Index: llvm/lib/Transforms/Vectorize/LoopVectorize.cpp =================================================================== --- llvm/lib/Transforms/Vectorize/LoopVectorize.cpp +++ llvm/lib/Transforms/Vectorize/LoopVectorize.cpp @@ -201,9 +201,10 @@ "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); -/// We don't interleave loops with a known constant trip count below this -/// number. -static const unsigned TinyTripCountInterleaveThreshold = 128; +static cl::opt TinyTripCountInterleaveThreshold( + "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, + cl::desc("We don't interleave loops with a estimated constant trip count " + "below this number")); static cl::opt ForceTargetNumScalarRegs( "force-target-num-scalar-regs", cl::init(0), cl::Hidden, @@ -5218,9 +5219,10 @@ if (Legal->getMaxSafeDepDistBytes() != -1U) return 1; - // Do not interleave loops with a relatively small trip count. - unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); - if (TC > 1 && TC < TinyTripCountInterleaveThreshold) + // Do not interleave loops with a relatively small known or estimated trip + // count. + auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); + if (BestKnownTC && *BestKnownTC < TinyTripCountInterleaveThreshold) return 1; RegisterUsage R = calculateRegisterUsage({VF})[0]; @@ -5283,12 +5285,10 @@ MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; } - // If the trip count is constant, limit the interleave count to be less than - // the trip count divided by VF. - if (TC > 0) { - assert(TC >= VF && "VF exceeds trip count?"); - if ((TC / VF) < MaxInterleaveCount) - MaxInterleaveCount = (TC / VF); + // If trip count is known or estimated compile time constant, limit the + // interleave count to be less than the trip count divided by VF. + if (BestKnownTC) { + MaxInterleaveCount = std::min(*BestKnownTC / VF, MaxInterleaveCount); } // If we did not calculate the cost for VF (because the user selected the VF) Index: llvm/test/Transforms/LoopVectorize/X86/no_fpmath_with_hotness.ll =================================================================== --- llvm/test/Transforms/LoopVectorize/X86/no_fpmath_with_hotness.ll +++ llvm/test/Transforms/LoopVectorize/X86/no_fpmath_with_hotness.ll @@ -3,7 +3,7 @@ ; CHECK: remark: no_fpmath.c:6:11: loop not vectorized: cannot prove it is safe to reorder floating-point operations (hotness: 300) ; CHECK: remark: no_fpmath.c:6:14: loop not vectorized -; CHECK: remark: no_fpmath.c:17:14: vectorized loop (vectorization width: 2, interleaved count: 2) (hotness: 300) +; CHECK: remark: no_fpmath.c:17:14: vectorized loop (vectorization width: 2, interleaved count: 1) (hotness: 300) target datalayout = "e-m:o-i64:64-f80:128-n8:16:32:64-S128" target triple = "x86_64-apple-macosx10.10.0" Index: llvm/test/Transforms/LoopVectorize/interleave_short_tc.ll =================================================================== --- /dev/null +++ llvm/test/Transforms/LoopVectorize/interleave_short_tc.ll @@ -0,0 +1,59 @@ +; Check that we won't interleave by more than "best known" estimated trip count. + +; The loop is expected to be vectorized by 4 and interleaving suppresed due to +; short trip count which is controled by "tiny-trip-count-interleave-threshold". +; RUN: opt -passes=loop-vectorize -force-vector-width=4 -vectorizer-min-trip-count=4 -S < %s | FileCheck %s +; +; The loop is expected to be vectorized by 4 and computed interleaving factor is 1. +; Thus the resulting step is 4. +; RUN: opt -passes=loop-vectorize -force-vector-width=4 -vectorizer-min-trip-count=4 -tiny-trip-count-interleave-threshold=4 -S < %s | FileCheck %s + +; The loop is expected to be vectorized by 2 and computed interleaving factor is 2. +; Thus the resulting step is 4. +; RUN: opt -passes=loop-vectorize -force-vector-width=2 -vectorizer-min-trip-count=4 -tiny-trip-count-interleave-threshold=4 -S < %s | FileCheck %s + +; Check that we won't interleave by more than "best known" estimated trip count. + +target datalayout = "e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-f80:128-n8:16:32:64-S128" +target triple = "x86_64-unknown-linux-gnu" + +@a = dso_local global [5 x i32] zeroinitializer, align 16 +@b = dso_local global [5 x i32] zeroinitializer, align 16 + +; Function Attrs: nofree norecurse nounwind uwtable +define dso_local void @_Z3fooi(i32 %M) local_unnamed_addr { +; CHECK-LABEL: @_Z3fooi( +; CHECK: [[VECTOR_BODY:vector\.body]]: +; CHECK: [[INDEX:%.*]] = phi i64 [ 0, [[VECTOR_PH:%.*]] ], [ [[INDEX_NEXT:%.*]], %[[VECTOR_BODY]] ] +; CHECK: [[INDEX_NEXT]] = add i64 [[INDEX]], 4 +; +entry: + %cmp8 = icmp sgt i32 %M, 0 + br i1 %cmp8, label %for.body.preheader, label %for.cond.cleanup + +for.body.preheader: ; preds = %entry + %wide.trip.count = zext i32 %M to i64 + br label %for.body + +for.cond.cleanup.loopexit: ; preds = %for.body + br label %for.cond.cleanup + +for.cond.cleanup: ; preds = %for.cond.cleanup.loopexit, %entry + ret void + +for.body: ; preds = %for.body, %for.body.preheader + %indvars.iv = phi i64 [ 0, %for.body.preheader ], [ %indvars.iv.next, %for.body ] + %arrayidx = getelementptr inbounds [5 x i32], [5 x i32]* @b, i64 0, i64 %indvars.iv + %0 = load i32, i32* %arrayidx, align 4 + %1 = trunc i64 %indvars.iv to i32 + %mul = mul nsw i32 %0, %1 + %arrayidx2 = getelementptr inbounds [5 x i32], [5 x i32]* @a, i64 0, i64 %indvars.iv + %2 = load i32, i32* %arrayidx2, align 4 + %add = add nsw i32 %2, %mul + store i32 %add, i32* %arrayidx2, align 4 + %indvars.iv.next = add nuw nsw i64 %indvars.iv, 1 + %exitcond = icmp eq i64 %indvars.iv.next, %wide.trip.count + br i1 %exitcond, label %for.cond.cleanup.loopexit, label %for.body, !prof !1 +} + +!1 = !{!"branch_weights", i32 1, i32 5}