Index: llvm/trunk/include/llvm/Transforms/Utils/SimplifyLibCalls.h =================================================================== --- llvm/trunk/include/llvm/Transforms/Utils/SimplifyLibCalls.h +++ llvm/trunk/include/llvm/Transforms/Utils/SimplifyLibCalls.h @@ -15,40 +15,114 @@ #ifndef LLVM_TRANSFORMS_UTILS_SIMPLIFYLIBCALLS_H #define LLVM_TRANSFORMS_UTILS_SIMPLIFYLIBCALLS_H +#include "llvm/ADT/StringRef.h" +#include "llvm/IR/IRBuilder.h" + namespace llvm { - class Value; - class CallInst; - class DataLayout; - class Instruction; - class TargetLibraryInfo; - class LibCallSimplifierImpl; - - /// LibCallSimplifier - This class implements a collection of optimizations - /// that replace well formed calls to library functions with a more optimal - /// form. For example, replacing 'printf("Hello!")' with 'puts("Hello!")'. - class LibCallSimplifier { - /// Impl - A pointer to the actual implementation of the library call - /// simplifier. - LibCallSimplifierImpl *Impl; - - public: - LibCallSimplifier(const DataLayout *TD, const TargetLibraryInfo *TLI, - bool UnsafeFPShrink); - virtual ~LibCallSimplifier(); - - /// optimizeCall - Take the given call instruction and return a more - /// optimal value to replace the instruction with or 0 if a more - /// optimal form can't be found. Note that the returned value may - /// be equal to the instruction being optimized. In this case all - /// other instructions that use the given instruction were modified - /// and the given instruction is dead. - Value *optimizeCall(CallInst *CI); - - /// replaceAllUsesWith - This method is used when the library call - /// simplifier needs to replace instructions other than the library - /// call being modified. - virtual void replaceAllUsesWith(Instruction *I, Value *With) const; - }; +class Value; +class CallInst; +class DataLayout; +class Instruction; +class TargetLibraryInfo; +class BasicBlock; +class Function; + +/// LibCallSimplifier - This class implements a collection of optimizations +/// that replace well formed calls to library functions with a more optimal +/// form. For example, replacing 'printf("Hello!")' with 'puts("Hello!")'. +class LibCallSimplifier { +private: + const DataLayout *DL; + const TargetLibraryInfo *TLI; + bool UnsafeFPShrink; + +public: + LibCallSimplifier(const DataLayout *TD, const TargetLibraryInfo *TLI, + bool UnsafeFPShrink); + + /// optimizeCall - Take the given call instruction and return a more + /// optimal value to replace the instruction with or 0 if a more + /// optimal form can't be found. Note that the returned value may + /// be equal to the instruction being optimized. In this case all + /// other instructions that use the given instruction were modified + /// and the given instruction is dead. + Value *optimizeCall(CallInst *CI); + + /// replaceAllUsesWith - This method is used when the library call + /// simplifier needs to replace instructions other than the library + /// call being modified. + virtual void replaceAllUsesWith(Instruction *I, Value *With) const; + +private: + // Fortified Library Call Optimizations + Value *optimizeMemCpyChk(CallInst *CI, IRBuilder<> &B); + Value *optimizeMemMoveChk(CallInst *CI, IRBuilder<> &B); + Value *optimizeMemSetChk(CallInst *CI, IRBuilder<> &B); + Value *optimizeStrCpyChk(CallInst *CI, IRBuilder<> &B); + Value *optimizeStpCpyChk(CallInst *CI, IRBuilder<> &B); + Value *optimizeStrNCpyChk(CallInst *CI, IRBuilder<> &B); + + // String and Memory Library Call Optimizations + Value *optimizeStrCat(CallInst *CI, IRBuilder<> &B); + Value *optimizeStrNCat(CallInst *CI, IRBuilder<> &B); + Value *optimizeStrChr(CallInst *CI, IRBuilder<> &B); + Value *optimizeStrRChr(CallInst *CI, IRBuilder<> &B); + Value *optimizeStrCmp(CallInst *CI, IRBuilder<> &B); + Value *optimizeStrNCmp(CallInst *CI, IRBuilder<> &B); + Value *optimizeStrCpy(CallInst *CI, IRBuilder<> &B); + Value *optimizeStpCpy(CallInst *CI, IRBuilder<> &B); + Value *optimizeStrNCpy(CallInst *CI, IRBuilder<> &B); + Value *optimizeStrLen(CallInst *CI, IRBuilder<> &B); + Value *optimizeStrPBrk(CallInst *CI, IRBuilder<> &B); + Value *optimizeStrTo(CallInst *CI, IRBuilder<> &B); + Value *optimizeStrSpn(CallInst *CI, IRBuilder<> &B); + Value *optimizeStrCSpn(CallInst *CI, IRBuilder<> &B); + Value *optimizeStrStr(CallInst *CI, IRBuilder<> &B); + Value *optimizeMemCmp(CallInst *CI, IRBuilder<> &B); + Value *optimizeMemCpy(CallInst *CI, IRBuilder<> &B); + Value *optimizeMemMove(CallInst *CI, IRBuilder<> &B); + Value *optimizeMemSet(CallInst *CI, IRBuilder<> &B); + + // Math Library Optimizations + Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B, bool CheckRetType); + Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B); + Value *optimizeCos(CallInst *CI, IRBuilder<> &B); + Value *optimizePow(CallInst *CI, IRBuilder<> &B); + Value *optimizeExp2(CallInst *CI, IRBuilder<> &B); + Value *optimizeSinCosPi(CallInst *CI, IRBuilder<> &B); + + // Integer Library Call Optimizations + Value *optimizeFFS(CallInst *CI, IRBuilder<> &B); + Value *optimizeAbs(CallInst *CI, IRBuilder<> &B); + Value *optimizeIsDigit(CallInst *CI, IRBuilder<> &B); + Value *optimizeIsAscii(CallInst *CI, IRBuilder<> &B); + Value *optimizeToAscii(CallInst *CI, IRBuilder<> &B); + + // Formatting and IO Library Call Optimizations + Value *optimizeErrorReporting(CallInst *CI, IRBuilder<> &B, + int StreamArg = -1); + Value *optimizePrintF(CallInst *CI, IRBuilder<> &B); + Value *optimizeSPrintF(CallInst *CI, IRBuilder<> &B); + Value *optimizeFPrintF(CallInst *CI, IRBuilder<> &B); + Value *optimizeFWrite(CallInst *CI, IRBuilder<> &B); + Value *optimizeFPuts(CallInst *CI, IRBuilder<> &B); + Value *optimizePuts(CallInst *CI, IRBuilder<> &B); + + // Helper methods + Value *emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, IRBuilder<> &B); + void classifyArgUse(Value *Val, BasicBlock *BB, bool IsFloat, + SmallVectorImpl &SinCalls, + SmallVectorImpl &CosCalls, + SmallVectorImpl &SinCosCalls); + void replaceTrigInsts(SmallVectorImpl &Calls, Value *Res); + Value *optimizePrintFString(CallInst *CI, IRBuilder<> &B); + Value *optimizeSPrintFString(CallInst *CI, IRBuilder<> &B); + Value *optimizeFPrintFString(CallInst *CI, IRBuilder<> &B); + + /// hasFloatVersion - Checks if there is a float version of the specified + /// function by checking for an existing function with name FuncName + f + bool hasFloatVersion(StringRef FuncName); +}; } // End llvm namespace #endif Index: llvm/trunk/lib/Transforms/InstCombine/InstructionCombining.cpp =================================================================== --- llvm/trunk/lib/Transforms/InstCombine/InstructionCombining.cpp +++ llvm/trunk/lib/Transforms/InstCombine/InstructionCombining.cpp @@ -70,10 +70,11 @@ STATISTIC(NumFactor , "Number of factorizations"); STATISTIC(NumReassoc , "Number of reassociations"); -static cl::opt UnsafeFPShrink("enable-double-float-shrink", cl::Hidden, - cl::init(false), - cl::desc("Enable unsafe double to float " - "shrinking for math lib calls")); +static cl::opt + EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, + cl::init(false), + cl::desc("Enable unsafe double to float " + "shrinking for math lib calls")); // Initialization Routines void llvm::initializeInstCombine(PassRegistry &Registry) { @@ -2913,7 +2914,7 @@ InstCombinerLibCallSimplifier(const DataLayout *DL, const TargetLibraryInfo *TLI, InstCombiner *IC) - : LibCallSimplifier(DL, TLI, UnsafeFPShrink) { + : LibCallSimplifier(DL, TLI, EnableUnsafeFPShrink) { this->IC = IC; } Index: llvm/trunk/lib/Transforms/Utils/SimplifyLibCalls.cpp =================================================================== --- llvm/trunk/lib/Transforms/Utils/SimplifyLibCalls.cpp +++ llvm/trunk/lib/Transforms/Utils/SimplifyLibCalls.cpp @@ -35,57 +35,26 @@ using namespace llvm; static cl::opt -ColdErrorCalls("error-reporting-is-cold", cl::init(true), - cl::Hidden, cl::desc("Treat error-reporting calls as cold")); - -/// This class is the abstract base class for the set of optimizations that -/// corresponds to one library call. -namespace { -class LibCallOptimization { -protected: - Function *Caller; - const DataLayout *DL; - const TargetLibraryInfo *TLI; - const LibCallSimplifier *LCS; - LLVMContext* Context; -public: - LibCallOptimization() { } - virtual ~LibCallOptimization() {} - - /// callOptimizer - This pure virtual method is implemented by base classes to - /// do various optimizations. If this returns null then no transformation was - /// performed. If it returns CI, then it transformed the call and CI is to be - /// deleted. If it returns something else, replace CI with the new value and - /// delete CI. - virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) - =0; - - /// ignoreCallingConv - Returns false if this transformation could possibly - /// change the calling convention. - virtual bool ignoreCallingConv() { return false; } - - Value *optimizeCall(CallInst *CI, const DataLayout *DL, - const TargetLibraryInfo *TLI, - const LibCallSimplifier *LCS, IRBuilder<> &B) { - Caller = CI->getParent()->getParent(); - this->DL = DL; - this->TLI = TLI; - this->LCS = LCS; - if (CI->getCalledFunction()) - Context = &CI->getCalledFunction()->getContext(); - - // We never change the calling convention. - if (!ignoreCallingConv() && CI->getCallingConv() != llvm::CallingConv::C) - return nullptr; - - return callOptimizer(CI->getCalledFunction(), CI, B); - } -}; + ColdErrorCalls("error-reporting-is-cold", cl::init(true), cl::Hidden, + cl::desc("Treat error-reporting calls as cold")); //===----------------------------------------------------------------------===// // Helper Functions //===----------------------------------------------------------------------===// +static bool ignoreCallingConv(LibFunc::Func Func) { + switch (Func) { + case LibFunc::abs: + case LibFunc::labs: + case LibFunc::llabs: + case LibFunc::strlen: + return true; + default: + return false; + } + llvm_unreachable(); +} + /// isOnlyUsedInZeroEqualityComparison - Return true if it only matters that the /// value is equal or not-equal to zero. static bool isOnlyUsedInZeroEqualityComparison(Value *V) { @@ -142,967 +111,912 @@ // Fortified Library Call Optimizations //===----------------------------------------------------------------------===// -struct FortifiedLibCallOptimization : public LibCallOptimization { -protected: - virtual bool isFoldable(unsigned SizeCIOp, unsigned SizeArgOp, - bool isString) const = 0; -}; - -struct InstFortifiedLibCallOptimization : public FortifiedLibCallOptimization { - CallInst *CI; - - bool isFoldable(unsigned SizeCIOp, unsigned SizeArgOp, - bool isString) const override { - if (CI->getArgOperand(SizeCIOp) == CI->getArgOperand(SizeArgOp)) +static bool isFortifiedCallFoldable(CallInst *CI, unsigned SizeCIOp, unsigned SizeArgOp, + bool isString) { + if (CI->getArgOperand(SizeCIOp) == CI->getArgOperand(SizeArgOp)) + return true; + if (ConstantInt *SizeCI = + dyn_cast(CI->getArgOperand(SizeCIOp))) { + if (SizeCI->isAllOnesValue()) return true; - if (ConstantInt *SizeCI = - dyn_cast(CI->getArgOperand(SizeCIOp))) { - if (SizeCI->isAllOnesValue()) - return true; - if (isString) { - uint64_t Len = GetStringLength(CI->getArgOperand(SizeArgOp)); - // If the length is 0 we don't know how long it is and so we can't - // remove the check. - if (Len == 0) return false; - return SizeCI->getZExtValue() >= Len; - } - if (ConstantInt *Arg = dyn_cast( - CI->getArgOperand(SizeArgOp))) - return SizeCI->getZExtValue() >= Arg->getZExtValue(); + if (isString) { + uint64_t Len = GetStringLength(CI->getArgOperand(SizeArgOp)); + // If the length is 0 we don't know how long it is and so we can't + // remove the check. + if (Len == 0) + return false; + return SizeCI->getZExtValue() >= Len; } - return false; + if (ConstantInt *Arg = dyn_cast(CI->getArgOperand(SizeArgOp))) + return SizeCI->getZExtValue() >= Arg->getZExtValue(); } -}; + return false; +} -struct MemCpyChkOpt : public InstFortifiedLibCallOptimization { - Value *callOptimizer(Function *Callee, CallInst *CI, - IRBuilder<> &B) override { - this->CI = CI; - FunctionType *FT = Callee->getFunctionType(); - LLVMContext &Context = CI->getParent()->getContext(); - - // Check if this has the right signature. - if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) || - !FT->getParamType(0)->isPointerTy() || - !FT->getParamType(1)->isPointerTy() || - FT->getParamType(2) != DL->getIntPtrType(Context) || - FT->getParamType(3) != DL->getIntPtrType(Context)) - return nullptr; - - if (isFoldable(3, 2, false)) { - B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), - CI->getArgOperand(2), 1); - return CI->getArgOperand(0); - } - return nullptr; - } -}; +Value *LibCallSimplifier::optimizeMemCpyChk(CallInst *CI, IRBuilder<> &B) { + Function *Callee = CI->getCalledFunction(); + FunctionType *FT = Callee->getFunctionType(); + LLVMContext &Context = CI->getContext(); -struct MemMoveChkOpt : public InstFortifiedLibCallOptimization { - Value *callOptimizer(Function *Callee, CallInst *CI, - IRBuilder<> &B) override { - this->CI = CI; - FunctionType *FT = Callee->getFunctionType(); - LLVMContext &Context = CI->getParent()->getContext(); - - // Check if this has the right signature. - if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) || - !FT->getParamType(0)->isPointerTy() || - !FT->getParamType(1)->isPointerTy() || - FT->getParamType(2) != DL->getIntPtrType(Context) || - FT->getParamType(3) != DL->getIntPtrType(Context)) - return nullptr; - - if (isFoldable(3, 2, false)) { - B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1), - CI->getArgOperand(2), 1); - return CI->getArgOperand(0); - } + // Check if this has the right signature. + if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) || + !FT->getParamType(0)->isPointerTy() || + !FT->getParamType(1)->isPointerTy() || + FT->getParamType(2) != DL->getIntPtrType(Context) || + FT->getParamType(3) != DL->getIntPtrType(Context)) return nullptr; - } -}; -struct MemSetChkOpt : public InstFortifiedLibCallOptimization { - Value *callOptimizer(Function *Callee, CallInst *CI, - IRBuilder<> &B) override { - this->CI = CI; - FunctionType *FT = Callee->getFunctionType(); - LLVMContext &Context = CI->getParent()->getContext(); - - // Check if this has the right signature. - if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) || - !FT->getParamType(0)->isPointerTy() || - !FT->getParamType(1)->isIntegerTy() || - FT->getParamType(2) != DL->getIntPtrType(Context) || - FT->getParamType(3) != DL->getIntPtrType(Context)) - return nullptr; - - if (isFoldable(3, 2, false)) { - Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), - false); - B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); - return CI->getArgOperand(0); - } - return nullptr; + if (isFortifiedCallFoldable(CI, 3, 2, false)) { + B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), + CI->getArgOperand(2), 1); + return CI->getArgOperand(0); } -}; + return nullptr; +} -struct StrCpyChkOpt : public InstFortifiedLibCallOptimization { - Value *callOptimizer(Function *Callee, CallInst *CI, - IRBuilder<> &B) override { - this->CI = CI; - StringRef Name = Callee->getName(); - FunctionType *FT = Callee->getFunctionType(); - LLVMContext &Context = CI->getParent()->getContext(); - - // Check if this has the right signature. - if (FT->getNumParams() != 3 || - FT->getReturnType() != FT->getParamType(0) || - FT->getParamType(0) != FT->getParamType(1) || - FT->getParamType(0) != Type::getInt8PtrTy(Context) || - FT->getParamType(2) != DL->getIntPtrType(Context)) - return nullptr; - - Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); - if (Dst == Src) // __strcpy_chk(x,x) -> x - return Src; - - // If a) we don't have any length information, or b) we know this will - // fit then just lower to a plain strcpy. Otherwise we'll keep our - // strcpy_chk call which may fail at runtime if the size is too long. - // TODO: It might be nice to get a maximum length out of the possible - // string lengths for varying. - if (isFoldable(2, 1, true)) { - Value *Ret = EmitStrCpy(Dst, Src, B, DL, TLI, Name.substr(2, 6)); - return Ret; - } else { - // Maybe we can stil fold __strcpy_chk to __memcpy_chk. - uint64_t Len = GetStringLength(Src); - if (Len == 0) return nullptr; - - // This optimization require DataLayout. - if (!DL) return nullptr; - - Value *Ret = - EmitMemCpyChk(Dst, Src, - ConstantInt::get(DL->getIntPtrType(Context), Len), - CI->getArgOperand(2), B, DL, TLI); - return Ret; - } +Value *LibCallSimplifier::optimizeMemMoveChk(CallInst *CI, IRBuilder<> &B) { + Function *Callee = CI->getCalledFunction(); + FunctionType *FT = Callee->getFunctionType(); + LLVMContext &Context = CI->getContext(); + + // Check if this has the right signature. + if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) || + !FT->getParamType(0)->isPointerTy() || + !FT->getParamType(1)->isPointerTy() || + FT->getParamType(2) != DL->getIntPtrType(Context) || + FT->getParamType(3) != DL->getIntPtrType(Context)) return nullptr; + + if (isFortifiedCallFoldable(CI, 3, 2, false)) { + B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1), + CI->getArgOperand(2), 1); + return CI->getArgOperand(0); } -}; + return nullptr; +} -struct StpCpyChkOpt : public InstFortifiedLibCallOptimization { - Value *callOptimizer(Function *Callee, CallInst *CI, - IRBuilder<> &B) override { - this->CI = CI; - StringRef Name = Callee->getName(); - FunctionType *FT = Callee->getFunctionType(); - LLVMContext &Context = CI->getParent()->getContext(); - - // Check if this has the right signature. - if (FT->getNumParams() != 3 || - FT->getReturnType() != FT->getParamType(0) || - FT->getParamType(0) != FT->getParamType(1) || - FT->getParamType(0) != Type::getInt8PtrTy(Context) || - FT->getParamType(2) != DL->getIntPtrType(FT->getParamType(0))) - return nullptr; - - Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); - if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) - Value *StrLen = EmitStrLen(Src, B, DL, TLI); - return StrLen ? B.CreateInBoundsGEP(Dst, StrLen) : nullptr; - } +Value *LibCallSimplifier::optimizeMemSetChk(CallInst *CI, IRBuilder<> &B) { + Function *Callee = CI->getCalledFunction(); + FunctionType *FT = Callee->getFunctionType(); + LLVMContext &Context = CI->getContext(); - // If a) we don't have any length information, or b) we know this will - // fit then just lower to a plain stpcpy. Otherwise we'll keep our - // stpcpy_chk call which may fail at runtime if the size is too long. - // TODO: It might be nice to get a maximum length out of the possible - // string lengths for varying. - if (isFoldable(2, 1, true)) { - Value *Ret = EmitStrCpy(Dst, Src, B, DL, TLI, Name.substr(2, 6)); - return Ret; - } else { - // Maybe we can stil fold __stpcpy_chk to __memcpy_chk. - uint64_t Len = GetStringLength(Src); - if (Len == 0) return nullptr; - - // This optimization require DataLayout. - if (!DL) return nullptr; - - Type *PT = FT->getParamType(0); - Value *LenV = ConstantInt::get(DL->getIntPtrType(PT), Len); - Value *DstEnd = B.CreateGEP(Dst, - ConstantInt::get(DL->getIntPtrType(PT), - Len - 1)); - if (!EmitMemCpyChk(Dst, Src, LenV, CI->getArgOperand(2), B, DL, TLI)) - return nullptr; - return DstEnd; - } + // Check if this has the right signature. + if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) || + !FT->getParamType(0)->isPointerTy() || + !FT->getParamType(1)->isIntegerTy() || + FT->getParamType(2) != DL->getIntPtrType(Context) || + FT->getParamType(3) != DL->getIntPtrType(Context)) return nullptr; - } -}; -struct StrNCpyChkOpt : public InstFortifiedLibCallOptimization { - Value *callOptimizer(Function *Callee, CallInst *CI, - IRBuilder<> &B) override { - this->CI = CI; - StringRef Name = Callee->getName(); - FunctionType *FT = Callee->getFunctionType(); - LLVMContext &Context = CI->getParent()->getContext(); - - // Check if this has the right signature. - if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) || - FT->getParamType(0) != FT->getParamType(1) || - FT->getParamType(0) != Type::getInt8PtrTy(Context) || - !FT->getParamType(2)->isIntegerTy() || - FT->getParamType(3) != DL->getIntPtrType(Context)) - return nullptr; - - if (isFoldable(3, 2, false)) { - Value *Ret = EmitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), - CI->getArgOperand(2), B, DL, TLI, - Name.substr(2, 7)); - return Ret; - } - return nullptr; + if (isFortifiedCallFoldable(CI, 3, 2, false)) { + Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); + B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); + return CI->getArgOperand(0); } -}; - -//===----------------------------------------------------------------------===// -// String and Memory Library Call Optimizations -//===----------------------------------------------------------------------===// - -struct StrCatOpt : public LibCallOptimization { - Value *callOptimizer(Function *Callee, CallInst *CI, - IRBuilder<> &B) override { - // Verify the "strcat" function prototype. - FunctionType *FT = Callee->getFunctionType(); - if (FT->getNumParams() != 2 || - FT->getReturnType() != B.getInt8PtrTy() || - FT->getParamType(0) != FT->getReturnType() || - FT->getParamType(1) != FT->getReturnType()) - return nullptr; - - // Extract some information from the instruction - Value *Dst = CI->getArgOperand(0); - Value *Src = CI->getArgOperand(1); + return nullptr; +} - // See if we can get the length of the input string. +Value *LibCallSimplifier::optimizeStrCpyChk(CallInst *CI, IRBuilder<> &B) { + Function *Callee = CI->getCalledFunction(); + StringRef Name = Callee->getName(); + FunctionType *FT = Callee->getFunctionType(); + LLVMContext &Context = CI->getContext(); + + // Check if this has the right signature. + if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) || + FT->getParamType(0) != FT->getParamType(1) || + FT->getParamType(0) != Type::getInt8PtrTy(Context) || + FT->getParamType(2) != DL->getIntPtrType(Context)) + return nullptr; + + Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); + if (Dst == Src) // __strcpy_chk(x,x) -> x + return Src; + + // If a) we don't have any length information, or b) we know this will + // fit then just lower to a plain strcpy. Otherwise we'll keep our + // strcpy_chk call which may fail at runtime if the size is too long. + // TODO: It might be nice to get a maximum length out of the possible + // string lengths for varying. + if (isFortifiedCallFoldable(CI, 2, 1, true)) { + Value *Ret = EmitStrCpy(Dst, Src, B, DL, TLI, Name.substr(2, 6)); + return Ret; + } else { + // Maybe we can stil fold __strcpy_chk to __memcpy_chk. uint64_t Len = GetStringLength(Src); - if (Len == 0) return nullptr; - --Len; // Unbias length. - - // Handle the simple, do-nothing case: strcat(x, "") -> x if (Len == 0) - return Dst; + return nullptr; - // These optimizations require DataLayout. - if (!DL) return nullptr; + // This optimization require DataLayout. + if (!DL) + return nullptr; - return emitStrLenMemCpy(Src, Dst, Len, B); + Value *Ret = EmitMemCpyChk( + Dst, Src, ConstantInt::get(DL->getIntPtrType(Context), Len), + CI->getArgOperand(2), B, DL, TLI); + return Ret; } + return nullptr; +} - Value *emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, - IRBuilder<> &B) { - // We need to find the end of the destination string. That's where the - // memory is to be moved to. We just generate a call to strlen. - Value *DstLen = EmitStrLen(Dst, B, DL, TLI); - if (!DstLen) +Value *LibCallSimplifier::optimizeStpCpyChk(CallInst *CI, IRBuilder<> &B) { + Function *Callee = CI->getCalledFunction(); + StringRef Name = Callee->getName(); + FunctionType *FT = Callee->getFunctionType(); + LLVMContext &Context = CI->getContext(); + + // Check if this has the right signature. + if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) || + FT->getParamType(0) != FT->getParamType(1) || + FT->getParamType(0) != Type::getInt8PtrTy(Context) || + FT->getParamType(2) != DL->getIntPtrType(FT->getParamType(0))) + return nullptr; + + Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); + if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) + Value *StrLen = EmitStrLen(Src, B, DL, TLI); + return StrLen ? B.CreateInBoundsGEP(Dst, StrLen) : nullptr; + } + + // If a) we don't have any length information, or b) we know this will + // fit then just lower to a plain stpcpy. Otherwise we'll keep our + // stpcpy_chk call which may fail at runtime if the size is too long. + // TODO: It might be nice to get a maximum length out of the possible + // string lengths for varying. + if (isFortifiedCallFoldable(CI, 2, 1, true)) { + Value *Ret = EmitStrCpy(Dst, Src, B, DL, TLI, Name.substr(2, 6)); + return Ret; + } else { + // Maybe we can stil fold __stpcpy_chk to __memcpy_chk. + uint64_t Len = GetStringLength(Src); + if (Len == 0) return nullptr; - // Now that we have the destination's length, we must index into the - // destination's pointer to get the actual memcpy destination (end of - // the string .. we're concatenating). - Value *CpyDst = B.CreateGEP(Dst, DstLen, "endptr"); + // This optimization require DataLayout. + if (!DL) + return nullptr; - // We have enough information to now generate the memcpy call to do the - // concatenation for us. Make a memcpy to copy the nul byte with align = 1. - B.CreateMemCpy(CpyDst, Src, - ConstantInt::get(DL->getIntPtrType(*Context), Len + 1), 1); - return Dst; + Type *PT = FT->getParamType(0); + Value *LenV = ConstantInt::get(DL->getIntPtrType(PT), Len); + Value *DstEnd = + B.CreateGEP(Dst, ConstantInt::get(DL->getIntPtrType(PT), Len - 1)); + if (!EmitMemCpyChk(Dst, Src, LenV, CI->getArgOperand(2), B, DL, TLI)) + return nullptr; + return DstEnd; } -}; + return nullptr; +} -struct StrNCatOpt : public StrCatOpt { - Value *callOptimizer(Function *Callee, CallInst *CI, - IRBuilder<> &B) override { - // Verify the "strncat" function prototype. - FunctionType *FT = Callee->getFunctionType(); - if (FT->getNumParams() != 3 || - FT->getReturnType() != B.getInt8PtrTy() || - FT->getParamType(0) != FT->getReturnType() || - FT->getParamType(1) != FT->getReturnType() || - !FT->getParamType(2)->isIntegerTy()) - return nullptr; - - // Extract some information from the instruction - Value *Dst = CI->getArgOperand(0); - Value *Src = CI->getArgOperand(1); - uint64_t Len; - - // We don't do anything if length is not constant - if (ConstantInt *LengthArg = dyn_cast(CI->getArgOperand(2))) - Len = LengthArg->getZExtValue(); - else - return nullptr; - - // See if we can get the length of the input string. - uint64_t SrcLen = GetStringLength(Src); - if (SrcLen == 0) return nullptr; - --SrcLen; // Unbias length. - - // Handle the simple, do-nothing cases: - // strncat(x, "", c) -> x - // strncat(x, c, 0) -> x - if (SrcLen == 0 || Len == 0) return Dst; +Value *LibCallSimplifier::optimizeStrNCpyChk(CallInst *CI, IRBuilder<> &B) { + Function *Callee = CI->getCalledFunction(); + StringRef Name = Callee->getName(); + FunctionType *FT = Callee->getFunctionType(); + LLVMContext &Context = CI->getContext(); + + // Check if this has the right signature. + if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) || + FT->getParamType(0) != FT->getParamType(1) || + FT->getParamType(0) != Type::getInt8PtrTy(Context) || + !FT->getParamType(2)->isIntegerTy() || + FT->getParamType(3) != DL->getIntPtrType(Context)) + return nullptr; + + if (isFortifiedCallFoldable(CI, 3, 2, false)) { + Value *Ret = + EmitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), + CI->getArgOperand(2), B, DL, TLI, Name.substr(2, 7)); + return Ret; + } + return nullptr; +} - // These optimizations require DataLayout. - if (!DL) return nullptr; +//===----------------------------------------------------------------------===// +// String and Memory Library Call Optimizations +//===----------------------------------------------------------------------===// - // We don't optimize this case - if (Len < SrcLen) return nullptr; +Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) { + Function *Callee = CI->getCalledFunction(); + // Verify the "strcat" function prototype. + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 2|| + FT->getReturnType() != B.getInt8PtrTy() || + FT->getParamType(0) != FT->getReturnType() || + FT->getParamType(1) != FT->getReturnType()) + return nullptr; + + // Extract some information from the instruction + Value *Dst = CI->getArgOperand(0); + Value *Src = CI->getArgOperand(1); + + // See if we can get the length of the input string. + uint64_t Len = GetStringLength(Src); + if (Len == 0) + return nullptr; + --Len; // Unbias length. - // strncat(x, s, c) -> strcat(x, s) - // s is constant so the strcat can be optimized further - return emitStrLenMemCpy(Src, Dst, SrcLen, B); - } -}; - -struct StrChrOpt : public LibCallOptimization { - Value *callOptimizer(Function *Callee, CallInst *CI, - IRBuilder<> &B) override { - // Verify the "strchr" function prototype. - FunctionType *FT = Callee->getFunctionType(); - if (FT->getNumParams() != 2 || - FT->getReturnType() != B.getInt8PtrTy() || - FT->getParamType(0) != FT->getReturnType() || - !FT->getParamType(1)->isIntegerTy(32)) - return nullptr; - - Value *SrcStr = CI->getArgOperand(0); - - // If the second operand is non-constant, see if we can compute the length - // of the input string and turn this into memchr. - ConstantInt *CharC = dyn_cast(CI->getArgOperand(1)); - if (!CharC) { - // These optimizations require DataLayout. - if (!DL) return nullptr; + // Handle the simple, do-nothing case: strcat(x, "") -> x + if (Len == 0) + return Dst; - uint64_t Len = GetStringLength(SrcStr); - if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32))// memchr needs i32. - return nullptr; + // These optimizations require DataLayout. + if (!DL) + return nullptr; - return EmitMemChr(SrcStr, CI->getArgOperand(1), // include nul. - ConstantInt::get(DL->getIntPtrType(*Context), Len), - B, DL, TLI); - } + return emitStrLenMemCpy(Src, Dst, Len, B); +} - // Otherwise, the character is a constant, see if the first argument is - // a string literal. If so, we can constant fold. - StringRef Str; - if (!getConstantStringInfo(SrcStr, Str)) { - if (DL && CharC->isZero()) // strchr(p, 0) -> p + strlen(p) - return B.CreateGEP(SrcStr, EmitStrLen(SrcStr, B, DL, TLI), "strchr"); - return nullptr; - } +Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, + IRBuilder<> &B) { + // We need to find the end of the destination string. That's where the + // memory is to be moved to. We just generate a call to strlen. + Value *DstLen = EmitStrLen(Dst, B, DL, TLI); + if (!DstLen) + return nullptr; + + // Now that we have the destination's length, we must index into the + // destination's pointer to get the actual memcpy destination (end of + // the string .. we're concatenating). + Value *CpyDst = B.CreateGEP(Dst, DstLen, "endptr"); + + // We have enough information to now generate the memcpy call to do the + // concatenation for us. Make a memcpy to copy the nul byte with align = 1. + B.CreateMemCpy( + CpyDst, Src, + ConstantInt::get(DL->getIntPtrType(Src->getContext()), Len + 1), 1); + return Dst; +} - // Compute the offset, make sure to handle the case when we're searching for - // zero (a weird way to spell strlen). - size_t I = (0xFF & CharC->getSExtValue()) == 0 ? - Str.size() : Str.find(CharC->getSExtValue()); - if (I == StringRef::npos) // Didn't find the char. strchr returns null. - return Constant::getNullValue(CI->getType()); +Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) { + Function *Callee = CI->getCalledFunction(); + // Verify the "strncat" function prototype. + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 3 || FT->getReturnType() != B.getInt8PtrTy() || + FT->getParamType(0) != FT->getReturnType() || + FT->getParamType(1) != FT->getReturnType() || + !FT->getParamType(2)->isIntegerTy()) + return nullptr; + + // Extract some information from the instruction + Value *Dst = CI->getArgOperand(0); + Value *Src = CI->getArgOperand(1); + uint64_t Len; + + // We don't do anything if length is not constant + if (ConstantInt *LengthArg = dyn_cast(CI->getArgOperand(2))) + Len = LengthArg->getZExtValue(); + else + return nullptr; + + // See if we can get the length of the input string. + uint64_t SrcLen = GetStringLength(Src); + if (SrcLen == 0) + return nullptr; + --SrcLen; // Unbias length. + + // Handle the simple, do-nothing cases: + // strncat(x, "", c) -> x + // strncat(x, c, 0) -> x + if (SrcLen == 0 || Len == 0) + return Dst; - // strchr(s+n,c) -> gep(s+n+i,c) - return B.CreateGEP(SrcStr, B.getInt64(I), "strchr"); - } -}; + // These optimizations require DataLayout. + if (!DL) + return nullptr; + + // We don't optimize this case + if (Len < SrcLen) + return nullptr; -struct StrRChrOpt : public LibCallOptimization { - Value *callOptimizer(Function *Callee, CallInst *CI, - IRBuilder<> &B) override { - // Verify the "strrchr" function prototype. - FunctionType *FT = Callee->getFunctionType(); - if (FT->getNumParams() != 2 || - FT->getReturnType() != B.getInt8PtrTy() || - FT->getParamType(0) != FT->getReturnType() || - !FT->getParamType(1)->isIntegerTy(32)) - return nullptr; - - Value *SrcStr = CI->getArgOperand(0); - ConstantInt *CharC = dyn_cast(CI->getArgOperand(1)); - - // Cannot fold anything if we're not looking for a constant. - if (!CharC) - return nullptr; - - StringRef Str; - if (!getConstantStringInfo(SrcStr, Str)) { - // strrchr(s, 0) -> strchr(s, 0) - if (DL && CharC->isZero()) - return EmitStrChr(SrcStr, '\0', B, DL, TLI); + // strncat(x, s, c) -> strcat(x, s) + // s is constant so the strcat can be optimized further + return emitStrLenMemCpy(Src, Dst, SrcLen, B); +} + +Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) { + Function *Callee = CI->getCalledFunction(); + // Verify the "strchr" function prototype. + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 2 || FT->getReturnType() != B.getInt8PtrTy() || + FT->getParamType(0) != FT->getReturnType() || + !FT->getParamType(1)->isIntegerTy(32)) + return nullptr; + + Value *SrcStr = CI->getArgOperand(0); + + // If the second operand is non-constant, see if we can compute the length + // of the input string and turn this into memchr. + ConstantInt *CharC = dyn_cast(CI->getArgOperand(1)); + if (!CharC) { + // These optimizations require DataLayout. + if (!DL) return nullptr; - } - // Compute the offset. - size_t I = (0xFF & CharC->getSExtValue()) == 0 ? - Str.size() : Str.rfind(CharC->getSExtValue()); - if (I == StringRef::npos) // Didn't find the char. Return null. - return Constant::getNullValue(CI->getType()); + uint64_t Len = GetStringLength(SrcStr); + if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32. + return nullptr; - // strrchr(s+n,c) -> gep(s+n+i,c) - return B.CreateGEP(SrcStr, B.getInt64(I), "strrchr"); + return EmitMemChr( + SrcStr, CI->getArgOperand(1), // include nul. + ConstantInt::get(DL->getIntPtrType(CI->getContext()), Len), B, DL, TLI); } -}; - -struct StrCmpOpt : public LibCallOptimization { - Value *callOptimizer(Function *Callee, CallInst *CI, - IRBuilder<> &B) override { - // Verify the "strcmp" function prototype. - FunctionType *FT = Callee->getFunctionType(); - if (FT->getNumParams() != 2 || - !FT->getReturnType()->isIntegerTy(32) || - FT->getParamType(0) != FT->getParamType(1) || - FT->getParamType(0) != B.getInt8PtrTy()) - return nullptr; - - Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); - if (Str1P == Str2P) // strcmp(x,x) -> 0 - return ConstantInt::get(CI->getType(), 0); - - StringRef Str1, Str2; - bool HasStr1 = getConstantStringInfo(Str1P, Str1); - bool HasStr2 = getConstantStringInfo(Str2P, Str2); - - // strcmp(x, y) -> cnst (if both x and y are constant strings) - if (HasStr1 && HasStr2) - return ConstantInt::get(CI->getType(), Str1.compare(Str2)); - - if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x - return B.CreateNeg(B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), - CI->getType())); - - if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x - return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); - - // strcmp(P, "x") -> memcmp(P, "x", 2) - uint64_t Len1 = GetStringLength(Str1P); - uint64_t Len2 = GetStringLength(Str2P); - if (Len1 && Len2) { - // These optimizations require DataLayout. - if (!DL) return nullptr; - - return EmitMemCmp(Str1P, Str2P, - ConstantInt::get(DL->getIntPtrType(*Context), - std::min(Len1, Len2)), B, DL, TLI); - } + // Otherwise, the character is a constant, see if the first argument is + // a string literal. If so, we can constant fold. + StringRef Str; + if (!getConstantStringInfo(SrcStr, Str)) { + if (DL && CharC->isZero()) // strchr(p, 0) -> p + strlen(p) + return B.CreateGEP(SrcStr, EmitStrLen(SrcStr, B, DL, TLI), "strchr"); return nullptr; } -}; -struct StrNCmpOpt : public LibCallOptimization { - Value *callOptimizer(Function *Callee, CallInst *CI, - IRBuilder<> &B) override { - // Verify the "strncmp" function prototype. - FunctionType *FT = Callee->getFunctionType(); - if (FT->getNumParams() != 3 || - !FT->getReturnType()->isIntegerTy(32) || - FT->getParamType(0) != FT->getParamType(1) || - FT->getParamType(0) != B.getInt8PtrTy() || - !FT->getParamType(2)->isIntegerTy()) - return nullptr; - - Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); - if (Str1P == Str2P) // strncmp(x,x,n) -> 0 - return ConstantInt::get(CI->getType(), 0); - - // Get the length argument if it is constant. - uint64_t Length; - if (ConstantInt *LengthArg = dyn_cast(CI->getArgOperand(2))) - Length = LengthArg->getZExtValue(); - else - return nullptr; - - if (Length == 0) // strncmp(x,y,0) -> 0 - return ConstantInt::get(CI->getType(), 0); - - if (DL && Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) - return EmitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI); - - StringRef Str1, Str2; - bool HasStr1 = getConstantStringInfo(Str1P, Str1); - bool HasStr2 = getConstantStringInfo(Str2P, Str2); - - // strncmp(x, y) -> cnst (if both x and y are constant strings) - if (HasStr1 && HasStr2) { - StringRef SubStr1 = Str1.substr(0, Length); - StringRef SubStr2 = Str2.substr(0, Length); - return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); - } + // Compute the offset, make sure to handle the case when we're searching for + // zero (a weird way to spell strlen). + size_t I = (0xFF & CharC->getSExtValue()) == 0 + ? Str.size() + : Str.find(CharC->getSExtValue()); + if (I == StringRef::npos) // Didn't find the char. strchr returns null. + return Constant::getNullValue(CI->getType()); - if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x - return B.CreateNeg(B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), - CI->getType())); + // strchr(s+n,c) -> gep(s+n+i,c) + return B.CreateGEP(SrcStr, B.getInt64(I), "strchr"); +} - if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x - return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); +Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) { + Function *Callee = CI->getCalledFunction(); + // Verify the "strrchr" function prototype. + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 2 || FT->getReturnType() != B.getInt8PtrTy() || + FT->getParamType(0) != FT->getReturnType() || + !FT->getParamType(1)->isIntegerTy(32)) + return nullptr; + + Value *SrcStr = CI->getArgOperand(0); + ConstantInt *CharC = dyn_cast(CI->getArgOperand(1)); + + // Cannot fold anything if we're not looking for a constant. + if (!CharC) + return nullptr; + StringRef Str; + if (!getConstantStringInfo(SrcStr, Str)) { + // strrchr(s, 0) -> strchr(s, 0) + if (DL && CharC->isZero()) + return EmitStrChr(SrcStr, '\0', B, DL, TLI); return nullptr; } -}; -struct StrCpyOpt : public LibCallOptimization { - Value *callOptimizer(Function *Callee, CallInst *CI, - IRBuilder<> &B) override { - // Verify the "strcpy" function prototype. - FunctionType *FT = Callee->getFunctionType(); - if (FT->getNumParams() != 2 || - FT->getReturnType() != FT->getParamType(0) || - FT->getParamType(0) != FT->getParamType(1) || - FT->getParamType(0) != B.getInt8PtrTy()) - return nullptr; + // Compute the offset. + size_t I = (0xFF & CharC->getSExtValue()) == 0 + ? Str.size() + : Str.rfind(CharC->getSExtValue()); + if (I == StringRef::npos) // Didn't find the char. Return null. + return Constant::getNullValue(CI->getType()); - Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); - if (Dst == Src) // strcpy(x,x) -> x - return Src; + // strrchr(s+n,c) -> gep(s+n+i,c) + return B.CreateGEP(SrcStr, B.getInt64(I), "strrchr"); +} +Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) { + Function *Callee = CI->getCalledFunction(); + // Verify the "strcmp" function prototype. + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 2 || !FT->getReturnType()->isIntegerTy(32) || + FT->getParamType(0) != FT->getParamType(1) || + FT->getParamType(0) != B.getInt8PtrTy()) + return nullptr; + + Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); + if (Str1P == Str2P) // strcmp(x,x) -> 0 + return ConstantInt::get(CI->getType(), 0); + + StringRef Str1, Str2; + bool HasStr1 = getConstantStringInfo(Str1P, Str1); + bool HasStr2 = getConstantStringInfo(Str2P, Str2); + + // strcmp(x, y) -> cnst (if both x and y are constant strings) + if (HasStr1 && HasStr2) + return ConstantInt::get(CI->getType(), Str1.compare(Str2)); + + if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x + return B.CreateNeg( + B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType())); + + if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x + return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); + + // strcmp(P, "x") -> memcmp(P, "x", 2) + uint64_t Len1 = GetStringLength(Str1P); + uint64_t Len2 = GetStringLength(Str2P); + if (Len1 && Len2) { // These optimizations require DataLayout. - if (!DL) return nullptr; - - // See if we can get the length of the input string. - uint64_t Len = GetStringLength(Src); - if (Len == 0) return nullptr; + if (!DL) + return nullptr; - // We have enough information to now generate the memcpy call to do the - // copy for us. Make a memcpy to copy the nul byte with align = 1. - B.CreateMemCpy(Dst, Src, - ConstantInt::get(DL->getIntPtrType(*Context), Len), 1); - return Dst; + return EmitMemCmp(Str1P, Str2P, + ConstantInt::get(DL->getIntPtrType(CI->getContext()), + std::min(Len1, Len2)), + B, DL, TLI); } -}; -struct StpCpyOpt: public LibCallOptimization { - Value *callOptimizer(Function *Callee, CallInst *CI, - IRBuilder<> &B) override { - // Verify the "stpcpy" function prototype. - FunctionType *FT = Callee->getFunctionType(); - if (FT->getNumParams() != 2 || - FT->getReturnType() != FT->getParamType(0) || - FT->getParamType(0) != FT->getParamType(1) || - FT->getParamType(0) != B.getInt8PtrTy()) - return nullptr; + return nullptr; +} - // These optimizations require DataLayout. - if (!DL) return nullptr; +Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) { + Function *Callee = CI->getCalledFunction(); + // Verify the "strncmp" function prototype. + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 3 || !FT->getReturnType()->isIntegerTy(32) || + FT->getParamType(0) != FT->getParamType(1) || + FT->getParamType(0) != B.getInt8PtrTy() || + !FT->getParamType(2)->isIntegerTy()) + return nullptr; - Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); - if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) - Value *StrLen = EmitStrLen(Src, B, DL, TLI); - return StrLen ? B.CreateInBoundsGEP(Dst, StrLen) : nullptr; - } + Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); + if (Str1P == Str2P) // strncmp(x,x,n) -> 0 + return ConstantInt::get(CI->getType(), 0); - // See if we can get the length of the input string. - uint64_t Len = GetStringLength(Src); - if (Len == 0) return nullptr; + // Get the length argument if it is constant. + uint64_t Length; + if (ConstantInt *LengthArg = dyn_cast(CI->getArgOperand(2))) + Length = LengthArg->getZExtValue(); + else + return nullptr; - Type *PT = FT->getParamType(0); - Value *LenV = ConstantInt::get(DL->getIntPtrType(PT), Len); - Value *DstEnd = B.CreateGEP(Dst, - ConstantInt::get(DL->getIntPtrType(PT), - Len - 1)); - - // We have enough information to now generate the memcpy call to do the - // copy for us. Make a memcpy to copy the nul byte with align = 1. - B.CreateMemCpy(Dst, Src, LenV, 1); - return DstEnd; - } -}; + if (Length == 0) // strncmp(x,y,0) -> 0 + return ConstantInt::get(CI->getType(), 0); -struct StrNCpyOpt : public LibCallOptimization { - Value *callOptimizer(Function *Callee, CallInst *CI, - IRBuilder<> &B) override { - FunctionType *FT = Callee->getFunctionType(); - if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) || - FT->getParamType(0) != FT->getParamType(1) || - FT->getParamType(0) != B.getInt8PtrTy() || - !FT->getParamType(2)->isIntegerTy()) - return nullptr; - - Value *Dst = CI->getArgOperand(0); - Value *Src = CI->getArgOperand(1); - Value *LenOp = CI->getArgOperand(2); - - // See if we can get the length of the input string. - uint64_t SrcLen = GetStringLength(Src); - if (SrcLen == 0) return nullptr; - --SrcLen; - - if (SrcLen == 0) { - // strncpy(x, "", y) -> memset(x, '\0', y, 1) - B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1); - return Dst; - } + if (DL && Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) + return EmitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI); - uint64_t Len; - if (ConstantInt *LengthArg = dyn_cast(LenOp)) - Len = LengthArg->getZExtValue(); - else - return nullptr; + StringRef Str1, Str2; + bool HasStr1 = getConstantStringInfo(Str1P, Str1); + bool HasStr2 = getConstantStringInfo(Str2P, Str2); - if (Len == 0) return Dst; // strncpy(x, y, 0) -> x + // strncmp(x, y) -> cnst (if both x and y are constant strings) + if (HasStr1 && HasStr2) { + StringRef SubStr1 = Str1.substr(0, Length); + StringRef SubStr2 = Str2.substr(0, Length); + return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); + } - // These optimizations require DataLayout. - if (!DL) return nullptr; + if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x + return B.CreateNeg( + B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType())); - // Let strncpy handle the zero padding - if (Len > SrcLen+1) return nullptr; + if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x + return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); - Type *PT = FT->getParamType(0); - // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant] - B.CreateMemCpy(Dst, Src, - ConstantInt::get(DL->getIntPtrType(PT), Len), 1); + return nullptr; +} - return Dst; - } -}; +Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) { + Function *Callee = CI->getCalledFunction(); + // Verify the "strcpy" function prototype. + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) || + FT->getParamType(0) != FT->getParamType(1) || + FT->getParamType(0) != B.getInt8PtrTy()) + return nullptr; -struct StrLenOpt : public LibCallOptimization { - bool ignoreCallingConv() override { return true; } - Value *callOptimizer(Function *Callee, CallInst *CI, - IRBuilder<> &B) override { - FunctionType *FT = Callee->getFunctionType(); - if (FT->getNumParams() != 1 || - FT->getParamType(0) != B.getInt8PtrTy() || - !FT->getReturnType()->isIntegerTy()) - return nullptr; - - Value *Src = CI->getArgOperand(0); - - // Constant folding: strlen("xyz") -> 3 - if (uint64_t Len = GetStringLength(Src)) - return ConstantInt::get(CI->getType(), Len-1); - - // strlen(x?"foo":"bars") --> x ? 3 : 4 - if (SelectInst *SI = dyn_cast(Src)) { - uint64_t LenTrue = GetStringLength(SI->getTrueValue()); - uint64_t LenFalse = GetStringLength(SI->getFalseValue()); - if (LenTrue && LenFalse) { - emitOptimizationRemark(*Context, "simplify-libcalls", *Caller, - SI->getDebugLoc(), - "folded strlen(select) to select of constants"); - return B.CreateSelect(SI->getCondition(), - ConstantInt::get(CI->getType(), LenTrue-1), - ConstantInt::get(CI->getType(), LenFalse-1)); - } - } + Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); + if (Dst == Src) // strcpy(x,x) -> x + return Src; - // strlen(x) != 0 --> *x != 0 - // strlen(x) == 0 --> *x == 0 - if (isOnlyUsedInZeroEqualityComparison(CI)) - return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType()); + // These optimizations require DataLayout. + if (!DL) + return nullptr; + // See if we can get the length of the input string. + uint64_t Len = GetStringLength(Src); + if (Len == 0) return nullptr; - } -}; -struct StrPBrkOpt : public LibCallOptimization { - Value *callOptimizer(Function *Callee, CallInst *CI, - IRBuilder<> &B) override { - FunctionType *FT = Callee->getFunctionType(); - if (FT->getNumParams() != 2 || - FT->getParamType(0) != B.getInt8PtrTy() || - FT->getParamType(1) != FT->getParamType(0) || - FT->getReturnType() != FT->getParamType(0)) - return nullptr; + // We have enough information to now generate the memcpy call to do the + // copy for us. Make a memcpy to copy the nul byte with align = 1. + B.CreateMemCpy(Dst, Src, + ConstantInt::get(DL->getIntPtrType(CI->getContext()), Len), 1); + return Dst; +} - StringRef S1, S2; - bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); - bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); +Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) { + Function *Callee = CI->getCalledFunction(); + // Verify the "stpcpy" function prototype. + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) || + FT->getParamType(0) != FT->getParamType(1) || + FT->getParamType(0) != B.getInt8PtrTy()) + return nullptr; - // strpbrk(s, "") -> NULL - // strpbrk("", s) -> NULL - if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) - return Constant::getNullValue(CI->getType()); + // These optimizations require DataLayout. + if (!DL) + return nullptr; - // Constant folding. - if (HasS1 && HasS2) { - size_t I = S1.find_first_of(S2); - if (I == StringRef::npos) // No match. - return Constant::getNullValue(CI->getType()); + Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); + if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) + Value *StrLen = EmitStrLen(Src, B, DL, TLI); + return StrLen ? B.CreateInBoundsGEP(Dst, StrLen) : nullptr; + } - return B.CreateGEP(CI->getArgOperand(0), B.getInt64(I), "strpbrk"); - } + // See if we can get the length of the input string. + uint64_t Len = GetStringLength(Src); + if (Len == 0) + return nullptr; - // strpbrk(s, "a") -> strchr(s, 'a') - if (DL && HasS2 && S2.size() == 1) - return EmitStrChr(CI->getArgOperand(0), S2[0], B, DL, TLI); + Type *PT = FT->getParamType(0); + Value *LenV = ConstantInt::get(DL->getIntPtrType(PT), Len); + Value *DstEnd = + B.CreateGEP(Dst, ConstantInt::get(DL->getIntPtrType(PT), Len - 1)); - return nullptr; + // We have enough information to now generate the memcpy call to do the + // copy for us. Make a memcpy to copy the nul byte with align = 1. + B.CreateMemCpy(Dst, Src, LenV, 1); + return DstEnd; +} + +Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) { + Function *Callee = CI->getCalledFunction(); + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) || + FT->getParamType(0) != FT->getParamType(1) || + FT->getParamType(0) != B.getInt8PtrTy() || + !FT->getParamType(2)->isIntegerTy()) + return nullptr; + + Value *Dst = CI->getArgOperand(0); + Value *Src = CI->getArgOperand(1); + Value *LenOp = CI->getArgOperand(2); + + // See if we can get the length of the input string. + uint64_t SrcLen = GetStringLength(Src); + if (SrcLen == 0) + return nullptr; + --SrcLen; + + if (SrcLen == 0) { + // strncpy(x, "", y) -> memset(x, '\0', y, 1) + B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1); + return Dst; } -}; -struct StrToOpt : public LibCallOptimization { - Value *callOptimizer(Function *Callee, CallInst *CI, - IRBuilder<> &B) override { - FunctionType *FT = Callee->getFunctionType(); - if ((FT->getNumParams() != 2 && FT->getNumParams() != 3) || - !FT->getParamType(0)->isPointerTy() || - !FT->getParamType(1)->isPointerTy()) - return nullptr; + uint64_t Len; + if (ConstantInt *LengthArg = dyn_cast(LenOp)) + Len = LengthArg->getZExtValue(); + else + return nullptr; - Value *EndPtr = CI->getArgOperand(1); - if (isa(EndPtr)) { - // With a null EndPtr, this function won't capture the main argument. - // It would be readonly too, except that it still may write to errno. - CI->addAttribute(1, Attribute::NoCapture); - } + if (Len == 0) + return Dst; // strncpy(x, y, 0) -> x + // These optimizations require DataLayout. + if (!DL) return nullptr; - } -}; -struct StrSpnOpt : public LibCallOptimization { - Value *callOptimizer(Function *Callee, CallInst *CI, - IRBuilder<> &B) override { - FunctionType *FT = Callee->getFunctionType(); - if (FT->getNumParams() != 2 || - FT->getParamType(0) != B.getInt8PtrTy() || - FT->getParamType(1) != FT->getParamType(0) || - !FT->getReturnType()->isIntegerTy()) - return nullptr; - - StringRef S1, S2; - bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); - bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); - - // strspn(s, "") -> 0 - // strspn("", s) -> 0 - if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) - return Constant::getNullValue(CI->getType()); + // Let strncpy handle the zero padding + if (Len > SrcLen + 1) + return nullptr; - // Constant folding. - if (HasS1 && HasS2) { - size_t Pos = S1.find_first_not_of(S2); - if (Pos == StringRef::npos) Pos = S1.size(); - return ConstantInt::get(CI->getType(), Pos); - } + Type *PT = FT->getParamType(0); + // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant] + B.CreateMemCpy(Dst, Src, ConstantInt::get(DL->getIntPtrType(PT), Len), 1); - return nullptr; + return Dst; +} + +Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) { + Function *Callee = CI->getCalledFunction(); + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 1 || FT->getParamType(0) != B.getInt8PtrTy() || + !FT->getReturnType()->isIntegerTy()) + return nullptr; + + Value *Src = CI->getArgOperand(0); + + // Constant folding: strlen("xyz") -> 3 + if (uint64_t Len = GetStringLength(Src)) + return ConstantInt::get(CI->getType(), Len - 1); + + // strlen(x?"foo":"bars") --> x ? 3 : 4 + if (SelectInst *SI = dyn_cast(Src)) { + uint64_t LenTrue = GetStringLength(SI->getTrueValue()); + uint64_t LenFalse = GetStringLength(SI->getFalseValue()); + if (LenTrue && LenFalse) { + Function *Caller = CI->getParent()->getParent(); + emitOptimizationRemark(CI->getContext(), "simplify-libcalls", *Caller, + SI->getDebugLoc(), + "folded strlen(select) to select of constants"); + return B.CreateSelect(SI->getCondition(), + ConstantInt::get(CI->getType(), LenTrue - 1), + ConstantInt::get(CI->getType(), LenFalse - 1)); + } } -}; -struct StrCSpnOpt : public LibCallOptimization { - Value *callOptimizer(Function *Callee, CallInst *CI, - IRBuilder<> &B) override { - FunctionType *FT = Callee->getFunctionType(); - if (FT->getNumParams() != 2 || - FT->getParamType(0) != B.getInt8PtrTy() || - FT->getParamType(1) != FT->getParamType(0) || - !FT->getReturnType()->isIntegerTy()) - return nullptr; - - StringRef S1, S2; - bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); - bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); + // strlen(x) != 0 --> *x != 0 + // strlen(x) == 0 --> *x == 0 + if (isOnlyUsedInZeroEqualityComparison(CI)) + return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType()); + + return nullptr; +} - // strcspn("", s) -> 0 - if (HasS1 && S1.empty()) +Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) { + Function *Callee = CI->getCalledFunction(); + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() || + FT->getParamType(1) != FT->getParamType(0) || + FT->getReturnType() != FT->getParamType(0)) + return nullptr; + + StringRef S1, S2; + bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); + bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); + + // strpbrk(s, "") -> NULL + // strpbrk("", s) -> NULL + if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) + return Constant::getNullValue(CI->getType()); + + // Constant folding. + if (HasS1 && HasS2) { + size_t I = S1.find_first_of(S2); + if (I == StringRef::npos) // No match. return Constant::getNullValue(CI->getType()); - // Constant folding. - if (HasS1 && HasS2) { - size_t Pos = S1.find_first_of(S2); - if (Pos == StringRef::npos) Pos = S1.size(); - return ConstantInt::get(CI->getType(), Pos); - } + return B.CreateGEP(CI->getArgOperand(0), B.getInt64(I), "strpbrk"); + } - // strcspn(s, "") -> strlen(s) - if (DL && HasS2 && S2.empty()) - return EmitStrLen(CI->getArgOperand(0), B, DL, TLI); + // strpbrk(s, "a") -> strchr(s, 'a') + if (DL && HasS2 && S2.size() == 1) + return EmitStrChr(CI->getArgOperand(0), S2[0], B, DL, TLI); + return nullptr; +} + +Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) { + Function *Callee = CI->getCalledFunction(); + FunctionType *FT = Callee->getFunctionType(); + if ((FT->getNumParams() != 2 && FT->getNumParams() != 3) || + !FT->getParamType(0)->isPointerTy() || + !FT->getParamType(1)->isPointerTy()) return nullptr; + + Value *EndPtr = CI->getArgOperand(1); + if (isa(EndPtr)) { + // With a null EndPtr, this function won't capture the main argument. + // It would be readonly too, except that it still may write to errno. + CI->addAttribute(1, Attribute::NoCapture); } -}; -struct StrStrOpt : public LibCallOptimization { - Value *callOptimizer(Function *Callee, CallInst *CI, - IRBuilder<> &B) override { - FunctionType *FT = Callee->getFunctionType(); - if (FT->getNumParams() != 2 || - !FT->getParamType(0)->isPointerTy() || - !FT->getParamType(1)->isPointerTy() || - !FT->getReturnType()->isPointerTy()) - return nullptr; + return nullptr; +} - // fold strstr(x, x) -> x. - if (CI->getArgOperand(0) == CI->getArgOperand(1)) - return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); +Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) { + Function *Callee = CI->getCalledFunction(); + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() || + FT->getParamType(1) != FT->getParamType(0) || + !FT->getReturnType()->isIntegerTy()) + return nullptr; + + StringRef S1, S2; + bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); + bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); + + // strspn(s, "") -> 0 + // strspn("", s) -> 0 + if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) + return Constant::getNullValue(CI->getType()); + + // Constant folding. + if (HasS1 && HasS2) { + size_t Pos = S1.find_first_not_of(S2); + if (Pos == StringRef::npos) + Pos = S1.size(); + return ConstantInt::get(CI->getType(), Pos); + } - // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 - if (DL && isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { - Value *StrLen = EmitStrLen(CI->getArgOperand(1), B, DL, TLI); - if (!StrLen) - return nullptr; - Value *StrNCmp = EmitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), - StrLen, B, DL, TLI); - if (!StrNCmp) - return nullptr; - for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) { - ICmpInst *Old = cast(*UI++); - Value *Cmp = B.CreateICmp(Old->getPredicate(), StrNCmp, - ConstantInt::getNullValue(StrNCmp->getType()), - "cmp"); - LCS->replaceAllUsesWith(Old, Cmp); - } - return CI; - } + return nullptr; +} - // See if either input string is a constant string. - StringRef SearchStr, ToFindStr; - bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); - bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); - - // fold strstr(x, "") -> x. - if (HasStr2 && ToFindStr.empty()) - return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); - - // If both strings are known, constant fold it. - if (HasStr1 && HasStr2) { - size_t Offset = SearchStr.find(ToFindStr); - - if (Offset == StringRef::npos) // strstr("foo", "bar") -> null - return Constant::getNullValue(CI->getType()); - - // strstr("abcd", "bc") -> gep((char*)"abcd", 1) - Value *Result = CastToCStr(CI->getArgOperand(0), B); - Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr"); - return B.CreateBitCast(Result, CI->getType()); - } +Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) { + Function *Callee = CI->getCalledFunction(); + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() || + FT->getParamType(1) != FT->getParamType(0) || + !FT->getReturnType()->isIntegerTy()) + return nullptr; + + StringRef S1, S2; + bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); + bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); + + // strcspn("", s) -> 0 + if (HasS1 && S1.empty()) + return Constant::getNullValue(CI->getType()); + + // Constant folding. + if (HasS1 && HasS2) { + size_t Pos = S1.find_first_of(S2); + if (Pos == StringRef::npos) + Pos = S1.size(); + return ConstantInt::get(CI->getType(), Pos); + } + + // strcspn(s, "") -> strlen(s) + if (DL && HasS2 && S2.empty()) + return EmitStrLen(CI->getArgOperand(0), B, DL, TLI); - // fold strstr(x, "y") -> strchr(x, 'y'). - if (HasStr2 && ToFindStr.size() == 1) { - Value *StrChr= EmitStrChr(CI->getArgOperand(0), ToFindStr[0], B, DL, TLI); - return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr; - } + return nullptr; +} + +Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) { + Function *Callee = CI->getCalledFunction(); + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() || + !FT->getParamType(1)->isPointerTy() || + !FT->getReturnType()->isPointerTy()) return nullptr; - } -}; -struct MemCmpOpt : public LibCallOptimization { - Value *callOptimizer(Function *Callee, CallInst *CI, - IRBuilder<> &B) override { - FunctionType *FT = Callee->getFunctionType(); - if (FT->getNumParams() != 3 || !FT->getParamType(0)->isPointerTy() || - !FT->getParamType(1)->isPointerTy() || - !FT->getReturnType()->isIntegerTy(32)) + // fold strstr(x, x) -> x. + if (CI->getArgOperand(0) == CI->getArgOperand(1)) + return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); + + // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 + if (DL && isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { + Value *StrLen = EmitStrLen(CI->getArgOperand(1), B, DL, TLI); + if (!StrLen) return nullptr; + Value *StrNCmp = EmitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), + StrLen, B, DL, TLI); + if (!StrNCmp) + return nullptr; + for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) { + ICmpInst *Old = cast(*UI++); + Value *Cmp = + B.CreateICmp(Old->getPredicate(), StrNCmp, + ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); + replaceAllUsesWith(Old, Cmp); + } + return CI; + } - Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); + // See if either input string is a constant string. + StringRef SearchStr, ToFindStr; + bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); + bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); - if (LHS == RHS) // memcmp(s,s,x) -> 0 - return Constant::getNullValue(CI->getType()); + // fold strstr(x, "") -> x. + if (HasStr2 && ToFindStr.empty()) + return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); - // Make sure we have a constant length. - ConstantInt *LenC = dyn_cast(CI->getArgOperand(2)); - if (!LenC) return nullptr; - uint64_t Len = LenC->getZExtValue(); + // If both strings are known, constant fold it. + if (HasStr1 && HasStr2) { + size_t Offset = SearchStr.find(ToFindStr); - if (Len == 0) // memcmp(s1,s2,0) -> 0 + if (Offset == StringRef::npos) // strstr("foo", "bar") -> null return Constant::getNullValue(CI->getType()); - // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS - if (Len == 1) { - Value *LHSV = B.CreateZExt(B.CreateLoad(CastToCStr(LHS, B), "lhsc"), - CI->getType(), "lhsv"); - Value *RHSV = B.CreateZExt(B.CreateLoad(CastToCStr(RHS, B), "rhsc"), - CI->getType(), "rhsv"); - return B.CreateSub(LHSV, RHSV, "chardiff"); - } + // strstr("abcd", "bc") -> gep((char*)"abcd", 1) + Value *Result = CastToCStr(CI->getArgOperand(0), B); + Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr"); + return B.CreateBitCast(Result, CI->getType()); + } - // Constant folding: memcmp(x, y, l) -> cnst (all arguments are constant) - StringRef LHSStr, RHSStr; - if (getConstantStringInfo(LHS, LHSStr) && - getConstantStringInfo(RHS, RHSStr)) { - // Make sure we're not reading out-of-bounds memory. - if (Len > LHSStr.size() || Len > RHSStr.size()) - return nullptr; - // Fold the memcmp and normalize the result. This way we get consistent - // results across multiple platforms. - uint64_t Ret = 0; - int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len); - if (Cmp < 0) - Ret = -1; - else if (Cmp > 0) - Ret = 1; - return ConstantInt::get(CI->getType(), Ret); - } + // fold strstr(x, "y") -> strchr(x, 'y'). + if (HasStr2 && ToFindStr.size() == 1) { + Value *StrChr = EmitStrChr(CI->getArgOperand(0), ToFindStr[0], B, DL, TLI); + return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr; + } + return nullptr; +} - return nullptr; +Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) { + Function *Callee = CI->getCalledFunction(); + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 3 || !FT->getParamType(0)->isPointerTy() || + !FT->getParamType(1)->isPointerTy() || + !FT->getReturnType()->isIntegerTy(32)) + return nullptr; + + Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); + + if (LHS == RHS) // memcmp(s,s,x) -> 0 + return Constant::getNullValue(CI->getType()); + + // Make sure we have a constant length. + ConstantInt *LenC = dyn_cast(CI->getArgOperand(2)); + if (!LenC) + return nullptr; + uint64_t Len = LenC->getZExtValue(); + + if (Len == 0) // memcmp(s1,s2,0) -> 0 + return Constant::getNullValue(CI->getType()); + + // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS + if (Len == 1) { + Value *LHSV = B.CreateZExt(B.CreateLoad(CastToCStr(LHS, B), "lhsc"), + CI->getType(), "lhsv"); + Value *RHSV = B.CreateZExt(B.CreateLoad(CastToCStr(RHS, B), "rhsc"), + CI->getType(), "rhsv"); + return B.CreateSub(LHSV, RHSV, "chardiff"); + } + + // Constant folding: memcmp(x, y, l) -> cnst (all arguments are constant) + StringRef LHSStr, RHSStr; + if (getConstantStringInfo(LHS, LHSStr) && + getConstantStringInfo(RHS, RHSStr)) { + // Make sure we're not reading out-of-bounds memory. + if (Len > LHSStr.size() || Len > RHSStr.size()) + return nullptr; + // Fold the memcmp and normalize the result. This way we get consistent + // results across multiple platforms. + uint64_t Ret = 0; + int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len); + if (Cmp < 0) + Ret = -1; + else if (Cmp > 0) + Ret = 1; + return ConstantInt::get(CI->getType(), Ret); } -}; -struct MemCpyOpt : public LibCallOptimization { - Value *callOptimizer(Function *Callee, CallInst *CI, - IRBuilder<> &B) override { - // These optimizations require DataLayout. - if (!DL) return nullptr; + return nullptr; +} - FunctionType *FT = Callee->getFunctionType(); - if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) || - !FT->getParamType(0)->isPointerTy() || - !FT->getParamType(1)->isPointerTy() || - FT->getParamType(2) != DL->getIntPtrType(*Context)) - return nullptr; +Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) { + Function *Callee = CI->getCalledFunction(); + // These optimizations require DataLayout. + if (!DL) + return nullptr; - // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1) - B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), - CI->getArgOperand(2), 1); - return CI->getArgOperand(0); - } -}; + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) || + !FT->getParamType(0)->isPointerTy() || + !FT->getParamType(1)->isPointerTy() || + FT->getParamType(2) != DL->getIntPtrType(CI->getContext())) + return nullptr; -struct MemMoveOpt : public LibCallOptimization { - Value *callOptimizer(Function *Callee, CallInst *CI, - IRBuilder<> &B) override { - // These optimizations require DataLayout. - if (!DL) return nullptr; + // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1) + B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), + CI->getArgOperand(2), 1); + return CI->getArgOperand(0); +} - FunctionType *FT = Callee->getFunctionType(); - if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) || - !FT->getParamType(0)->isPointerTy() || - !FT->getParamType(1)->isPointerTy() || - FT->getParamType(2) != DL->getIntPtrType(*Context)) - return nullptr; +Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) { + Function *Callee = CI->getCalledFunction(); + // These optimizations require DataLayout. + if (!DL) + return nullptr; - // memmove(x, y, n) -> llvm.memmove(x, y, n, 1) - B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1), - CI->getArgOperand(2), 1); - return CI->getArgOperand(0); - } -}; + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) || + !FT->getParamType(0)->isPointerTy() || + !FT->getParamType(1)->isPointerTy() || + FT->getParamType(2) != DL->getIntPtrType(CI->getContext())) + return nullptr; -struct MemSetOpt : public LibCallOptimization { - Value *callOptimizer(Function *Callee, CallInst *CI, - IRBuilder<> &B) override { - // These optimizations require DataLayout. - if (!DL) return nullptr; + // memmove(x, y, n) -> llvm.memmove(x, y, n, 1) + B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1), + CI->getArgOperand(2), 1); + return CI->getArgOperand(0); +} - FunctionType *FT = Callee->getFunctionType(); - if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) || - !FT->getParamType(0)->isPointerTy() || - !FT->getParamType(1)->isIntegerTy() || - FT->getParamType(2) != DL->getIntPtrType(FT->getParamType(0))) - return nullptr; +Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) { + Function *Callee = CI->getCalledFunction(); + // These optimizations require DataLayout. + if (!DL) + return nullptr; - // memset(p, v, n) -> llvm.memset(p, v, n, 1) - Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); - B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); - return CI->getArgOperand(0); - } -}; + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) || + !FT->getParamType(0)->isPointerTy() || + !FT->getParamType(1)->isIntegerTy() || + FT->getParamType(2) != DL->getIntPtrType(FT->getParamType(0))) + return nullptr; + + // memset(p, v, n) -> llvm.memset(p, v, n, 1) + Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); + B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); + return CI->getArgOperand(0); +} //===----------------------------------------------------------------------===// // Math Library Optimizations @@ -1111,935 +1025,847 @@ //===----------------------------------------------------------------------===// // Double -> Float Shrinking Optimizations for Unary Functions like 'floor' -struct UnaryDoubleFPOpt : public LibCallOptimization { - bool CheckRetType; - UnaryDoubleFPOpt(bool CheckReturnType): CheckRetType(CheckReturnType) {} - Value *callOptimizer(Function *Callee, CallInst *CI, - IRBuilder<> &B) override { - FunctionType *FT = Callee->getFunctionType(); - if (FT->getNumParams() != 1 || !FT->getReturnType()->isDoubleTy() || - !FT->getParamType(0)->isDoubleTy()) - return nullptr; - - if (CheckRetType) { - // Check if all the uses for function like 'sin' are converted to float. - for (User *U : CI->users()) { - FPTruncInst *Cast = dyn_cast(U); - if (!Cast || !Cast->getType()->isFloatTy()) - return nullptr; - } +Value *LibCallSimplifier::optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B, + bool CheckRetType) { + Function *Callee = CI->getCalledFunction(); + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 1 || !FT->getReturnType()->isDoubleTy() || + !FT->getParamType(0)->isDoubleTy()) + return nullptr; + + if (CheckRetType) { + // Check if all the uses for function like 'sin' are converted to float. + for (User *U : CI->users()) { + FPTruncInst *Cast = dyn_cast(U); + if (!Cast || !Cast->getType()->isFloatTy()) + return nullptr; } + } - // If this is something like 'floor((double)floatval)', convert to floorf. - FPExtInst *Cast = dyn_cast(CI->getArgOperand(0)); - if (!Cast || !Cast->getOperand(0)->getType()->isFloatTy()) - return nullptr; + // If this is something like 'floor((double)floatval)', convert to floorf. + FPExtInst *Cast = dyn_cast(CI->getArgOperand(0)); + if (!Cast || !Cast->getOperand(0)->getType()->isFloatTy()) + return nullptr; - // floor((double)floatval) -> (double)floorf(floatval) - Value *V = Cast->getOperand(0); - V = EmitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes()); - return B.CreateFPExt(V, B.getDoubleTy()); - } -}; + // floor((double)floatval) -> (double)floorf(floatval) + Value *V = Cast->getOperand(0); + V = EmitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes()); + return B.CreateFPExt(V, B.getDoubleTy()); +} // Double -> Float Shrinking Optimizations for Binary Functions like 'fmin/fmax' -struct BinaryDoubleFPOpt : public LibCallOptimization { - bool CheckRetType; - BinaryDoubleFPOpt(bool CheckReturnType): CheckRetType(CheckReturnType) {} - Value *callOptimizer(Function *Callee, CallInst *CI, - IRBuilder<> &B) override { - FunctionType *FT = Callee->getFunctionType(); - // Just make sure this has 2 arguments of the same FP type, which match the - // result type. - if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) || - FT->getParamType(0) != FT->getParamType(1) || - !FT->getParamType(0)->isFloatingPointTy()) - return nullptr; - - if (CheckRetType) { - // Check if all the uses for function like 'fmin/fmax' are converted to - // float. - for (User *U : CI->users()) { - FPTruncInst *Cast = dyn_cast(U); - if (!Cast || !Cast->getType()->isFloatTy()) - return nullptr; - } - } +Value *LibCallSimplifier::optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B) { + Function *Callee = CI->getCalledFunction(); + FunctionType *FT = Callee->getFunctionType(); + // Just make sure this has 2 arguments of the same FP type, which match the + // result type. + if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) || + FT->getParamType(0) != FT->getParamType(1) || + !FT->getParamType(0)->isFloatingPointTy()) + return nullptr; + + // If this is something like 'fmin((double)floatval1, (double)floatval2)', + // we convert it to fminf. + FPExtInst *Cast1 = dyn_cast(CI->getArgOperand(0)); + FPExtInst *Cast2 = dyn_cast(CI->getArgOperand(1)); + if (!Cast1 || !Cast1->getOperand(0)->getType()->isFloatTy() || !Cast2 || + !Cast2->getOperand(0)->getType()->isFloatTy()) + return nullptr; + + // fmin((double)floatval1, (double)floatval2) + // -> (double)fmin(floatval1, floatval2) + Value *V = nullptr; + Value *V1 = Cast1->getOperand(0); + Value *V2 = Cast2->getOperand(0); + V = EmitBinaryFloatFnCall(V1, V2, Callee->getName(), B, + Callee->getAttributes()); + return B.CreateFPExt(V, B.getDoubleTy()); +} - // If this is something like 'fmin((double)floatval1, (double)floatval2)', - // we convert it to fminf. - FPExtInst *Cast1 = dyn_cast(CI->getArgOperand(0)); - FPExtInst *Cast2 = dyn_cast(CI->getArgOperand(1)); - if (!Cast1 || !Cast1->getOperand(0)->getType()->isFloatTy() || - !Cast2 || !Cast2->getOperand(0)->getType()->isFloatTy()) - return nullptr; - - // fmin((double)floatval1, (double)floatval2) - // -> (double)fmin(floatval1, floatval2) - Value *V = nullptr; - Value *V1 = Cast1->getOperand(0); - Value *V2 = Cast2->getOperand(0); - V = EmitBinaryFloatFnCall(V1, V2, Callee->getName(), B, - Callee->getAttributes()); - return B.CreateFPExt(V, B.getDoubleTy()); - } -}; - -struct UnsafeFPLibCallOptimization : public LibCallOptimization { - bool UnsafeFPShrink; - UnsafeFPLibCallOptimization(bool UnsafeFPShrink) { - this->UnsafeFPShrink = UnsafeFPShrink; - } -}; - -struct CosOpt : public UnsafeFPLibCallOptimization { - CosOpt(bool UnsafeFPShrink) : UnsafeFPLibCallOptimization(UnsafeFPShrink) {} - Value *callOptimizer(Function *Callee, CallInst *CI, - IRBuilder<> &B) override { - Value *Ret = nullptr; - if (UnsafeFPShrink && Callee->getName() == "cos" && - TLI->has(LibFunc::cosf)) { - UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true); - Ret = UnsafeUnaryDoubleFP.callOptimizer(Callee, CI, B); - } +Value *LibCallSimplifier::optimizeCos(CallInst *CI, IRBuilder<> &B) { + Function *Callee = CI->getCalledFunction(); + Value *Ret = nullptr; + if (UnsafeFPShrink && Callee->getName() == "cos" && TLI->has(LibFunc::cosf)) { + Ret = optimizeUnaryDoubleFP(CI, B, true); + } - FunctionType *FT = Callee->getFunctionType(); - // Just make sure this has 1 argument of FP type, which matches the - // result type. - if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) || - !FT->getParamType(0)->isFloatingPointTy()) - return Ret; - - // cos(-x) -> cos(x) - Value *Op1 = CI->getArgOperand(0); - if (BinaryOperator::isFNeg(Op1)) { - BinaryOperator *BinExpr = cast(Op1); - return B.CreateCall(Callee, BinExpr->getOperand(1), "cos"); - } + FunctionType *FT = Callee->getFunctionType(); + // Just make sure this has 1 argument of FP type, which matches the + // result type. + if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) || + !FT->getParamType(0)->isFloatingPointTy()) return Ret; + + // cos(-x) -> cos(x) + Value *Op1 = CI->getArgOperand(0); + if (BinaryOperator::isFNeg(Op1)) { + BinaryOperator *BinExpr = cast(Op1); + return B.CreateCall(Callee, BinExpr->getOperand(1), "cos"); } -}; + return Ret; +} -struct PowOpt : public UnsafeFPLibCallOptimization { - PowOpt(bool UnsafeFPShrink) : UnsafeFPLibCallOptimization(UnsafeFPShrink) {} - Value *callOptimizer(Function *Callee, CallInst *CI, - IRBuilder<> &B) override { - Value *Ret = nullptr; - if (UnsafeFPShrink && Callee->getName() == "pow" && - TLI->has(LibFunc::powf)) { - UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true); - Ret = UnsafeUnaryDoubleFP.callOptimizer(Callee, CI, B); - } +Value *LibCallSimplifier::optimizePow(CallInst *CI, IRBuilder<> &B) { + Function *Callee = CI->getCalledFunction(); - FunctionType *FT = Callee->getFunctionType(); - // Just make sure this has 2 arguments of the same FP type, which match the - // result type. - if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) || - FT->getParamType(0) != FT->getParamType(1) || - !FT->getParamType(0)->isFloatingPointTy()) - return Ret; - - Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1); - if (ConstantFP *Op1C = dyn_cast(Op1)) { - // pow(1.0, x) -> 1.0 - if (Op1C->isExactlyValue(1.0)) - return Op1C; - // pow(2.0, x) -> exp2(x) - if (Op1C->isExactlyValue(2.0) && - hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp2, LibFunc::exp2f, - LibFunc::exp2l)) - return EmitUnaryFloatFnCall(Op2, "exp2", B, Callee->getAttributes()); - // pow(10.0, x) -> exp10(x) - if (Op1C->isExactlyValue(10.0) && - hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp10, LibFunc::exp10f, - LibFunc::exp10l)) - return EmitUnaryFloatFnCall(Op2, TLI->getName(LibFunc::exp10), B, - Callee->getAttributes()); - } + Value *Ret = nullptr; + if (UnsafeFPShrink && Callee->getName() == "pow" && TLI->has(LibFunc::powf)) { + Ret = optimizeUnaryDoubleFP(CI, B, true); + } - ConstantFP *Op2C = dyn_cast(Op2); - if (!Op2C) return Ret; + FunctionType *FT = Callee->getFunctionType(); + // Just make sure this has 2 arguments of the same FP type, which match the + // result type. + if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) || + FT->getParamType(0) != FT->getParamType(1) || + !FT->getParamType(0)->isFloatingPointTy()) + return Ret; - if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0 - return ConstantFP::get(CI->getType(), 1.0); + Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1); + if (ConstantFP *Op1C = dyn_cast(Op1)) { + // pow(1.0, x) -> 1.0 + if (Op1C->isExactlyValue(1.0)) + return Op1C; + // pow(2.0, x) -> exp2(x) + if (Op1C->isExactlyValue(2.0) && + hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp2, LibFunc::exp2f, + LibFunc::exp2l)) + return EmitUnaryFloatFnCall(Op2, "exp2", B, Callee->getAttributes()); + // pow(10.0, x) -> exp10(x) + if (Op1C->isExactlyValue(10.0) && + hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp10, LibFunc::exp10f, + LibFunc::exp10l)) + return EmitUnaryFloatFnCall(Op2, TLI->getName(LibFunc::exp10), B, + Callee->getAttributes()); + } - if (Op2C->isExactlyValue(0.5) && - hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::sqrt, LibFunc::sqrtf, - LibFunc::sqrtl) && - hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::fabs, LibFunc::fabsf, - LibFunc::fabsl)) { - // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))). - // This is faster than calling pow, and still handles negative zero - // and negative infinity correctly. - // TODO: In fast-math mode, this could be just sqrt(x). - // TODO: In finite-only mode, this could be just fabs(sqrt(x)). - Value *Inf = ConstantFP::getInfinity(CI->getType()); - Value *NegInf = ConstantFP::getInfinity(CI->getType(), true); - Value *Sqrt = EmitUnaryFloatFnCall(Op1, "sqrt", B, - Callee->getAttributes()); - Value *FAbs = EmitUnaryFloatFnCall(Sqrt, "fabs", B, - Callee->getAttributes()); - Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf); - Value *Sel = B.CreateSelect(FCmp, Inf, FAbs); - return Sel; - } + ConstantFP *Op2C = dyn_cast(Op2); + if (!Op2C) + return Ret; - if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x - return Op1; - if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x - return B.CreateFMul(Op1, Op1, "pow2"); - if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x - return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), - Op1, "powrecip"); - return nullptr; - } -}; - -struct Exp2Opt : public UnsafeFPLibCallOptimization { - Exp2Opt(bool UnsafeFPShrink) : UnsafeFPLibCallOptimization(UnsafeFPShrink) {} - Value *callOptimizer(Function *Callee, CallInst *CI, - IRBuilder<> &B) override { - Value *Ret = nullptr; - if (UnsafeFPShrink && Callee->getName() == "exp2" && - TLI->has(LibFunc::exp2f)) { - UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true); - Ret = UnsafeUnaryDoubleFP.callOptimizer(Callee, CI, B); - } + if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0 + return ConstantFP::get(CI->getType(), 1.0); - FunctionType *FT = Callee->getFunctionType(); - // Just make sure this has 1 argument of FP type, which matches the - // result type. - if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) || - !FT->getParamType(0)->isFloatingPointTy()) - return Ret; - - Value *Op = CI->getArgOperand(0); - // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32 - // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32 - LibFunc::Func LdExp = LibFunc::ldexpl; - if (Op->getType()->isFloatTy()) - LdExp = LibFunc::ldexpf; - else if (Op->getType()->isDoubleTy()) - LdExp = LibFunc::ldexp; - - if (TLI->has(LdExp)) { - Value *LdExpArg = nullptr; - if (SIToFPInst *OpC = dyn_cast(Op)) { - if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32) - LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty()); - } else if (UIToFPInst *OpC = dyn_cast(Op)) { - if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32) - LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty()); - } - - if (LdExpArg) { - Constant *One = ConstantFP::get(*Context, APFloat(1.0f)); - if (!Op->getType()->isFloatTy()) - One = ConstantExpr::getFPExtend(One, Op->getType()); - - Module *M = Caller->getParent(); - Value *Callee = - M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(), - Op->getType(), B.getInt32Ty(), NULL); - CallInst *CI = B.CreateCall2(Callee, One, LdExpArg); - if (const Function *F = dyn_cast(Callee->stripPointerCasts())) - CI->setCallingConv(F->getCallingConv()); + if (Op2C->isExactlyValue(0.5) && + hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::sqrt, LibFunc::sqrtf, + LibFunc::sqrtl) && + hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::fabs, LibFunc::fabsf, + LibFunc::fabsl)) { + // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))). + // This is faster than calling pow, and still handles negative zero + // and negative infinity correctly. + // TODO: In fast-math mode, this could be just sqrt(x). + // TODO: In finite-only mode, this could be just fabs(sqrt(x)). + Value *Inf = ConstantFP::getInfinity(CI->getType()); + Value *NegInf = ConstantFP::getInfinity(CI->getType(), true); + Value *Sqrt = EmitUnaryFloatFnCall(Op1, "sqrt", B, Callee->getAttributes()); + Value *FAbs = + EmitUnaryFloatFnCall(Sqrt, "fabs", B, Callee->getAttributes()); + Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf); + Value *Sel = B.CreateSelect(FCmp, Inf, FAbs); + return Sel; + } + + if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x + return Op1; + if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x + return B.CreateFMul(Op1, Op1, "pow2"); + if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x + return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Op1, "powrecip"); + return nullptr; +} - return CI; - } - } - return Ret; +Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) { + Function *Callee = CI->getCalledFunction(); + Function *Caller = CI->getParent()->getParent(); + + Value *Ret = nullptr; + if (UnsafeFPShrink && Callee->getName() == "exp2" && + TLI->has(LibFunc::exp2f)) { + Ret = optimizeUnaryDoubleFP(CI, B, true); } -}; -struct SinCosPiOpt : public LibCallOptimization { - SinCosPiOpt() {} + FunctionType *FT = Callee->getFunctionType(); + // Just make sure this has 1 argument of FP type, which matches the + // result type. + if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) || + !FT->getParamType(0)->isFloatingPointTy()) + return Ret; - Value *callOptimizer(Function *Callee, CallInst *CI, - IRBuilder<> &B) override { - // Make sure the prototype is as expected, otherwise the rest of the - // function is probably invalid and likely to abort. - if (!isTrigLibCall(CI)) - return nullptr; - - Value *Arg = CI->getArgOperand(0); - SmallVector SinCalls; - SmallVector CosCalls; - SmallVector SinCosCalls; - - bool IsFloat = Arg->getType()->isFloatTy(); - - // Look for all compatible sinpi, cospi and sincospi calls with the same - // argument. If there are enough (in some sense) we can make the - // substitution. - for (User *U : Arg->users()) - classifyArgUse(U, CI->getParent(), IsFloat, SinCalls, CosCalls, - SinCosCalls); - - // It's only worthwhile if both sinpi and cospi are actually used. - if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty())) - return nullptr; - - Value *Sin, *Cos, *SinCos; - insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, - SinCos); - - replaceTrigInsts(SinCalls, Sin); - replaceTrigInsts(CosCalls, Cos); - replaceTrigInsts(SinCosCalls, SinCos); - - return nullptr; - } - - bool isTrigLibCall(CallInst *CI) { - Function *Callee = CI->getCalledFunction(); - FunctionType *FT = Callee->getFunctionType(); - - // We can only hope to do anything useful if we can ignore things like errno - // and floating-point exceptions. - bool AttributesSafe = CI->hasFnAttr(Attribute::NoUnwind) && - CI->hasFnAttr(Attribute::ReadNone); - - // Other than that we need float(float) or double(double) - return AttributesSafe && FT->getNumParams() == 1 && - FT->getReturnType() == FT->getParamType(0) && - (FT->getParamType(0)->isFloatTy() || - FT->getParamType(0)->isDoubleTy()); - } - - void classifyArgUse(Value *Val, BasicBlock *BB, bool IsFloat, - SmallVectorImpl &SinCalls, - SmallVectorImpl &CosCalls, - SmallVectorImpl &SinCosCalls) { - CallInst *CI = dyn_cast(Val); - - if (!CI) - return; - - Function *Callee = CI->getCalledFunction(); - StringRef FuncName = Callee->getName(); - LibFunc::Func Func; - if (!TLI->getLibFunc(FuncName, Func) || !TLI->has(Func) || - !isTrigLibCall(CI)) - return; - - if (IsFloat) { - if (Func == LibFunc::sinpif) - SinCalls.push_back(CI); - else if (Func == LibFunc::cospif) - CosCalls.push_back(CI); - else if (Func == LibFunc::sincospif_stret) - SinCosCalls.push_back(CI); - } else { - if (Func == LibFunc::sinpi) - SinCalls.push_back(CI); - else if (Func == LibFunc::cospi) - CosCalls.push_back(CI); - else if (Func == LibFunc::sincospi_stret) - SinCosCalls.push_back(CI); - } - } + Value *Op = CI->getArgOperand(0); + // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32 + // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32 + LibFunc::Func LdExp = LibFunc::ldexpl; + if (Op->getType()->isFloatTy()) + LdExp = LibFunc::ldexpf; + else if (Op->getType()->isDoubleTy()) + LdExp = LibFunc::ldexp; + + if (TLI->has(LdExp)) { + Value *LdExpArg = nullptr; + if (SIToFPInst *OpC = dyn_cast(Op)) { + if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32) + LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty()); + } else if (UIToFPInst *OpC = dyn_cast(Op)) { + if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32) + LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty()); + } + + if (LdExpArg) { + Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f)); + if (!Op->getType()->isFloatTy()) + One = ConstantExpr::getFPExtend(One, Op->getType()); + + Module *M = Caller->getParent(); + Value *Callee = + M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(), + Op->getType(), B.getInt32Ty(), NULL); + CallInst *CI = B.CreateCall2(Callee, One, LdExpArg); + if (const Function *F = dyn_cast(Callee->stripPointerCasts())) + CI->setCallingConv(F->getCallingConv()); - void replaceTrigInsts(SmallVectorImpl &Calls, Value *Res) { - for (SmallVectorImpl::iterator I = Calls.begin(), - E = Calls.end(); - I != E; ++I) { - LCS->replaceAllUsesWith(*I, Res); + return CI; } } + return Ret; +} - void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg, - bool UseFloat, Value *&Sin, Value *&Cos, - Value *&SinCos) { - Type *ArgTy = Arg->getType(); - Type *ResTy; - StringRef Name; - - Triple T(OrigCallee->getParent()->getTargetTriple()); - if (UseFloat) { - Name = "__sincospif_stret"; - - assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); - // x86_64 can't use {float, float} since that would be returned in both - // xmm0 and xmm1, which isn't what a real struct would do. - ResTy = T.getArch() == Triple::x86_64 - ? static_cast(VectorType::get(ArgTy, 2)) - : static_cast(StructType::get(ArgTy, ArgTy, NULL)); - } else { - Name = "__sincospi_stret"; - ResTy = StructType::get(ArgTy, ArgTy, NULL); - } +static bool isTrigLibCall(CallInst *CI); +static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg, + bool UseFloat, Value *&Sin, Value *&Cos, + Value *&SinCos); - Module *M = OrigCallee->getParent(); - Value *Callee = M->getOrInsertFunction(Name, OrigCallee->getAttributes(), - ResTy, ArgTy, NULL); - - if (Instruction *ArgInst = dyn_cast(Arg)) { - // If the argument is an instruction, it must dominate all uses so put our - // sincos call there. - BasicBlock::iterator Loc = ArgInst; - B.SetInsertPoint(ArgInst->getParent(), ++Loc); - } else { - // Otherwise (e.g. for a constant) the beginning of the function is as - // good a place as any. - BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); - B.SetInsertPoint(&EntryBB, EntryBB.begin()); - } +Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) { - SinCos = B.CreateCall(Callee, Arg, "sincospi"); + // Make sure the prototype is as expected, otherwise the rest of the + // function is probably invalid and likely to abort. + if (!isTrigLibCall(CI)) + return nullptr; - if (SinCos->getType()->isStructTy()) { - Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); - Cos = B.CreateExtractValue(SinCos, 1, "cospi"); - } else { - Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), - "sinpi"); - Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), - "cospi"); - } + Value *Arg = CI->getArgOperand(0); + SmallVector SinCalls; + SmallVector CosCalls; + SmallVector SinCosCalls; + + bool IsFloat = Arg->getType()->isFloatTy(); + + // Look for all compatible sinpi, cospi and sincospi calls with the same + // argument. If there are enough (in some sense) we can make the + // substitution. + for (User *U : Arg->users()) + classifyArgUse(U, CI->getParent(), IsFloat, SinCalls, CosCalls, + SinCosCalls); + + // It's only worthwhile if both sinpi and cospi are actually used. + if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty())) + return nullptr; + + Value *Sin, *Cos, *SinCos; + insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos); + + replaceTrigInsts(SinCalls, Sin); + replaceTrigInsts(CosCalls, Cos); + replaceTrigInsts(SinCosCalls, SinCos); + + return nullptr; +} + +static bool isTrigLibCall(CallInst *CI) { + Function *Callee = CI->getCalledFunction(); + FunctionType *FT = Callee->getFunctionType(); + + // We can only hope to do anything useful if we can ignore things like errno + // and floating-point exceptions. + bool AttributesSafe = + CI->hasFnAttr(Attribute::NoUnwind) && CI->hasFnAttr(Attribute::ReadNone); + + // Other than that we need float(float) or double(double) + return AttributesSafe && FT->getNumParams() == 1 && + FT->getReturnType() == FT->getParamType(0) && + (FT->getParamType(0)->isFloatTy() || + FT->getParamType(0)->isDoubleTy()); +} + +void +LibCallSimplifier::classifyArgUse(Value *Val, BasicBlock *BB, bool IsFloat, + SmallVectorImpl &SinCalls, + SmallVectorImpl &CosCalls, + SmallVectorImpl &SinCosCalls) { + CallInst *CI = dyn_cast(Val); + + if (!CI) + return; + + Function *Callee = CI->getCalledFunction(); + StringRef FuncName = Callee->getName(); + LibFunc::Func Func; + if (!TLI->getLibFunc(FuncName, Func) || !TLI->has(Func) || !isTrigLibCall(CI)) + return; + + if (IsFloat) { + if (Func == LibFunc::sinpif) + SinCalls.push_back(CI); + else if (Func == LibFunc::cospif) + CosCalls.push_back(CI); + else if (Func == LibFunc::sincospif_stret) + SinCosCalls.push_back(CI); + } else { + if (Func == LibFunc::sinpi) + SinCalls.push_back(CI); + else if (Func == LibFunc::cospi) + CosCalls.push_back(CI); + else if (Func == LibFunc::sincospi_stret) + SinCosCalls.push_back(CI); } +} -}; +void LibCallSimplifier::replaceTrigInsts(SmallVectorImpl &Calls, + Value *Res) { + for (SmallVectorImpl::iterator I = Calls.begin(), E = Calls.end(); + I != E; ++I) { + replaceAllUsesWith(*I, Res); + } +} + +void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg, + bool UseFloat, Value *&Sin, Value *&Cos, Value *&SinCos) { + Type *ArgTy = Arg->getType(); + Type *ResTy; + StringRef Name; + + Triple T(OrigCallee->getParent()->getTargetTriple()); + if (UseFloat) { + Name = "__sincospif_stret"; + + assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); + // x86_64 can't use {float, float} since that would be returned in both + // xmm0 and xmm1, which isn't what a real struct would do. + ResTy = T.getArch() == Triple::x86_64 + ? static_cast(VectorType::get(ArgTy, 2)) + : static_cast(StructType::get(ArgTy, ArgTy, NULL)); + } else { + Name = "__sincospi_stret"; + ResTy = StructType::get(ArgTy, ArgTy, NULL); + } + + Module *M = OrigCallee->getParent(); + Value *Callee = M->getOrInsertFunction(Name, OrigCallee->getAttributes(), + ResTy, ArgTy, NULL); + + if (Instruction *ArgInst = dyn_cast(Arg)) { + // If the argument is an instruction, it must dominate all uses so put our + // sincos call there. + BasicBlock::iterator Loc = ArgInst; + B.SetInsertPoint(ArgInst->getParent(), ++Loc); + } else { + // Otherwise (e.g. for a constant) the beginning of the function is as + // good a place as any. + BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); + B.SetInsertPoint(&EntryBB, EntryBB.begin()); + } + + SinCos = B.CreateCall(Callee, Arg, "sincospi"); + + if (SinCos->getType()->isStructTy()) { + Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); + Cos = B.CreateExtractValue(SinCos, 1, "cospi"); + } else { + Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), + "sinpi"); + Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), + "cospi"); + } +} //===----------------------------------------------------------------------===// // Integer Library Call Optimizations //===----------------------------------------------------------------------===// -struct FFSOpt : public LibCallOptimization { - Value *callOptimizer(Function *Callee, CallInst *CI, - IRBuilder<> &B) override { - FunctionType *FT = Callee->getFunctionType(); - // Just make sure this has 2 arguments of the same FP type, which match the - // result type. - if (FT->getNumParams() != 1 || - !FT->getReturnType()->isIntegerTy(32) || - !FT->getParamType(0)->isIntegerTy()) - return nullptr; - - Value *Op = CI->getArgOperand(0); - - // Constant fold. - if (ConstantInt *CI = dyn_cast(Op)) { - if (CI->isZero()) // ffs(0) -> 0. - return B.getInt32(0); - // ffs(c) -> cttz(c)+1 - return B.getInt32(CI->getValue().countTrailingZeros() + 1); - } +Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) { + Function *Callee = CI->getCalledFunction(); + FunctionType *FT = Callee->getFunctionType(); + // Just make sure this has 2 arguments of the same FP type, which match the + // result type. + if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy(32) || + !FT->getParamType(0)->isIntegerTy()) + return nullptr; + + Value *Op = CI->getArgOperand(0); + + // Constant fold. + if (ConstantInt *CI = dyn_cast(Op)) { + if (CI->isZero()) // ffs(0) -> 0. + return B.getInt32(0); + // ffs(c) -> cttz(c)+1 + return B.getInt32(CI->getValue().countTrailingZeros() + 1); + } + + // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 + Type *ArgType = Op->getType(); + Value *F = + Intrinsic::getDeclaration(Callee->getParent(), Intrinsic::cttz, ArgType); + Value *V = B.CreateCall2(F, Op, B.getFalse(), "cttz"); + V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); + V = B.CreateIntCast(V, B.getInt32Ty(), false); - // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 - Type *ArgType = Op->getType(); - Value *F = Intrinsic::getDeclaration(Callee->getParent(), - Intrinsic::cttz, ArgType); - Value *V = B.CreateCall2(F, Op, B.getFalse(), "cttz"); - V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); - V = B.CreateIntCast(V, B.getInt32Ty(), false); - - Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); - return B.CreateSelect(Cond, V, B.getInt32(0)); - } -}; - -struct AbsOpt : public LibCallOptimization { - bool ignoreCallingConv() override { return true; } - Value *callOptimizer(Function *Callee, CallInst *CI, - IRBuilder<> &B) override { - FunctionType *FT = Callee->getFunctionType(); - // We require integer(integer) where the types agree. - if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() || - FT->getParamType(0) != FT->getReturnType()) - return nullptr; - - // abs(x) -> x >s -1 ? x : -x - Value *Op = CI->getArgOperand(0); - Value *Pos = B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()), - "ispos"); - Value *Neg = B.CreateNeg(Op, "neg"); - return B.CreateSelect(Pos, Op, Neg); - } -}; - -struct IsDigitOpt : public LibCallOptimization { - Value *callOptimizer(Function *Callee, CallInst *CI, - IRBuilder<> &B) override { - FunctionType *FT = Callee->getFunctionType(); - // We require integer(i32) - if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() || - !FT->getParamType(0)->isIntegerTy(32)) - return nullptr; - - // isdigit(c) -> (c-'0') getArgOperand(0); - Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp"); - Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit"); - return B.CreateZExt(Op, CI->getType()); - } -}; - -struct IsAsciiOpt : public LibCallOptimization { - Value *callOptimizer(Function *Callee, CallInst *CI, - IRBuilder<> &B) override { - FunctionType *FT = Callee->getFunctionType(); - // We require integer(i32) - if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() || - !FT->getParamType(0)->isIntegerTy(32)) - return nullptr; - - // isascii(c) -> c getArgOperand(0); - Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii"); - return B.CreateZExt(Op, CI->getType()); - } -}; - -struct ToAsciiOpt : public LibCallOptimization { - Value *callOptimizer(Function *Callee, CallInst *CI, - IRBuilder<> &B) override { - FunctionType *FT = Callee->getFunctionType(); - // We require i32(i32) - if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) || - !FT->getParamType(0)->isIntegerTy(32)) - return nullptr; - - // toascii(c) -> c & 0x7f - return B.CreateAnd(CI->getArgOperand(0), - ConstantInt::get(CI->getType(),0x7F)); - } -}; + Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); + return B.CreateSelect(Cond, V, B.getInt32(0)); +} + +Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) { + Function *Callee = CI->getCalledFunction(); + FunctionType *FT = Callee->getFunctionType(); + // We require integer(integer) where the types agree. + if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() || + FT->getParamType(0) != FT->getReturnType()) + return nullptr; + + // abs(x) -> x >s -1 ? x : -x + Value *Op = CI->getArgOperand(0); + Value *Pos = + B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()), "ispos"); + Value *Neg = B.CreateNeg(Op, "neg"); + return B.CreateSelect(Pos, Op, Neg); +} + +Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) { + Function *Callee = CI->getCalledFunction(); + FunctionType *FT = Callee->getFunctionType(); + // We require integer(i32) + if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() || + !FT->getParamType(0)->isIntegerTy(32)) + return nullptr; + + // isdigit(c) -> (c-'0') getArgOperand(0); + Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp"); + Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit"); + return B.CreateZExt(Op, CI->getType()); +} + +Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) { + Function *Callee = CI->getCalledFunction(); + FunctionType *FT = Callee->getFunctionType(); + // We require integer(i32) + if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() || + !FT->getParamType(0)->isIntegerTy(32)) + return nullptr; + + // isascii(c) -> c getArgOperand(0); + Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii"); + return B.CreateZExt(Op, CI->getType()); +} + +Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) { + Function *Callee = CI->getCalledFunction(); + FunctionType *FT = Callee->getFunctionType(); + // We require i32(i32) + if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) || + !FT->getParamType(0)->isIntegerTy(32)) + return nullptr; + + // toascii(c) -> c & 0x7f + return B.CreateAnd(CI->getArgOperand(0), + ConstantInt::get(CI->getType(), 0x7F)); +} //===----------------------------------------------------------------------===// // Formatting and IO Library Call Optimizations //===----------------------------------------------------------------------===// -struct ErrorReportingOpt : public LibCallOptimization { - ErrorReportingOpt(int S = -1) : StreamArg(S) {} +static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); - Value *callOptimizer(Function *Callee, CallInst *CI, - IRBuilder<> &) override { - // Error reporting calls should be cold, mark them as such. - // This applies even to non-builtin calls: it is only a hint and applies to - // functions that the frontend might not understand as builtins. - - // This heuristic was suggested in: - // Improving Static Branch Prediction in a Compiler - // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu - // Proceedings of PACT'98, Oct. 1998, IEEE - - if (!CI->hasFnAttr(Attribute::Cold) && isReportingError(Callee, CI)) { - CI->addAttribute(AttributeSet::FunctionIndex, Attribute::Cold); - } +Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B, + int StreamArg) { + // Error reporting calls should be cold, mark them as such. + // This applies even to non-builtin calls: it is only a hint and applies to + // functions that the frontend might not understand as builtins. + + // This heuristic was suggested in: + // Improving Static Branch Prediction in a Compiler + // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu + // Proceedings of PACT'98, Oct. 1998, IEEE + Function *Callee = CI->getCalledFunction(); - return nullptr; + if (!CI->hasFnAttr(Attribute::Cold) && + isReportingError(Callee, CI, StreamArg)) { + CI->addAttribute(AttributeSet::FunctionIndex, Attribute::Cold); } -protected: - bool isReportingError(Function *Callee, CallInst *CI) { - if (!ColdErrorCalls) - return false; - - if (!Callee || !Callee->isDeclaration()) - return false; - - if (StreamArg < 0) - return true; + return nullptr; +} - // These functions might be considered cold, but only if their stream - // argument is stderr. +static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { + if (!ColdErrorCalls) + return false; - if (StreamArg >= (int) CI->getNumArgOperands()) - return false; - LoadInst *LI = dyn_cast(CI->getArgOperand(StreamArg)); - if (!LI) - return false; - GlobalVariable *GV = dyn_cast(LI->getPointerOperand()); - if (!GV || !GV->isDeclaration()) - return false; - return GV->getName() == "stderr"; - } - - int StreamArg; -}; - -struct PrintFOpt : public LibCallOptimization { - Value *optimizeFixedFormatString(Function *Callee, CallInst *CI, - IRBuilder<> &B) { - // Check for a fixed format string. - StringRef FormatStr; - if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) - return nullptr; - - // Empty format string -> noop. - if (FormatStr.empty()) // Tolerate printf's declared void. - return CI->use_empty() ? (Value*)CI : - ConstantInt::get(CI->getType(), 0); - - // Do not do any of the following transformations if the printf return value - // is used, in general the printf return value is not compatible with either - // putchar() or puts(). - if (!CI->use_empty()) - return nullptr; - - // printf("x") -> putchar('x'), even for '%'. - if (FormatStr.size() == 1) { - Value *Res = EmitPutChar(B.getInt32(FormatStr[0]), B, DL, TLI); - if (CI->use_empty() || !Res) return Res; - return B.CreateIntCast(Res, CI->getType(), true); - } + if (!Callee || !Callee->isDeclaration()) + return false; - // printf("foo\n") --> puts("foo") - if (FormatStr[FormatStr.size()-1] == '\n' && - FormatStr.find('%') == StringRef::npos) { // No format characters. - // Create a string literal with no \n on it. We expect the constant merge - // pass to be run after this pass, to merge duplicate strings. - FormatStr = FormatStr.drop_back(); - Value *GV = B.CreateGlobalString(FormatStr, "str"); - Value *NewCI = EmitPutS(GV, B, DL, TLI); - return (CI->use_empty() || !NewCI) ? - NewCI : - ConstantInt::get(CI->getType(), FormatStr.size()+1); - } + if (StreamArg < 0) + return true; - // Optimize specific format strings. - // printf("%c", chr) --> putchar(chr) - if (FormatStr == "%c" && CI->getNumArgOperands() > 1 && - CI->getArgOperand(1)->getType()->isIntegerTy()) { - Value *Res = EmitPutChar(CI->getArgOperand(1), B, DL, TLI); + // These functions might be considered cold, but only if their stream + // argument is stderr. - if (CI->use_empty() || !Res) return Res; - return B.CreateIntCast(Res, CI->getType(), true); - } + if (StreamArg >= (int)CI->getNumArgOperands()) + return false; + LoadInst *LI = dyn_cast(CI->getArgOperand(StreamArg)); + if (!LI) + return false; + GlobalVariable *GV = dyn_cast(LI->getPointerOperand()); + if (!GV || !GV->isDeclaration()) + return false; + return GV->getName() == "stderr"; +} - // printf("%s\n", str) --> puts(str) - if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 && - CI->getArgOperand(1)->getType()->isPointerTy()) { - return EmitPutS(CI->getArgOperand(1), B, DL, TLI); - } - return nullptr; +Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) { + // Check for a fixed format string. + StringRef FormatStr; + if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) + return nullptr; + + // Empty format string -> noop. + if (FormatStr.empty()) // Tolerate printf's declared void. + return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0); + + // Do not do any of the following transformations if the printf return value + // is used, in general the printf return value is not compatible with either + // putchar() or puts(). + if (!CI->use_empty()) + return nullptr; + + // printf("x") -> putchar('x'), even for '%'. + if (FormatStr.size() == 1) { + Value *Res = EmitPutChar(B.getInt32(FormatStr[0]), B, DL, TLI); + if (CI->use_empty() || !Res) + return Res; + return B.CreateIntCast(Res, CI->getType(), true); + } + + // printf("foo\n") --> puts("foo") + if (FormatStr[FormatStr.size() - 1] == '\n' && + FormatStr.find('%') == StringRef::npos) { // No format characters. + // Create a string literal with no \n on it. We expect the constant merge + // pass to be run after this pass, to merge duplicate strings. + FormatStr = FormatStr.drop_back(); + Value *GV = B.CreateGlobalString(FormatStr, "str"); + Value *NewCI = EmitPutS(GV, B, DL, TLI); + return (CI->use_empty() || !NewCI) + ? NewCI + : ConstantInt::get(CI->getType(), FormatStr.size() + 1); + } + + // Optimize specific format strings. + // printf("%c", chr) --> putchar(chr) + if (FormatStr == "%c" && CI->getNumArgOperands() > 1 && + CI->getArgOperand(1)->getType()->isIntegerTy()) { + Value *Res = EmitPutChar(CI->getArgOperand(1), B, DL, TLI); + + if (CI->use_empty() || !Res) + return Res; + return B.CreateIntCast(Res, CI->getType(), true); + } + + // printf("%s\n", str) --> puts(str) + if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 && + CI->getArgOperand(1)->getType()->isPointerTy()) { + return EmitPutS(CI->getArgOperand(1), B, DL, TLI); } + return nullptr; +} - Value *callOptimizer(Function *Callee, CallInst *CI, - IRBuilder<> &B) override { - // Require one fixed pointer argument and an integer/void result. - FunctionType *FT = Callee->getFunctionType(); - if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() || - !(FT->getReturnType()->isIntegerTy() || - FT->getReturnType()->isVoidTy())) - return nullptr; +Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) { - if (Value *V = optimizeFixedFormatString(Callee, CI, B)) { - return V; - } + Function *Callee = CI->getCalledFunction(); + // Require one fixed pointer argument and an integer/void result. + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() || + !(FT->getReturnType()->isIntegerTy() || FT->getReturnType()->isVoidTy())) + return nullptr; + + if (Value *V = optimizePrintFString(CI, B)) { + return V; + } - // printf(format, ...) -> iprintf(format, ...) if no floating point - // arguments. - if (TLI->has(LibFunc::iprintf) && !callHasFloatingPointArgument(CI)) { - Module *M = B.GetInsertBlock()->getParent()->getParent(); - Constant *IPrintFFn = + // printf(format, ...) -> iprintf(format, ...) if no floating point + // arguments. + if (TLI->has(LibFunc::iprintf) && !callHasFloatingPointArgument(CI)) { + Module *M = B.GetInsertBlock()->getParent()->getParent(); + Constant *IPrintFFn = M->getOrInsertFunction("iprintf", FT, Callee->getAttributes()); - CallInst *New = cast(CI->clone()); - New->setCalledFunction(IPrintFFn); - B.Insert(New); - return New; - } - return nullptr; + CallInst *New = cast(CI->clone()); + New->setCalledFunction(IPrintFFn); + B.Insert(New); + return New; } -}; + return nullptr; +} -struct SPrintFOpt : public LibCallOptimization { - Value *OptimizeFixedFormatString(Function *Callee, CallInst *CI, - IRBuilder<> &B) { - // Check for a fixed format string. - StringRef FormatStr; - if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) - return nullptr; - - // If we just have a format string (nothing else crazy) transform it. - if (CI->getNumArgOperands() == 2) { - // Make sure there's no % in the constant array. We could try to handle - // %% -> % in the future if we cared. - for (unsigned i = 0, e = FormatStr.size(); i != e; ++i) - if (FormatStr[i] == '%') - return nullptr; // we found a format specifier, bail out. - - // These optimizations require DataLayout. - if (!DL) return nullptr; - - // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1) - B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), - ConstantInt::get(DL->getIntPtrType(*Context), // Copy the - FormatStr.size() + 1), 1); // nul byte. - return ConstantInt::get(CI->getType(), FormatStr.size()); - } +Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) { + // Check for a fixed format string. + StringRef FormatStr; + if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) + return nullptr; - // The remaining optimizations require the format string to be "%s" or "%c" - // and have an extra operand. - if (FormatStr.size() != 2 || FormatStr[0] != '%' || - CI->getNumArgOperands() < 3) - return nullptr; - - // Decode the second character of the format string. - if (FormatStr[1] == 'c') { - // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 - if (!CI->getArgOperand(2)->getType()->isIntegerTy()) return nullptr; - Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); - Value *Ptr = CastToCStr(CI->getArgOperand(0), B); - B.CreateStore(V, Ptr); - Ptr = B.CreateGEP(Ptr, B.getInt32(1), "nul"); - B.CreateStore(B.getInt8(0), Ptr); + // If we just have a format string (nothing else crazy) transform it. + if (CI->getNumArgOperands() == 2) { + // Make sure there's no % in the constant array. We could try to handle + // %% -> % in the future if we cared. + for (unsigned i = 0, e = FormatStr.size(); i != e; ++i) + if (FormatStr[i] == '%') + return nullptr; // we found a format specifier, bail out. - return ConstantInt::get(CI->getType(), 1); - } + // These optimizations require DataLayout. + if (!DL) + return nullptr; - if (FormatStr[1] == 's') { - // These optimizations require DataLayout. - if (!DL) return nullptr; + // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1) + B.CreateMemCpy( + CI->getArgOperand(0), CI->getArgOperand(1), + ConstantInt::get(DL->getIntPtrType(CI->getContext()), + FormatStr.size() + 1), + 1); // Copy the null byte. + return ConstantInt::get(CI->getType(), FormatStr.size()); + } - // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1) - if (!CI->getArgOperand(2)->getType()->isPointerTy()) return nullptr; + // The remaining optimizations require the format string to be "%s" or "%c" + // and have an extra operand. + if (FormatStr.size() != 2 || FormatStr[0] != '%' || + CI->getNumArgOperands() < 3) + return nullptr; - Value *Len = EmitStrLen(CI->getArgOperand(2), B, DL, TLI); - if (!Len) - return nullptr; - Value *IncLen = B.CreateAdd(Len, - ConstantInt::get(Len->getType(), 1), - "leninc"); - B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen, 1); + // Decode the second character of the format string. + if (FormatStr[1] == 'c') { + // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 + if (!CI->getArgOperand(2)->getType()->isIntegerTy()) + return nullptr; + Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); + Value *Ptr = CastToCStr(CI->getArgOperand(0), B); + B.CreateStore(V, Ptr); + Ptr = B.CreateGEP(Ptr, B.getInt32(1), "nul"); + B.CreateStore(B.getInt8(0), Ptr); - // The sprintf result is the unincremented number of bytes in the string. - return B.CreateIntCast(Len, CI->getType(), false); - } - return nullptr; + return ConstantInt::get(CI->getType(), 1); } - Value *callOptimizer(Function *Callee, CallInst *CI, - IRBuilder<> &B) override { - // Require two fixed pointer arguments and an integer result. - FunctionType *FT = Callee->getFunctionType(); - if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() || - !FT->getParamType(1)->isPointerTy() || - !FT->getReturnType()->isIntegerTy()) + if (FormatStr[1] == 's') { + // These optimizations require DataLayout. + if (!DL) return nullptr; - if (Value *V = OptimizeFixedFormatString(Callee, CI, B)) { - return V; - } + // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1) + if (!CI->getArgOperand(2)->getType()->isPointerTy()) + return nullptr; - // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating - // point arguments. - if (TLI->has(LibFunc::siprintf) && !callHasFloatingPointArgument(CI)) { - Module *M = B.GetInsertBlock()->getParent()->getParent(); - Constant *SIPrintFFn = + Value *Len = EmitStrLen(CI->getArgOperand(2), B, DL, TLI); + if (!Len) + return nullptr; + Value *IncLen = + B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); + B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen, 1); + + // The sprintf result is the unincremented number of bytes in the string. + return B.CreateIntCast(Len, CI->getType(), false); + } + return nullptr; +} + +Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) { + Function *Callee = CI->getCalledFunction(); + // Require two fixed pointer arguments and an integer result. + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() || + !FT->getParamType(1)->isPointerTy() || + !FT->getReturnType()->isIntegerTy()) + return nullptr; + + if (Value *V = optimizeSPrintFString(CI, B)) { + return V; + } + + // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating + // point arguments. + if (TLI->has(LibFunc::siprintf) && !callHasFloatingPointArgument(CI)) { + Module *M = B.GetInsertBlock()->getParent()->getParent(); + Constant *SIPrintFFn = M->getOrInsertFunction("siprintf", FT, Callee->getAttributes()); - CallInst *New = cast(CI->clone()); - New->setCalledFunction(SIPrintFFn); - B.Insert(New); - return New; - } - return nullptr; + CallInst *New = cast(CI->clone()); + New->setCalledFunction(SIPrintFFn); + B.Insert(New); + return New; } -}; + return nullptr; +} -struct FPrintFOpt : public LibCallOptimization { - Value *optimizeFixedFormatString(Function *Callee, CallInst *CI, - IRBuilder<> &B) { - ErrorReportingOpt ER(/* StreamArg = */ 0); - (void) ER.callOptimizer(Callee, CI, B); - - // All the optimizations depend on the format string. - StringRef FormatStr; - if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) - return nullptr; - - // Do not do any of the following transformations if the fprintf return - // value is used, in general the fprintf return value is not compatible - // with fwrite(), fputc() or fputs(). - if (!CI->use_empty()) - return nullptr; - - // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) - if (CI->getNumArgOperands() == 2) { - for (unsigned i = 0, e = FormatStr.size(); i != e; ++i) - if (FormatStr[i] == '%') // Could handle %% -> % if we cared. - return nullptr; // We found a format specifier. - - // These optimizations require DataLayout. - if (!DL) return nullptr; - - return EmitFWrite(CI->getArgOperand(1), - ConstantInt::get(DL->getIntPtrType(*Context), - FormatStr.size()), - CI->getArgOperand(0), B, DL, TLI); - } +Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) { + optimizeErrorReporting(CI, B, 0); + + // All the optimizations depend on the format string. + StringRef FormatStr; + if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) + return nullptr; - // The remaining optimizations require the format string to be "%s" or "%c" - // and have an extra operand. - if (FormatStr.size() != 2 || FormatStr[0] != '%' || - CI->getNumArgOperands() < 3) + // Do not do any of the following transformations if the fprintf return + // value is used, in general the fprintf return value is not compatible + // with fwrite(), fputc() or fputs(). + if (!CI->use_empty()) + return nullptr; + + // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) + if (CI->getNumArgOperands() == 2) { + for (unsigned i = 0, e = FormatStr.size(); i != e; ++i) + if (FormatStr[i] == '%') // Could handle %% -> % if we cared. + return nullptr; // We found a format specifier. + + // These optimizations require DataLayout. + if (!DL) return nullptr; - // Decode the second character of the format string. - if (FormatStr[1] == 'c') { - // fprintf(F, "%c", chr) --> fputc(chr, F) - if (!CI->getArgOperand(2)->getType()->isIntegerTy()) return nullptr; - return EmitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, DL, TLI); - } + return EmitFWrite( + CI->getArgOperand(1), + ConstantInt::get(DL->getIntPtrType(CI->getContext()), FormatStr.size()), + CI->getArgOperand(0), B, DL, TLI); + } - if (FormatStr[1] == 's') { - // fprintf(F, "%s", str) --> fputs(str, F) - if (!CI->getArgOperand(2)->getType()->isPointerTy()) - return nullptr; - return EmitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, DL, TLI); - } + // The remaining optimizations require the format string to be "%s" or "%c" + // and have an extra operand. + if (FormatStr.size() != 2 || FormatStr[0] != '%' || + CI->getNumArgOperands() < 3) return nullptr; - } - Value *callOptimizer(Function *Callee, CallInst *CI, - IRBuilder<> &B) override { - // Require two fixed paramters as pointers and integer result. - FunctionType *FT = Callee->getFunctionType(); - if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() || - !FT->getParamType(1)->isPointerTy() || - !FT->getReturnType()->isIntegerTy()) + // Decode the second character of the format string. + if (FormatStr[1] == 'c') { + // fprintf(F, "%c", chr) --> fputc(chr, F) + if (!CI->getArgOperand(2)->getType()->isIntegerTy()) return nullptr; + return EmitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, DL, TLI); + } - if (Value *V = optimizeFixedFormatString(Callee, CI, B)) { - return V; - } + if (FormatStr[1] == 's') { + // fprintf(F, "%s", str) --> fputs(str, F) + if (!CI->getArgOperand(2)->getType()->isPointerTy()) + return nullptr; + return EmitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, DL, TLI); + } + return nullptr; +} - // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no - // floating point arguments. - if (TLI->has(LibFunc::fiprintf) && !callHasFloatingPointArgument(CI)) { - Module *M = B.GetInsertBlock()->getParent()->getParent(); - Constant *FIPrintFFn = +Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) { + Function *Callee = CI->getCalledFunction(); + // Require two fixed paramters as pointers and integer result. + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() || + !FT->getParamType(1)->isPointerTy() || + !FT->getReturnType()->isIntegerTy()) + return nullptr; + + if (Value *V = optimizeFPrintFString(CI, B)) { + return V; + } + + // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no + // floating point arguments. + if (TLI->has(LibFunc::fiprintf) && !callHasFloatingPointArgument(CI)) { + Module *M = B.GetInsertBlock()->getParent()->getParent(); + Constant *FIPrintFFn = M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes()); - CallInst *New = cast(CI->clone()); - New->setCalledFunction(FIPrintFFn); - B.Insert(New); - return New; - } - return nullptr; + CallInst *New = cast(CI->clone()); + New->setCalledFunction(FIPrintFFn); + B.Insert(New); + return New; } -}; + return nullptr; +} -struct FWriteOpt : public LibCallOptimization { - Value *callOptimizer(Function *Callee, CallInst *CI, - IRBuilder<> &B) override { - ErrorReportingOpt ER(/* StreamArg = */ 3); - (void) ER.callOptimizer(Callee, CI, B); - - // Require a pointer, an integer, an integer, a pointer, returning integer. - FunctionType *FT = Callee->getFunctionType(); - if (FT->getNumParams() != 4 || !FT->getParamType(0)->isPointerTy() || - !FT->getParamType(1)->isIntegerTy() || - !FT->getParamType(2)->isIntegerTy() || - !FT->getParamType(3)->isPointerTy() || - !FT->getReturnType()->isIntegerTy()) - return nullptr; - - // Get the element size and count. - ConstantInt *SizeC = dyn_cast(CI->getArgOperand(1)); - ConstantInt *CountC = dyn_cast(CI->getArgOperand(2)); - if (!SizeC || !CountC) return nullptr; - uint64_t Bytes = SizeC->getZExtValue()*CountC->getZExtValue(); - - // If this is writing zero records, remove the call (it's a noop). - if (Bytes == 0) - return ConstantInt::get(CI->getType(), 0); - - // If this is writing one byte, turn it into fputc. - // This optimisation is only valid, if the return value is unused. - if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) - Value *Char = B.CreateLoad(CastToCStr(CI->getArgOperand(0), B), "char"); - Value *NewCI = EmitFPutC(Char, CI->getArgOperand(3), B, DL, TLI); - return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; - } +Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) { + optimizeErrorReporting(CI, B, 3); - return nullptr; + Function *Callee = CI->getCalledFunction(); + // Require a pointer, an integer, an integer, a pointer, returning integer. + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 4 || !FT->getParamType(0)->isPointerTy() || + !FT->getParamType(1)->isIntegerTy() || + !FT->getParamType(2)->isIntegerTy() || + !FT->getParamType(3)->isPointerTy() || + !FT->getReturnType()->isIntegerTy()) + return nullptr; + + // Get the element size and count. + ConstantInt *SizeC = dyn_cast(CI->getArgOperand(1)); + ConstantInt *CountC = dyn_cast(CI->getArgOperand(2)); + if (!SizeC || !CountC) + return nullptr; + uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); + + // If this is writing zero records, remove the call (it's a noop). + if (Bytes == 0) + return ConstantInt::get(CI->getType(), 0); + + // If this is writing one byte, turn it into fputc. + // This optimisation is only valid, if the return value is unused. + if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) + Value *Char = B.CreateLoad(CastToCStr(CI->getArgOperand(0), B), "char"); + Value *NewCI = EmitFPutC(Char, CI->getArgOperand(3), B, DL, TLI); + return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; } -}; -struct FPutsOpt : public LibCallOptimization { - Value *callOptimizer(Function *Callee, CallInst *CI, - IRBuilder<> &B) override { - ErrorReportingOpt ER(/* StreamArg = */ 1); - (void) ER.callOptimizer(Callee, CI, B); + return nullptr; +} - // These optimizations require DataLayout. - if (!DL) return nullptr; +Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) { + optimizeErrorReporting(CI, B, 1); - // Require two pointers. Also, we can't optimize if return value is used. - FunctionType *FT = Callee->getFunctionType(); - if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() || - !FT->getParamType(1)->isPointerTy() || - !CI->use_empty()) - return nullptr; - - // fputs(s,F) --> fwrite(s,1,strlen(s),F) - uint64_t Len = GetStringLength(CI->getArgOperand(0)); - if (!Len) return nullptr; - // Known to have no uses (see above). - return EmitFWrite(CI->getArgOperand(0), - ConstantInt::get(DL->getIntPtrType(*Context), Len-1), - CI->getArgOperand(1), B, DL, TLI); - } -}; - -struct PutsOpt : public LibCallOptimization { - Value *callOptimizer(Function *Callee, CallInst *CI, - IRBuilder<> &B) override { - // Require one fixed pointer argument and an integer/void result. - FunctionType *FT = Callee->getFunctionType(); - if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() || - !(FT->getReturnType()->isIntegerTy() || - FT->getReturnType()->isVoidTy())) - return nullptr; - - // Check for a constant string. - StringRef Str; - if (!getConstantStringInfo(CI->getArgOperand(0), Str)) - return nullptr; - - if (Str.empty() && CI->use_empty()) { - // puts("") -> putchar('\n') - Value *Res = EmitPutChar(B.getInt32('\n'), B, DL, TLI); - if (CI->use_empty() || !Res) return Res; - return B.CreateIntCast(Res, CI->getType(), true); - } + Function *Callee = CI->getCalledFunction(); + // These optimizations require DataLayout. + if (!DL) return nullptr; - } -}; -} // End anonymous namespace. + // Require two pointers. Also, we can't optimize if return value is used. + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() || + !FT->getParamType(1)->isPointerTy() || !CI->use_empty()) + return nullptr; -namespace llvm { + // fputs(s,F) --> fwrite(s,1,strlen(s),F) + uint64_t Len = GetStringLength(CI->getArgOperand(0)); + if (!Len) + return nullptr; -class LibCallSimplifierImpl { - const DataLayout *DL; - const TargetLibraryInfo *TLI; - const LibCallSimplifier *LCS; - bool UnsafeFPShrink; - - // Math library call optimizations. - CosOpt Cos; - PowOpt Pow; - Exp2Opt Exp2; -public: - LibCallSimplifierImpl(const DataLayout *DL, const TargetLibraryInfo *TLI, - const LibCallSimplifier *LCS, - bool UnsafeFPShrink = false) - : Cos(UnsafeFPShrink), Pow(UnsafeFPShrink), Exp2(UnsafeFPShrink) { - this->DL = DL; - this->TLI = TLI; - this->LCS = LCS; - this->UnsafeFPShrink = UnsafeFPShrink; - } - - Value *optimizeCall(CallInst *CI); - LibCallOptimization *lookupOptimization(CallInst *CI); - bool hasFloatVersion(StringRef FuncName); -}; + // Known to have no uses (see above). + return EmitFWrite( + CI->getArgOperand(0), + ConstantInt::get(DL->getIntPtrType(CI->getContext()), Len - 1), + CI->getArgOperand(1), B, DL, TLI); +} -bool LibCallSimplifierImpl::hasFloatVersion(StringRef FuncName) { +Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) { + Function *Callee = CI->getCalledFunction(); + // Require one fixed pointer argument and an integer/void result. + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() || + !(FT->getReturnType()->isIntegerTy() || FT->getReturnType()->isVoidTy())) + return nullptr; + + // Check for a constant string. + StringRef Str; + if (!getConstantStringInfo(CI->getArgOperand(0), Str)) + return nullptr; + + if (Str.empty() && CI->use_empty()) { + // puts("") -> putchar('\n') + Value *Res = EmitPutChar(B.getInt32('\n'), B, DL, TLI); + if (CI->use_empty() || !Res) + return Res; + return B.CreateIntCast(Res, CI->getType(), true); + } + + return nullptr; +} + +bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) { LibFunc::Func Func; SmallString<20> FloatFuncName = FuncName; FloatFuncName += 'f'; @@ -2048,263 +1874,204 @@ return false; } -// Fortified library call optimizations. -static MemCpyChkOpt MemCpyChk; -static MemMoveChkOpt MemMoveChk; -static MemSetChkOpt MemSetChk; -static StrCpyChkOpt StrCpyChk; -static StpCpyChkOpt StpCpyChk; -static StrNCpyChkOpt StrNCpyChk; - -// String library call optimizations. -static StrCatOpt StrCat; -static StrNCatOpt StrNCat; -static StrChrOpt StrChr; -static StrRChrOpt StrRChr; -static StrCmpOpt StrCmp; -static StrNCmpOpt StrNCmp; -static StrCpyOpt StrCpy; -static StpCpyOpt StpCpy; -static StrNCpyOpt StrNCpy; -static StrLenOpt StrLen; -static StrPBrkOpt StrPBrk; -static StrToOpt StrTo; -static StrSpnOpt StrSpn; -static StrCSpnOpt StrCSpn; -static StrStrOpt StrStr; - -// Memory library call optimizations. -static MemCmpOpt MemCmp; -static MemCpyOpt MemCpy; -static MemMoveOpt MemMove; -static MemSetOpt MemSet; - -// Math library call optimizations. -static UnaryDoubleFPOpt UnaryDoubleFP(false); -static BinaryDoubleFPOpt BinaryDoubleFP(false); -static UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true); -static SinCosPiOpt SinCosPi; - - // Integer library call optimizations. -static FFSOpt FFS; -static AbsOpt Abs; -static IsDigitOpt IsDigit; -static IsAsciiOpt IsAscii; -static ToAsciiOpt ToAscii; - -// Formatting and IO library call optimizations. -static ErrorReportingOpt ErrorReporting; -static ErrorReportingOpt ErrorReporting0(0); -static ErrorReportingOpt ErrorReporting1(1); -static PrintFOpt PrintF; -static SPrintFOpt SPrintF; -static FPrintFOpt FPrintF; -static FWriteOpt FWrite; -static FPutsOpt FPuts; -static PutsOpt Puts; +Value *LibCallSimplifier::optimizeCall(CallInst *CI) { + if (CI->isNoBuiltin()) + return nullptr; -LibCallOptimization *LibCallSimplifierImpl::lookupOptimization(CallInst *CI) { LibFunc::Func Func; Function *Callee = CI->getCalledFunction(); StringRef FuncName = Callee->getName(); + IRBuilder<> Builder(CI); + bool isCallingConvC = CI->getCallingConv() == llvm::CallingConv::C; // Next check for intrinsics. if (IntrinsicInst *II = dyn_cast(CI)) { + if (!isCallingConvC) + return nullptr; switch (II->getIntrinsicID()) { case Intrinsic::pow: - return &Pow; + return optimizePow(CI, Builder); case Intrinsic::exp2: - return &Exp2; + return optimizeExp2(CI, Builder); default: - return nullptr; + return nullptr; } } // Then check for known library functions. if (TLI->getLibFunc(FuncName, Func) && TLI->has(Func)) { + // We never change the calling convention. + if (!ignoreCallingConv(Func) && !isCallingConvC) + return nullptr; switch (Func) { - case LibFunc::strcat: - return &StrCat; - case LibFunc::strncat: - return &StrNCat; - case LibFunc::strchr: - return &StrChr; - case LibFunc::strrchr: - return &StrRChr; - case LibFunc::strcmp: - return &StrCmp; - case LibFunc::strncmp: - return &StrNCmp; - case LibFunc::strcpy: - return &StrCpy; - case LibFunc::stpcpy: - return &StpCpy; - case LibFunc::strncpy: - return &StrNCpy; - case LibFunc::strlen: - return &StrLen; - case LibFunc::strpbrk: - return &StrPBrk; - case LibFunc::strtol: - case LibFunc::strtod: - case LibFunc::strtof: - case LibFunc::strtoul: - case LibFunc::strtoll: - case LibFunc::strtold: - case LibFunc::strtoull: - return &StrTo; - case LibFunc::strspn: - return &StrSpn; - case LibFunc::strcspn: - return &StrCSpn; - case LibFunc::strstr: - return &StrStr; - case LibFunc::memcmp: - return &MemCmp; - case LibFunc::memcpy: - return &MemCpy; - case LibFunc::memmove: - return &MemMove; - case LibFunc::memset: - return &MemSet; - case LibFunc::cosf: - case LibFunc::cos: - case LibFunc::cosl: - return &Cos; - case LibFunc::sinpif: - case LibFunc::sinpi: - case LibFunc::cospif: - case LibFunc::cospi: - return &SinCosPi; - case LibFunc::powf: - case LibFunc::pow: - case LibFunc::powl: - return &Pow; - case LibFunc::exp2l: - case LibFunc::exp2: - case LibFunc::exp2f: - return &Exp2; - case LibFunc::ffs: - case LibFunc::ffsl: - case LibFunc::ffsll: - return &FFS; - case LibFunc::abs: - case LibFunc::labs: - case LibFunc::llabs: - return &Abs; - case LibFunc::isdigit: - return &IsDigit; - case LibFunc::isascii: - return &IsAscii; - case LibFunc::toascii: - return &ToAscii; - case LibFunc::printf: - return &PrintF; - case LibFunc::sprintf: - return &SPrintF; - case LibFunc::fprintf: - return &FPrintF; - case LibFunc::fwrite: - return &FWrite; - case LibFunc::fputs: - return &FPuts; - case LibFunc::puts: - return &Puts; - case LibFunc::perror: - return &ErrorReporting; - case LibFunc::vfprintf: - case LibFunc::fiprintf: - return &ErrorReporting0; - case LibFunc::fputc: - return &ErrorReporting1; - case LibFunc::ceil: - case LibFunc::fabs: - case LibFunc::floor: - case LibFunc::rint: - case LibFunc::round: - case LibFunc::nearbyint: - case LibFunc::trunc: - if (hasFloatVersion(FuncName)) - return &UnaryDoubleFP; - return nullptr; - case LibFunc::acos: - case LibFunc::acosh: - case LibFunc::asin: - case LibFunc::asinh: - case LibFunc::atan: - case LibFunc::atanh: - case LibFunc::cbrt: - case LibFunc::cosh: - case LibFunc::exp: - case LibFunc::exp10: - case LibFunc::expm1: - case LibFunc::log: - case LibFunc::log10: - case LibFunc::log1p: - case LibFunc::log2: - case LibFunc::logb: - case LibFunc::sin: - case LibFunc::sinh: - case LibFunc::sqrt: - case LibFunc::tan: - case LibFunc::tanh: - if (UnsafeFPShrink && hasFloatVersion(FuncName)) - return &UnsafeUnaryDoubleFP; - return nullptr; - case LibFunc::fmin: - case LibFunc::fmax: - if (hasFloatVersion(FuncName)) - return &BinaryDoubleFP; - return nullptr; - case LibFunc::memcpy_chk: - return &MemCpyChk; - default: - return nullptr; - } + case LibFunc::strcat: + return optimizeStrCat(CI, Builder); + case LibFunc::strncat: + return optimizeStrNCat(CI, Builder); + case LibFunc::strchr: + return optimizeStrChr(CI, Builder); + case LibFunc::strrchr: + return optimizeStrRChr(CI, Builder); + case LibFunc::strcmp: + return optimizeStrCmp(CI, Builder); + case LibFunc::strncmp: + return optimizeStrNCmp(CI, Builder); + case LibFunc::strcpy: + return optimizeStrCpy(CI, Builder); + case LibFunc::stpcpy: + return optimizeStpCpy(CI, Builder); + case LibFunc::strncpy: + return optimizeStrNCpy(CI, Builder); + case LibFunc::strlen: + return optimizeStrLen(CI, Builder); + case LibFunc::strpbrk: + return optimizeStrPBrk(CI, Builder); + case LibFunc::strtol: + case LibFunc::strtod: + case LibFunc::strtof: + case LibFunc::strtoul: + case LibFunc::strtoll: + case LibFunc::strtold: + case LibFunc::strtoull: + return optimizeStrTo(CI, Builder); + case LibFunc::strspn: + return optimizeStrSpn(CI, Builder); + case LibFunc::strcspn: + return optimizeStrCSpn(CI, Builder); + case LibFunc::strstr: + return optimizeStrStr(CI, Builder); + case LibFunc::memcmp: + return optimizeMemCmp(CI, Builder); + case LibFunc::memcpy: + return optimizeMemCpy(CI, Builder); + case LibFunc::memmove: + return optimizeMemMove(CI, Builder); + case LibFunc::memset: + return optimizeMemSet(CI, Builder); + case LibFunc::cosf: + case LibFunc::cos: + case LibFunc::cosl: + return optimizeCos(CI, Builder); + case LibFunc::sinpif: + case LibFunc::sinpi: + case LibFunc::cospif: + case LibFunc::cospi: + return optimizeSinCosPi(CI, Builder); + case LibFunc::powf: + case LibFunc::pow: + case LibFunc::powl: + return optimizePow(CI, Builder); + case LibFunc::exp2l: + case LibFunc::exp2: + case LibFunc::exp2f: + return optimizeExp2(CI, Builder); + case LibFunc::ffs: + case LibFunc::ffsl: + case LibFunc::ffsll: + return optimizeFFS(CI, Builder); + case LibFunc::abs: + case LibFunc::labs: + case LibFunc::llabs: + return optimizeAbs(CI, Builder); + case LibFunc::isdigit: + return optimizeIsDigit(CI, Builder); + case LibFunc::isascii: + return optimizeIsAscii(CI, Builder); + case LibFunc::toascii: + return optimizeToAscii(CI, Builder); + case LibFunc::printf: + return optimizePrintF(CI, Builder); + case LibFunc::sprintf: + return optimizeSPrintF(CI, Builder); + case LibFunc::fprintf: + return optimizeFPrintF(CI, Builder); + case LibFunc::fwrite: + return optimizeFWrite(CI, Builder); + case LibFunc::fputs: + return optimizeFPuts(CI, Builder); + case LibFunc::puts: + return optimizePuts(CI, Builder); + case LibFunc::perror: + return optimizeErrorReporting(CI, Builder); + case LibFunc::vfprintf: + case LibFunc::fiprintf: + return optimizeErrorReporting(CI, Builder, 0); + case LibFunc::fputc: + return optimizeErrorReporting(CI, Builder, 1); + case LibFunc::ceil: + case LibFunc::fabs: + case LibFunc::floor: + case LibFunc::rint: + case LibFunc::round: + case LibFunc::nearbyint: + case LibFunc::trunc: + if (hasFloatVersion(FuncName)) + return optimizeUnaryDoubleFP(CI, Builder, false); + return nullptr; + case LibFunc::acos: + case LibFunc::acosh: + case LibFunc::asin: + case LibFunc::asinh: + case LibFunc::atan: + case LibFunc::atanh: + case LibFunc::cbrt: + case LibFunc::cosh: + case LibFunc::exp: + case LibFunc::exp10: + case LibFunc::expm1: + case LibFunc::log: + case LibFunc::log10: + case LibFunc::log1p: + case LibFunc::log2: + case LibFunc::logb: + case LibFunc::sin: + case LibFunc::sinh: + case LibFunc::sqrt: + case LibFunc::tan: + case LibFunc::tanh: + if (UnsafeFPShrink && hasFloatVersion(FuncName)) + return optimizeUnaryDoubleFP(CI, Builder, true); + return nullptr; + case LibFunc::fmin: + case LibFunc::fmax: + if (hasFloatVersion(FuncName)) + return optimizeBinaryDoubleFP(CI, Builder); + return nullptr; + case LibFunc::memcpy_chk: + return optimizeMemCpyChk(CI, Builder); + default: + return nullptr; + } } + if (!isCallingConvC) + return nullptr; + // Finally check for fortified library calls. if (FuncName.endswith("_chk")) { if (FuncName == "__memmove_chk") - return &MemMoveChk; + return optimizeMemMoveChk(CI, Builder); else if (FuncName == "__memset_chk") - return &MemSetChk; + return optimizeMemSetChk(CI, Builder); else if (FuncName == "__strcpy_chk") - return &StrCpyChk; + return optimizeStrCpyChk(CI, Builder); else if (FuncName == "__stpcpy_chk") - return &StpCpyChk; + return optimizeStpCpyChk(CI, Builder); else if (FuncName == "__strncpy_chk") - return &StrNCpyChk; + return optimizeStrNCpyChk(CI, Builder); else if (FuncName == "__stpncpy_chk") - return &StrNCpyChk; + return optimizeStrNCpyChk(CI, Builder); } return nullptr; - -} - -Value *LibCallSimplifierImpl::optimizeCall(CallInst *CI) { - LibCallOptimization *LCO = lookupOptimization(CI); - if (LCO) { - IRBuilder<> Builder(CI); - return LCO->optimizeCall(CI, DL, TLI, LCS, Builder); - } - return nullptr; } LibCallSimplifier::LibCallSimplifier(const DataLayout *DL, const TargetLibraryInfo *TLI, - bool UnsafeFPShrink) { - Impl = new LibCallSimplifierImpl(DL, TLI, this, UnsafeFPShrink); -} - -LibCallSimplifier::~LibCallSimplifier() { - delete Impl; -} - -Value *LibCallSimplifier::optimizeCall(CallInst *CI) { - if (CI->isNoBuiltin()) return nullptr; - return Impl->optimizeCall(CI); + bool UnsafeFPShrink) : + DL(DL), + TLI(TLI), + UnsafeFPShrink(UnsafeFPShrink) { } void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) const { @@ -2312,8 +2079,6 @@ I->eraseFromParent(); } -} - // TODO: // Additional cases that we need to add to this file: //