Index: llvm/include/llvm/ADT/SmallVector.h =================================================================== --- llvm/include/llvm/ADT/SmallVector.h +++ llvm/include/llvm/ADT/SmallVector.h @@ -38,28 +38,36 @@ /// This is all the non-templated stuff common to all SmallVectors. class SmallVectorBase { protected: - void *BeginX, *EndX, *CapacityX; + void *BeginX; + unsigned Size = 0, Capacity; -protected: - SmallVectorBase(void *FirstEl, size_t Size) - : BeginX(FirstEl), EndX(FirstEl), CapacityX((char*)FirstEl+Size) {} + SmallVectorBase() = delete; + SmallVectorBase(void *FirstEl, size_t Capacity) + : BeginX(FirstEl), Capacity(Capacity) {} /// This is an implementation of the grow() method which only works /// on POD-like data types and is out of line to reduce code duplication. - void grow_pod(void *FirstEl, size_t MinSizeInBytes, size_t TSize); + void grow_pod(void *FirstEl, size_t MinCapacity, size_t TSize); public: - /// This returns size()*sizeof(T). - size_t size_in_bytes() const { - return size_t((char*)EndX - (char*)BeginX); - } + size_t size() const { return Size; } + size_t capacity() const { return Capacity; } - /// capacity_in_bytes - This returns capacity()*sizeof(T). - size_t capacity_in_bytes() const { - return size_t((char*)CapacityX - (char*)BeginX); - } + LLVM_NODISCARD bool empty() const { return !Size; } - LLVM_NODISCARD bool empty() const { return BeginX == EndX; } + /// Set the array size to \p N, which the current array must have enough + /// capacity for. + /// + /// This does not construct or destroy any elements in the vector. + /// + /// Clients can use this in conjunction with capacity() to write past the end + /// of the buffer when they know that more elements are available, and only + /// update the size later. This avoids the cost of value initializing elements + /// which will only be overwritten. + void set_size(size_t Size) { + assert(Size <= capacity()); + this->Size = Size; + } }; /// This is the part of SmallVectorTemplateBase which does not depend on whether @@ -80,8 +88,8 @@ protected: SmallVectorTemplateCommon(size_t Size) : SmallVectorBase(&FirstEl, Size) {} - void grow_pod(size_t MinSizeInBytes, size_t TSize) { - SmallVectorBase::grow_pod(&FirstEl, MinSizeInBytes, TSize); + void grow_pod(size_t MinCapacity, size_t TSize) { + SmallVectorBase::grow_pod(&FirstEl, MinCapacity, TSize); } /// Return true if this is a smallvector which has not had dynamic @@ -92,11 +100,10 @@ /// Put this vector in a state of being small. void resetToSmall() { - BeginX = EndX = CapacityX = &FirstEl; + BeginX = &FirstEl; + Size = Capacity = 0; // FIXME: Setting Capacity to 0 is suspect. } - void setEnd(T *P) { this->EndX = P; } - public: using size_type = size_t; using difference_type = ptrdiff_t; @@ -118,27 +125,20 @@ LLVM_ATTRIBUTE_ALWAYS_INLINE const_iterator begin() const { return (const_iterator)this->BeginX; } LLVM_ATTRIBUTE_ALWAYS_INLINE - iterator end() { return (iterator)this->EndX; } + iterator end() { return begin() + size(); } LLVM_ATTRIBUTE_ALWAYS_INLINE - const_iterator end() const { return (const_iterator)this->EndX; } + const_iterator end() const { return begin() + size(); } -protected: - iterator capacity_ptr() { return (iterator)this->CapacityX; } - const_iterator capacity_ptr() const { return (const_iterator)this->CapacityX;} - -public: // reverse iterator creation methods. reverse_iterator rbegin() { return reverse_iterator(end()); } const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); } reverse_iterator rend() { return reverse_iterator(begin()); } const_reverse_iterator rend() const { return const_reverse_iterator(begin());} - LLVM_ATTRIBUTE_ALWAYS_INLINE - size_type size() const { return end()-begin(); } + size_type size_in_bytes() const { return size() * sizeof(T); } size_type max_size() const { return size_type(-1) / sizeof(T); } - /// Return the total number of elements in the currently allocated buffer. - size_t capacity() const { return capacity_ptr() - begin(); } + size_t capacity_in_bytes() const { return capacity() * sizeof(T); } /// Return a pointer to the vector's buffer, even if empty(). pointer data() { return pointer(begin()); } @@ -211,21 +211,21 @@ public: void push_back(const T &Elt) { - if (LLVM_UNLIKELY(this->EndX >= this->CapacityX)) + if (LLVM_UNLIKELY(this->size() >= this->capacity())) this->grow(); ::new ((void*) this->end()) T(Elt); - this->setEnd(this->end()+1); + this->set_size(this->size() + 1); } void push_back(T &&Elt) { - if (LLVM_UNLIKELY(this->EndX >= this->CapacityX)) + if (LLVM_UNLIKELY(this->size() >= this->capacity())) this->grow(); ::new ((void*) this->end()) T(::std::move(Elt)); - this->setEnd(this->end()+1); + this->set_size(this->size() + 1); } void pop_back() { - this->setEnd(this->end()-1); + this->set_size(this->size() - 1); this->end()->~T(); } }; @@ -233,12 +233,12 @@ // Define this out-of-line to dissuade the C++ compiler from inlining it. template void SmallVectorTemplateBase::grow(size_t MinSize) { - size_t CurCapacity = this->capacity(); - size_t CurSize = this->size(); + if (MinSize > UINT32_MAX) + report_bad_alloc_error("SmallVector capacity overflow during allocation"); + // Always grow, even from zero. - size_t NewCapacity = size_t(NextPowerOf2(CurCapacity+2)); - if (NewCapacity < MinSize) - NewCapacity = MinSize; + size_t NewCapacity = size_t(NextPowerOf2(this->capacity() + 2)); + NewCapacity = std::min(std::max(NewCapacity, MinSize), size_t(UINT32_MAX)); T *NewElts = static_cast(llvm::safe_malloc(NewCapacity*sizeof(T))); // Move the elements over. @@ -251,9 +251,8 @@ if (!this->isSmall()) free(this->begin()); - this->setEnd(NewElts+CurSize); this->BeginX = NewElts; - this->CapacityX = this->begin()+NewCapacity; + this->Capacity = NewCapacity; } @@ -300,21 +299,17 @@ /// Double the size of the allocated memory, guaranteeing space for at /// least one more element or MinSize if specified. - void grow(size_t MinSize = 0) { - this->grow_pod(MinSize*sizeof(T), sizeof(T)); - } + void grow(size_t MinSize = 0) { this->grow_pod(MinSize, sizeof(T)); } public: void push_back(const T &Elt) { - if (LLVM_UNLIKELY(this->EndX >= this->CapacityX)) + if (LLVM_UNLIKELY(this->size() >= this->capacity())) this->grow(); memcpy(this->end(), &Elt, sizeof(T)); - this->setEnd(this->end()+1); + this->set_size(this->size() + 1); } - void pop_back() { - this->setEnd(this->end()-1); - } + void pop_back() { this->set_size(this->size() - 1); } }; /// This class consists of common code factored out of the SmallVector class to @@ -331,8 +326,7 @@ protected: // Default ctor - Initialize to empty. explicit SmallVectorImpl(unsigned N) - : SmallVectorTemplateBase::value>(N*sizeof(T)) { - } + : SmallVectorTemplateBase::value>(N) {} public: SmallVectorImpl(const SmallVectorImpl &) = delete; @@ -346,31 +340,31 @@ void clear() { this->destroy_range(this->begin(), this->end()); - this->EndX = this->BeginX; + this->Size = 0; } void resize(size_type N) { if (N < this->size()) { this->destroy_range(this->begin()+N, this->end()); - this->setEnd(this->begin()+N); + this->set_size(N); } else if (N > this->size()) { if (this->capacity() < N) this->grow(N); for (auto I = this->end(), E = this->begin() + N; I != E; ++I) new (&*I) T(); - this->setEnd(this->begin()+N); + this->set_size(N); } } void resize(size_type N, const T &NV) { if (N < this->size()) { this->destroy_range(this->begin()+N, this->end()); - this->setEnd(this->begin()+N); + this->set_size(N); } else if (N > this->size()) { if (this->capacity() < N) this->grow(N); std::uninitialized_fill(this->end(), this->begin()+N, NV); - this->setEnd(this->begin()+N); + this->set_size(N); } } @@ -395,23 +389,23 @@ void append(in_iter in_start, in_iter in_end) { size_type NumInputs = std::distance(in_start, in_end); // Grow allocated space if needed. - if (NumInputs > size_type(this->capacity_ptr()-this->end())) + if (NumInputs > this->capacity() - this->size()) this->grow(this->size()+NumInputs); // Copy the new elements over. this->uninitialized_copy(in_start, in_end, this->end()); - this->setEnd(this->end() + NumInputs); + this->set_size(this->size() + NumInputs); } /// Add the specified range to the end of the SmallVector. void append(size_type NumInputs, const T &Elt) { // Grow allocated space if needed. - if (NumInputs > size_type(this->capacity_ptr()-this->end())) + if (NumInputs > this->capacity() - this->size()) this->grow(this->size()+NumInputs); // Copy the new elements over. std::uninitialized_fill_n(this->end(), NumInputs, Elt); - this->setEnd(this->end() + NumInputs); + this->set_size(this->size() + NumInputs); } void append(std::initializer_list IL) { @@ -425,7 +419,7 @@ clear(); if (this->capacity() < NumElts) this->grow(NumElts); - this->setEnd(this->begin()+NumElts); + this->set_size(NumElts); std::uninitialized_fill(this->begin(), this->end(), Elt); } @@ -472,7 +466,7 @@ iterator I = std::move(E, this->end(), S); // Drop the last elts. this->destroy_range(I, this->end()); - this->setEnd(I); + this->set_size(I - this->begin()); return(N); } @@ -485,7 +479,7 @@ assert(I >= this->begin() && "Insertion iterator is out of bounds."); assert(I <= this->end() && "Inserting past the end of the vector."); - if (this->EndX >= this->CapacityX) { + if (this->size() >= this->capacity()) { size_t EltNo = I-this->begin(); this->grow(); I = this->begin()+EltNo; @@ -494,12 +488,12 @@ ::new ((void*) this->end()) T(::std::move(this->back())); // Push everything else over. std::move_backward(I, this->end()-1, this->end()); - this->setEnd(this->end()+1); + this->set_size(this->size() + 1); // If we just moved the element we're inserting, be sure to update // the reference. T *EltPtr = &Elt; - if (I <= EltPtr && EltPtr < this->EndX) + if (I <= EltPtr && EltPtr < this->end()) ++EltPtr; *I = ::std::move(*EltPtr); @@ -515,7 +509,7 @@ assert(I >= this->begin() && "Insertion iterator is out of bounds."); assert(I <= this->end() && "Inserting past the end of the vector."); - if (this->EndX >= this->CapacityX) { + if (this->size() >= this->capacity()) { size_t EltNo = I-this->begin(); this->grow(); I = this->begin()+EltNo; @@ -523,12 +517,12 @@ ::new ((void*) this->end()) T(std::move(this->back())); // Push everything else over. std::move_backward(I, this->end()-1, this->end()); - this->setEnd(this->end()+1); + this->set_size(this->size() + 1); // If we just moved the element we're inserting, be sure to update // the reference. const T *EltPtr = &Elt; - if (I <= EltPtr && EltPtr < this->EndX) + if (I <= EltPtr && EltPtr < this->end()) ++EltPtr; *I = *EltPtr; @@ -574,7 +568,7 @@ // Move over the elements that we're about to overwrite. T *OldEnd = this->end(); - this->setEnd(this->end() + NumToInsert); + this->set_size(this->size() + NumToInsert); size_t NumOverwritten = OldEnd-I; this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten); @@ -631,7 +625,7 @@ // Move over the elements that we're about to overwrite. T *OldEnd = this->end(); - this->setEnd(this->end() + NumToInsert); + this->set_size(this->size() + NumToInsert); size_t NumOverwritten = OldEnd-I; this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten); @@ -651,10 +645,10 @@ } template void emplace_back(ArgTypes &&... Args) { - if (LLVM_UNLIKELY(this->EndX >= this->CapacityX)) + if (LLVM_UNLIKELY(this->size() >= this->capacity())) this->grow(); ::new ((void *)this->end()) T(std::forward(Args)...); - this->setEnd(this->end() + 1); + this->set_size(this->size() + 1); } SmallVectorImpl &operator=(const SmallVectorImpl &RHS); @@ -673,20 +667,6 @@ return std::lexicographical_compare(this->begin(), this->end(), RHS.begin(), RHS.end()); } - - /// Set the array size to \p N, which the current array must have enough - /// capacity for. - /// - /// This does not construct or destroy any elements in the vector. - /// - /// Clients can use this in conjunction with capacity() to write past the end - /// of the buffer when they know that more elements are available, and only - /// update the size later. This avoids the cost of value initializing elements - /// which will only be overwritten. - void set_size(size_type N) { - assert(N <= this->capacity()); - this->setEnd(this->begin() + N); - } }; template @@ -696,8 +676,8 @@ // We can only avoid copying elements if neither vector is small. if (!this->isSmall() && !RHS.isSmall()) { std::swap(this->BeginX, RHS.BeginX); - std::swap(this->EndX, RHS.EndX); - std::swap(this->CapacityX, RHS.CapacityX); + std::swap(this->Size, RHS.Size); + std::swap(this->Capacity, RHS.Capacity); return; } if (RHS.size() > this->capacity()) @@ -715,15 +695,15 @@ if (this->size() > RHS.size()) { size_t EltDiff = this->size() - RHS.size(); this->uninitialized_copy(this->begin()+NumShared, this->end(), RHS.end()); - RHS.setEnd(RHS.end()+EltDiff); + RHS.set_size(RHS.size() + EltDiff); this->destroy_range(this->begin()+NumShared, this->end()); - this->setEnd(this->begin()+NumShared); + this->set_size(NumShared); } else if (RHS.size() > this->size()) { size_t EltDiff = RHS.size() - this->size(); this->uninitialized_copy(RHS.begin()+NumShared, RHS.end(), this->end()); - this->setEnd(this->end() + EltDiff); + this->set_size(this->size() + EltDiff); this->destroy_range(RHS.begin()+NumShared, RHS.end()); - RHS.setEnd(RHS.begin()+NumShared); + RHS.set_size(NumShared); } } @@ -749,7 +729,7 @@ this->destroy_range(NewEnd, this->end()); // Trim. - this->setEnd(NewEnd); + this->set_size(RHSSize); return *this; } @@ -759,7 +739,7 @@ if (this->capacity() < RHSSize) { // Destroy current elements. this->destroy_range(this->begin(), this->end()); - this->setEnd(this->begin()); + this->set_size(0); CurSize = 0; this->grow(RHSSize); } else if (CurSize) { @@ -772,7 +752,7 @@ this->begin()+CurSize); // Set end. - this->setEnd(this->begin()+RHSSize); + this->set_size(RHSSize); return *this; } @@ -786,8 +766,8 @@ this->destroy_range(this->begin(), this->end()); if (!this->isSmall()) free(this->begin()); this->BeginX = RHS.BeginX; - this->EndX = RHS.EndX; - this->CapacityX = RHS.CapacityX; + this->Size = RHS.Size; + this->Capacity = RHS.Capacity; RHS.resetToSmall(); return *this; } @@ -804,7 +784,7 @@ // Destroy excess elements and trim the bounds. this->destroy_range(NewEnd, this->end()); - this->setEnd(NewEnd); + this->set_size(RHSSize); // Clear the RHS. RHS.clear(); @@ -819,7 +799,7 @@ if (this->capacity() < RHSSize) { // Destroy current elements. this->destroy_range(this->begin(), this->end()); - this->setEnd(this->begin()); + this->set_size(0); CurSize = 0; this->grow(RHSSize); } else if (CurSize) { @@ -832,7 +812,7 @@ this->begin()+CurSize); // Set end. - this->setEnd(this->begin()+RHSSize); + this->set_size(RHSSize); RHS.clear(); return *this; Index: llvm/lib/Support/SmallVector.cpp =================================================================== --- llvm/lib/Support/SmallVector.cpp +++ llvm/lib/Support/SmallVector.cpp @@ -15,30 +15,33 @@ using namespace llvm; // Check that no bytes are wasted. -static_assert(sizeof(SmallVector) == sizeof(void *) * 4, +static_assert(sizeof(SmallVector) == + sizeof(unsigned) * 2 + sizeof(void *) * 2, "wasted space in SmallVector size 1; missing EBO?"); /// grow_pod - This is an implementation of the grow() method which only works /// on POD-like datatypes and is out of line to reduce code duplication. -void SmallVectorBase::grow_pod(void *FirstEl, size_t MinSizeInBytes, +void SmallVectorBase::grow_pod(void *FirstEl, size_t MinCapacity, size_t TSize) { - size_t CurSizeBytes = size_in_bytes(); - size_t NewCapacityInBytes = 2 * capacity_in_bytes() + TSize; // Always grow. - if (NewCapacityInBytes < MinSizeInBytes) - NewCapacityInBytes = MinSizeInBytes; + // Ensure we can fit the new capacity in 32 bits. + if (MinCapacity > UINT32_MAX) + report_bad_alloc_error("SmallVector capacity overflow during allocation"); + + size_t NewCapacity = 2 * capacity() + 1; // Always grow. + NewCapacity = + std::min(std::max(NewCapacity, MinCapacity), size_t(UINT32_MAX)); void *NewElts; if (BeginX == FirstEl) { - NewElts = safe_malloc(NewCapacityInBytes); + NewElts = safe_malloc(NewCapacity * TSize); // Copy the elements over. No need to run dtors on PODs. - memcpy(NewElts, this->BeginX, CurSizeBytes); + memcpy(NewElts, this->BeginX, size() * TSize); } else { // If this wasn't grown from the inline copy, grow the allocated space. - NewElts = safe_realloc(this->BeginX, NewCapacityInBytes); + NewElts = safe_realloc(this->BeginX, NewCapacity * TSize); } - this->EndX = (char*)NewElts+CurSizeBytes; this->BeginX = NewElts; - this->CapacityX = (char*)this->BeginX + NewCapacityInBytes; + this->Capacity = NewCapacity; }