getAs(); + if (!DstTy) + return ExprError( + Diag(TheCall->getBeginLoc(), diag::err_init_conversion_failed) + << InitializedEntity::EK_Parameter << Context.VoidPtrTy + << DstOp->isLValue() << DstOp->getType() << /*no difference*/ 0 + << DstOp->getSourceRange()); + + QualType DstValTy = DstTy->getPointeeType(); + if (DstValTy.isConstQualified()) + return ExprError(Diag(TheCall->getBeginLoc(), PDiag(diag::err_const_arg)) + << DstValTy << DstOp->getSourceRange()); + if (DstValTy->isAtomicType()) + return ExprError( + Diag(TheCall->getBeginLoc(), PDiag(diag::err_atomic_qualifier_invalid)) + << DstValTy << DstOp->getSourceRange()); + + ExprResult ValRes(TheCall->getArg(1)); + InitializedEntity ValEntity = InitializedEntity::InitializeParameter( + Context, Context.UnsignedCharTy, false); + ValRes = PerformCopyInitialization(ValEntity, SourceLocation(), ValRes); + if (ValRes.isInvalid()) + return ExprError(); + TheCall->setArg(1, ValRes.get()); + + ExprResult SizeRes(TheCall->getArg(2)); + InitializedEntity SizeEntity = InitializedEntity::InitializeParameter( + Context, Context.getSizeType(), false); + SizeRes = PerformCopyInitialization(SizeEntity, SourceLocation(), SizeRes); + if (SizeRes.isInvalid()) + return ExprError(); + TheCall->setArg(2, SizeRes.get()); + + bool IsNonZero; + if (!SizeRes.get()->isValueDependent() && + SizeRes.get()->EvaluateAsBooleanCondition(IsNonZero, Context) && + IsNonZero) + CheckNonNullArgument(*this, DstOp, TheCall->getExprLoc()); + + if (HasElSz) { + clang::Expr *Arg = TheCall->getArg(3); + + if (!DstValTy.isTriviallyCopyableType(Context)) + return ExprError(Diag(TheCall->getBeginLoc(), + PDiag(diag::err_atomic_op_needs_trivial_copy)) + << DstValTy << DstOp->getSourceRange()); + if (DstValTy.isVolatileQualified()) + return ExprError(Diag(TheCall->getBeginLoc(), + PDiag(diag::err_sized_volatile_unsupported)) + << DstValTy << DstOp->getSourceRange()); + + if (!Arg->isValueDependent()) { + llvm::APSInt ElSz; + ExprResult ElSzRes(VerifyIntegerConstantExpression(Arg, &ElSz)); + if (ElSzRes.isInvalid()) + return ExprError(); + TheCall->setArg(3, ElSzRes.get()); + + if (!ElSz.isStrictlyPositive() || !ElSz.isPowerOf2()) + return ExprError( + Diag(TheCall->getBeginLoc(), diag::err_argument_not_power_of_2) + << Arg->getSourceRange()); + int InlineWidth = + Context + .toCharUnitsFromBits( + Context.getTargetInfo().getMaxAtomicInlineWidth()) + .getQuantity(); + if (ElSz.ugt(InlineWidth)) + return ExprError(Diag(TheCall->getBeginLoc(), + PDiag(diag::err_elsz_must_be_lock_free)) + << (int)ElSz.getLimitedValue() << InlineWidth + << Arg->getSourceRange()); + + if (int DstElSz = Context.getTypeSizeInChars(DstValTy).getQuantity()) { + if (ElSz.urem(DstElSz) != 0) + return ExprError( + Diag(TheCall->getBeginLoc(), + PDiag(diag::err_atomic_builtin_ext_size_mismatches_el)) + << (int)ElSz.getLimitedValue() << DstElSz << DstValTy + << DstOp->getSourceRange() << Arg->getSourceRange()); + } + } + } + + return TheCallResult; +} + /// CheckObjCString - Checks that the argument to the builtin /// CFString constructor is correct /// Note: It might also make sense to do the UTF-16 conversion here (would diff --git a/clang/test/CodeGen/builtin-overloaded-memfns.c b/clang/test/CodeGen/builtin-overloaded-memfns.c new file mode 100644 --- /dev/null +++ b/clang/test/CodeGen/builtin-overloaded-memfns.c @@ -0,0 +1,337 @@ +// RUN: %clang_cc1 -triple arm64-unknown-unknown -fms-extensions -emit-llvm < %s| FileCheck %s + +typedef __SIZE_TYPE__ size_t; + +// CHECK-LABEL: volatile_dst_cpy_void( +// CHECK: call void @llvm.memcpy.p0i8.p0i8.i64(i8* align 1 %{{[0-9]*}}, i8* align 1 %{{[0-9]*}}, i64 %{{[0-9]*}}, i1 true) +void volatile_dst_cpy_void(volatile void *dst, const void *src, size_t size) { __builtin_memcpy_overloaded(dst, src, size); } + +// CHECK-LABEL: volatile_dst_move_void( +// CHECK: call void @llvm.memmove.p0i8.p0i8.i64(i8* align 1 %{{[0-9]*}}, i8* align 1 %{{[0-9]*}}, i64 %{{[0-9]*}}, i1 true) +void volatile_dst_move_void(volatile void *dst, const void *src, size_t size) { __builtin_memmove_overloaded(dst, src, size); } + +// CHECK-LABEL: volatile_dst_set_void( +// CHECK: call void @llvm.memset.p0i8.i64(i8* align 1 %{{[0-9]*}}, i8 0, i64 %{{[0-9]*}}, i1 true) +void volatile_dst_set_void(volatile void *dst, size_t size) { __builtin_memset_overloaded(dst, 0, size); } + +// CHECK-LABEL: volatile_src_cpy_void( +// CHECK: call void @llvm.memcpy.p0i8.p0i8.i64(i8* align 1 %{{[0-9]*}}, i8* align 1 %{{[0-9]*}}, i64 %{{[0-9]*}}, i1 true) +void volatile_src_cpy_void(void *dst, volatile const void *src, size_t size) { __builtin_memcpy_overloaded(dst, src, size); } + +// CHECK-LABEL: volatile_src_move_void( +// CHECK: call void @llvm.memmove.p0i8.p0i8.i64(i8* align 1 %{{[0-9]*}}, i8* align 1 %{{[0-9]*}}, i64 %{{[0-9]*}}, i1 true) +void volatile_src_move_void(void *dst, volatile const void *src, size_t size) { __builtin_memmove_overloaded(dst, src, size); } + +// CHECK-LABEL: volatile_dstsrc_cpy_void( +// CHECK: call void @llvm.memcpy.p0i8.p0i8.i64(i8* align 1 %{{[0-9]*}}, i8* align 1 %{{[0-9]*}}, i64 %{{[0-9]*}}, i1 true) +void volatile_dstsrc_cpy_void(volatile void *dst, volatile const void *src, size_t size) { __builtin_memcpy_overloaded(dst, src, size); } + +// CHECK-LABEL: volatile_dstsrc_move_void( +// CHECK: call void @llvm.memmove.p0i8.p0i8.i64(i8* align 1 %{{[0-9]*}}, i8* align 1 %{{[0-9]*}}, i64 %{{[0-9]*}}, i1 true) +void volatile_dstsrc_move_void(volatile void *dst, volatile const void *src, size_t size) { __builtin_memmove_overloaded(dst, src, size); } + +// CHECK-LABEL: volatile_dst_cpy_char( +// CHECK: call void @llvm.memcpy.p0i8.p0i8.i64(i8* align 1 %{{[0-9]*}}, i8* align 1 %{{[0-9]*}}, i64 %{{[0-9]*}}, i1 true) +void volatile_dst_cpy_char(volatile char *dst, const char *src, size_t size) { __builtin_memcpy_overloaded(dst, src, size); } + +// CHECK-LABEL: volatile_dst_move_char( +// CHECK: call void @llvm.memmove.p0i8.p0i8.i64(i8* align 1 %{{[0-9]*}}, i8* align 1 %{{[0-9]*}}, i64 %{{[0-9]*}}, i1 true) +void volatile_dst_move_char(volatile char *dst, const char *src, size_t size) { __builtin_memmove_overloaded(dst, src, size); } + +// CHECK-LABEL: volatile_dst_set_char( +// CHECK: call void @llvm.memset.p0i8.i64(i8* align 1 %{{[0-9]*}}, i8 0, i64 %{{[0-9]*}}, i1 true) +void volatile_dst_set_char(volatile char *dst, size_t size) { __builtin_memset_overloaded(dst, 0, size); } + +// CHECK-LABEL: volatile_dst_cpy_int( +// CHECK: call void @llvm.memcpy.p0i8.p0i8.i64(i8* align 4 %{{[0-9]*}}, i8* align 4 %{{[0-9]*}}, i64 %{{[0-9]*}}, i1 true) +void volatile_dst_cpy_int(volatile int *dst, const int *src, size_t size) { __builtin_memcpy_overloaded(dst, src, size); } + +// CHECK-LABEL: volatile_dst_move_int( +// CHECK: call void @llvm.memmove.p0i8.p0i8.i64(i8* align 4 %{{[0-9]*}}, i8* align 4 %{{[0-9]*}}, i64 %{{[0-9]*}}, i1 true) +void volatile_dst_move_int(volatile int *dst, const int *src, size_t size) { __builtin_memmove_overloaded(dst, src, size); } + +// CHECK-LABEL: volatile_dst_set_int( +// CHECK: call void @llvm.memset.p0i8.i64(i8* align 4 %{{[0-9]*}}, i8 0, i64 %{{[0-9]*}}, i1 true) +void volatile_dst_set_int(volatile int *dst, size_t size) { __builtin_memset_overloaded(dst, 0, size); } + +// CHECK-LABEL: unaligned_dst_cpy_int( +// CHECK: call void @llvm.memcpy.p0i8.p0i8.i64(i8* align 1 %{{[0-9]*}}, i8* align 4 %{{[0-9]*}}, i64 %{{[0-9]*}}, i1 false) +void unaligned_dst_cpy_int(__unaligned int *dst, const int *src, size_t size) { __builtin_memcpy_overloaded(dst, src, size); } + +// CHECK-LABEL: unaligned_dst_move_int( +// CHECK: call void @llvm.memmove.p0i8.p0i8.i64(i8* align 1 %{{[0-9]*}}, i8* align 4 %{{[0-9]*}}, i64 %{{[0-9]*}}, i1 false) +void unaligned_dst_move_int(__unaligned int *dst, const int *src, size_t size) { __builtin_memmove_overloaded(dst, src, size); } + +// CHECK-LABEL: unaligned_dst_set_int( +// CHECK: call void @llvm.memset.p0i8.i64(i8* align 1 %{{[0-9]*}}, i8 0, i64 %{{[0-9]*}}, i1 false) +void unaligned_dst_set_int(__unaligned int *dst, size_t size) { __builtin_memset_overloaded(dst, 0, size); } + +// CHECK-LABEL: unaligned_src_cpy_int( +// CHECK: call void @llvm.memcpy.p0i8.p0i8.i64(i8* align 4 %{{[0-9]*}}, i8* align 1 %{{[0-9]*}}, i64 %{{[0-9]*}}, i1 false) +void unaligned_src_cpy_int(int *dst, __unaligned const int *src, size_t size) { __builtin_memcpy_overloaded(dst, src, size); } + +// CHECK-LABEL: unaligned_src_move_int( +// CHECK: call void @llvm.memmove.p0i8.p0i8.i64(i8* align 4 %{{[0-9]*}}, i8* align 1 %{{[0-9]*}}, i64 %{{[0-9]*}}, i1 false) +void unaligned_src_move_int(int *dst, __unaligned const int *src, size_t size) { __builtin_memmove_overloaded(dst, src, size); } + +// CHECK-LABEL: addrspace_srcdst_cpy_char( +// CHECK: call void @llvm.memcpy.p32i8.p32i8.i64(i8 addrspace(32)* align 1 %{{[0-9]*}}, i8 addrspace(32)* align 1 %{{[0-9]*}}, i64 %{{[0-9]*}}, i1 false) +void addrspace_srcdst_cpy_char(__attribute__((address_space(32))) char *dst, __attribute__((address_space(32))) const char *src, size_t size) { __builtin_memcpy_overloaded(dst, src, size); } + +// CHECK-LABEL: addrspace_srcdst_move_char( +// CHECK: call void @llvm.memmove.p32i8.p32i8.i64(i8 addrspace(32)* align 1 %{{[0-9]*}}, i8 addrspace(32)* align 1 %{{[0-9]*}}, i64 %{{[0-9]*}}, i1 false) +void addrspace_srcdst_move_char(__attribute__((address_space(32))) char *dst, __attribute__((address_space(32))) const char *src, size_t size) { __builtin_memmove_overloaded(dst, src, size); } + +// CHECK-LABEL: addrspace_dst_set_char( +// CHECK: call void @llvm.memset.p32i8.i64(i8 addrspace(32)* align 1 %{{[0-9]*}}, i8 0, i64 %{{[0-9]*}}, i1 false) +void addrspace_dst_set_char(__attribute__((address_space(32))) char *dst, size_t size) { __builtin_memset_overloaded(dst, 0, size); } + +// CHECK-LABEL: restrict_srcdst_cpy_char( +// CHECK: call void @llvm.memcpy.p0i8.p0i8.i64(i8* align 1 %{{[0-9]*}}, i8* align 1 %{{[0-9]*}}, i64 %{{[0-9]*}}, i1 false) +void restrict_srcdst_cpy_char(char *__restrict dst, const char *__restrict src, size_t size) { __builtin_memcpy_overloaded(dst, src, size); } + +// CHECK-LABEL: restrict_srcdst_move_char( +// CHECK: call void @llvm.memmove.p0i8.p0i8.i64(i8* align 1 %{{[0-9]*}}, i8* align 1 %{{[0-9]*}}, i64 %{{[0-9]*}}, i1 false) +void restrict_srcdst_move_char(char *__restrict dst, const char *__restrict src, size_t size) { __builtin_memmove_overloaded(dst, src, size); } + +// CHECK-LABEL: restrict_dst_set_char( +// CHECK: call void @llvm.memset.p0i8.i64(i8* align 1 %{{[0-9]*}}, i8 0, i64 %{{[0-9]*}}, i1 false) +void restrict_dst_set_char(char *__restrict dst, size_t size) { __builtin_memset_overloaded(dst, 0, size); } + +// CHECK-LABEL: atomic_srcdst_cpy_char( +// CHECK: call void @llvm.memcpy.element.unordered.atomic.p0i8.p0i8.i64(i8* align 1 %{{[0-9]*}}, i8* align 1 %{{[0-9]*}}, i64 %{{[0-9]*}}, i32 1) +void atomic_srcdst_cpy_char(char *dst, const char *src, size_t size) { __builtin_memcpy_overloaded(dst, src, size, 1); } + +#if 0 // FIXME: open question on alignment. +// FIXME-CHECK-LABEL: atomic_srcdst_cpy_char_big( +// FIXME-CHECK: call void @llvm.memcpy.element.unordered.atomic.p0i8.p0i8.i64(i8* align 1 %{{[0-9]*}}, i8* align 1 %{{[0-9]*}}, i64 %{{[0-9]*}}, i32 16) +void atomic_srcdst_cpy_char_big(char *dst, const char *src, size_t size) { __builtin_memcpy_overloaded(dst, src, size, 16); } +#endif + +// FIXME-CHECK-LABEL: atomic_srcdst_move_char( +// FIXME-CHECK: call void @llvm.memmove.element.unordered.atomic.p0i8.p0i8.i64(i8* align 1 %{{[0-9]*}}, i8* align 1 %{{[0-9]*}}, i64 %{{[0-9]*}}, i32 1) +void atomic_srcdst_move_char(char *dst, const char *src, size_t size) { __builtin_memmove_overloaded(dst, src, size, 1); } + +#if 0 // FIXME: open question on alignment. +// FIXME-CHECK-LABEL: atomic_srcdst_move_char_big( +// FIXME-CHECK: call void @llvm.memmove.element.unordered.atomic.p0i8.p0i8.i64(i8* align 1 %{{[0-9]*}}, i8* align 1 %{{[0-9]*}}, i64 %{{[0-9]*}}, i32 16) +void atomic_srcdst_move_char_big(char *dst, const char *src, size_t size) { __builtin_memmove_overloaded(dst, src, size, 16); } +#endif + +// CHECK-LABEL: atomic_dst_set_char( +// CHECK: call void @llvm.memset.element.unordered.atomic.p0i8.i64(i8* align 1 %{{[0-9]*}}, i8 0, i64 %{{[0-9]*}}, i32 1) +void atomic_dst_set_char(char *dst, size_t size) { __builtin_memset_overloaded(dst, 0, size, 1); } + +#if 0 // FIXME: open question on alignment. +// FIXME-CHECK-LABEL: atomic_dst_set_char_big( +// FIXME-CHECK: call void @llvm.memset.element.unordered.atomic.p0i8.i64(i8* align 1 %{{[0-9]*}}, i8 0, i64 %{{[0-9]*}}, i32 16) +void atomic_dst_set_char_big(char *dst, size_t size) { __builtin_memset_overloaded(dst, 0, size, 16); } +#endif + +// CHECK-LABEL: atomic_srcdst_cpy_int( +// CHECK: call void @llvm.memcpy.element.unordered.atomic.p0i8.p0i8.i64(i8* align 4 %{{[0-9]*}}, i8* align 4 %{{[0-9]*}}, i64 %{{[0-9]*}}, i32 4) +void atomic_srcdst_cpy_int(int *dst, const int *src, size_t size) { __builtin_memcpy_overloaded(dst, src, size, 4); } + +// CHECK-LABEL: atomic_srcdst_move_int( +// CHECK: call void @llvm.memmove.element.unordered.atomic.p0i8.p0i8.i64(i8* align 4 %{{[0-9]*}}, i8* align 4 %{{[0-9]*}}, i64 %{{[0-9]*}}, i32 4) +void atomic_srcdst_move_int(int *dst, const int *src, size_t size) { __builtin_memmove_overloaded(dst, src, size, 4); } + +// CHECK-LABEL: atomic_dst_set_int( +// CHECK: call void @llvm.memset.element.unordered.atomic.p0i8.i64(i8* align 4 %{{[0-9]*}}, i8 0, i64 %{{[0-9]*}}, i32 4) +void atomic_dst_set_int(int *dst, size_t size) { __builtin_memset_overloaded(dst, 0, size, 4); } + +// CHECK-LABEL: atomic_srcdst_cpy_longlong( +// CHECK: call void @llvm.memcpy.element.unordered.atomic.p0i8.p0i8.i64(i8* align 8 %{{[0-9]*}}, i8* align 8 %{{[0-9]*}}, i64 %{{[0-9]*}}, i32 8) +void atomic_srcdst_cpy_longlong(long long *dst, const long long *src, size_t size) { __builtin_memcpy_overloaded(dst, src, size, sizeof(long long)); } + +// CHECK-LABEL: atomic_srcdst_move_longlong( +// CHECK: call void @llvm.memmove.element.unordered.atomic.p0i8.p0i8.i64(i8* align 8 %{{[0-9]*}}, i8* align 8 %{{[0-9]*}}, i64 %{{[0-9]*}}, i32 8) +void atomic_srcdst_move_longlong(long long *dst, const long long *src, size_t size) { __builtin_memmove_overloaded(dst, src, size, sizeof(long long)); } + +// CHECK-LABEL: atomic_dst_set_longlong( +// CHECK: call void @llvm.memset.element.unordered.atomic.p0i8.i64(i8* align 8 %{{[0-9]*}}, i8 0, i64 %{{[0-9]*}}, i32 8) +void atomic_dst_set_longlong(long long *dst, size_t size) { __builtin_memset_overloaded(dst, 0, size, sizeof(long long)); } + +// CHECK-LABEL: atomic_static_srcdst_cpy_char( +// CHECK: call void @llvm.memcpy.element.unordered.atomic.p0i8.p0i8.i64(i8* align 1 %{{[0-9]*}}, i8* align 1 %{{[0-9]*}}, i64 %{{[0-9]*}}, i32 1) +void atomic_static_srcdst_cpy_char(char dst[static 2], const char src[2], size_t size) { __builtin_memcpy_overloaded(dst, src, size, 1); } + +// CHECK-LABEL: atomic_static_srcdst_move_char( +// CHECK: call void @llvm.memmove.element.unordered.atomic.p0i8.p0i8.i64(i8* align 1 %{{[0-9]*}}, i8* align 1 %{{[0-9]*}}, i64 %{{[0-9]*}}, i32 1) +void atomic_static_srcdst_move_char(char dst[static 2], const char src[2], size_t size) { __builtin_memmove_overloaded(dst, src, size, 1); } + +// CHECK-LABEL: atomic_static_dst_set_char( +// CHECK: call void @llvm.memset.element.unordered.atomic.p0i8.i64(i8* align 1 %{{[0-9]*}}, i8 0, i64 %{{[0-9]*}}, i32 1) +void atomic_static_dst_set_char(char dst[static 2], size_t size) { __builtin_memset_overloaded(dst, 0, size, 1); } + +extern char dst_atomic[2]; +extern const char src_atomic[2]; + +// CHECK-LABEL: atomic_array_srcdst_cpy_char( +// CHECK: call void @llvm.memcpy.element.unordered.atomic.p0i8.p0i8.i64(i8* align 1 getelementptr {{.*}}, i8* align 1 getelementptr {{.*}}, i64 %{{[0-9]*}}, i32 1) +void atomic_array_srcdst_cpy_char(size_t size) { __builtin_memcpy_overloaded(dst_atomic, src_atomic, size, 1); } + +// CHECK-LABEL: atomic_array_srcdst_move_char( +// CHECK: call void @llvm.memmove.element.unordered.atomic.p0i8.p0i8.i64(i8* align 1 getelementptr {{.*}}, i8* align 1 getelementptr {{.*}}, i64 %{{[0-9]*}}, i32 1) +void atomic_array_srcdst_move_char(size_t size) { __builtin_memmove_overloaded(dst_atomic, src_atomic, size, 1); } + +// CHECK-LABEL: atomic_array_dst_set_char( +// CHECK: call void @llvm.memset.element.unordered.atomic.p0i8.i64(i8* align 1 getelementptr {{.*}}, i8 0, i64 %{{[0-9]*}}, i32 1) +void atomic_array_dst_set_char(size_t size) { __builtin_memset_overloaded(dst_atomic, 0, size, 1); } + +// CHECK-LABEL: atomic_local_srcdst_cpy_char( +// CHECK: call void @llvm.memcpy.element.unordered.atomic.p0i8.p0i8.i64(i8* align 4 %{{[0-9]*}}, i8* align 4 %{{[0-9]*}}, i64 4, i32 4) +void atomic_local_srcdst_cpy_char(size_t size) { + int dst; + const int src; + __builtin_memcpy_overloaded(&dst, &src, sizeof(dst), sizeof(dst)); +} + +// CHECK-LABEL: atomic_local_srcdst_move_char( +// CHECK: call void @llvm.memmove.element.unordered.atomic.p0i8.p0i8.i64(i8* align 4 %{{[0-9]*}}, i8* align 4 %{{[0-9]*}}, i64 4, i32 4) +void atomic_local_srcdst_move_char(size_t size) { + int dst; + const int src; + __builtin_memmove_overloaded(&dst, &src, sizeof(dst), sizeof(dst)); +} + +// CHECK-LABEL: atomic_local_dst_set_char( +// CHECK: call void @llvm.memset.element.unordered.atomic.p0i8.i64(i8* align 4 %{{[0-9]*}}, i8 0, i64 4, i32 4) +void atomic_local_dst_set_char(size_t size) { + int dst; + __builtin_memset_overloaded(&dst, 0, sizeof(dst), sizeof(dst)); +} + +// CHECK-LABEL: vla_srcdst_cpy_char( +// CHECK: call void @llvm.memcpy.p0i8.p0i8.i64(i8* align 1 %{{[0-9a-z]*}}, i8* align 1 %{{[0-9a-z]*}}, i64 %{{[0-9]*}}, i1 true) +void vla_srcdst_cpy_char(size_t size) { + volatile char dst[size]; + const volatile char src[size]; + __builtin_memcpy_overloaded(dst, src, size); +} + +// CHECK-LABEL: vla_srcdst_move_char( +// CHECK: call void @llvm.memmove.p0i8.p0i8.i64(i8* align 1 %{{[0-9a-z]*}}, i8* align 1 %{{[0-9a-z]*}}, i64 %{{[0-9]*}}, i1 true) +void vla_srcdst_move_char(size_t size) { + volatile char dst[size]; + const volatile char src[size]; + __builtin_memmove_overloaded(dst, src, size); +} + +// CHECK-LABEL: vla_dst_set_char( +// CHECK: call void @llvm.memset.p0i8.i64(i8* align 1 %{{[0-9a-z]*}}, i8 0, i64 %{{[0-9]*}}, i1 true) +void vla_dst_set_char(size_t size) { + volatile char dst[size]; + __builtin_memset_overloaded(dst, 0, size); +} + +// CHECK-LABEL: static_srcdst_cpy_char( +// CHECK: call void @llvm.memcpy.p0i8.p0i8.i64(i8* align 1 %{{[0-9]*}}, i8* align 1 %{{[0-9]*}}, i64 %{{[0-9]*}}, i1 false) +void static_srcdst_cpy_char(char dst[static 42], const char src[static 42], size_t size) { + __builtin_memcpy_overloaded(dst, src, size); +} + +// CHECK-LABEL: static_srcdst_move_char( +// CHECK: call void @llvm.memmove.p0i8.p0i8.i64(i8* align 1 %{{[0-9]*}}, i8* align 1 %{{[0-9]*}}, i64 %{{[0-9]*}}, i1 false) +void static_srcdst_move_char(char dst[static 42], const char src[static 42], size_t size) { + __builtin_memmove_overloaded(dst, src, size); +} + +// CHECK-LABEL: static_dst_set_char( +// CHECK: call void @llvm.memset.p0i8.i64(i8* align 1 %{{[0-9]*}}, i8 0, i64 %{{[0-9]*}}, i1 false) +void static_dst_set_char(char dst[static 42], size_t size) { + __builtin_memset_overloaded(dst, 0, size); +} + +extern char dst_unsized[]; +extern volatile char dst_vunsized[]; +extern const char src_cunsized[]; +extern const volatile char src_cvunsized[]; + +// CHECK-LABEL: array_volatile_unsized_dst_cpy( +// CHECK: call void @llvm.memcpy.p0i8.p0i8.i64(i8* align 1 getelementptr {{.*}}, i8* align 1 getelementptr {{.*}}, i64 %{{[0-9]*}}, i1 true) +void array_volatile_unsized_dst_cpy(size_t size) { __builtin_memcpy_overloaded(dst_vunsized, src_cunsized, size); } + +// CHECK-LABEL: array_volatile_unsized_dst_move( +// CHECK: call void @llvm.memmove.p0i8.p0i8.i64(i8* align 1 getelementptr {{.*}}, i8* align 1 getelementptr {{.*}}, i64 %{{[0-9]*}}, i1 true) +void array_volatile_unsized_dst_move(size_t size) { __builtin_memmove_overloaded(dst_vunsized, src_cunsized, size); } + +// CHECK-LABEL: array_volatile_unsized_dst_set( +// CHECK: call void @llvm.memset.p0i8.i64(i8* align 1 getelementptr {{.*}}, i8 0, i64 %{{[0-9]*}}, i1 true) +void array_volatile_unsized_dst_set(size_t size) { __builtin_memset_overloaded(dst_vunsized, 0, size); } + +// CHECK-LABEL: array_volatile_unsized_src_cpy( +// CHECK: call void @llvm.memcpy.p0i8.p0i8.i64(i8* align 1 getelementptr {{.*}}, i8* align 1 getelementptr {{.*}}, i64 %{{[0-9]*}}, i1 true) +void array_volatile_unsized_src_cpy(size_t size) { __builtin_memcpy_overloaded(dst_unsized, src_cvunsized, size); } + +// CHECK-LABEL: array_volatile_unsized_src_move( +// CHECK: call void @llvm.memmove.p0i8.p0i8.i64(i8* align 1 getelementptr {{.*}}, i8* align 1 getelementptr {{.*}}, i64 %{{[0-9]*}}, i1 true) +void array_volatile_unsized_src_move(size_t size) { __builtin_memmove_overloaded(dst_unsized, src_cvunsized, size); } + +// CHECK-LABEL: array_volatile_unsized_dstsrc_cpy( +// CHECK: call void @llvm.memcpy.p0i8.p0i8.i64(i8* align 1 getelementptr {{.*}}, i8* align 1 getelementptr {{.*}}, i64 %{{[0-9]*}}, i1 true) +void array_volatile_unsized_dstsrc_cpy(size_t size) { __builtin_memcpy_overloaded(dst_vunsized, src_cvunsized, size); } + +// CHECK-LABEL: array_volatile_unsized_dstsrc_move( +// CHECK: call void @llvm.memmove.p0i8.p0i8.i64(i8* align 1 getelementptr {{.*}}, i8* align 1 getelementptr {{.*}}, i64 %{{[0-9]*}}, i1 true) +void array_volatile_unsized_dstsrc_move(size_t size) { __builtin_memmove_overloaded(dst_vunsized, src_cvunsized, size); } + +extern __attribute__((aligned(128))) char dst_512[512]; +extern __attribute__((aligned(128))) volatile char dst_v512[512]; +extern __attribute__((aligned(128))) const char src_c512[512]; +extern __attribute__((aligned(128))) const volatile char src_cv512[512]; + +// CHECK-LABEL: array_volatile_dst_cpy( +// CHECK: call void @llvm.memcpy.p0i8.p0i8.i64(i8* align 128 getelementptr {{.*}}, i8* align 128 getelementptr {{.*}}, i64 %{{[0-9]*}}, i1 true) +void array_volatile_dst_cpy(size_t size) { __builtin_memcpy_overloaded(dst_v512, src_c512, size); } + +// CHECK-LABEL: array_volatile_dst_move( +// CHECK: call void @llvm.memmove.p0i8.p0i8.i64(i8* align 128 getelementptr {{.*}}, i8* align 128 getelementptr {{.*}}, i64 %{{[0-9]*}}, i1 true) +void array_volatile_dst_move(size_t size) { __builtin_memmove_overloaded(dst_v512, src_c512, size); } + +// CHECK-LABEL: array_volatile_dst_set( +// CHECK: call void @llvm.memset.p0i8.i64(i8* align 128 getelementptr {{.*}}, i8 0, i64 %{{[0-9]*}}, i1 true) +void array_volatile_dst_set(size_t size) { __builtin_memset_overloaded(dst_v512, 0, size); } + +// CHECK-LABEL: array_volatile_src_cpy( +// CHECK: call void @llvm.memcpy.p0i8.p0i8.i64(i8* align 128 getelementptr {{.*}}, i8* align 128 getelementptr {{.*}}, i64 %{{[0-9]*}}, i1 true) +void array_volatile_src_cpy(size_t size) { __builtin_memcpy_overloaded(dst_512, src_cv512, size); } + +// CHECK-LABEL: array_volatile_src_move( +// CHECK: call void @llvm.memmove.p0i8.p0i8.i64(i8* align 128 getelementptr {{.*}}, i8* align 128 getelementptr {{.*}}, i64 %{{[0-9]*}}, i1 true) +void array_volatile_src_move(size_t size) { __builtin_memmove_overloaded(dst_512, src_cv512, size); } + +// CHECK-LABEL: array_volatile_dstsrc_cpy( +// CHECK: call void @llvm.memcpy.p0i8.p0i8.i64(i8* align 128 getelementptr {{.*}}, i8* align 128 getelementptr {{.*}}, i64 %{{[0-9]*}}, i1 true) +void array_volatile_dstsrc_cpy(size_t size) { __builtin_memcpy_overloaded(dst_v512, src_cv512, size); } + +// CHECK-LABEL: array_volatile_dstsrc_move( +// CHECK: call void @llvm.memmove.p0i8.p0i8.i64(i8* align 128 getelementptr {{.*}}, i8* align 128 getelementptr {{.*}}, i64 %{{[0-9]*}}, i1 true) +void array_volatile_dstsrc_move(size_t size) { __builtin_memmove_overloaded(dst_v512, src_cv512, size); } + +extern __attribute__((aligned(128))) volatile char dst_v512_32[512][32]; +extern __attribute__((aligned(128))) const volatile char src_cv512_32[512][32]; + +// CHECK-LABEL: multiarray_volatile_dstsrc_cpy( +// CHECK: call void @llvm.memcpy.p0i8.p0i8.i64(i8* align 128 getelementptr {{.*}}, i8* align 128 getelementptr {{.*}}, i64 %{{[0-9]*}}, i1 true) +void multiarray_volatile_dstsrc_cpy(size_t size) { __builtin_memcpy_overloaded(dst_v512_32, src_cv512_32, size); } + +// CHECK-LABEL: multiarray_volatile_dstsrc_move( +// CHECK: call void @llvm.memmove.p0i8.p0i8.i64(i8* align 128 getelementptr {{.*}}, i8* align 128 getelementptr {{.*}}, i64 %{{[0-9]*}}, i1 true) +void multiarray_volatile_dstsrc_move(size_t size) { __builtin_memmove_overloaded(dst_v512_32, src_cv512_32, size); } + +// CHECK-LABEL: multiarray_volatile_dst_set( +// CHECK: call void @llvm.memset.p0i8.i64(i8* align 128 getelementptr {{.*}}, i8 0, i64 %{{[0-9]*}}, i1 true) +void multiarray_volatile_dst_set(size_t size) { __builtin_memset_overloaded(dst_v512_32, 0, size); } + +// CHECK-LABEL: multiarray_idx_volatile_dstsrc_cpy( +// CHECK: call void @llvm.memcpy.p0i8.p0i8.i64(i8* align 32 getelementptr {{.*}}, i8* align 32 getelementptr {{.*}}, i64 %{{[0-9]*}}, i1 true) +void multiarray_idx_volatile_dstsrc_cpy(size_t size) { __builtin_memcpy_overloaded(dst_v512_32[1], src_cv512_32[1], size); } + +// CHECK-LABEL: multiarray_idx_volatile_dstsrc_move( +// CHECK: call void @llvm.memmove.p0i8.p0i8.i64(i8* align 32 getelementptr {{.*}}, i8* align 32 getelementptr {{.*}}, i64 %{{[0-9]*}}, i1 true) +void multiarray_idx_volatile_dstsrc_move(size_t size) { __builtin_memmove_overloaded(dst_v512_32[1], src_cv512_32[1], size); } + +// CHECK-LABEL: multiarray_idx_volatile_dst_set( +// CHECK: call void @llvm.memset.p0i8.i64(i8* align 32 getelementptr {{.*}}, i8 0, i64 %{{[0-9]*}}, i1 true) +void multiarray_idx_volatile_dst_set(size_t size) { __builtin_memset_overloaded(dst_v512_32[1], 0, size); } diff --git a/clang/test/CodeGenObjC/builtin-memfns.m b/clang/test/CodeGenObjC/builtin-memfns.m --- a/clang/test/CodeGenObjC/builtin-memfns.m +++ b/clang/test/CodeGenObjC/builtin-memfns.m @@ -1,10 +1,38 @@ // RUN: %clang_cc1 -triple x86_64-apple-macosx10.8.0 -emit-llvm -o - %s | FileCheck %s -void *memcpy(void *restrict s1, const void *restrict s2, unsigned long n); +typedef __SIZE_TYPE__ size_t; + +void *memcpy(void *restrict s1, const void *restrict s2, size_t n); +void *memmove(void *restrict s1, const void *restrict s2, size_t n); +void *memset(void *s1, int v, size_t n); // PR13697 -void test1(int *a, id b) { - // CHECK: @test1 +void cpy1(int *a, id b) { + // CHECK-LABEL: @cpy1( + // CHECK: call void @llvm.memcpy.p0i8.p0i8.i64(i8* {{.*}}, i8* {{.*}}, i64 8, i1 false) + memcpy(a, b, 8); +} + +void cpy2(id a, int *b) { + // CHECK-LABEL: @cpy2( // CHECK: call void @llvm.memcpy.p0i8.p0i8.i64(i8* {{.*}}, i8* {{.*}}, i64 8, i1 false) memcpy(a, b, 8); } + +void move1(int *a, id b) { + // CHECK-LABEL: @move1( + // CHECK: call void @llvm.memmove.p0i8.p0i8.i64(i8* {{.*}}, i8* {{.*}}, i64 8, i1 false) + memmove(a, b, 8); +} + +void move2(id a, int *b) { + // CHECK-LABEL: @move2( + // CHECK: call void @llvm.memmove.p0i8.p0i8.i64(i8* {{.*}}, i8* {{.*}}, i64 8, i1 false) + memmove(a, b, 8); +} + +void set(id a) { + // CHECK-LABEL: @set( + // CHECK: call void @llvm.memset.p0i8.i64(i8* {{.*}}, i8 42, i64 8, i1 false) + memset(a, 42, 8); +} diff --git a/clang/test/Sema/builtin-overloaded-memfns.cpp b/clang/test/Sema/builtin-overloaded-memfns.cpp new file mode 100644 --- /dev/null +++ b/clang/test/Sema/builtin-overloaded-memfns.cpp @@ -0,0 +1,252 @@ +// RUN: %clang_cc1 %s -verify -fsyntax-only -triple=arm64-unknown-unknown -fms-extensions -DCPY=1 +// RUN: %clang_cc1 %s -verify -fsyntax-only -triple=arm64-unknown-unknown -fms-extensions -DCPY=0 + +// Test memcpy and memmove with the same code, since they're basically the same constraints. +#if CPY +#define MEM(...) __builtin_memcpy_overloaded(__VA_ARGS__) +#else +#define MEM(...) __builtin_memmove_overloaded(__VA_ARGS__) +#endif + +#define NULL (void *)0 +#define nullptr __nullptr +using size_t = __SIZE_TYPE__; +using sizeless_t = __SVInt8_t; +using float4 = float __attribute__((ext_vector_type(4))); +struct Intish { + int i; +}; +struct NotLockFree { + char buf[512]; +}; +struct TrivialCpy { + char buf[8]; + TrivialCpy(); + TrivialCpy(const TrivialCpy &) = default; +}; +struct NotTrivialCpy { + char buf[8]; + NotTrivialCpy(); + NotTrivialCpy(const NotTrivialCpy &); +}; + +constexpr int CONSTEXPR_ONE = 1; + +void arg_count() { + MEM(); // expected-error {{too few arguments to function call, expected 3, have 0}} + MEM(0); // expected-error {{too few arguments to function call, expected 3, have 1}} + MEM(0, 0); // expected-error {{too few arguments to function call, expected 3, have 2}} + MEM(0, 0, 0, 0, 0); // expected-error {{too many arguments to function call, expected 4, have 5}} + __builtin_memset_overloaded(); // expected-error {{too few arguments to function call, expected 3, have 0}} + __builtin_memset_overloaded(0); // expected-error {{too few arguments to function call, expected 3, have 1}} + __builtin_memset_overloaded(0, 0); // expected-error {{too few arguments to function call, expected 3, have 2}} + __builtin_memset_overloaded(0, 0, 0, 0, 0); // expected-error {{too many arguments to function call, expected 4, have 5}} +} + +void null(char *dst, const char *src, size_t size) { + MEM(0, src, 0); // expected-error{{cannot initialize a parameter of type 'void *' with an rvalue of type 'int'}} + MEM(0, src, size); // expected-error{{cannot initialize a parameter of type 'void *' with an rvalue of type 'int'}} + MEM(dst, 0, 0); // expected-error{{cannot initialize a parameter of type 'void *' with an rvalue of type 'int'}} + MEM(dst, 0, size); // expected-error{{cannot initialize a parameter of type 'void *' with an rvalue of type 'int'}} + __builtin_memset_overloaded(0, 0, 0); // expected-error{{cannot initialize a parameter of type 'void *' with an rvalue of type 'int'}} + __builtin_memset_overloaded(0, 0, size); // expected-error{{cannot initialize a parameter of type 'void *' with an rvalue of type 'int'}} + MEM(dst, 0, 42); // expected-error{{cannot initialize a parameter of type 'void *' with an rvalue of type 'int'}} + MEM(dst, 0, 42); // expected-error{{cannot initialize a parameter of type 'void *' with an rvalue of type 'int'}} + MEM(dst, NULL, 42); // expected-warning {{null passed to a callee that requires a non-null argument}} + MEM(dst, nullptr, 42); // expected-error{{cannot initialize a parameter of type 'void *' with an rvalue of type 'nullptr_t'}} + MEM(0, src, 42); // expected-error{{cannot initialize a parameter of type 'void *' with an rvalue of type 'int'}} + MEM(NULL, src, 42); // expected-warning {{null passed to a callee that requires a non-null argument}} + MEM(nullptr, src, 42); // expected-error{{cannot initialize a parameter of type 'void *' with an rvalue of type 'nullptr_t'}} + __builtin_memset_overloaded(0, 0, 42); // expected-error{{cannot initialize a parameter of type 'void *' with an rvalue of type 'int'}} + __builtin_memset_overloaded(NULL, 0, 42); // expected-warning {{null passed to a callee that requires a non-null argument}} + __builtin_memset_overloaded(nullptr, 0, 42); // expected-error{{cannot initialize a parameter of type 'void *' with an rvalue of type 'nullptr_t'}} +} + +void good_arg_types(char *dst, const char *src, size_t size) { + MEM(dst, src, 0); + MEM(dst, dst, ~(size_t)0); + MEM(dst, src, 42); + MEM(dst, src, size); + MEM(dst, (char *)src, size); + MEM(dst, (const void *)src, size); + MEM((void *)dst, src, size); + MEM(dst, (volatile const char *)src, size); + MEM((volatile char *)dst, src, size); + MEM(dst, (__unaligned const char *)src, size); + MEM((__unaligned char *)dst, src, size); + MEM(dst, (const char *__restrict)src, size); + MEM((char *__restrict)dst, src, size); + + MEM(dst, (const __attribute__((address_space(32))) char *)src, size); + MEM((__attribute__((address_space(32))) char *)dst, src, size); + MEM((__attribute__((address_space(32))) char *)dst, (const __attribute__((address_space(64))) char *)src, size); + MEM(dst, (__attribute__((address_space(32))) __unaligned const volatile void *__restrict)src, size); + MEM((__attribute__((address_space(32))) __unaligned volatile void *__restrict)dst, src, size); + + MEM(dst, (const char *)src, size, 1); + MEM(dst, (const char *)src, size, 2); + MEM(dst, (const char *)src, size, 4); + MEM(dst, (const char *)src, size, 8); + MEM(dst, (const char *)src, size, 16); + MEM((char *)dst, src, size, 1); + MEM((int *)dst, (const Intish *)src, size, 4); + MEM((Intish *)dst, (const int *)src, size, 4); + MEM(dst, src, size, CONSTEXPR_ONE); + + __builtin_memset_overloaded(dst, 0, 0); + __builtin_memset_overloaded(dst, 0, ~(size_t)0); + __builtin_memset_overloaded(dst, 0, 42); + __builtin_memset_overloaded(dst, 0, size); + __builtin_memset_overloaded((void *)dst, 0, size); + __builtin_memset_overloaded((volatile char *)dst, 0, size); + __builtin_memset_overloaded((__unaligned char *)dst, 0, size); + __builtin_memset_overloaded((int *)dst, 0, size); + __builtin_memset_overloaded((__attribute__((address_space(32))) char *)dst, 0, size); + __builtin_memset_overloaded((__attribute__((address_space(32))) __unaligned volatile void *)dst, 0, size); + + __builtin_memset_overloaded((char *)dst, 0, size, 1); + __builtin_memset_overloaded((char *)dst, 0, size, 2); + __builtin_memset_overloaded((char *)dst, 0, size, 4); + __builtin_memset_overloaded((char *)dst, 0, size, 8); + __builtin_memset_overloaded((char *)dst, 0, size, 16); + __builtin_memset_overloaded((Intish *)dst, 0, size, 4); + __builtin_memset_overloaded(dst, 0, size, CONSTEXPR_ONE); +} + +// expected-note@+1 2 {{declared here}} +void bad_arg_types(char *dst, const char *src, size_t size) { + MEM(dst, 42, size); // expected-error {{cannot initialize a parameter of type 'void *' with an rvalue of type 'int'}} + MEM(42, src, size); // expected-error {{cannot initialize a parameter of type 'void *' with an rvalue of type 'int'}} + MEM(dst, src, dst); // expected-error {{cannot initialize a parameter of type 'unsigned long' with an lvalue of type 'char *'}} + MEM((const char *)dst, src, size); // expected-error {{argument must be non-const, got 'const char'}} + MEM((__attribute__((address_space(32))) __unaligned const volatile char *)dst, src, size); // expected-error {{argument must be non-const, got 'const volatile __unaligned __attribute__((address_space(32))) char'}} + + MEM(dst, (_Atomic const char *)src, size); // expected-error{{parameter cannot have the _Atomic qualifier ('const _Atomic(char)' invalid)}} + MEM((_Atomic char *)dst, src, size); // expected-error{{parameter cannot have the _Atomic qualifier ('_Atomic(char)' invalid)}} + MEM((int *)dst, (_Atomic const Intish *)src, size); // expected-error{{parameter cannot have the _Atomic qualifier ('const _Atomic(Intish)' invalid)}} + MEM((_Atomic Intish *)dst, (const int *)src, size); // expected-error{{parameter cannot have the _Atomic qualifier ('_Atomic(Intish)' invalid)}} + MEM((void *)dst, (_Atomic const int *)src, size); // expected-error{{parameter cannot have the _Atomic qualifier ('const _Atomic(int)' invalid)}} + MEM((_Atomic int *)dst, (const void *)src, size); // expected-error{{parameter cannot have the _Atomic qualifier ('_Atomic(int)' invalid)}} + + // expected-note@+1 {{read of non-const variable 'size' is not allowed in a constant expression}} + MEM(dst, src, size, size); // expected-error{{expression is not an integral constant expression}} + MEM(dst, src, size, -1); // expected-error{{argument should be a power of 2}} + MEM(dst, src, size, 0); // expected-error{{argument should be a power of 2}} + MEM(dst, src, size, 3); // expected-error{{argument should be a power of 2}} + MEM(dst, src, size, 32); // expected-error{{lock-free}} + MEM((int *)dst, src, size, 1); // expected-error{{number of bytes to copy must be a multiple of pointer element size, got 1 bytes to copy with element size 4 for 'int'}} + MEM(dst, (const int *)src, size, 1); // expected-error{{number of bytes to copy must be a multiple of pointer element size, got 1 bytes to copy with element size 4 for 'const int'}} + MEM((NotLockFree *)dst, (const NotLockFree *)src, size, sizeof(NotLockFree)); // expected-error{{element size must be a lock-free size, 512 exceeds 16 bytes}} + MEM((void *)dst, src, size, 4); // expected-error{{address argument to atomic operation must be a pointer to a trivially-copyable type ('void' invalid)}} + MEM(dst, (const void *)src, size, 4); // expected-error{{address argument to atomic operation must be a pointer to a trivially-copyable type ('const void' invalid)}} + MEM(dst, (volatile const char *)src, size, 1); // expected-error{{specifying an access size for volatile memory operations is unsupported ('const volatile char' is volatile)}} + MEM((volatile char *)dst, src, size, 1); // expected-error{{specifying an access size for volatile memory operations is unsupported ('volatile char' is volatile)}} + + __builtin_memset_overloaded(42, 0, size); // expected-error {{cannot initialize a parameter of type 'void *' with an rvalue of type 'int'}} + __builtin_memset_overloaded((const char *)dst, 0, size); // expected-error {{argument must be non-const, got 'const char'}} + __builtin_memset_overloaded((__attribute__((address_space(32))) __unaligned const volatile char *)dst, 0, size); // expected-error {{argument must be non-const, got 'const volatile __unaligned __attribute__((address_space(32))) char'}} + __builtin_memset_overloaded((_Atomic char *)dst, 0, size); // expected-error{{parameter cannot have the _Atomic qualifier ('_Atomic(char)' invalid)}} + __builtin_memset_overloaded((_Atomic Intish *)dst, 0, size); // expected-error{{parameter cannot have the _Atomic qualifier ('_Atomic(Intish)' invalid)}} + + // expected-note@+1 {{read of non-const variable 'size' is not allowed in a constant expression}} + __builtin_memset_overloaded(dst, 0, size, size); // expected-error{{expression is not an integral constant expression}} + __builtin_memset_overloaded(dst, 0, size, -1); // expected-error{{argument should be a power of 2}} + __builtin_memset_overloaded(dst, 0, size, 0); // expected-error{{argument should be a power of 2}} + __builtin_memset_overloaded(dst, 0, size, 3); // expected-error{{argument should be a power of 2}} + __builtin_memset_overloaded(dst, 0, size, 32); // expected-error{{lock-free}} + __builtin_memset_overloaded((int *)dst, 0, size, 1); // expected-error{{number of bytes to copy must be a multiple of pointer element size, got 1 bytes to copy with element size 4 for 'int'}} + __builtin_memset_overloaded((volatile char *)dst, 0, size, 1); // expected-error{{specifying an access size for volatile memory operations is unsupported ('volatile char' is volatile)}} + __builtin_memset_overloaded((NotLockFree *)dst, 0, size, sizeof(NotLockFree)); // expected-error{{element size must be a lock-free size, 512 exceeds 16 bytes}} + __builtin_memset_overloaded((void *)dst, 0, size, 1); // expected-error{{address argument to atomic operation must be a pointer to a trivially-copyable type ('void' invalid)}} +} + +void array_arg_types() { + extern char adst[512]; + extern volatile char avdst[512]; + extern const char asrc[512]; + extern const volatile char avsrc[512]; + + MEM(adst, asrc, sizeof(adst)); + MEM(avdst, avsrc, sizeof(avdst)); + MEM(asrc, asrc, sizeof(adst)); // expected-error {{argument must be non-const, got 'const char'}} + MEM(adst, asrc, sizeof(adst) + 1); // TODO diagnose size overflow? + __builtin_memset_overloaded(adst, 0, sizeof(adst)); + __builtin_memset_overloaded(avdst, 0, sizeof(avdst)); + __builtin_memset_overloaded(asrc, 0, sizeof(asrc)); // expected-error {{argument must be non-const, got 'const char'}} + __builtin_memset_overloaded(adst, 0, sizeof(adst) + 1); // TODO diagnose size overflow? +} + +void atomic_array_arg_types() { + extern char adst[512]; + extern volatile char avdst[512]; + extern const char asrc[512]; + extern const volatile char avsrc[512]; + + MEM(adst, asrc, sizeof(adst), 1); + MEM(avdst, asrc, sizeof(adst), 1); // expected-error{{specifying an access size for volatile memory operations is unsupported ('volatile char' is volatile)}} + MEM(adst, avsrc, sizeof(adst), 1); // expected-error{{specifying an access size for volatile memory operations is unsupported ('const volatile char' is volatile)}} + __builtin_memset_overloaded(adst, 0, sizeof(adst), 1); + __builtin_memset_overloaded(avdst, 0, sizeof(avdst), 1); // expected-error{{specifying an access size for volatile memory operations is unsupported ('volatile char' is volatile)}} +} + +void trivial_arg_types() { + TrivialCpy trivialDst; + const TrivialCpy trivialSrc; + MEM(&trivialDst, &trivialSrc, sizeof(TrivialCpy)); + MEM((__attribute__((address_space(32))) __unaligned volatile TrivialCpy * __restrict) & trivialDst, (__attribute__((address_space(64))) __unaligned const volatile TrivialCpy *__restrict) & trivialSrc, sizeof(TrivialCpy)); + __builtin_memset_overloaded(&trivialDst, 0, sizeof(trivialDst)); + __builtin_memset_overloaded((__attribute__((address_space(32))) __unaligned volatile TrivialCpy * __restrict) & trivialDst, 0, sizeof(trivialDst)); + + TrivialCpy trivialDstArr[2]; + const TrivialCpy trivialSrcArr[2]; + MEM(trivialDstArr, trivialSrcArr, sizeof(TrivialCpy) * 2); + __builtin_memset_overloaded(trivialDstArr, 0, sizeof(TrivialCpy) * 2); +} + +void nontrivial_arg_types() { + NotTrivialCpy notTrivialDst; + const NotTrivialCpy notTrivialSrc; + MEM(¬TrivialDst, ¬TrivialSrc, sizeof(NotTrivialCpy), sizeof(NotTrivialCpy)); // expected-error{{address argument to atomic operation must be a pointer to a trivially-copyable type ('NotTrivialCpy' invalid)}} + __builtin_memset_overloaded(¬TrivialDst, 0, sizeof(NotTrivialCpy), sizeof(NotTrivialCpy)); // expected-error{{address argument to atomic operation must be a pointer to a trivially-copyable type ('NotTrivialCpy' invalid)}} + + NotTrivialCpy notTrivialDstArr[2]; + const NotTrivialCpy notTrivialSrcArr[2]; + MEM(notTrivialDstArr, notTrivialSrcArr, sizeof(NotTrivialCpy) * 2, sizeof(NotTrivialCpy)); // expected-error{{address argument to atomic operation must be a pointer to a trivially-copyable type ('NotTrivialCpy' invalid)}} + __builtin_memset_overloaded(notTrivialDstArr, 0, sizeof(NotTrivialCpy) * 2, sizeof(NotTrivialCpy)); // expected-error{{address argument to atomic operation must be a pointer to a trivially-copyable type ('NotTrivialCpy' invalid)}} +} + +class Incomplete; +void inclomplete_arg_types(char *dst, const char *src, size_t size) { + MEM((Incomplete *)dst, src, size, 1); // expected-error{{address argument to atomic operation must be a pointer to a trivially-copyable type ('Incomplete' invalid)}} + MEM(dst, (const Incomplete *)src, size, 1); // expected-error{{address argument to atomic operation must be a pointer to a trivially-copyable type ('const Incomplete' invalid)}} + __builtin_memset_overloaded((Incomplete *)dst, 0, size, 1); // expected-error{{address argument to atomic operation must be a pointer to a trivially-copyable type ('Incomplete' invalid)}} +} + +void sizeless_arg_types(char *dst, const char *src, size_t size) { + MEM((sizeless_t *)dst, src, size); + MEM(dst, (const sizeless_t *)src, size); + __builtin_memset_overloaded((sizeless_t *)dst, 0, size); + + MEM((sizeless_t *)dst, src, size, 1); + MEM(dst, (const sizeless_t *)src, size, 1); + __builtin_memset_overloaded((sizeless_t *)dst, 0, size, 1); +} + +void vector_arg_types(char *dst, const char *src, size_t size) { + MEM((float4 *)dst, src, size); + MEM(dst, (const float4 *)src, size); + __builtin_memset_overloaded((float4 *)dst, 0, size); + + MEM((float4 *)dst, (const float4 *)src, size, sizeof(float4)); + MEM((float4 *)dst, (const float4 *)src, size, sizeof(float4)); + __builtin_memset_overloaded((float4 *)dst, 0, size, sizeof(float4)); +} + +void extint_arg_types(char *dst, const char *src, size_t size) { + MEM((_ExtInt(2) *)dst, src, size); + MEM(dst, (const _ExtInt(2) *)src, size); + __builtin_memset_overloaded((_ExtInt(2) *)dst, 0, size); + + MEM((_ExtInt(8) *)dst, (const _ExtInt(8) *)src, size, 1); + __builtin_memset_overloaded((_ExtInt(8) *)dst, 0, size, 1); +} diff --git a/clang/test/SemaCXX/constexpr-string.cpp b/clang/test/SemaCXX/constexpr-string.cpp --- a/clang/test/SemaCXX/constexpr-string.cpp +++ b/clang/test/SemaCXX/constexpr-string.cpp @@ -675,4 +675,25 @@ return true; } static_assert(test_address_of_incomplete_struct_type()); // expected-error {{constant}} expected-note {{in call}} + + template + constexpr auto test_memcpy_overloaded(int dst_off, int src_off, int num) { + T dst[4] = {0, 0, 0, 0}; + const T src[4] = {1, 2, 3, 4}; + // expected-note@+2 {{size parameter is 12, expected a size that is evenly divisible by element size 8}} + // expected-note@+1 {{size parameter is 4, expected a size that is evenly divisible by element size 8}} + __builtin_memcpy_overloaded(dst + dst_off, src + src_off, num * sizeof(T), ElNum * sizeof(T)); + return result(dst); + } + + static_assert(test_memcpy_overloaded(0, 0, 1) == 1000); + static_assert(test_memcpy_overloaded(0, 0, 2) == 1200); + static_assert(test_memcpy_overloaded(0, 0, 3) == 1230); + static_assert(test_memcpy_overloaded(0, 0, 4) == 1234); + static_assert(test_memcpy_overloaded(0, 0, 4) == 1234); + + // expected-error@+1 {{static_assert expression is not an integral constant expression}} + static_assert(test_memcpy_overloaded(0, 0, 3) == 1234); // expected-note {{in call to 'test_memcpy_overloaded(0, 0, 3)'}} + // expected-error@+1 {{static_assert expression is not an integral constant expression}} + static_assert(test_memcpy_overloaded(0, 0, 1) == 1234); // expected-note {{in call to 'test_memcpy_overloaded(0, 0, 1)'}} }