Index: include/llvm/InitializePasses.h =================================================================== --- include/llvm/InitializePasses.h +++ include/llvm/InitializePasses.h @@ -237,6 +237,7 @@ void initializeRegionOnlyViewerPass(PassRegistry&); void initializeRegionPrinterPass(PassRegistry&); void initializeRegionViewerPass(PassRegistry&); +void initializeRewriteStatepointsForGCPass(PassRegistry&); void initializeSCCPPass(PassRegistry&); void initializeSROAPass(PassRegistry&); void initializeSROA_DTPass(PassRegistry&); Index: include/llvm/Transforms/Scalar.h =================================================================== --- include/llvm/Transforms/Scalar.h +++ include/llvm/Transforms/Scalar.h @@ -405,6 +405,13 @@ // BasicBlockPass *createLoadCombinePass(); +//===----------------------------------------------------------------------===// +// +// RewriteStatepointsForGC - Rewrite any gc.statepoints which do not yet have +// explicit relocations to include explicit relocations. +// +FunctionPass *createRewriteStatepointsForGCPass(); + } // End llvm namespace #endif Index: lib/Transforms/Scalar/CMakeLists.txt =================================================================== --- lib/Transforms/Scalar/CMakeLists.txt +++ lib/Transforms/Scalar/CMakeLists.txt @@ -27,6 +27,7 @@ PartiallyInlineLibCalls.cpp Reassociate.cpp Reg2Mem.cpp + RewriteStatepointsForGC.cpp SCCP.cpp SROA.cpp SampleProfile.cpp Index: lib/Transforms/Scalar/RewriteStatepointsForGC.cpp =================================================================== --- /dev/null +++ lib/Transforms/Scalar/RewriteStatepointsForGC.cpp @@ -0,0 +1,1966 @@ +//===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// Rewrite an existing set of gc.statepoints such that they make potential +// relocations performed by the garbage collector explicit in the IR. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Pass.h" +#include "llvm/Analysis/CFG.h" +#include "llvm/ADT/SetOperations.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/DenseSet.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/CallSite.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/InstIterator.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/Statepoint.h" +#include "llvm/IR/Value.h" +#include "llvm/IR/Verifier.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Transforms/Scalar.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" +#include "llvm/Transforms/Utils/Cloning.h" +#include "llvm/Transforms/Utils/Local.h" +#include "llvm/Transforms/Utils/PromoteMemToReg.h" + +#define DEBUG_TYPE "rewrite-statepoints-for-gc" + +using namespace llvm; + +// Print tracing output +static cl::opt TraceLSP("spp-trace", cl::init(false)); + +// Print the liveset found at the insert location +static cl::opt PrintLiveSet("spp-print-liveset", cl::init(false)); +static cl::opt PrintLiveSetSize("spp-print-liveset-size", + cl::init(false)); +// Print out the base pointers for debugging +static cl::opt PrintBasePointers("spp-print-base-pointers", + cl::init(false)); + +// Bugpoint likes to reduce a crash into _any_ crash (including assertion +// failures due to configuration problems). If we're reducing a 'real' crash +// under bugpoint, make simple configuration errors (which bugpoint introduces) +// look like normal behavior. +//#define USING_BUGPOINT + +struct RewriteStatepointsForGC : public FunctionPass { + static char ID; // Pass identification, replacement for typeid + + RewriteStatepointsForGC() : FunctionPass(ID) { + initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry()); + } + bool runOnFunction(Function &F) override; + + void getAnalysisUsage(AnalysisUsage &AU) const override { + // We add and rewrite a bunch of instructions, but don't really do much + // else. We could in theory preserve a lot more analyses here. + AU.addRequired(); + } +}; + +char RewriteStatepointsForGC::ID = 0; + +FunctionPass *llvm::createRewriteStatepointsForGCPass() { + return new RewriteStatepointsForGC(); +} + +INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", + "Make relocations explicit at statepoints", false, false) +INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) +INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", + "Make relocations explicit at statepoints", false, false) + +namespace { +/** The type of the internal cache used inside the findBasePointers family + of functions. From the callers perspective, this is an opaque type and + should not be inspected. + + In the actual implementation this caches two relations: + - The base relation itself (i.e. this pointer is based on that one) + - The base defining value relation (i.e. before base_phi insertion) + Generally, after the execution of a full findBasePointer call, only the + base relation will remain. Internally, we add a mixture of the two + types, then update all the second type to the first type +*/ +typedef std::map DefiningValueMapTy; +} + +namespace { +struct PartiallyConstructedSafepointRecord { + /// The set of values known to be live accross this safepoint + std::set liveset; + + /// Mapping from live pointers to a base-defining-value + std::map base_pairs; + + /// Any new values which were added to the IR during base pointer analysis + /// for this safepoint + std::set newInsertedDefs; + + /// The bounds of the inserted code for the safepoint + std::pair safepoint; + + // Instruction to which exceptional gc relocates are attached + // Makes it easier to iterate through them during relocationViaAlloca. + Instruction *exceptional_relocates_token; + + /// The result of the safepointing call (or nullptr) + Value *result; +}; +} + +// TODO: Once we can get to the GCStrategy, this becomes +// Optional isGCManagedPointer(const Value *V) const override { + +static bool isGCPointerType(const Type *T) { + if (const PointerType *PT = dyn_cast(T)) + // For the sake of this example GC, we arbitrarily pick addrspace(1) as our + // GC managed heap. We know that a pointer into this heap needs to be + // updated and that no other pointer does. + return (1 == PT->getAddressSpace()); + return false; +} + +/// Return true if the Value is a gc reference type which is potentially used +/// after the instruction 'loc'. This is only used with the edge reachability +/// liveness code. Note: It is assumed the V dominates loc. +static bool isLiveGCReferenceAt(Value &V, Instruction *loc, DominatorTree &DT, + LoopInfo *LI) { + if (!isGCPointerType(V.getType())) + return false; + + if (V.use_empty()) + return false; + + // Given assumption that V dominates loc, this may be live + return true; +} +static bool isAggWhichContainsGCPtrType(Type *Ty) { + if (VectorType *VT = dyn_cast(Ty)) + return isGCPointerType(VT->getScalarType()); + else if (ArrayType *AT = dyn_cast(Ty)) { + return isGCPointerType(AT->getElementType()) || + isAggWhichContainsGCPtrType(AT->getElementType()); + } else if (StructType *ST = dyn_cast(Ty)) { + bool bad = false; + for (Type *SubType : ST->subtypes()) + bad |= isGCPointerType(SubType) || isAggWhichContainsGCPtrType(SubType); + return bad; + } else + return false; +} + +/** Conservatively identifies any definitions which might be live at the + given instruction. The analysis is performed immediately before the + given instruction. Values defined by that instruction are not considered + live. Values used by that instruction are considered live. + + preconditions: valid IR graph, term is either a terminator instruction or + a call instruction, pred is the basic block of term, DT, LI are valid + + side effects: none, does not mutate IR + + postconditions: populates liveValues as discussed above +*/ +static void findLiveGCValuesAtInst(Instruction *term, BasicBlock *pred, + DominatorTree &DT, LoopInfo *LI, + std::set &liveValues) { + liveValues.clear(); + + assert(isa(term) || isa(term) || term->isTerminator()); + + Function *F = pred->getParent(); + + auto is_live_gc_reference = + [&](Value &V) { return isLiveGCReferenceAt(V, term, DT, LI); }; + + // Are there any gc pointer arguments live over this point? This needs to be + // special cased since arguments aren't defined in basic blocks. + for (Argument &arg : F->args()) { + assert(!isAggWhichContainsGCPtrType(arg.getType()) && + "support for FCA unimplemented"); + + if (is_live_gc_reference(arg)) { + liveValues.insert(&arg); + } + } + + // Walk through all dominating blocks - the ones which can contain + // definitions used in this block - and check to see if any of the values + // they define are used in locations potentially reachable from the + // interesting instruction. + BasicBlock *BBI = pred; + while (true) { + if (TraceLSP) { + errs() << "[LSP] Looking at dominating block " << pred->getName() << "\n"; + } + assert(DT.dominates(BBI, pred)); + assert(isPotentiallyReachable(BBI, pred) && + "dominated block must be reachable"); + + // Walk through the instructions in dominating blocks and keep any + // that have a use potentially reachable from the block we're + // considering putting the safepoint in + for (Instruction &inst : *BBI) { + if (TraceLSP) { + errs() << "[LSP] Looking at instruction "; + inst.dump(); + } + + if (pred == BBI && (&inst) == term) { + if (TraceLSP) { + errs() << "[LSP] stopped because we encountered the safepoint " + "instruction.\n"; + } + + // If we're in the block which defines the interesting instruction, + // we don't want to include any values as live which are defined + // _after_ the interesting line or as part of the line itself + // i.e. "term" is the call instruction for a call safepoint, the + // results of the call should not be considered live in that stackmap + break; + } + + assert(!isAggWhichContainsGCPtrType(inst.getType()) && + "support for FCA unimplemented"); + + if (is_live_gc_reference(inst)) { + if (TraceLSP) { + errs() << "[LSP] found live value for this safepoint "; + inst.dump(); + term->dump(); + } + liveValues.insert(&inst); + } + } + if (!DT.getNode(BBI)->getIDom()) { + assert(BBI == &F->getEntryBlock() && + "failed to find a dominator for something other than " + "the entry block"); + break; + } + BBI = DT.getNode(BBI)->getIDom()->getBlock(); + } +} + +static bool order_by_name(llvm::Value *a, llvm::Value *b) { + if (a->hasName() && b->hasName()) { + return -1 == a->getName().compare(b->getName()); + } else if (a->hasName() && !b->hasName()) { + return true; + } else if (!a->hasName() && b->hasName()) { + return false; + } else { + // Better than nothing, but not stable + return a < b; + } +} + +/// Find the initial live set. Note that due to base pointer +/// insertion, the live set may be incomplete. +static void +analyzeParsePointLiveness(DominatorTree &DT, const CallSite &CS, + PartiallyConstructedSafepointRecord &result) { + Instruction *inst = CS.getInstruction(); + + BasicBlock *BB = inst->getParent(); + std::set liveset; + findLiveGCValuesAtInst(inst, BB, DT, nullptr, liveset); + + if (PrintLiveSet) { + // Note: This output is used by several of the test cases + // The order of elemtns in a set is not stable, put them in a vec and sort + // by name + std::vector temp; + temp.insert(temp.end(), liveset.begin(), liveset.end()); + std::sort(temp.begin(), temp.end(), order_by_name); + errs() << "Live Variables:\n"; + for (Value *V : temp) { + errs() << " " << V->getName(); // no newline + V->dump(); + } + } + if (PrintLiveSetSize) { + errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n"; + errs() << "Number live values: " << liveset.size() << "\n"; + } + result.liveset = liveset; +} + +/// True iff this value is the null pointer constant (of any pointer type) +static bool isNullConstant(Value *V) { + return isa(V) && isa(V->getType()) && + cast(V)->isNullValue(); +} + +/// Helper function for findBasePointer - Will return a value which either a) +/// defines the base pointer for the input or b) blocks the simple search +/// (i.e. a PHI or Select of two derived pointers) +static Value *findBaseDefiningValue(Value *I) { + assert(I->getType()->isPointerTy() && + "Illegal to ask for the base pointer of a non-pointer type"); + + // There are instructions which can never return gc pointer values. Sanity + // check + // that this is actually true. + assert(!isa(I) && !isa(I) && + !isa(I) && "Vector types are not gc pointers"); + assert((!isa(I) || isa(I) || + !cast(I)->isTerminator()) && + "With the exception of invoke terminators don't define values"); + assert(!isa(I) && !isa(I) && + "Can't be definitions to start with"); + assert(!isa(I) && !isa(I) && + "Comparisons don't give ops"); + // There's a bunch of instructions which just don't make sense to apply to + // a pointer. The only valid reason for this would be pointer bit + // twiddling which we're just not going to support. + assert((!isa(I) || !cast(I)->isBinaryOp()) && + "Binary ops on pointer values are meaningless. Unless your " + "bit-twiddling which we don't support"); + + if (Argument *Arg = dyn_cast(I)) { + // An incoming argument to the function is a base pointer + // We should have never reached here if this argument isn't an gc value + assert(Arg->getType()->isPointerTy() && + "Base for pointer must be another pointer"); + return Arg; + } + + if (GlobalVariable *global = dyn_cast(I)) { + // base case + assert(global->getType()->isPointerTy() && + "Base for pointer must be another pointer"); + return global; + } + + // inlining could possibly introduce phi node that contains + // undef if callee has multiple returns + if (UndefValue *undef = dyn_cast(I)) { + assert(undef->getType()->isPointerTy() && + "Base for pointer must be another pointer"); + return undef; // utterly meaningless, but useful for dealing with + // partially optimized code. + } + + // Due to inheritance, this must be _after_ the global variable and undef + // checks + if (Constant *con = dyn_cast(I)) { + assert(!isa(I) && !isa(I) && + "order of checks wrong!"); + // Note: Finding a constant base for something marked for relocation + // doesn't really make sense. The most likely case is either a) some + // screwed up the address space usage or b) your validating against + // compiled C++ code w/o the proper separation. The only real exception + // is a null pointer. You could have generic code written to index of + // off a potentially null value and have proven it null. We also use + // null pointers in dead paths of relocation phis (which we might later + // want to find a base pointer for). + assert(con->getType()->isPointerTy() && + "Base for pointer must be another pointer"); + assert(con->isNullValue() && "null is the only case which makes sense"); + return con; + } + + if (CastInst *CI = dyn_cast(I)) { + Value *def = CI->stripPointerCasts(); + assert(def->getType()->isPointerTy() && + "Base for pointer must be another pointer"); + if (isa(def)) { + // If we find a cast instruction here, it means we've found a cast + // which is not simply a pointer cast (i.e. an inttoptr). We don't + // know how to handle int->ptr conversion in general, but we need to + // handle a few special cases before failing. + IntToPtrInst *i2p = cast(def); + // If the frontend marked this as a known base pointer... + if (i2p->getMetadata("verifier_exception")) { + return def; + } + + // Fail hard on the general case. + llvm_unreachable("Can not find the base pointers for an inttoptr cast"); + } + assert(!isa(def) && "shouldn't find another cast here"); + return findBaseDefiningValue(def); + } + + if (LoadInst *LI = dyn_cast(I)) { + if (LI->getType()->isPointerTy()) { + Value *Op = LI->getOperand(0); + // Has to be a pointer to an gc object, or possibly an array of such? + assert(Op->getType()->isPointerTy()); + return LI; // The value loaded is an gc base itself + } + } + if (GetElementPtrInst *GEP = dyn_cast(I)) { + Value *Op = GEP->getOperand(0); + if (Op->getType()->isPointerTy()) { + return findBaseDefiningValue(Op); // The base of this GEP is the base + } + } + + if (AllocaInst *alloc = dyn_cast(I)) { + // An alloca represents a conceptual stack slot. It's the slot itself + // that the GC needs to know about, not the value in the slot. + assert(alloc->getType()->isPointerTy() && + "Base for pointer must be another pointer"); + return alloc; + } + + if (IntrinsicInst *II = dyn_cast(I)) { + switch (II->getIntrinsicID()) { + default: + // fall through to general call handling + break; + case Intrinsic::experimental_gc_statepoint: + case Intrinsic::experimental_gc_result_float: + case Intrinsic::experimental_gc_result_int: + llvm_unreachable("these don't produce pointers"); + case Intrinsic::experimental_gc_result_ptr: + // This is just a special case of the CallInst check below to handle a + // statepoint with deopt args which hasn't been rewritten for GC yet. + // TODO: Assert that the statepoint isn't rewritten yet. + return II; + case Intrinsic::experimental_gc_relocate: { + // Rerunning safepoint insertion after safepoints are already + // inserted is not supported. It could probably be made to work, + // but why are you doing this? There's no good reason. + llvm_unreachable("repeat safepoint insertion is not supported"); + } + case Intrinsic::gcroot: + // Currently, this mechanism hasn't been extended to work with gcroot. + // There's no reason it couldn't be, but I haven't thought about the + // implications much. + llvm_unreachable( + "interaction with the gcroot mechanism is not supported"); + } + } + // Let's assume that any call we see is to a java function. Java + // functions can only return Java objects (i.e. base pointers). + // Note: when we add runtime functions which return non-base pointers we + // will need to revisit this. (Will this ever happen?) + if (CallInst *call = dyn_cast(I)) { + assert(call->getType()->isPointerTy() && + "Base for pointer must be another pointer"); + return call; + } + if (InvokeInst *invoke = dyn_cast(I)) { + assert(invoke->getType()->isPointerTy() && + "Base for pointer must be another pointer"); + return invoke; + } + + // I have absolutely no idea how to implement this part yet. It's not + // neccessarily hard, I just haven't really looked at it yet. + assert(!isa(I) && "Landing Pad is unimplemented"); + + if (AtomicCmpXchgInst *cas = dyn_cast(I)) { + // A CAS is effectively a atomic store and load combined under a + // predicate. From the perspective of base pointers, we just treat it + // like a load. We loaded a pointer from a address in memory, that value + // had better be a valid base pointer. + return cas->getPointerOperand(); + } + if (AtomicRMWInst *atomic = dyn_cast(I)) { + assert(AtomicRMWInst::Xchg == atomic->getOperation() && + "All others are binary ops which don't apply to base pointers"); + // semantically, a load, store pair. Treat it the same as a standard load + return atomic->getPointerOperand(); + } + + // The aggregate ops. Aggregates can either be in the heap or on the + // stack, but in either case, this is simply a field load. As a result, + // this is a defining definition of the base just like a load is. + if (ExtractValueInst *ev = dyn_cast(I)) { + return ev; + } + + // We should never see an insert vector since that would require we be + // tracing back a struct value not a pointer value. + assert(!isa(I) && + "Base pointer for a struct is meaningless"); + + // The last two cases here don't return a base pointer. Instead, they + // return a value which dynamically selects from amoung several base + // derived pointers (each with it's own base potentially). It's the job of + // the caller to resolve these. + if (SelectInst *select = dyn_cast(I)) { + return select; + } + if (PHINode *phi = dyn_cast(I)) { + return phi; + } + + errs() << "unknown type: "; + I->dump(); + assert(false && "unknown type"); + return nullptr; +} + +/// Returns the base defining value for this value. +Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &cache) { + if (cache.find(I) == cache.end()) { + cache[I] = findBaseDefiningValue(I); + } + assert(cache.find(I) != cache.end()); + + if (TraceLSP) { + errs() << "fBDV-cached: " << I->getName() << " -> " << cache[I]->getName() + << "\n"; + } + return cache[I]; +} + +/// Return a base pointer for this value if known. Otherwise, return it's +/// base defining value. +static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &cache) { + Value *def = findBaseDefiningValueCached(I, cache); + if (cache.count(def)) { + // Either a base-of relation, or a self reference. Caller must check. + return cache[def]; + } + // Only a BDV available + return def; +} + +/// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, +/// is it known to be a base pointer? Or do we need to continue searching. +static bool isKnownBaseResult(Value *v) { + if (!isa(v) && !isa(v)) { + // no recursion possible + return true; + } + if (cast(v)->getMetadata("is_base_value")) { + // This is a previously inserted base phi or select. We know + // that this is a base value. + return true; + } + + // We need to keep searching + return false; +} + +// TODO: find a better name for this +namespace { +class PhiState { +public: + enum Status { Unknown, Base, Conflict }; + + PhiState(Status s, Value *b = nullptr) : status(s), base(b) { + assert(status != Base || b); + } + PhiState(Value *b) : status(Base), base(b) {} + PhiState() : status(Unknown), base(nullptr) {} + PhiState(const PhiState &other) : status(other.status), base(other.base) { + assert(status != Base || base); + } + + Status getStatus() const { return status; } + Value *getBase() const { return base; } + + bool isBase() const { return getStatus() == Base; } + bool isUnknown() const { return getStatus() == Unknown; } + bool isConflict() const { return getStatus() == Conflict; } + + bool operator==(const PhiState &other) const { + return base == other.base && status == other.status; + } + + bool operator!=(const PhiState &other) const { return !(*this == other); } + + void dump() { + errs() << status << " (" << base << " - " + << (base ? base->getName() : "nullptr") << "): "; + } + +private: + Status status; + Value *base; // non null only if status == base +}; + +// Values of type PhiState form a lattice, and this is a helper +// class that implementes the meet operation. The meat of the meet +// operation is implemented in MeetPhiStates::pureMeet +class MeetPhiStates { +public: + // phiStates is a mapping from PHINodes and SelectInst's to PhiStates. + explicit MeetPhiStates(const std::map &phiStates) + : phiStates(phiStates) {} + + // Destructively meet the current result with the base V. V can + // either be a merge instruction (SelectInst / PHINode), in which + // case its status is looked up in the phiStates map; or a regular + // SSA value, in which case it is assumed to be a base. + void meetWith(Value *V) { + PhiState otherState = getStateForBDV(V); + assert((MeetPhiStates::pureMeet(otherState, currentResult) == + MeetPhiStates::pureMeet(currentResult, otherState)) && + "math is wrong: meet does not commute!"); + currentResult = MeetPhiStates::pureMeet(otherState, currentResult); + } + + PhiState getResult() const { return currentResult; } + +private: + const std::map &phiStates; + PhiState currentResult; + + /// Return a phi state for a base defining value. We'll generate a new + /// base state for known bases and expect to find a cached state otherwise + PhiState getStateForBDV(Value *baseValue) { + if (isKnownBaseResult(baseValue)) { + return PhiState(baseValue); + } else { + return lookupFromMap(baseValue); + } + } + + PhiState lookupFromMap(Value *V) { + auto I = phiStates.find(V); + assert(I != phiStates.end() && "lookup failed!"); + return I->second; + } + + static PhiState pureMeet(const PhiState &stateA, const PhiState &stateB) { + switch (stateA.getStatus()) { + default: + llvm_unreachable("extra state found?"); + case PhiState::Unknown: + return stateB; + + case PhiState::Base: + assert(stateA.getBase() && "can't be null"); + if (stateB.isUnknown()) { + return stateA; + } else if (stateB.isBase()) { + if (stateA.getBase() == stateB.getBase()) { + assert(stateA == stateB && "equality broken!"); + return stateA; + } + return PhiState(PhiState::Conflict); + } else { + assert(stateB.isConflict() && "only three states!"); + return PhiState(PhiState::Conflict); + } + + case PhiState::Conflict: + return stateA; + } + assert(false && "only three states!"); + } +}; +} +/// For a given value or instruction, figure out what base ptr it's derived +/// from. For gc objects, this is simply itself. On success, returns a value +/// which is the base pointer. (This is reliable and can be used for +/// relocation.) On failure, returns nullptr. +static Value *findBasePointer(Value *I, DefiningValueMapTy &cache, + std::set &newInsertedDefs) { + Value *def = findBaseOrBDV(I, cache); + + if (isKnownBaseResult(def)) { + return def; + } + + /* Here's the rough algorithm: + - For every SSA value, construct a mapping to either an actual base + pointer or a PHI which obscures the base pointer. + - Construct a mapping from PHI to unknown TOP state. Use an + optimistic algorithm to propagate base pointer information. Lattice + looks like: + UNKNOWN + b1 b2 b3 b4 + CONFLICT + When algorithm terminates, all PHIs will either have a single concrete + base or be in a conflict state. + - For every conflict, insert a dummy PHI node without arguments. Add + these to the base[Instruction] = BasePtr mapping. For every + non-conflict, add the actual base. + - For every conflict, add arguments for the base[a] of each input + arguments. + + Note: A simpler form of this would be to add the conflict form of all + PHIs without running the optimistic algorithm. This would be + analougous to pessimistic data flow and would likely lead to an + overall worse solution. + */ + + std::map states; + states[def] = PhiState(); + // Recursively fill in all phis & selects reachable from the initial one + // for which we don't already know a definite base value for + // PERF: Yes, this is as horribly inefficient as it looks. + bool done = false; + while (!done) { + done = true; + for (auto Pair : states) { + Value *v = Pair.first; + assert(!isKnownBaseResult(v) && "why did it get added?"); + if (PHINode *phi = dyn_cast(v)) { + unsigned NumPHIValues = phi->getNumIncomingValues(); + assert(NumPHIValues > 0 && "zero input phis are illegal"); + for (unsigned i = 0; i != NumPHIValues; ++i) { + Value *InVal = phi->getIncomingValue(i); + Value *local = findBaseOrBDV(InVal, cache); + if (!isKnownBaseResult(local) && states.find(local) == states.end()) { + states[local] = PhiState(); + done = false; + } + } + } else if (SelectInst *sel = dyn_cast(v)) { + Value *local = findBaseOrBDV(sel->getTrueValue(), cache); + if (!isKnownBaseResult(local) && states.find(local) == states.end()) { + states[local] = PhiState(); + done = false; + } + local = findBaseOrBDV(sel->getFalseValue(), cache); + if (!isKnownBaseResult(local) && states.find(local) == states.end()) { + states[local] = PhiState(); + done = false; + } + } + } + } + + if (TraceLSP) { + errs() << "States after initialization:\n"; + for (auto Pair : states) { + Instruction *v = cast(Pair.first); + PhiState state = Pair.second; + state.dump(); + v->dump(); + } + } + + // TODO: come back and revisit the state transitions around inputs which + // have reached conflict state. The current version seems too conservative. + + bool progress = true; + size_t oldSize = 0; + while (progress) { + oldSize = states.size(); + progress = false; + for (auto Pair : states) { + MeetPhiStates calculateMeet(states); + Value *v = Pair.first; + assert(!isKnownBaseResult(v) && "why did it get added?"); + assert(isa(v) || isa(v)); + if (SelectInst *select = dyn_cast(v)) { + calculateMeet.meetWith(findBaseOrBDV(select->getTrueValue(), cache)); + calculateMeet.meetWith(findBaseOrBDV(select->getFalseValue(), cache)); + } else if (PHINode *phi = dyn_cast(v)) { + for (unsigned i = 0; i < phi->getNumIncomingValues(); i++) { + calculateMeet.meetWith( + findBaseOrBDV(phi->getIncomingValue(i), cache)); + } + } else { + llvm_unreachable("no such state expected"); + } + + PhiState oldState = states[v]; + PhiState newState = calculateMeet.getResult(); + if (oldState != newState) { + progress = true; + states[v] = newState; + } + } + + assert(oldSize <= states.size()); + assert(oldSize == states.size() || progress); + } + + if (TraceLSP) { + errs() << "States after meet iteration:\n"; + for (auto Pair : states) { + Instruction *v = cast(Pair.first); + PhiState state = Pair.second; + state.dump(); + v->dump(); + } + } + + // Insert Phis for all conflicts + for (auto Pair : states) { + Instruction *v = cast(Pair.first); + PhiState state = Pair.second; + assert(!isKnownBaseResult(v) && "why did it get added?"); + assert(!state.isUnknown() && "Optimistic algorithm didn't complete!"); + if (state.isConflict()) { + if (isa(v)) { + int num_preds = + std::distance(pred_begin(v->getParent()), pred_end(v->getParent())); + assert(num_preds > 0 && "how did we reach here"); + PHINode *phi = PHINode::Create(v->getType(), num_preds, "base_phi", v); + newInsertedDefs.insert(phi); + // Add metadata marking this as a base value + auto *const_1 = ConstantInt::get( + Type::getInt32Ty( + v->getParent()->getParent()->getParent()->getContext()), + 1); + auto MDConst = ConstantAsMetadata::get(const_1); + MDNode *md = MDNode::get( + v->getParent()->getParent()->getParent()->getContext(), MDConst); + phi->setMetadata("is_base_value", md); + states[v] = PhiState(PhiState::Conflict, phi); + } else if (SelectInst *sel = dyn_cast(v)) { + // The undef will be replaced later + UndefValue *undef = UndefValue::get(sel->getType()); + SelectInst *basesel = SelectInst::Create(sel->getCondition(), undef, + undef, "base_select", sel); + newInsertedDefs.insert(basesel); + // Add metadata marking this as a base value + auto *const_1 = ConstantInt::get( + Type::getInt32Ty( + v->getParent()->getParent()->getParent()->getContext()), + 1); + auto MDConst = ConstantAsMetadata::get(const_1); + MDNode *md = MDNode::get( + v->getParent()->getParent()->getParent()->getContext(), MDConst); + basesel->setMetadata("is_base_value", md); + states[v] = PhiState(PhiState::Conflict, basesel); + } else { + assert(false); + } + } + } + + // Fixup all the inputs of the new PHIs + for (auto Pair : states) { + Instruction *v = cast(Pair.first); + PhiState state = Pair.second; + + assert(!isKnownBaseResult(v) && "why did it get added?"); + assert(!state.isUnknown() && "Optimistic algorithm didn't complete!"); + if (state.isConflict()) { + if (PHINode *basephi = dyn_cast(state.getBase())) { + PHINode *phi = cast(v); + unsigned NumPHIValues = phi->getNumIncomingValues(); + for (unsigned i = 0; i < NumPHIValues; i++) { + Value *InVal = phi->getIncomingValue(i); + BasicBlock *InBB = phi->getIncomingBlock(i); + + // If we've already seen InBB, add the same incoming value + // we added for it earlier. The IR verifier requires phi + // nodes with multiple entries from the same basic block + // to have the same incoming value for each of those + // entries. If we don't do this check here and basephi + // has a different type than base, we'll end up adding two + // bitcasts (and hence two distinct values) as incoming + // values for the same basic block. + + int blockIndex = basephi->getBasicBlockIndex(InBB); + if (blockIndex != -1) { + Value *oldBase = basephi->getIncomingValue(blockIndex); + basephi->addIncoming(oldBase, InBB); +#ifndef NDEBUG + Value *base = findBaseOrBDV(InVal, cache); + if (!isKnownBaseResult(base)) { + // Either conflict or base. + assert(states.count(base)); + base = states[base].getBase(); + assert(base != nullptr && "unknown PhiState!"); + assert(newInsertedDefs.count(base) && + "should have already added this in a prev. iteration!"); + } + + // In essense this assert states: the only way two + // values incoming from the same basic block may be + // different is by being different bitcasts of the same + // value. A cleanup that remains TODO is changing + // findBaseOrBDV to return an llvm::Value of the correct + // type (and still remain pure). This will remove the + // need to add bitcasts. + assert(base->stripPointerCasts() == oldBase->stripPointerCasts() && + "sanity -- findBaseOrBDV should be pure!"); +#endif + continue; + } + + // Find either the defining value for the PHI or the normal base for + // a non-phi node + Value *base = findBaseOrBDV(InVal, cache); + if (!isKnownBaseResult(base)) { + // Either conflict or base. + assert(states.count(base)); + base = states[base].getBase(); + assert(base != nullptr && "unknown PhiState!"); + } + assert(base && "can't be null"); + // Must use original input BB since base may not be Instruction + // The cast is needed since base traversal may strip away bitcasts + if (base->getType() != basephi->getType()) { + base = new BitCastInst(base, basephi->getType(), "cast", + InBB->getTerminator()); + newInsertedDefs.insert(base); + } + basephi->addIncoming(base, InBB); + } + assert(basephi->getNumIncomingValues() == NumPHIValues); + } else if (SelectInst *basesel = dyn_cast(state.getBase())) { + SelectInst *sel = cast(v); + // Operand 1 & 2 are true, false path respectively. TODO: refactor to + // something more safe and less hacky. + for (int i = 1; i <= 2; i++) { + Value *InVal = sel->getOperand(i); + // Find either the defining value for the PHI or the normal base for + // a non-phi node + Value *base = findBaseOrBDV(InVal, cache); + if (!isKnownBaseResult(base)) { + // Either conflict or base. + assert(states.count(base)); + base = states[base].getBase(); + assert(base != nullptr && "unknown PhiState!"); + } + assert(base && "can't be null"); + // Must use original input BB since base may not be Instruction + // The cast is needed since base traversal may strip away bitcasts + if (base->getType() != basesel->getType()) { + base = new BitCastInst(base, basesel->getType(), "cast", basesel); + newInsertedDefs.insert(base); + } + basesel->setOperand(i, base); + } + } else { + assert(false && "unexpected type"); + } + } + } + + // Cache all of our results so we can cheaply reuse them + // NOTE: This is actually two caches: one of the base defining value + // relation and one of the base pointer relation! FIXME + for (auto item : states) { + Value *v = item.first; + Value *base = item.second.getBase(); + assert(v && base); + assert(!isKnownBaseResult(v) && "why did it get added?"); + + if (TraceLSP) { + std::string fromstr = + cache.count(v) ? (cache[v]->hasName() ? cache[v]->getName() : "") + : "none"; + errs() << "Updating base value cache" + << " for: " << (v->hasName() ? v->getName() : "") + << " from: " << fromstr + << " to: " << (base->hasName() ? base->getName() : "") << "\n"; + } + + assert(isKnownBaseResult(base) && + "must be something we 'know' is a base pointer"); + if (cache.count(v)) { + // Once we transition from the BDV relation being store in the cache to + // the base relation being stored, it must be stable + assert((!isKnownBaseResult(cache[v]) || cache[v] == base) && + "base relation should be stable"); + } + cache[v] = base; + } + assert(cache.find(def) != cache.end()); + return cache[def]; +} + +/** For a set of live pointers (base and/or derived), identify the base + pointer of the object which they are derived from. This routine will + mutate the IR graph as needed to make the 'base' pointer live at the + definition site of 'derived'. This ensures that any use of 'derived' can + also use 'base'. This may involve the insertion of a number of + additional PHI nodes. + + preconditions: live is a set of pointer type Values + + side effects: may insert PHI nodes into the existing CFG, will preserve + CFG, will not remove or mutate any existing nodes + + post condition: base_pairs contains one (derived, base) pair for every + pointer in live. Note that derived can be equal to base if the original + pointer was a base pointer. +*/ +static void findBasePointers(const std::set &live, + std::map &base_pairs, + DominatorTree *DT, DefiningValueMapTy &DVCache, + std::set &newInsertedDefs) { + for (Value *ptr : live) { + Value *base = findBasePointer(ptr, DVCache, newInsertedDefs); + assert(base && "failed to find base pointer"); +// BugPoint likes to reduce things by replacing values with undef. To +// avoid reducing useless failures, we supress these asserts when reducing. +#ifndef USING_BUGPOINT + // TODO: make this assertion a property of the GCStrategy. + assert(isGCPointerType(base->getType()) && + "a gc pointer must be based on a gc pointer"); +#endif + base_pairs[ptr] = base; + assert((!isa(base) || !isa(ptr) || + DT->dominates(cast(base)->getParent(), + cast(ptr)->getParent())) && + "The base we found better dominate the derived pointer"); + + if (isNullConstant(base)) + // If you see this trip and like to live really dangerously, the code + // should be correct, just with idioms the verifier can't handle. You + // can try disabling the verifier at your own substaintial risk. + llvm_unreachable("the relocation code needs adjustment to handle the" + "relocation of a null pointer constant without causing" + "false positives in the safepoint ir verifier."); + } +} + +/// Find the required based pointers (and adjust the live set) for the given +/// parse point. +static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, + const CallSite &CS, + PartiallyConstructedSafepointRecord &result) { + std::map base_pairs; + std::set newInsertedDefs; + findBasePointers(result.liveset, base_pairs, &DT, DVCache, newInsertedDefs); + + if (PrintBasePointers) { + errs() << "Base Pairs (w/o Relocation):\n"; + for (auto Pair : base_pairs) { + errs() << " derived %" << Pair.first->getName() << " base %" + << Pair.second->getName() << "\n"; + } + } + + result.base_pairs = base_pairs; + result.newInsertedDefs = newInsertedDefs; +} + +/// Check for liveness of items in the insert defs and add them to the live +/// and base pointer sets +static void fixupLiveness(DominatorTree &DT, const CallSite &CS, + const std::set &allInsertedDefs, + PartiallyConstructedSafepointRecord &result) { + Instruction *inst = CS.getInstruction(); + + std::set liveset = result.liveset; + std::map base_pairs = result.base_pairs; + + auto is_live_gc_reference = + [&](Value &V) { return isLiveGCReferenceAt(V, inst, DT, nullptr); }; + + // For each new definition, check to see if a) the definition dominates the + // instruction we're interested in, and b) one of the uses of that definition + // is edge-reachable from the instruction we're interested in. This is the + // same definition of liveness we used in the intial liveness analysis + for (Value *newDef : allInsertedDefs) { + if (liveset.count(newDef)) { + // already live, no action needed + continue; + } + + // PERF: Use DT to check instruction domination might not be good for + // compilation time, and we could change to optimal solution if this + // turn to be a issue + if (!DT.dominates(cast(newDef), inst)) { + // can't possibly be live at inst + continue; + } + + if (is_live_gc_reference(*newDef)) { + // Add the live new defs into liveset and base_pairs + liveset.insert(newDef); + base_pairs[newDef] = newDef; + } + } + + result.liveset = liveset; + result.base_pairs = base_pairs; +} + +static void fixupLiveReferences( + Function &F, DominatorTree &DT, Pass *P, + const std::set &allInsertedDefs, + std::vector &toUpdate, + std::vector &records) { + for (size_t i = 0; i < records.size(); i++) { + struct PartiallyConstructedSafepointRecord &info = records[i]; + CallSite &CS = toUpdate[i]; + fixupLiveness(DT, CS, allInsertedDefs, info); + } +} + +// Normalize basic block to make it ready to be target of invoke statepoint. +// It means spliting it to have single predecessor. Return newly created BB +// ready to be successor of invoke statepoint. +static BasicBlock *normalizeBBForInvokeSafepoint(BasicBlock *BB, + BasicBlock *InvokeParent, + Pass *P) { + BasicBlock *ret = BB; + + if (!BB->getUniquePredecessor()) { + if (BB->isLandingPad()) { + SmallVector NewBBs; + + SplitLandingPadPredecessors(BB, InvokeParent, "", "", P, NewBBs); + ret = NewBBs[0]; + } else { + ret = SplitBlockPredecessors(BB, InvokeParent, "", P); + } + } + + // Another requirement for such basic blocks is to not have any phi nodes. + // Since we just ensured that new BB will have single predecessor, + // all phi nodes in it will have one value. Here it would be naturall place + // to + // remove them all. But we can not do this because we are risking to remove + // one of the values stored in liveset of another statepoint. We will do it + // later after placing all safepoints. + + return ret; +} + +static void +VerifySafepointBounds(const std::pair &bounds) { + assert(bounds.first->getParent() && bounds.second->getParent() && + "both must belong to basic blocks"); + if (bounds.first->getParent() == bounds.second->getParent()) { + // This is a call safepoint + // TODO: scan the range to find the statepoint + // TODO: check that the following instruction is not a gc_relocate or + // gc_result + } else { + // This is an invoke safepoint + InvokeInst *invoke = dyn_cast(bounds.first); + assert(invoke && "only continues over invokes!"); + assert(invoke->getNormalDest() == bounds.second->getParent() && + "safepoint should continue into normal exit block"); + } +} + +static int find_index(const SmallVectorImpl &livevec, Value *val) { + auto itr = std::find(livevec.begin(), livevec.end(), val); + assert(livevec.end() != itr); + size_t index = std::distance(livevec.begin(), itr); + assert(index < livevec.size()); + return index; +} + +// Create new attribute set containing only attributes which can be transfered +// from original call to the safepoint. +static AttributeSet legalizeCallAttributes(AttributeSet AS) { + AttributeSet ret; + + for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) { + unsigned index = AS.getSlotIndex(Slot); + + if (index == AttributeSet::ReturnIndex || + index == AttributeSet::FunctionIndex) { + + for (auto it = AS.begin(Slot), it_end = AS.end(Slot); it != it_end; + ++it) { + Attribute attr = *it; + + // Do not allow certain attributes - just skip them + // Safepoint can not be read only or read none. + if (attr.hasAttribute(Attribute::ReadNone) || + attr.hasAttribute(Attribute::ReadOnly)) + continue; + + ret = ret.addAttributes( + AS.getContext(), index, + AttributeSet::get(AS.getContext(), index, AttrBuilder(attr))); + } + } + + // Just skip parameter attributes for now + } + + return ret; +} + +/// Helper function to place all gc relocates necessary for the given +/// statepoint. +/// Inputs: +/// liveVariables - list of variables to be relocated. +/// liveStart - index of the first live variable. +/// basePtrs - base pointers. +/// statepointToken - statepoint instruction to which relocates should be +/// bound. +/// Builder - Llvm IR builder to be used to construct new calls. +/// Returns array with newly created relocates. +static std::vector +CreateGCRelocates(const SmallVectorImpl &liveVariables, + const int liveStart, + const SmallVectorImpl &basePtrs, + Instruction *statepointToken, IRBuilder<> Builder) { + + std::vector newDefs; + + Module *M = statepointToken->getParent()->getParent()->getParent(); + + for (unsigned i = 0; i < liveVariables.size(); i++) { + // We generate a (potentially) unique declaration for every pointer type + // combination. This results is some blow up the function declarations in + // the IR, but removes the need for argument bitcasts which shrinks the IR + // greatly and makes it much more readable. + std::vector types; // one per 'any' type + types.push_back(liveVariables[i]->getType()); // result type + Value *gc_relocate_decl = Intrinsic::getDeclaration( + M, Intrinsic::experimental_gc_relocate, types); + + // Generate the gc.relocate call and save the result + Value *baseIdx = + ConstantInt::get(Type::getInt32Ty(M->getContext()), + liveStart + find_index(liveVariables, basePtrs[i])); + Value *liveIdx = ConstantInt::get( + Type::getInt32Ty(M->getContext()), + liveStart + find_index(liveVariables, liveVariables[i])); + + // only specify a debug name if we can give a useful one + Value *reloc = Builder.CreateCall3( + gc_relocate_decl, statepointToken, baseIdx, liveIdx, + liveVariables[i]->hasName() ? liveVariables[i]->getName() + ".relocated" + : ""); + // Trick CodeGen into thinking there are lots of free registers at this + // fake call. + cast(reloc)->setCallingConv(CallingConv::Cold); + + newDefs.push_back(cast(reloc)); + } + assert(newDefs.size() == liveVariables.size() && + "missing or extra redefinition at safepoint"); + + return newDefs; +} + +static void +makeStatepointExplicitImpl(const CallSite &CS, /* to replace */ + const SmallVectorImpl &basePtrs, + const SmallVectorImpl &liveVariables, + Pass *P, + PartiallyConstructedSafepointRecord &result) { + assert(basePtrs.size() == liveVariables.size()); + assert(isStatepoint(CS) && + "This method expects to be rewriting a statepoint"); + + BasicBlock *BB = CS.getInstruction()->getParent(); + assert(BB); + Function *F = BB->getParent(); + assert(F && "must be set"); + Module *M = F->getParent(); + assert(M && "must be set"); + + // We're not changing the function signature of the statepoint since the gc + // arguments go into the var args section. + Function *gc_statepoint_decl = CS.getCalledFunction(); + + // Then go ahead and use the builder do actually do the inserts. We insert + // immediately before the previous instruction under the assumption that all + // arguments will be available here. We can't insert afterwards since we may + // be replacing a terminator. + Instruction *insertBefore = CS.getInstruction(); + IRBuilder<> Builder(insertBefore); + // Copy all of the arguments from the original statepoint - this includes the + // target, call args, and deopt args + std::vector args; + args.insert(args.end(), CS.arg_begin(), CS.arg_end()); + // TODO: Clear the 'needs rewrite' flag + + // add all the pointers to be relocated (gc arguments) + // Capture the start of the live variable list for use in the gc_relocates + const int live_start = args.size(); + args.insert(args.end(), liveVariables.begin(), liveVariables.end()); + + // Create the statepoint given all the arguments + Instruction *token = nullptr; + AttributeSet return_attributes; + if (CS.isCall()) { + CallInst *toReplace = cast(CS.getInstruction()); + CallInst *call = + Builder.CreateCall(gc_statepoint_decl, args, "safepoint_token"); + call->setTailCall(toReplace->isTailCall()); + call->setCallingConv(toReplace->getCallingConv()); + + // Currently we will fail on parameter attributes and on certain + // function attributes. + AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes()); + // In case if we can handle this set of sttributes - set up function attrs + // directly on statepoint and return attrs later for gc_result intrinsic. + call->setAttributes(new_attrs.getFnAttributes()); + return_attributes = new_attrs.getRetAttributes(); + + token = call; + + // Put the following gc_result and gc_relocate calls immediately after the + // the old call (which we're about to delete) + BasicBlock::iterator next(toReplace); + assert(BB->end() != next && "not a terminator, must have next"); + next++; + Instruction *IP = &*(next); + Builder.SetInsertPoint(IP); + Builder.SetCurrentDebugLocation(IP->getDebugLoc()); + + } else if (CS.isInvoke()) { + InvokeInst *toReplace = cast(CS.getInstruction()); + + // Insert the new invoke into the old block. We'll remove the old one in a + // moment at which point this will become the new terminator for the + // original block. + InvokeInst *invoke = InvokeInst::Create( + gc_statepoint_decl, toReplace->getNormalDest(), + toReplace->getUnwindDest(), args, "", toReplace->getParent()); + invoke->setCallingConv(toReplace->getCallingConv()); + + // Currently we will fail on parameter attributes and on certain + // function attributes. + AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes()); + // In case if we can handle this set of sttributes - set up function attrs + // directly on statepoint and return attrs later for gc_result intrinsic. + invoke->setAttributes(new_attrs.getFnAttributes()); + return_attributes = new_attrs.getRetAttributes(); + + token = invoke; + + // Generate gc relocates in exceptional path + BasicBlock *unwindBlock = normalizeBBForInvokeSafepoint( + toReplace->getUnwindDest(), invoke->getParent(), P); + + Instruction *IP = &*(unwindBlock->getFirstInsertionPt()); + Builder.SetInsertPoint(IP); + Builder.SetCurrentDebugLocation(toReplace->getDebugLoc()); + + // Extract second element from landingpad return value. We will attach + // exceptional gc relocates to it. + const unsigned idx = 1; + Instruction *exceptional_token = + cast(Builder.CreateExtractValue( + unwindBlock->getLandingPadInst(), idx, "relocate_token")); + result.exceptional_relocates_token = exceptional_token; + + // Just throw away return value. We will use the one we got for normal + // block. + (void)CreateGCRelocates(liveVariables, live_start, basePtrs, + exceptional_token, Builder); + + // Generate gc relocates and returns for normal block + BasicBlock *normalDest = normalizeBBForInvokeSafepoint( + toReplace->getNormalDest(), invoke->getParent(), P); + + IP = &*(normalDest->getFirstInsertionPt()); + Builder.SetInsertPoint(IP); + + // gc relocates will be generated later as if it were regular call + // statepoint + } else { + llvm_unreachable("unexpect type of CallSite"); + } + assert(token); + + // Take the name of the original value call if it had one. + token->takeName(CS.getInstruction()); + + // The GCResult is already inserted, we just need to find it + Instruction *gc_result = nullptr; + /* scope */ { + Instruction *toReplace = CS.getInstruction(); + assert((toReplace->hasNUses(0) || toReplace->hasNUses(1)) && + "only valid use before rewrite is gc.result"); + if (toReplace->hasOneUse()) { + Instruction *GCResult = cast(*toReplace->user_begin()); + assert(isGCResult(GCResult)); + gc_result = GCResult; + } + } + + // Update the gc.result of the original statepoint (if any) to use the newly + // inserted statepoint. This is safe to do here since the token can't be + // considered a live reference. + CS.getInstruction()->replaceAllUsesWith(token); + + // Second, create a gc.relocate for every live variable + std::vector newDefs = + CreateGCRelocates(liveVariables, live_start, basePtrs, token, Builder); + + // Need to pass through the last part of the safepoint block so that we + // don't accidentally update uses in a following gc.relocate which is + // still conceptually part of the same safepoint. Gah. + Instruction *last = nullptr; + if (!newDefs.empty()) { + last = newDefs.back(); + } else if (gc_result) { + last = gc_result; + } else { + last = token; + } + assert(last && "can't be null"); + const auto bounds = std::make_pair(token, last); + + // Sanity check our results - this is slightly non-trivial due to invokes + VerifySafepointBounds(bounds); + + result.safepoint = bounds; +} + +namespace { +struct name_ordering { + Value *base; + Value *derived; + bool operator()(name_ordering const &a, name_ordering const &b) { + return -1 == a.derived->getName().compare(b.derived->getName()); + } +}; +} +static void stablize_order(SmallVectorImpl &basevec, + SmallVectorImpl &livevec) { + assert(basevec.size() == livevec.size()); + + std::vector temp; + for (size_t i = 0; i < basevec.size(); i++) { + name_ordering v; + v.base = basevec[i]; + v.derived = livevec[i]; + temp.push_back(v); + } + std::sort(temp.begin(), temp.end(), name_ordering()); + for (size_t i = 0; i < basevec.size(); i++) { + basevec[i] = temp[i].base; + livevec[i] = temp[i].derived; + } +} + +/** Replace an existing gc.statepoint with a new one and a set of gc.relocates + which make the relocations happening at this safepoint explicit. + + WARNING: Does not do any fixup to adjust users of the original live + values. That's the callers responsibility. +*/ +static void +makeStatepointExplicit(DominatorTree &DT, const CallSite &CS, Pass *P, + PartiallyConstructedSafepointRecord &result) { + std::set liveset = result.liveset; + std::map base_pairs = result.base_pairs; + + // Convert to vector for efficient cross referencing. + SmallVector basevec, livevec; + livevec.reserve(liveset.size()); + basevec.reserve(liveset.size()); + for (Value *L : liveset) { + livevec.push_back(L); + + assert(base_pairs.find(L) != base_pairs.end()); + Value *base = base_pairs[L]; + basevec.push_back(base); + } + assert(livevec.size() == basevec.size()); + + // To make the output IR slightly more stable (for use in diffs), ensure a + // fixed order of the values in the safepoint (by sorting the value name). + // The order is otherwise meaningless. + stablize_order(basevec, livevec); + + // Do the actual rewriting and delete the old statepoint + makeStatepointExplicitImpl(CS, basevec, livevec, P, result); + CS.getInstruction()->eraseFromParent(); +} + +// Helper function for the relocationViaAlloca. +// It receives iterator to the statepoint gc relocates and emits store to the +// assigned +// location (via allocaMap) for the each one of them. +// Add visited values into the visitedLiveValues set we will later use them +// for sanity check. +static void +insertRelocationStores(iterator_range gcRelocs, + DenseMap &allocaMap, + DenseSet &visitedLiveValues) { + + for (User *U : gcRelocs) { + if (!isa(U)) + continue; + + IntrinsicInst *relocatedValue = cast(U); + + // We only care about relocates + if (relocatedValue->getIntrinsicID() != + Intrinsic::experimental_gc_relocate) { + continue; + } + + GCRelocateOperands relocateOperands(relocatedValue); + Value *originalValue = const_cast(relocateOperands.derivedPtr()); + assert(allocaMap.count(originalValue)); + Value *alloca = allocaMap[originalValue]; + + // Emit store into the related alloca + StoreInst *store = new StoreInst(relocatedValue, alloca); + store->insertAfter(relocatedValue); + +#ifndef NDEBUG + visitedLiveValues.insert(originalValue); +#endif + } +} + +/// do all the relocation update via allocas and mem2reg +static void relocationViaAlloca( + Function &F, DominatorTree &DT, const std::vector &live, + const std::vector &records) { +#ifndef NDEBUG + int initialAllocaNum = 0; + + // record initial number of allocas + for (inst_iterator itr = inst_begin(F), end = inst_end(F); itr != end; + itr++) { + if (isa(*itr)) + initialAllocaNum++; + } +#endif + + // TODO-PERF: change data structures, reserve + DenseMap allocaMap; + SmallVector PromotableAllocas; + PromotableAllocas.reserve(live.size()); + + // emit alloca for each live gc pointer + for (unsigned i = 0; i < live.size(); i++) { + Value *liveValue = live[i]; + AllocaInst *alloca = new AllocaInst(liveValue->getType(), "", + F.getEntryBlock().getFirstNonPHI()); + allocaMap[liveValue] = alloca; + PromotableAllocas.push_back(alloca); + } + + // The next two loops are part of the same conceptual operation. We need to + // insert a store to the alloca after the original def and at each + // redefinition. We need to insert a load before each use. These are split + // into distinct loops for performance reasons. + + // update gc pointer after each statepoint + // either store a relocated value or null (if no relocated value found for + // this gc pointer and it is not a gc_result) + // this must happen before we update the statepoint with load of alloca + // otherwise we lose the link between statepoint and old def + for (size_t i = 0; i < records.size(); i++) { + const struct PartiallyConstructedSafepointRecord &info = records[i]; + Value *statepoint = info.safepoint.first; + + // This will be used for consistency check + DenseSet visitedLiveValues; + + // Insert stores for normal statepoint gc relocates + insertRelocationStores(statepoint->users(), allocaMap, visitedLiveValues); + + // In case if it was invoke statepoint + // we will insert stores for exceptional path gc relocates. + if (isa(statepoint)) { + insertRelocationStores(info.exceptional_relocates_token->users(), + allocaMap, visitedLiveValues); + } + +#ifndef NDEBUG + // For consistency check store null's into allocas for values that are not + // relocated + // by this statepoint. + for (auto Pair : allocaMap) { + Value *def = Pair.first; + Value *alloca = Pair.second; + + // This value was relocated + if (visitedLiveValues.count(def)) { + continue; + } + // Result should not be relocated + if (def == info.result) { + continue; + } + + Constant *CPN = + ConstantPointerNull::get(cast(def->getType())); + StoreInst *store = new StoreInst(CPN, alloca); + store->insertBefore(info.safepoint.second); + } +#endif + } + // update use with load allocas and add store for gc_relocated + for (auto Pair : allocaMap) { + Value *def = Pair.first; + Value *alloca = Pair.second; + + // we pre-record the uses of allocas so that we dont have to worry about + // later update + // that change the user information. + SmallVector uses; + // PERF: trade a linear scan for repeated reallocation + uses.reserve(std::distance(def->user_begin(), def->user_end())); + for (User *U : def->users()) { + if (!isa(U)) { + // If the def has a ConstantExpr use, then the def is either a + // ConstantExpr use itself or null. In either case + // (recursively in the first, directly in the second), the oop + // it is ultimately dependent on is null and this particular + // use does not need to be fixed up. + uses.push_back(cast(U)); + } + } + + std::sort(uses.begin(), uses.end()); + auto last = std::unique(uses.begin(), uses.end()); + uses.erase(last, uses.end()); + + for (Instruction *use : uses) { + if (isa(use)) { + PHINode *phi = cast(use); + for (unsigned i = 0; i < phi->getNumIncomingValues(); i++) { + if (def == phi->getIncomingValue(i)) { + LoadInst *load = new LoadInst( + alloca, "", phi->getIncomingBlock(i)->getTerminator()); + phi->setIncomingValue(i, load); + } + } + } else { + LoadInst *load = new LoadInst(alloca, "", use); + use->replaceUsesOfWith(def, load); + } + } + + // emit store for the initial gc value + // store must be inserted after load, otherwise store will be in alloca's + // use list and an extra load will be inserted before it + StoreInst *store = new StoreInst(def, alloca); + if (isa(def)) { + store->insertAfter(cast(def)); + } else { + assert((isa(def) || isa(def) || + (isa(def) && cast(def)->isNullValue())) && + "Must be argument or global"); + store->insertAfter(cast(alloca)); + } + } + + assert(PromotableAllocas.size() == live.size() && + "we must have the same allocas with lives"); + if (!PromotableAllocas.empty()) { + // apply mem2reg to promote alloca to SSA + PromoteMemToReg(PromotableAllocas, DT); + } + +#ifndef NDEBUG + for (inst_iterator itr = inst_begin(F), end = inst_end(F); itr != end; + itr++) { + if (isa(*itr)) + initialAllocaNum--; + } + assert(initialAllocaNum == 0 && "We must not introduce any extra allocas"); +#endif +} + +/// Implement a unique function which doesn't require we sort the input +/// vector. Doing so has the effect of changing the output of a couple of +/// tests in ways which make them less useful in testing fused safepoints. +template static void unique_unsorted(std::vector &vec) { + DenseSet seen; + std::vector tmp; + vec.reserve(vec.size()); + std::swap(tmp, vec); + for (auto V : tmp) { + if (seen.insert(V).second) { + vec.push_back(V); + } + } +} + +static Function *getUseHolder(Module &M) { + FunctionType *ftype = + FunctionType::get(Type::getVoidTy(M.getContext()), true); + Function *Func = cast(M.getOrInsertFunction("__tmp_use", ftype)); + return Func; +} + +/// Insert holders so that each Value is obviously live through the entire +/// liftetime of the call. +static void insertUseHolderAfter(CallSite &CS, const ArrayRef Values, + std::vector &holders) { + Module *M = CS.getInstruction()->getParent()->getParent()->getParent(); + Function *Func = getUseHolder(*M); + if (CS.isCall()) { + // For call safepoints insert dummy calls right after safepoint + BasicBlock::iterator next(CS.getInstruction()); + next++; + CallInst *base_holder = CallInst::Create(Func, Values, "", next); + holders.push_back(base_holder); + } else if (CS.isInvoke()) { + // For invoke safepooints insert dummy calls both in normal and + // exceptional destination blocks + InvokeInst *invoke = cast(CS.getInstruction()); + CallInst *normal_holder = CallInst::Create( + Func, Values, "", invoke->getNormalDest()->getFirstInsertionPt()); + CallInst *unwind_holder = CallInst::Create( + Func, Values, "", invoke->getUnwindDest()->getFirstInsertionPt()); + holders.push_back(normal_holder); + holders.push_back(unwind_holder); + } else { + assert(false && "Unsupported"); + } +} + +static void findLiveReferences( + Function &F, DominatorTree &DT, Pass *P, std::vector &toUpdate, + std::vector &records) { + for (size_t i = 0; i < records.size(); i++) { + struct PartiallyConstructedSafepointRecord &info = records[i]; + CallSite &CS = toUpdate[i]; + analyzeParsePointLiveness(DT, CS, info); + } +} + +static void addBasesAsLiveValues(std::set &liveset, + std::map &base_pairs) { + // Identify any base pointers which are used in this safepoint, but not + // themselves relocated. We need to relocate them so that later inserted + // safepoints can get the properly relocated base register. + DenseSet missing; + for (Value *L : liveset) { + assert(base_pairs.find(L) != base_pairs.end()); + Value *base = base_pairs[L]; + assert(base); + if (liveset.find(base) == liveset.end()) { + assert(base_pairs.find(base) == base_pairs.end()); + // uniqued by set insert + missing.insert(base); + } + } + + // Note that we want these at the end of the list, otherwise + // register placement gets screwed up once we lower to STATEPOINT + // instructions. This is an utter hack, but there doesn't seem to be a + // better one. + for (Value *base : missing) { + assert(base); + liveset.insert(base); + base_pairs[base] = base; + } + assert(liveset.size() == base_pairs.size()); +} + +static bool insertParsePoints(Function &F, DominatorTree &DT, Pass *P, + std::vector &toUpdate) { +#ifndef NDEBUG + // sanity check the input + std::set uniqued; + uniqued.insert(toUpdate.begin(), toUpdate.end()); + assert(uniqued.size() == toUpdate.size() && "no duplicates please!"); + + for (size_t i = 0; i < toUpdate.size(); i++) { + CallSite &CS = toUpdate[i]; + assert(CS.getInstruction()->getParent()->getParent() == &F); + assert(isStatepoint(CS) && "expected to already be a deopt statepoint"); + } +#endif + + // A list of dummy calls added to the IR to keep various values obviously + // live in the IR. We'll remove all of these when done. + std::vector holders; + + // Insert a dummy call with all of the arguments to the vm_state we'll need + // for the actual safepoint insertion. This ensures reference arguments in + // the deopt argument list are considered live through the safepoint (and + // thus makes sure they get relocated.) + for (size_t i = 0; i < toUpdate.size(); i++) { + CallSite &CS = toUpdate[i]; + Statepoint StatepointCS(CS); + + SmallVector DeoptValues; + for (Use &U : StatepointCS.vm_state_args()) { + Value *Arg = cast(&U); + if (isGCPointerType(Arg->getType())) + DeoptValues.push_back(Arg); + } + insertUseHolderAfter(CS, DeoptValues, holders); + } + + std::vector records; + records.reserve(toUpdate.size()); + for (size_t i = 0; i < toUpdate.size(); i++) { + struct PartiallyConstructedSafepointRecord info; + records.push_back(info); + } + assert(records.size() == toUpdate.size()); + + // A) Identify all gc pointers which are staticly live at the given call + // site. + findLiveReferences(F, DT, P, toUpdate, records); + + // B) Find the base pointers for each live pointer + /* scope for caching */ { + // Cache the 'defining value' relation used in the computation and + // insertion of base phis and selects. This ensures that we don't insert + // large numbers of duplicate base_phis. + DefiningValueMapTy DVCache; + + for (size_t i = 0; i < records.size(); i++) { + struct PartiallyConstructedSafepointRecord &info = records[i]; + CallSite &CS = toUpdate[i]; + findBasePointers(DT, DVCache, CS, info); + } + } // end of cache scope + + // The base phi insertion logic (for any safepoint) may have inserted new + // instructions which are now live at some safepoint. The simplest such + // example is: + // loop: + // phi a <-- will be a new base_phi here + // safepoint 1 <-- that needs to be live here + // gep a + 1 + // safepoint 2 + // br loop + std::set allInsertedDefs; + for (size_t i = 0; i < records.size(); i++) { + struct PartiallyConstructedSafepointRecord &info = records[i]; + allInsertedDefs.insert(info.newInsertedDefs.begin(), + info.newInsertedDefs.end()); + } + + // We insert some dummy calls after each safepoint to definitely hold live + // the base pointers which were identified for that safepoint. We'll then + // ask liveness for _every_ base inserted to see what is now live. Then we + // remove the dummy calls. + holders.reserve(holders.size() + records.size()); + for (size_t i = 0; i < records.size(); i++) { + struct PartiallyConstructedSafepointRecord &info = records[i]; + CallSite &CS = toUpdate[i]; + + SmallVector Bases; + for (auto Pair : info.base_pairs) { + Bases.push_back(Pair.second); + } + insertUseHolderAfter(CS, Bases, holders); + } + + // Add the bases explicitly to the live vector set. This may result in a few + // extra relocations, but the base has to be available whenever a pointer + // derived from it is used. Thus, we need it to be part of the statepoint's + // gc arguments list. TODO: Introduce an explicit notion (in the following + // code) of the GC argument list as seperate from the live Values at a + // given statepoint. + for (size_t i = 0; i < records.size(); i++) { + struct PartiallyConstructedSafepointRecord &info = records[i]; + addBasesAsLiveValues(info.liveset, info.base_pairs); + } + + // If we inserted any new values, we need to adjust our notion of what is + // live at a particular safepoint. + if (!allInsertedDefs.empty()) { + fixupLiveReferences(F, DT, P, allInsertedDefs, toUpdate, records); + } + if (PrintBasePointers) { + for (size_t i = 0; i < records.size(); i++) { + struct PartiallyConstructedSafepointRecord &info = records[i]; + errs() << "Base Pairs: (w/Relocation)\n"; + for (auto Pair : info.base_pairs) { + errs() << " derived %" << Pair.first->getName() << " base %" + << Pair.second->getName() << "\n"; + } + } + } + for (size_t i = 0; i < holders.size(); i++) { + holders[i]->eraseFromParent(); + holders[i] = nullptr; + } + holders.clear(); + + // Now run through and replace the existing statepoints with new ones with + // the live variables listed. We do not yet update uses of the values being + // relocated. We have references to live variables that need to + // survive to the last iteration of this loop. (By construction, the + // previous statepoint can not be a live variable, thus we can and remove + // the old statepoint calls as we go.) + for (size_t i = 0; i < records.size(); i++) { + struct PartiallyConstructedSafepointRecord &info = records[i]; + CallSite &CS = toUpdate[i]; + makeStatepointExplicit(DT, CS, P, info); + } + toUpdate.clear(); // prevent accident use of invalid CallSites + + // In case if we inserted relocates in a different basic block than the + // original safepoint (this can happen for invokes). We need to be sure that + // original values were not used in any of the phi nodes at the + // beginning of basic block containing them. Because we know that all such + // blocks will have single predecessor we can safely assume that all phi + // nodes have single entry (because of normalizeBBForInvokeSafepoint). + // Just remove them all here. + for (size_t i = 0; i < records.size(); i++) { + Instruction *I = records[i].safepoint.first; + + if (InvokeInst *invoke = dyn_cast(I)) { + FoldSingleEntryPHINodes(invoke->getNormalDest(), P); + assert(!isa(invoke->getNormalDest()->begin())); + + FoldSingleEntryPHINodes(invoke->getUnwindDest(), P); + assert(!isa(invoke->getUnwindDest()->begin())); + } + } + + // Do all the fixups of the original live variables to their relocated selves + std::vector live; + for (size_t i = 0; i < records.size(); i++) { + struct PartiallyConstructedSafepointRecord &info = records[i]; + // We can't simply save the live set from the original insertion. One of + // the live values might be the result of a call which needs a safepoint. + // That Value* no longer exists and we need to use the new gc_result. + // Thankfully, the liveset is embedded in the statepoint (and updated), so + // we just grab that. + Statepoint statepoint(info.safepoint.first); + live.insert(live.end(), statepoint.gc_args_begin(), + statepoint.gc_args_end()); + } + unique_unsorted(live); + + // sanity check + for (auto ptr : live) { + assert(isGCPointerType(ptr->getType()) && "must be a gc pointer type"); + } + + relocationViaAlloca(F, DT, live, records); + return !records.empty(); +} + +/// Returns true if this function should be rewritten by this pass. The main +/// point of this function is as an extension point for custom logic. +static bool shouldRewriteStatepointsIn(Function &F) { + // TODO: This should check the GCStrategy + return true; +} + +bool RewriteStatepointsForGC::runOnFunction(Function &F) { + // Nothing to do for declarations. + if (F.isDeclaration() || F.empty()) + return false; + + // Policy choice says not to rewrite - the most common reason is that we're + // compiling code without a GCStrategy. + if (!shouldRewriteStatepointsIn(F)) + return false; + + // Gather all the statepoints which need rewritten. + std::vector ParsePointNeeded; + for (inst_iterator itr = inst_begin(F), end = inst_end(F); itr != end; + itr++) { + // TODO: only the ones with the flag set! + if (isStatepoint(*itr)) + ParsePointNeeded.push_back(CallSite(&*itr)); + } + + // Return early if no work to do. + if (ParsePointNeeded.empty()) + return false; + + DominatorTree &DT = getAnalysis().getDomTree(); + return insertParsePoints(F, DT, this, ParsePointNeeded); +} Index: lib/Transforms/Scalar/Scalar.cpp =================================================================== --- lib/Transforms/Scalar/Scalar.cpp +++ lib/Transforms/Scalar/Scalar.cpp @@ -58,6 +58,7 @@ initializePartiallyInlineLibCallsPass(Registry); initializeReassociatePass(Registry); initializeRegToMemPass(Registry); + initializeRewriteStatepointsForGCPass(Registry); initializeSCCPPass(Registry); initializeIPSCCPPass(Registry); initializeSROAPass(Registry);