Index: llvm/trunk/tools/llvm-exegesis/lib/X86/Target.cpp =================================================================== --- llvm/trunk/tools/llvm-exegesis/lib/X86/Target.cpp +++ llvm/trunk/tools/llvm-exegesis/lib/X86/Target.cpp @@ -20,11 +20,9 @@ namespace llvm { namespace exegesis { -namespace { - // Returns an error if we cannot handle the memory references in this // instruction. -Error isInvalidMemoryInstr(const Instruction &Instr) { +static Error isInvalidMemoryInstr(const Instruction &Instr) { switch (Instr.Description->TSFlags & X86II::FormMask) { default: llvm_unreachable("Unknown FormMask value"); @@ -169,78 +167,90 @@ return llvm::Error::success(); } -static unsigned GetX86FPFlags(const Instruction &Instr) { +static unsigned getX86FPFlags(const Instruction &Instr) { return Instr.Description->TSFlags & llvm::X86II::FPTypeMask; } +namespace { class X86LatencySnippetGenerator : public LatencySnippetGenerator { public: using LatencySnippetGenerator::LatencySnippetGenerator; llvm::Expected> - generateCodeTemplates(const Instruction &Instr) const override { - if (auto E = IsInvalidOpcode(Instr)) - return std::move(E); - - switch (GetX86FPFlags(Instr)) { - case llvm::X86II::NotFP: - return LatencySnippetGenerator::generateCodeTemplates(Instr); - case llvm::X86II::ZeroArgFP: - case llvm::X86II::OneArgFP: - case llvm::X86II::SpecialFP: - case llvm::X86II::CompareFP: - case llvm::X86II::CondMovFP: - return llvm::make_error("Unsupported x87 Instruction"); - case llvm::X86II::OneArgFPRW: - case llvm::X86II::TwoArgFP: - // These are instructions like - // - `ST(0) = fsqrt(ST(0))` (OneArgFPRW) - // - `ST(0) = ST(0) + ST(i)` (TwoArgFP) - // They are intrinsically serial and do not modify the state of the stack. - return generateSelfAliasingCodeTemplates(Instr); - default: - llvm_unreachable("Unknown FP Type!"); - } - } + generateCodeTemplates(const Instruction &Instr) const override; }; +} // namespace +llvm::Expected> +X86LatencySnippetGenerator::generateCodeTemplates( + const Instruction &Instr) const { + if (auto E = IsInvalidOpcode(Instr)) + return std::move(E); + + switch (getX86FPFlags(Instr)) { + case llvm::X86II::NotFP: + return LatencySnippetGenerator::generateCodeTemplates(Instr); + case llvm::X86II::ZeroArgFP: + case llvm::X86II::OneArgFP: + case llvm::X86II::SpecialFP: + case llvm::X86II::CompareFP: + case llvm::X86II::CondMovFP: + return llvm::make_error("Unsupported x87 Instruction"); + case llvm::X86II::OneArgFPRW: + case llvm::X86II::TwoArgFP: + // These are instructions like + // - `ST(0) = fsqrt(ST(0))` (OneArgFPRW) + // - `ST(0) = ST(0) + ST(i)` (TwoArgFP) + // They are intrinsically serial and do not modify the state of the stack. + return generateSelfAliasingCodeTemplates(Instr); + default: + llvm_unreachable("Unknown FP Type!"); + } +} + +namespace { class X86UopsSnippetGenerator : public UopsSnippetGenerator { public: using UopsSnippetGenerator::UopsSnippetGenerator; llvm::Expected> - generateCodeTemplates(const Instruction &Instr) const override { - if (auto E = IsInvalidOpcode(Instr)) - return std::move(E); - - switch (GetX86FPFlags(Instr)) { - case llvm::X86II::NotFP: - return UopsSnippetGenerator::generateCodeTemplates(Instr); - case llvm::X86II::ZeroArgFP: - case llvm::X86II::OneArgFP: - case llvm::X86II::SpecialFP: - return llvm::make_error("Unsupported x87 Instruction"); - case llvm::X86II::OneArgFPRW: - case llvm::X86II::TwoArgFP: - // These are instructions like - // - `ST(0) = fsqrt(ST(0))` (OneArgFPRW) - // - `ST(0) = ST(0) + ST(i)` (TwoArgFP) - // They are intrinsically serial and do not modify the state of the stack. - // We generate the same code for latency and uops. - return generateSelfAliasingCodeTemplates(Instr); - case llvm::X86II::CompareFP: - case llvm::X86II::CondMovFP: - // We can compute uops for any FP instruction that does not grow or shrink - // the stack (either do not touch the stack or push as much as they pop). - return generateUnconstrainedCodeTemplates( - Instr, "instruction does not grow/shrink the FP stack"); - default: - llvm_unreachable("Unknown FP Type!"); - } - } + generateCodeTemplates(const Instruction &Instr) const override; }; +} // namespace + +llvm::Expected> +X86UopsSnippetGenerator::generateCodeTemplates( + const Instruction &Instr) const { + if (auto E = IsInvalidOpcode(Instr)) + return std::move(E); + + switch (getX86FPFlags(Instr)) { + case llvm::X86II::NotFP: + return UopsSnippetGenerator::generateCodeTemplates(Instr); + case llvm::X86II::ZeroArgFP: + case llvm::X86II::OneArgFP: + case llvm::X86II::SpecialFP: + return llvm::make_error("Unsupported x87 Instruction"); + case llvm::X86II::OneArgFPRW: + case llvm::X86II::TwoArgFP: + // These are instructions like + // - `ST(0) = fsqrt(ST(0))` (OneArgFPRW) + // - `ST(0) = ST(0) + ST(i)` (TwoArgFP) + // They are intrinsically serial and do not modify the state of the stack. + // We generate the same code for latency and uops. + return generateSelfAliasingCodeTemplates(Instr); + case llvm::X86II::CompareFP: + case llvm::X86II::CondMovFP: + // We can compute uops for any FP instruction that does not grow or shrink + // the stack (either do not touch the stack or push as much as they pop). + return generateUnconstrainedCodeTemplates( + Instr, "instruction does not grow/shrink the FP stack"); + default: + llvm_unreachable("Unknown FP Type!"); + } +} -static unsigned GetLoadImmediateOpcode(unsigned RegBitWidth) { +static unsigned getLoadImmediateOpcode(unsigned RegBitWidth) { switch (RegBitWidth) { case 8: return llvm::X86::MOV8ri; @@ -259,7 +269,7 @@ const llvm::APInt &Value) { if (Value.getBitWidth() > RegBitWidth) llvm_unreachable("Value must fit in the Register"); - return llvm::MCInstBuilder(GetLoadImmediateOpcode(RegBitWidth)) + return llvm::MCInstBuilder(getLoadImmediateOpcode(RegBitWidth)) .addReg(Reg) .addImm(Value.getZExtValue()); } @@ -308,181 +318,123 @@ // Reserves some space on the stack, fills it with the content of the provided // constant and provide methods to load the stack value into a register. +namespace { struct ConstantInliner { explicit ConstantInliner(const llvm::APInt &Constant) : Constant_(Constant) {} std::vector loadAndFinalize(unsigned Reg, unsigned RegBitWidth, - unsigned Opcode) { - assert((RegBitWidth & 7) == 0 && - "RegBitWidth must be a multiple of 8 bits"); - initStack(RegBitWidth / 8); - add(loadToReg(Reg, Opcode)); - add(releaseStackSpace(RegBitWidth / 8)); - return std::move(Instructions); - } - - std::vector loadX87STAndFinalize(unsigned Reg) { - initStack(kF80Bytes); - add(llvm::MCInstBuilder(llvm::X86::LD_F80m) - // Address = ESP - .addReg(llvm::X86::RSP) // BaseReg - .addImm(1) // ScaleAmt - .addReg(0) // IndexReg - .addImm(0) // Disp - .addReg(0)); // Segment - if (Reg != llvm::X86::ST0) - add(llvm::MCInstBuilder(llvm::X86::ST_Frr).addReg(Reg)); - add(releaseStackSpace(kF80Bytes)); - return std::move(Instructions); - } - - std::vector loadX87FPAndFinalize(unsigned Reg) { - initStack(kF80Bytes); - add(llvm::MCInstBuilder(llvm::X86::LD_Fp80m) - .addReg(Reg) - // Address = ESP - .addReg(llvm::X86::RSP) // BaseReg - .addImm(1) // ScaleAmt - .addReg(0) // IndexReg - .addImm(0) // Disp - .addReg(0)); // Segment - add(releaseStackSpace(kF80Bytes)); - return std::move(Instructions); - } - - std::vector popFlagAndFinalize() { - initStack(8); - add(llvm::MCInstBuilder(llvm::X86::POPF64)); - return std::move(Instructions); - } + unsigned Opcode); -private: - static constexpr const unsigned kF80Bytes = 10; // 80 bits. + std::vector loadX87STAndFinalize(unsigned Reg); + + std::vector loadX87FPAndFinalize(unsigned Reg); + + std::vector popFlagAndFinalize(); +private: ConstantInliner &add(const llvm::MCInst &Inst) { Instructions.push_back(Inst); return *this; } - void initStack(unsigned Bytes) { - assert(Constant_.getBitWidth() <= Bytes * 8 && - "Value does not have the correct size"); - const llvm::APInt WideConstant = Constant_.getBitWidth() < Bytes * 8 - ? Constant_.sext(Bytes * 8) - : Constant_; - add(allocateStackSpace(Bytes)); - size_t ByteOffset = 0; - for (; Bytes - ByteOffset >= 4; ByteOffset += 4) - add(fillStackSpace( - llvm::X86::MOV32mi, ByteOffset, - WideConstant.extractBits(32, ByteOffset * 8).getZExtValue())); - if (Bytes - ByteOffset >= 2) { - add(fillStackSpace( - llvm::X86::MOV16mi, ByteOffset, - WideConstant.extractBits(16, ByteOffset * 8).getZExtValue())); - ByteOffset += 2; - } - if (Bytes - ByteOffset >= 1) - add(fillStackSpace( - llvm::X86::MOV8mi, ByteOffset, - WideConstant.extractBits(8, ByteOffset * 8).getZExtValue())); - } + void initStack(unsigned Bytes); + + static constexpr const unsigned kF80Bytes = 10; // 80 bits. llvm::APInt Constant_; std::vector Instructions; }; +} // namespace + +std::vector ConstantInliner::loadAndFinalize(unsigned Reg, + unsigned RegBitWidth, + unsigned Opcode) { + assert((RegBitWidth & 7) == 0 && "RegBitWidth must be a multiple of 8 bits"); + initStack(RegBitWidth / 8); + add(loadToReg(Reg, Opcode)); + add(releaseStackSpace(RegBitWidth / 8)); + return std::move(Instructions); +} + +std::vector ConstantInliner::loadX87STAndFinalize(unsigned Reg) { + initStack(kF80Bytes); + add(llvm::MCInstBuilder(llvm::X86::LD_F80m) + // Address = ESP + .addReg(llvm::X86::RSP) // BaseReg + .addImm(1) // ScaleAmt + .addReg(0) // IndexReg + .addImm(0) // Disp + .addReg(0)); // Segment + if (Reg != llvm::X86::ST0) + add(llvm::MCInstBuilder(llvm::X86::ST_Frr).addReg(Reg)); + add(releaseStackSpace(kF80Bytes)); + return std::move(Instructions); +} + +std::vector ConstantInliner::loadX87FPAndFinalize(unsigned Reg) { + initStack(kF80Bytes); + add(llvm::MCInstBuilder(llvm::X86::LD_Fp80m) + .addReg(Reg) + // Address = ESP + .addReg(llvm::X86::RSP) // BaseReg + .addImm(1) // ScaleAmt + .addReg(0) // IndexReg + .addImm(0) // Disp + .addReg(0)); // Segment + add(releaseStackSpace(kF80Bytes)); + return std::move(Instructions); +} + +std::vector ConstantInliner::popFlagAndFinalize() { + initStack(8); + add(llvm::MCInstBuilder(llvm::X86::POPF64)); + return std::move(Instructions); +} + +void ConstantInliner::initStack(unsigned Bytes) { + assert(Constant_.getBitWidth() <= Bytes * 8 && + "Value does not have the correct size"); + const llvm::APInt WideConstant = Constant_.getBitWidth() < Bytes * 8 + ? Constant_.sext(Bytes * 8) + : Constant_; + add(allocateStackSpace(Bytes)); + size_t ByteOffset = 0; + for (; Bytes - ByteOffset >= 4; ByteOffset += 4) + add(fillStackSpace( + llvm::X86::MOV32mi, ByteOffset, + WideConstant.extractBits(32, ByteOffset * 8).getZExtValue())); + if (Bytes - ByteOffset >= 2) { + add(fillStackSpace( + llvm::X86::MOV16mi, ByteOffset, + WideConstant.extractBits(16, ByteOffset * 8).getZExtValue())); + ByteOffset += 2; + } + if (Bytes - ByteOffset >= 1) + add(fillStackSpace( + llvm::X86::MOV8mi, ByteOffset, + WideConstant.extractBits(8, ByteOffset * 8).getZExtValue())); +} #include "X86GenExegesis.inc" +namespace { class ExegesisX86Target : public ExegesisTarget { public: ExegesisX86Target() : ExegesisTarget(X86CpuPfmCounters) {} private: - void addTargetSpecificPasses(llvm::PassManagerBase &PM) const override { - // Lowers FP pseudo-instructions, e.g. ABS_Fp32 -> ABS_F. - PM.add(llvm::createX86FloatingPointStackifierPass()); - } + void addTargetSpecificPasses(llvm::PassManagerBase &PM) const override; - unsigned getScratchMemoryRegister(const llvm::Triple &TT) const override { - if (!TT.isArch64Bit()) { - // FIXME: This would require popping from the stack, so we would have to - // add some additional setup code. - return 0; - } - return TT.isOSWindows() ? llvm::X86::RCX : llvm::X86::RDI; - } + unsigned getScratchMemoryRegister(const llvm::Triple &TT) const override; unsigned getMaxMemoryAccessSize() const override { return 64; } void fillMemoryOperands(InstructionTemplate &IT, unsigned Reg, - unsigned Offset) const override { - assert(!isInvalidMemoryInstr(IT.Instr) && - "fillMemoryOperands requires a valid memory instruction"); - int MemOpIdx = X86II::getMemoryOperandNo(IT.Instr.Description->TSFlags); - assert(MemOpIdx >= 0 && "invalid memory operand index"); - // getMemoryOperandNo() ignores tied operands, so we have to add them back. - for (unsigned I = 0; I <= static_cast(MemOpIdx); ++I) { - const auto &Op = IT.Instr.Operands[I]; - if (Op.isTied() && Op.getTiedToIndex() < I) { - ++MemOpIdx; - } - } - // Now fill in the memory operands. - const auto SetOp = [&IT](int OpIdx, const MCOperand &OpVal) { - const auto Op = IT.Instr.Operands[OpIdx]; - assert(Op.isMemory() && Op.isExplicit() && "invalid memory pattern"); - IT.getValueFor(Op) = OpVal; - }; - SetOp(MemOpIdx + 0, MCOperand::createReg(Reg)); // BaseReg - SetOp(MemOpIdx + 1, MCOperand::createImm(1)); // ScaleAmt - SetOp(MemOpIdx + 2, MCOperand::createReg(0)); // IndexReg - SetOp(MemOpIdx + 3, MCOperand::createImm(Offset)); // Disp - SetOp(MemOpIdx + 4, MCOperand::createReg(0)); // Segment - } + unsigned Offset) const override; std::vector setRegTo(const llvm::MCSubtargetInfo &STI, unsigned Reg, - const llvm::APInt &Value) const override { - if (llvm::X86::GR8RegClass.contains(Reg)) - return {loadImmediate(Reg, 8, Value)}; - if (llvm::X86::GR16RegClass.contains(Reg)) - return {loadImmediate(Reg, 16, Value)}; - if (llvm::X86::GR32RegClass.contains(Reg)) - return {loadImmediate(Reg, 32, Value)}; - if (llvm::X86::GR64RegClass.contains(Reg)) - return {loadImmediate(Reg, 64, Value)}; - ConstantInliner CI(Value); - if (llvm::X86::VR64RegClass.contains(Reg)) - return CI.loadAndFinalize(Reg, 64, llvm::X86::MMX_MOVQ64rm); - if (llvm::X86::VR128XRegClass.contains(Reg)) { - if (STI.getFeatureBits()[llvm::X86::FeatureAVX512]) - return CI.loadAndFinalize(Reg, 128, llvm::X86::VMOVDQU32Z128rm); - if (STI.getFeatureBits()[llvm::X86::FeatureAVX]) - return CI.loadAndFinalize(Reg, 128, llvm::X86::VMOVDQUrm); - return CI.loadAndFinalize(Reg, 128, llvm::X86::MOVDQUrm); - } - if (llvm::X86::VR256XRegClass.contains(Reg)) { - if (STI.getFeatureBits()[llvm::X86::FeatureAVX512]) - return CI.loadAndFinalize(Reg, 256, llvm::X86::VMOVDQU32Z256rm); - if (STI.getFeatureBits()[llvm::X86::FeatureAVX]) - return CI.loadAndFinalize(Reg, 256, llvm::X86::VMOVDQUYrm); - } - if (llvm::X86::VR512RegClass.contains(Reg)) - if (STI.getFeatureBits()[llvm::X86::FeatureAVX512]) - return CI.loadAndFinalize(Reg, 512, llvm::X86::VMOVDQU32Zrm); - if (llvm::X86::RSTRegClass.contains(Reg)) { - return CI.loadX87STAndFinalize(Reg); - } - if (llvm::X86::RFP32RegClass.contains(Reg) || - llvm::X86::RFP64RegClass.contains(Reg) || - llvm::X86::RFP80RegClass.contains(Reg)) { - return CI.loadX87FPAndFinalize(Reg); - } - if (Reg == llvm::X86::EFLAGS) - return CI.popFlagAndFinalize(); - return {}; // Not yet implemented. - } + const llvm::APInt &Value) const override; std::unique_ptr createLatencySnippetGenerator(const LLVMState &State) const override { @@ -498,9 +450,94 @@ return Arch == llvm::Triple::x86_64 || Arch == llvm::Triple::x86; } }; - } // namespace +void ExegesisX86Target::addTargetSpecificPasses( + llvm::PassManagerBase &PM) const { + // Lowers FP pseudo-instructions, e.g. ABS_Fp32 -> ABS_F. + PM.add(llvm::createX86FloatingPointStackifierPass()); +} + +unsigned +ExegesisX86Target::getScratchMemoryRegister(const llvm::Triple &TT) const { + if (!TT.isArch64Bit()) { + // FIXME: This would require popping from the stack, so we would have to + // add some additional setup code. + return 0; + } + return TT.isOSWindows() ? llvm::X86::RCX : llvm::X86::RDI; +} + +void ExegesisX86Target::fillMemoryOperands(InstructionTemplate &IT, + unsigned Reg, + unsigned Offset) const { + assert(!isInvalidMemoryInstr(IT.Instr) && + "fillMemoryOperands requires a valid memory instruction"); + int MemOpIdx = X86II::getMemoryOperandNo(IT.Instr.Description->TSFlags); + assert(MemOpIdx >= 0 && "invalid memory operand index"); + // getMemoryOperandNo() ignores tied operands, so we have to add them back. + for (unsigned I = 0; I <= static_cast(MemOpIdx); ++I) { + const auto &Op = IT.Instr.Operands[I]; + if (Op.isTied() && Op.getTiedToIndex() < I) { + ++MemOpIdx; + } + } + // Now fill in the memory operands. + const auto SetOp = [&IT](int OpIdx, const MCOperand &OpVal) { + const auto Op = IT.Instr.Operands[OpIdx]; + assert(Op.isMemory() && Op.isExplicit() && "invalid memory pattern"); + IT.getValueFor(Op) = OpVal; + }; + SetOp(MemOpIdx + 0, MCOperand::createReg(Reg)); // BaseReg + SetOp(MemOpIdx + 1, MCOperand::createImm(1)); // ScaleAmt + SetOp(MemOpIdx + 2, MCOperand::createReg(0)); // IndexReg + SetOp(MemOpIdx + 3, MCOperand::createImm(Offset)); // Disp + SetOp(MemOpIdx + 4, MCOperand::createReg(0)); // Segment +} + +std::vector +ExegesisX86Target::setRegTo(const llvm::MCSubtargetInfo &STI, unsigned Reg, + const llvm::APInt &Value) const { + if (llvm::X86::GR8RegClass.contains(Reg)) + return {loadImmediate(Reg, 8, Value)}; + if (llvm::X86::GR16RegClass.contains(Reg)) + return {loadImmediate(Reg, 16, Value)}; + if (llvm::X86::GR32RegClass.contains(Reg)) + return {loadImmediate(Reg, 32, Value)}; + if (llvm::X86::GR64RegClass.contains(Reg)) + return {loadImmediate(Reg, 64, Value)}; + ConstantInliner CI(Value); + if (llvm::X86::VR64RegClass.contains(Reg)) + return CI.loadAndFinalize(Reg, 64, llvm::X86::MMX_MOVQ64rm); + if (llvm::X86::VR128XRegClass.contains(Reg)) { + if (STI.getFeatureBits()[llvm::X86::FeatureAVX512]) + return CI.loadAndFinalize(Reg, 128, llvm::X86::VMOVDQU32Z128rm); + if (STI.getFeatureBits()[llvm::X86::FeatureAVX]) + return CI.loadAndFinalize(Reg, 128, llvm::X86::VMOVDQUrm); + return CI.loadAndFinalize(Reg, 128, llvm::X86::MOVDQUrm); + } + if (llvm::X86::VR256XRegClass.contains(Reg)) { + if (STI.getFeatureBits()[llvm::X86::FeatureAVX512]) + return CI.loadAndFinalize(Reg, 256, llvm::X86::VMOVDQU32Z256rm); + if (STI.getFeatureBits()[llvm::X86::FeatureAVX]) + return CI.loadAndFinalize(Reg, 256, llvm::X86::VMOVDQUYrm); + } + if (llvm::X86::VR512RegClass.contains(Reg)) + if (STI.getFeatureBits()[llvm::X86::FeatureAVX512]) + return CI.loadAndFinalize(Reg, 512, llvm::X86::VMOVDQU32Zrm); + if (llvm::X86::RSTRegClass.contains(Reg)) { + return CI.loadX87STAndFinalize(Reg); + } + if (llvm::X86::RFP32RegClass.contains(Reg) || + llvm::X86::RFP64RegClass.contains(Reg) || + llvm::X86::RFP80RegClass.contains(Reg)) { + return CI.loadX87FPAndFinalize(Reg); + } + if (Reg == llvm::X86::EFLAGS) + return CI.popFlagAndFinalize(); + return {}; // Not yet implemented. +} + static ExegesisTarget *getTheExegesisX86Target() { static ExegesisX86Target Target; return &Target; Index: llvm/trunk/unittests/tools/llvm-exegesis/AArch64/TargetTest.cpp =================================================================== --- llvm/trunk/unittests/tools/llvm-exegesis/AArch64/TargetTest.cpp +++ llvm/trunk/unittests/tools/llvm-exegesis/AArch64/TargetTest.cpp @@ -1,3 +1,12 @@ +//===-- TargetTest.cpp ------------------------------------------*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// + #include "Target.h" #include Index: llvm/trunk/unittests/tools/llvm-exegesis/X86/AnalysisTest.cpp =================================================================== --- llvm/trunk/unittests/tools/llvm-exegesis/X86/AnalysisTest.cpp +++ llvm/trunk/unittests/tools/llvm-exegesis/X86/AnalysisTest.cpp @@ -1,3 +1,12 @@ +//===-- AnalysisTest.cpp ---------------------------------------*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// + #include "Analysis.h" #include @@ -28,7 +37,7 @@ } STI.reset(TheTarget->createMCSubtargetInfo(TT, "haswell", "")); - // Compute the ProxResIdx of ports unes in tests. + // Compute the ProxResIdx of ports uses in tests. const auto &SM = STI->getSchedModel(); for (unsigned I = 0, E = SM.getNumProcResourceKinds(); I < E; ++I) { const std::string Name = SM.getProcResource(I)->Name; Index: llvm/trunk/unittests/tools/llvm-exegesis/X86/RegisterAliasingTest.cpp =================================================================== --- llvm/trunk/unittests/tools/llvm-exegesis/X86/RegisterAliasingTest.cpp +++ llvm/trunk/unittests/tools/llvm-exegesis/X86/RegisterAliasingTest.cpp @@ -1,3 +1,13 @@ +//===-- RegisterAliasingTest.cpp --------------------------------*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// + + #include "RegisterAliasing.h" #include Index: llvm/trunk/unittests/tools/llvm-exegesis/X86/TargetTest.cpp =================================================================== --- llvm/trunk/unittests/tools/llvm-exegesis/X86/TargetTest.cpp +++ llvm/trunk/unittests/tools/llvm-exegesis/X86/TargetTest.cpp @@ -1,3 +1,12 @@ +//===-- TargetTest.cpp -----------------------------------------*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// + #include "Target.h" #include