Index: docs/tutorial/LangImpl01.rst =================================================================== --- docs/tutorial/LangImpl01.rst +++ docs/tutorial/LangImpl01.rst @@ -164,24 +164,10 @@ the lexer includes a token code and potentially some metadata (e.g. the numeric value of a number). First, we define the possibilities: -.. code-block:: c++ - - // The lexer returns tokens [0-255] if it is an unknown character, otherwise one - // of these for known things. - enum Token { - tok_eof = -1, - - // commands - tok_def = -2, - tok_extern = -3, - - // primary - tok_identifier = -4, - tok_number = -5, - }; - - static std::string IdentifierStr; // Filled in if tok_identifier - static double NumVal; // Filled in if tok_number +.. literalinclude:: /../examples/Kaleidoscope/Chapter2/toy.cpp + :language: c++ + :start-after: chapter1-token + :end-before: chapter1-token Each token returned by our lexer will either be one of the Token enum values or it will be an 'unknown' character like '+', which is returned @@ -195,15 +181,10 @@ ``gettok``. The ``gettok`` function is called to return the next token from standard input. Its definition starts as: -.. code-block:: c++ - - /// gettok - Return the next token from standard input. - static int gettok() { - static int LastChar = ' '; - - // Skip any whitespace. - while (isspace(LastChar)) - LastChar = getchar(); +.. literalinclude:: /../examples/Kaleidoscope/Chapter2/toy.cpp + :language: c++ + :start-after: chapter1-gettok1 + :end-before: chapter1-gettok1 ``gettok`` works by calling the C ``getchar()`` function to read characters one at a time from standard input. It eats them as it @@ -215,36 +196,21 @@ specific keywords like "def". Kaleidoscope does this with this simple loop: -.. code-block:: c++ - - if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]* - IdentifierStr = LastChar; - while (isalnum((LastChar = getchar()))) - IdentifierStr += LastChar; - - if (IdentifierStr == "def") - return tok_def; - if (IdentifierStr == "extern") - return tok_extern; - return tok_identifier; - } +.. literalinclude:: /../examples/Kaleidoscope/Chapter2/toy.cpp + :language: c++ + :start-after: chapter1-gettok2 + :end-before: chapter1-gettok2 + :dedent: 2 Note that this code sets the '``IdentifierStr``' global whenever it lexes an identifier. Also, since language keywords are matched by the same loop, we handle them here inline. Numeric values are similar: -.. code-block:: c++ - - if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+ - std::string NumStr; - do { - NumStr += LastChar; - LastChar = getchar(); - } while (isdigit(LastChar) || LastChar == '.'); - - NumVal = strtod(NumStr.c_str(), 0); - return tok_number; - } +.. literalinclude:: /../examples/Kaleidoscope/Chapter2/toy.cpp + :language: c++ + :start-after: chapter1-gettok3 + :end-before: chapter1-gettok3 + :dedent: 2 This is all pretty straight-forward code for processing input. When reading a numeric value from input, we use the C ``strtod`` function to @@ -253,34 +219,21 @@ "1.23.45.67" and handle it as if you typed in "1.23". Feel free to extend it :). Next we handle comments: -.. code-block:: c++ - - if (LastChar == '#') { - // Comment until end of line. - do - LastChar = getchar(); - while (LastChar != EOF && LastChar != '\n' && LastChar != '\r'); - - if (LastChar != EOF) - return gettok(); - } +.. literalinclude:: /../examples/Kaleidoscope/Chapter2/toy.cpp + :language: c++ + :start-after: chapter1-gettok4 + :end-before: chapter1-gettok4 + :dedent: 2 We handle comments by skipping to the end of the line and then return the next token. Finally, if the input doesn't match one of the above cases, it is either an operator character like '+' or the end of the file. These are handled with this code: -.. code-block:: c++ - - // Check for end of file. Don't eat the EOF. - if (LastChar == EOF) - return tok_eof; - - // Otherwise, just return the character as its ascii value. - int ThisChar = LastChar; - LastChar = getchar(); - return ThisChar; - } +.. literalinclude:: /../examples/Kaleidoscope/Chapter2/toy.cpp + :language: c++ + :start-after: chapter1-gettok5 + :end-before: chapter1-gettok5 With this, we have the complete lexer for the basic Kaleidoscope language (the `full code listing `_ for the Lexer Index: docs/tutorial/LangImpl02.rst =================================================================== --- docs/tutorial/LangImpl02.rst +++ docs/tutorial/LangImpl02.rst @@ -33,21 +33,11 @@ Kaleidoscope, we have expressions, a prototype, and a function object. We'll start with expressions first: -.. code-block:: c++ - - /// ExprAST - Base class for all expression nodes. - class ExprAST { - public: - virtual ~ExprAST() {} - }; - - /// NumberExprAST - Expression class for numeric literals like "1.0". - class NumberExprAST : public ExprAST { - double Val; - - public: - NumberExprAST(double Val) : Val(Val) {} - }; +.. literalinclude:: /../examples/Kaleidoscope/Chapter2/toy.cpp + :language: c++ + :start-after: chapter2-ExprAST + :end-before: chapter2-ExprAST + :dedent: 0 The code above shows the definition of the base ExprAST class and one subclass which we use for numeric literals. The important thing to note @@ -61,37 +51,11 @@ definitions that we'll use in the basic form of the Kaleidoscope language: -.. code-block:: c++ - - /// VariableExprAST - Expression class for referencing a variable, like "a". - class VariableExprAST : public ExprAST { - std::string Name; - - public: - VariableExprAST(const std::string &Name) : Name(Name) {} - }; - - /// BinaryExprAST - Expression class for a binary operator. - class BinaryExprAST : public ExprAST { - char Op; - std::unique_ptr LHS, RHS; - - public: - BinaryExprAST(char op, std::unique_ptr LHS, - std::unique_ptr RHS) - : Op(op), LHS(std::move(LHS)), RHS(std::move(RHS)) {} - }; - - /// CallExprAST - Expression class for function calls. - class CallExprAST : public ExprAST { - std::string Callee; - std::vector> Args; - - public: - CallExprAST(const std::string &Callee, - std::vector> Args) - : Callee(Callee), Args(std::move(Args)) {} - }; +.. literalinclude:: /../examples/Kaleidoscope/Chapter2/toy.cpp + :language: c++ + :start-after: chapter2-VariableExprAST + :end-before: chapter2-VariableExprAST + :dedent: 0 This is all (intentionally) rather straight-forward: variables capture the variable name, binary operators capture their opcode (e.g. '+'), and @@ -107,32 +71,11 @@ we need next are a way to talk about the interface to a function, and a way to talk about functions themselves: -.. code-block:: c++ - - /// PrototypeAST - This class represents the "prototype" for a function, - /// which captures its name, and its argument names (thus implicitly the number - /// of arguments the function takes). - class PrototypeAST { - std::string Name; - std::vector Args; - - public: - PrototypeAST(const std::string &name, std::vector Args) - : Name(name), Args(std::move(Args)) {} - - const std::string &getName() const { return Name; } - }; - - /// FunctionAST - This class represents a function definition itself. - class FunctionAST { - std::unique_ptr Proto; - std::unique_ptr Body; - - public: - FunctionAST(std::unique_ptr Proto, - std::unique_ptr Body) - : Proto(std::move(Proto)), Body(std::move(Body)) {} - }; +.. literalinclude:: /../examples/Kaleidoscope/Chapter2/toy.cpp + :language: c++ + :start-after: chapter2-PrototypeAST + :end-before: chapter2-PrototypeAST + :dedent: 0 In Kaleidoscope, functions are typed with just a count of their arguments. Since all values are double precision floating point, the @@ -160,33 +103,22 @@ In order to do this, we'll start by defining some basic helper routines: -.. code-block:: c++ - - /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current - /// token the parser is looking at. getNextToken reads another token from the - /// lexer and updates CurTok with its results. - static int CurTok; - static int getNextToken() { - return CurTok = gettok(); - } +.. literalinclude:: /../examples/Kaleidoscope/Chapter2/toy.cpp + :language: c++ + :start-after: chapter2-CurTok + :end-before: chapter2-CurTok + :dedent: 0 This implements a simple token buffer around the lexer. This allows us to look one token ahead at what the lexer is returning. Every function in our parser will assume that CurTok is the current token that needs to be parsed. -.. code-block:: c++ - - - /// LogError* - These are little helper functions for error handling. - std::unique_ptr LogError(const char *Str) { - fprintf(stderr, "LogError: %s\n", Str); - return nullptr; - } - std::unique_ptr LogErrorP(const char *Str) { - LogError(Str); - return nullptr; - } +.. literalinclude:: /../examples/Kaleidoscope/Chapter2/toy.cpp + :language: c++ + :start-after: chapter2-logging + :end-before: chapter2-logging + :dedent: 0 The ``LogError`` routines are simple helper routines that our parser will use to handle errors. The error recovery in our parser will not be the @@ -204,14 +136,11 @@ process. For each production in our grammar, we'll define a function which parses that production. For numeric literals, we have: -.. code-block:: c++ - - /// numberexpr ::= number - static std::unique_ptr ParseNumberExpr() { - auto Result = llvm::make_unique(NumVal); - getNextToken(); // consume the number - return std::move(Result); - } +.. literalinclude:: /../examples/Kaleidoscope/Chapter2/toy.cpp + :language: c++ + :start-after: chapter2-ParseNumberExpr + :end-before: chapter2-ParseNumberExpr + :dedent: 0 This routine is very simple: it expects to be called when the current token is a ``tok_number`` token. It takes the current number value, @@ -225,20 +154,11 @@ standard way to go for recursive descent parsers. For a better example, the parenthesis operator is defined like this: -.. code-block:: c++ - - /// parenexpr ::= '(' expression ')' - static std::unique_ptr ParseParenExpr() { - getNextToken(); // eat (. - auto V = ParseExpression(); - if (!V) - return nullptr; - - if (CurTok != ')') - return LogError("expected ')'"); - getNextToken(); // eat ). - return V; - } +.. literalinclude:: /../examples/Kaleidoscope/Chapter2/toy.cpp + :language: c++ + :start-after: chapter2-ParseParenExpr + :end-before: chapter2-ParseParenExpr + :dedent: 0 This function illustrates a number of interesting things about the parser: @@ -263,43 +183,11 @@ The next simple production is for handling variable references and function calls: -.. code-block:: c++ - - /// identifierexpr - /// ::= identifier - /// ::= identifier '(' expression* ')' - static std::unique_ptr ParseIdentifierExpr() { - std::string IdName = IdentifierStr; - - getNextToken(); // eat identifier. - - if (CurTok != '(') // Simple variable ref. - return llvm::make_unique(IdName); - - // Call. - getNextToken(); // eat ( - std::vector> Args; - if (CurTok != ')') { - while (1) { - if (auto Arg = ParseExpression()) - Args.push_back(std::move(Arg)); - else - return nullptr; - - if (CurTok == ')') - break; - - if (CurTok != ',') - return LogError("Expected ')' or ',' in argument list"); - getNextToken(); - } - } - - // Eat the ')'. - getNextToken(); - - return llvm::make_unique(IdName, std::move(Args)); - } +.. literalinclude:: /../examples/Kaleidoscope/Chapter2/toy.cpp + :language: c++ + :start-after: chapter2-ParseIdentifierExpr + :end-before: chapter2-ParseIdentifierExpr + :dedent: 0 This routine follows the same style as the other routines. (It expects to be called if the current token is a ``tok_identifier`` token). It @@ -317,24 +205,11 @@ tutorial `_. In order to parse an arbitrary primary expression, we need to determine what sort of expression it is: -.. code-block:: c++ - - /// primary - /// ::= identifierexpr - /// ::= numberexpr - /// ::= parenexpr - static std::unique_ptr ParsePrimary() { - switch (CurTok) { - default: - return LogError("unknown token when expecting an expression"); - case tok_identifier: - return ParseIdentifierExpr(); - case tok_number: - return ParseNumberExpr(); - case '(': - return ParseParenExpr(); - } - } +.. literalinclude:: /../examples/Kaleidoscope/Chapter2/toy.cpp + :language: c++ + :start-after: chapter2-ParsePrimary + :end-before: chapter2-ParsePrimary + :dedent: 0 Now that you see the definition of this function, it is more obvious why we can assume the state of CurTok in the various functions. This uses @@ -359,32 +234,17 @@ This parsing technique uses the precedence of binary operators to guide recursion. To start with, we need a table of precedences: -.. code-block:: c++ - - /// BinopPrecedence - This holds the precedence for each binary operator that is - /// defined. - static std::map BinopPrecedence; - - /// GetTokPrecedence - Get the precedence of the pending binary operator token. - static int GetTokPrecedence() { - if (!isascii(CurTok)) - return -1; - - // Make sure it's a declared binop. - int TokPrec = BinopPrecedence[CurTok]; - if (TokPrec <= 0) return -1; - return TokPrec; - } +.. literalinclude:: /../examples/Kaleidoscope/Chapter2/toy.cpp + :language: c++ + :start-after: chapter2-BinopPrecedence + :end-before: chapter2-BinopPrecedence + :dedent: 0 - int main() { - // Install standard binary operators. - // 1 is lowest precedence. - BinopPrecedence['<'] = 10; - BinopPrecedence['+'] = 20; - BinopPrecedence['-'] = 20; - BinopPrecedence['*'] = 40; // highest. - ... - } +.. literalinclude:: /../examples/Kaleidoscope/Chapter2/toy.cpp + :language: c++ + :start-after: chapter2-SetBinopPrecedence + :end-before: chapter2-SetBinopPrecedence + :dedent: 0 For the basic form of Kaleidoscope, we will only support 4 binary operators (this can obviously be extended by you, our brave and intrepid @@ -409,18 +269,11 @@ To start, an expression is a primary expression potentially followed by a sequence of [binop,primaryexpr] pairs: -.. code-block:: c++ - - /// expression - /// ::= primary binoprhs - /// - static std::unique_ptr ParseExpression() { - auto LHS = ParsePrimary(); - if (!LHS) - return nullptr; - - return ParseBinOpRHS(0, std::move(LHS)); - } +.. literalinclude:: /../examples/Kaleidoscope/Chapter2/toy.cpp + :language: c++ + :start-after: chapter2-ParseExpression + :end-before: chapter2-ParseExpression + :dedent: 0 ``ParseBinOpRHS`` is the function that parses the sequence of pairs for us. It takes a precedence and a pointer to an expression for the part @@ -437,20 +290,11 @@ the precedence of '+' is only 20). With this in mind, ``ParseBinOpRHS`` starts with: -.. code-block:: c++ - - /// binoprhs - /// ::= ('+' primary)* - static std::unique_ptr ParseBinOpRHS(int ExprPrec, - std::unique_ptr LHS) { - // If this is a binop, find its precedence. - while (1) { - int TokPrec = GetTokPrecedence(); - - // If this is a binop that binds at least as tightly as the current binop, - // consume it, otherwise we are done. - if (TokPrec < ExprPrec) - return LHS; +.. literalinclude:: /../examples/Kaleidoscope/Chapter2/toy.cpp + :language: c++ + :start-after: chapter2-ParseBinOpRHS1 + :end-before: chapter2-ParseBinOpRHS1 + :dedent: 0 This code gets the precedence of the current token and checks to see if if is too low. Because we defined invalid tokens to have a precedence of @@ -459,16 +303,11 @@ that the token is a binary operator and that it will be included in this expression: -.. code-block:: c++ - - // Okay, we know this is a binop. - int BinOp = CurTok; - getNextToken(); // eat binop - - // Parse the primary expression after the binary operator. - auto RHS = ParsePrimary(); - if (!RHS) - return nullptr; +.. literalinclude:: /../examples/Kaleidoscope/Chapter2/toy.cpp + :language: c++ + :start-after: chapter2-ParseBinOpRHS2 + :end-before: chapter2-ParseBinOpRHS2 + :dedent: 4 As such, this code eats (and remembers) the binary operator and then parses the primary expression that follows. This builds up the whole @@ -520,21 +359,11 @@ variable. The code to do this is surprisingly simple (code from the above two blocks duplicated for context): -.. code-block:: c++ - - // If BinOp binds less tightly with RHS than the operator after RHS, let - // the pending operator take RHS as its LHS. - int NextPrec = GetTokPrecedence(); - if (TokPrec < NextPrec) { - RHS = ParseBinOpRHS(TokPrec+1, std::move(RHS)); - if (!RHS) - return nullptr; - } - // Merge LHS/RHS. - LHS = llvm::make_unique(BinOp, std::move(LHS), - std::move(RHS)); - } // loop around to the top of the while loop. - } +.. literalinclude:: /../examples/Kaleidoscope/Chapter2/toy.cpp + :language: c++ + :start-after: chapter2-ParseBinOpRHS3 + :end-before: chapter2-ParseBinOpRHS3 + :dedent: 0 At this point, we know that the binary operator to the RHS of our primary has higher precedence than the binop we are currently parsing. @@ -567,76 +396,40 @@ straight-forward and not very interesting (once you've survived expressions): -.. code-block:: c++ - - /// prototype - /// ::= id '(' id* ')' - static std::unique_ptr ParsePrototype() { - if (CurTok != tok_identifier) - return LogErrorP("Expected function name in prototype"); - - std::string FnName = IdentifierStr; - getNextToken(); - - if (CurTok != '(') - return LogErrorP("Expected '(' in prototype"); - - // Read the list of argument names. - std::vector ArgNames; - while (getNextToken() == tok_identifier) - ArgNames.push_back(IdentifierStr); - if (CurTok != ')') - return LogErrorP("Expected ')' in prototype"); - - // success. - getNextToken(); // eat ')'. - - return llvm::make_unique(FnName, std::move(ArgNames)); - } +.. literalinclude:: /../examples/Kaleidoscope/Chapter2/toy.cpp + :language: c++ + :start-after: chapter2-ParsePrototype + :end-before: chapter2-ParsePrototype + :dedent: 0 Given this, a function definition is very simple, just a prototype plus an expression to implement the body: -.. code-block:: c++ - - /// definition ::= 'def' prototype expression - static std::unique_ptr ParseDefinition() { - getNextToken(); // eat def. - auto Proto = ParsePrototype(); - if (!Proto) return nullptr; - - if (auto E = ParseExpression()) - return llvm::make_unique(std::move(Proto), std::move(E)); - return nullptr; - } +.. literalinclude:: /../examples/Kaleidoscope/Chapter2/toy.cpp + :language: c++ + :start-after: chapter2-ParseDefinition + :end-before: chapter2-ParseDefinition + :dedent: 0 In addition, we support 'extern' to declare functions like 'sin' and 'cos' as well as to support forward declaration of user functions. These 'extern's are just prototypes with no body: -.. code-block:: c++ - - /// external ::= 'extern' prototype - static std::unique_ptr ParseExtern() { - getNextToken(); // eat extern. - return ParsePrototype(); - } +.. literalinclude:: /../examples/Kaleidoscope/Chapter2/toy.cpp + :language: c++ + :start-after: chapter2-ParseExtern + :end-before: chapter2-ParseExtern + :dedent: 0 Finally, we'll also let the user type in arbitrary top-level expressions and evaluate them on the fly. We will handle this by defining anonymous nullary (zero argument) functions for them: -.. code-block:: c++ - - /// toplevelexpr ::= expression - static std::unique_ptr ParseTopLevelExpr() { - if (auto E = ParseExpression()) { - // Make an anonymous proto. - auto Proto = llvm::make_unique("", std::vector()); - return llvm::make_unique(std::move(Proto), std::move(E)); - } - return nullptr; - } +.. literalinclude:: /../examples/Kaleidoscope/Chapter2/toy.cpp + :language: c++ + :start-after: chapter2-ParseTopLevelExpr + :end-before: chapter2-ParseTopLevelExpr + :dedent: 0 Now that we have all the pieces, let's build a little driver that will let us actually *execute* this code we've built! @@ -649,30 +442,11 @@ include the top-level loop. See `below <#full-code-listing>`_ for full code in the "Top-Level Parsing" section. -.. code-block:: c++ - - /// top ::= definition | external | expression | ';' - static void MainLoop() { - while (1) { - fprintf(stderr, "ready> "); - switch (CurTok) { - case tok_eof: - return; - case ';': // ignore top-level semicolons. - getNextToken(); - break; - case tok_def: - HandleDefinition(); - break; - case tok_extern: - HandleExtern(); - break; - default: - HandleTopLevelExpression(); - break; - } - } - } +.. literalinclude:: /../examples/Kaleidoscope/Chapter2/toy.cpp + :language: c++ + :start-after: chapter2-MainLoop + :end-before: chapter2-MainLoop + :dedent: 0 The most interesting part of this is that we ignore top-level semicolons. Why is this, you ask? The basic reason is that if you type Index: docs/tutorial/LangImpl03.rst =================================================================== --- docs/tutorial/LangImpl03.rst +++ docs/tutorial/LangImpl03.rst @@ -27,26 +27,13 @@ In order to generate LLVM IR, we want some simple setup to get started. First we define virtual code generation (codegen) methods in each AST -class: +class (for brevity only the ExprAST and NumberExprAST classes are shown here): -.. code-block:: c++ - - /// ExprAST - Base class for all expression nodes. - class ExprAST { - public: - virtual ~ExprAST() {} - virtual Value *codegen() = 0; - }; - - /// NumberExprAST - Expression class for numeric literals like "1.0". - class NumberExprAST : public ExprAST { - double Val; - - public: - NumberExprAST(double Val) : Val(Val) {} - virtual Value *codegen(); - }; - ... +.. literalinclude:: /../examples/Kaleidoscope/Chapter3/toy.cpp + :language: c++ + :start-after: chapter3-ExprAST-codegen + :end-before: chapter3-ExprAST-codegen + :emphasize-lines: 6,16 The codegen() method says to emit IR for that AST node along with all the things it depends on, and they all return an LLVM Value object. @@ -71,17 +58,10 @@ parser, which will be used to report errors found during code generation (for example, use of an undeclared parameter): -.. code-block:: c++ - - static LLVMContext TheContext; - static IRBuilder<> Builder(TheContext); - static std::unique_ptr TheModule; - static std::map NamedValues; - - Value *LogErrorV(const char *Str) { - LogError(Str); - return nullptr; - } +.. literalinclude:: /../examples/Kaleidoscope/Chapter3/toy.cpp + :language: c++ + :start-after: chapter3-globals + :end-before: chapter3-globals The static variables will be used during code generation. ``TheContext`` is an opaque object that owns a lot of core LLVM data structures, such as @@ -119,11 +99,10 @@ than 45 lines of commented code for all four of our expression nodes. First we'll do numeric literals: -.. code-block:: c++ - - Value *NumberExprAST::codegen() { - return ConstantFP::get(TheContext, APFloat(Val)); - } +.. literalinclude:: /../examples/Kaleidoscope/Chapter3/toy.cpp + :language: c++ + :start-after: chapter3-NumberExprAST-codegen + :end-before: chapter3-NumberExprAST-codegen In the LLVM IR, numeric constants are represented with the ``ConstantFP`` class, which holds the numeric value in an ``APFloat`` @@ -133,15 +112,10 @@ are all uniqued together and shared. For this reason, the API uses the "foo::get(...)" idiom instead of "new foo(..)" or "foo::Create(..)". -.. code-block:: c++ - - Value *VariableExprAST::codegen() { - // Look this variable up in the function. - Value *V = NamedValues[Name]; - if (!V) - LogErrorV("Unknown variable name"); - return V; - } +.. literalinclude:: /../examples/Kaleidoscope/Chapter3/toy.cpp + :language: c++ + :start-after: chapter3-VariableExprAST-codegen + :end-before: chapter3-VariableExprAST-codegen References to variables are also quite simple using LLVM. In the simple version of Kaleidoscope, we assume that the variable has already been @@ -153,30 +127,10 @@ variables `_ in the symbol table, and for `local variables `_. -.. code-block:: c++ - - Value *BinaryExprAST::codegen() { - Value *L = LHS->codegen(); - Value *R = RHS->codegen(); - if (!L || !R) - return nullptr; - - switch (Op) { - case '+': - return Builder.CreateFAdd(L, R, "addtmp"); - case '-': - return Builder.CreateFSub(L, R, "subtmp"); - case '*': - return Builder.CreateFMul(L, R, "multmp"); - case '<': - L = Builder.CreateFCmpULT(L, R, "cmptmp"); - // Convert bool 0/1 to double 0.0 or 1.0 - return Builder.CreateUIToFP(L, Type::getDoubleTy(TheContext), - "booltmp"); - default: - return LogErrorV("invalid binary operator"); - } - } +.. literalinclude:: /../examples/Kaleidoscope/Chapter3/toy.cpp + :language: c++ + :start-after: chapter3-BinaryExprAST-codegen + :end-before: chapter3-BinaryExprAST-codegen Binary operators start to get more interesting. The basic idea here is that we recursively emit code for the left-hand side of the expression, @@ -214,27 +168,10 @@ instruction <../LangRef.html#sitofp-to-instruction>`_, the Kaleidoscope '<' operator would return 0.0 and -1.0, depending on the input value. -.. code-block:: c++ - - Value *CallExprAST::codegen() { - // Look up the name in the global module table. - Function *CalleeF = TheModule->getFunction(Callee); - if (!CalleeF) - return LogErrorV("Unknown function referenced"); - - // If argument mismatch error. - if (CalleeF->arg_size() != Args.size()) - return LogErrorV("Incorrect # arguments passed"); - - std::vector ArgsV; - for (unsigned i = 0, e = Args.size(); i != e; ++i) { - ArgsV.push_back(Args[i]->codegen()); - if (!ArgsV.back()) - return nullptr; - } - - return Builder.CreateCall(CalleeF, ArgsV, "calltmp"); - } +.. literalinclude:: /../examples/Kaleidoscope/Chapter3/toy.cpp + :language: c++ + :start-after: chapter3-CallExprAST-codegen + :end-before: chapter3-CallExprAST-codegen Code generation for function calls is quite straightforward with LLVM. The code above initially does a function name lookup in the LLVM Module's symbol table. @@ -265,17 +202,10 @@ function bodies and external function declarations. The code starts with: -.. code-block:: c++ - - Function *PrototypeAST::codegen() { - // Make the function type: double(double,double) etc. - std::vector Doubles(Args.size(), - Type::getDoubleTy(TheContext)); - FunctionType *FT = - FunctionType::get(Type::getDoubleTy(TheContext), Doubles, false); - - Function *F = - Function::Create(FT, Function::ExternalLinkage, Name, TheModule); +.. literalinclude:: /../examples/Kaleidoscope/Chapter3/toy.cpp + :language: c++ + :start-after: chapter3-PrototypeAST-codegen1 + :end-before: chapter3-PrototypeAST-codegen1 This code packs a lot of power into a few lines. Note first that this function returns a "Function\*" instead of a "Value\*". Because a @@ -301,14 +231,10 @@ specified: since "``TheModule``" is specified, this name is registered in "``TheModule``"s symbol table. -.. code-block:: c++ - - // Set names for all arguments. - unsigned Idx = 0; - for (auto &Arg : F->args()) - Arg.setName(Args[Idx++]); - - return F; +.. literalinclude:: /../examples/Kaleidoscope/Chapter3/toy.cpp + :language: c++ + :start-after: chapter3-PrototypeAST-codegen2 + :end-before: chapter3-PrototypeAST-codegen2 Finally, we set the name of each of the function's arguments according to the names given in the Prototype. This step isn't strictly necessary, but keeping @@ -321,38 +247,23 @@ is as far as we need to go. For function definitions however, we need to codegen and attach a function body. -.. code-block:: c++ - - Function *FunctionAST::codegen() { - // First, check for an existing function from a previous 'extern' declaration. - Function *TheFunction = TheModule->getFunction(Proto->getName()); - - if (!TheFunction) - TheFunction = Proto->codegen(); - - if (!TheFunction) - return nullptr; - - if (!TheFunction->empty()) - return (Function*)LogErrorV("Function cannot be redefined."); +.. literalinclude:: /../examples/Kaleidoscope/Chapter3/toy.cpp + :language: c++ + :start-after: chapter3-FunctionAST-codegen1 + :end-before: chapter3-FunctionAST-codegen1 For function definitions, we start by searching TheModule's symbol table for an existing version of this function, in case one has already been created using an 'extern' statement. If Module::getFunction returns null then no previous version -exists, so we'll codegen one from the Prototype. In either case, we want to -assert that the function is empty (i.e. has no body yet) before we start. - -.. code-block:: c++ +exists, so we'll codegen one from the Prototype. - // Create a new basic block to start insertion into. - BasicBlock *BB = BasicBlock::Create(TheContext, "entry", TheFunction); - Builder.SetInsertPoint(BB); - // Record the function arguments in the NamedValues map. - NamedValues.clear(); - for (auto &Arg : TheFunction->args()) - NamedValues[Arg.getName()] = &Arg; +.. literalinclude:: /../examples/Kaleidoscope/Chapter3/toy.cpp + :language: c++ + :start-after: chapter3-FunctionAST-codegen2 + :end-before: chapter3-FunctionAST-codegen2 + :dedent: 2 Now we get to the point where the ``Builder`` is set up. The first line creates a new `basic block `_ @@ -367,17 +278,12 @@ Next we add the function arguments to the NamedValues map (after first clearing it out) so that they're accessible to ``VariableExprAST`` nodes. -.. code-block:: c++ - if (Value *RetVal = Body->codegen()) { - // Finish off the function. - Builder.CreateRet(RetVal); - - // Validate the generated code, checking for consistency. - verifyFunction(*TheFunction); - - return TheFunction; - } +.. literalinclude:: /../examples/Kaleidoscope/Chapter3/toy.cpp + :language: c++ + :start-after: chapter3-FunctionAST-codegen3 + :end-before: chapter3-FunctionAST-codegen3 + :dedent: 2 Once the insertion point has been set up and the NamedValues map populated, we call the ``codegen()`` method for the root expression of the function. If no @@ -390,12 +296,11 @@ right. Using this is important: it can catch a lot of bugs. Once the function is finished and validated, we return it. -.. code-block:: c++ - // Error reading body, remove function. - TheFunction->eraseFromParent(); - return nullptr; - } +.. literalinclude:: /../examples/Kaleidoscope/Chapter3/toy.cpp + :language: c++ + :start-after: chapter3-FunctionAST-codegen4 + :end-before: chapter3-FunctionAST-codegen4 The only piece left here is handling of the error case. For simplicity, we handle this by merely deleting the function we produced with the Index: docs/tutorial/LangImpl04.rst =================================================================== --- docs/tutorial/LangImpl04.rst +++ docs/tutorial/LangImpl04.rst @@ -127,26 +127,11 @@ write a function to create and initialize both the module and pass manager for us: -.. code-block:: c++ - - void InitializeModuleAndPassManager(void) { - // Open a new module. - TheModule = llvm::make_unique("my cool jit", TheContext); - - // Create a new pass manager attached to it. - TheFPM = llvm::make_unique(TheModule.get()); - - // Do simple "peephole" optimizations and bit-twiddling optzns. - TheFPM->add(createInstructionCombiningPass()); - // Reassociate expressions. - TheFPM->add(createReassociatePass()); - // Eliminate Common SubExpressions. - TheFPM->add(createGVNPass()); - // Simplify the control flow graph (deleting unreachable blocks, etc). - TheFPM->add(createCFGSimplificationPass()); - - TheFPM->doInitialization(); - } +.. literalinclude:: /../examples/Kaleidoscope/Chapter4/toy.cpp + :language: c++ + :start-after: chapter4-InitializeModuleAndPassManager + :end-before: chapter4-InitializeModuleAndPassManager + :lines: 1-3,5- This code initializes the global module ``TheModule``, and the function pass manager ``TheFPM``, which is attached to ``TheModule``. Once the pass manager is @@ -161,20 +146,11 @@ running it after our newly created function is constructed (in ``FunctionAST::codegen()``), but before it is returned to the client: -.. code-block:: c++ - - if (Value *RetVal = Body->codegen()) { - // Finish off the function. - Builder.CreateRet(RetVal); - - // Validate the generated code, checking for consistency. - verifyFunction(*TheFunction); - - // Optimize the function. - TheFPM->run(*TheFunction); - - return TheFunction; - } +.. literalinclude:: /../examples/Kaleidoscope/Chapter4/toy.cpp + :language: c++ + :start-after: chapter4-run-passes + :end-before: chapter4-run-passes + :dedent: 2 As you can see, this is pretty straightforward. The ``FunctionPassManager`` optimizes and updates the LLVM Function\* in @@ -229,46 +205,24 @@ adding a global variable ``TheJIT``, and initializing it in ``main``: -.. code-block:: c++ - - static std::unique_ptr TheJIT; - ... - int main() { - InitializeNativeTarget(); - InitializeNativeTargetAsmPrinter(); - InitializeNativeTargetAsmParser(); +.. literalinclude:: /../examples/Kaleidoscope/Chapter4/toy.cpp + :language: c++ + :start-after: chapter4-TheJIT + :end-before: chapter4-TheJIT - // Install standard binary operators. - // 1 is lowest precedence. - BinopPrecedence['<'] = 10; - BinopPrecedence['+'] = 20; - BinopPrecedence['-'] = 20; - BinopPrecedence['*'] = 40; // highest. - - // Prime the first token. - fprintf(stderr, "ready> "); - getNextToken(); - - TheJIT = llvm::make_unique(); - - // Run the main "interpreter loop" now. - MainLoop(); - - return 0; - } +.. literalinclude:: /../examples/Kaleidoscope/Chapter4/toy.cpp + :language: c++ + :start-after: chapter4-main + :end-before: chapter4-main We also need to setup the data layout for the JIT: -.. code-block:: c++ - - void InitializeModuleAndPassManager(void) { - // Open a new module. - TheModule = llvm::make_unique("my cool jit", TheContext); - TheModule->setDataLayout(TheJIT->getTargetMachine().createDataLayout()); - - // Create a new pass manager attached to it. - TheFPM = llvm::make_unique(TheModule.get()); - ... +.. literalinclude:: /../examples/Kaleidoscope/Chapter4/toy.cpp + :language: c++ + :start-after: chapter4-InitializeModuleAndPassManager + :end-before: chapter4-InitializeModuleAndPassManager + :emphasize-lines: 4 + :lines: -7 The KaleidoscopeJIT class is a simple JIT built specifically for these tutorials, available inside the LLVM source code @@ -283,30 +237,10 @@ We can take this simple API and change our code that parses top-level expressions to look like this: -.. code-block:: c++ - - static void HandleTopLevelExpression() { - // Evaluate a top-level expression into an anonymous function. - if (auto FnAST = ParseTopLevelExpr()) { - if (FnAST->codegen()) { - - // JIT the module containing the anonymous expression, keeping a handle so - // we can free it later. - auto H = TheJIT->addModule(std::move(TheModule)); - InitializeModuleAndPassManager(); - - // Search the JIT for the __anon_expr symbol. - auto ExprSymbol = TheJIT->findSymbol("__anon_expr"); - assert(ExprSymbol && "Function not found"); - - // Get the symbol's address and cast it to the right type (takes no - // arguments, returns a double) so we can call it as a native function. - double (*FP)() = (double (*)())(intptr_t)ExprSymbol.getAddress(); - fprintf(stderr, "Evaluated to %f\n", FP()); - - // Delete the anonymous expression module from the JIT. - TheJIT->removeModule(H); - } +.. literalinclude:: /../examples/Kaleidoscope/Chapter4/toy.cpp + :language: c++ + :start-after: chapter4-HandleTopLevelExpression + :end-before: chapter4-HandleTopLevelExpression If parsing and codegen succeeed, the next step is to add the module containing the top-level expression to the JIT. We do this by calling addModule, which @@ -427,44 +361,23 @@ To allow each function to live in its own module we'll need a way to re-generate previous function declarations into each new module we open: -.. code-block:: c++ - - static std::unique_ptr TheJIT; - - ... - - Function *getFunction(std::string Name) { - // First, see if the function has already been added to the current module. - if (auto *F = TheModule->getFunction(Name)) - return F; - - // If not, check whether we can codegen the declaration from some existing - // prototype. - auto FI = FunctionProtos.find(Name); - if (FI != FunctionProtos.end()) - return FI->second->codegen(); - - // If no existing prototype exists, return null. - return nullptr; - } - - ... - - Value *CallExprAST::codegen() { - // Look up the name in the global module table. - Function *CalleeF = getFunction(Callee); - - ... +.. literalinclude:: /../examples/Kaleidoscope/Chapter4/toy.cpp + :language: c++ + :start-after: chapter4-getFunction + :end-before: chapter4-getFunction - Function *FunctionAST::codegen() { - // Transfer ownership of the prototype to the FunctionProtos map, but keep a - // reference to it for use below. - auto &P = *Proto; - FunctionProtos[Proto->getName()] = std::move(Proto); - Function *TheFunction = getFunction(P.getName()); - if (!TheFunction) - return nullptr; +.. literalinclude:: /../examples/Kaleidoscope/Chapter4/toy.cpp + :language: c++ + :start-after: chapter4-CallExprAST-codegen + :end-before: chapter4-CallExprAST-codegen + :lines: 1-5 + :emphasize-lines: 3 +.. literalinclude:: /../examples/Kaleidoscope/Chapter4/toy.cpp + :language: c++ + :start-after: chapter4-FunctionAST-codegen + :end-before: chapter4-FunctionAST-codegen + :lines: 1-8 To enable this, we'll start by adding a new global, ``FunctionProtos``, that holds the most recent prototype for each function. We'll also add a convenience @@ -479,36 +392,10 @@ We also need to update HandleDefinition and HandleExtern: -.. code-block:: c++ - - static void HandleDefinition() { - if (auto FnAST = ParseDefinition()) { - if (auto *FnIR = FnAST->codegen()) { - fprintf(stderr, "Read function definition:"); - FnIR->print(errs()); - fprintf(stderr, "\n"); - TheJIT->addModule(std::move(TheModule)); - InitializeModuleAndPassManager(); - } - } else { - // Skip token for error recovery. - getNextToken(); - } - } - - static void HandleExtern() { - if (auto ProtoAST = ParseExtern()) { - if (auto *FnIR = ProtoAST->codegen()) { - fprintf(stderr, "Read extern: "); - FnIR->print(errs()); - fprintf(stderr, "\n"); - FunctionProtos[ProtoAST->getName()] = std::move(ProtoAST); - } - } else { - // Skip token for error recovery. - getNextToken(); - } - } +.. literalinclude:: /../examples/Kaleidoscope/Chapter4/toy.cpp + :language: c++ + :start-after: chapter4-HandleDefinition+HandleExtern + :end-before: chapter4-HandleDefinition+HandleExtern In HandleDefinition, we add two lines to transfer the newly defined function to the JIT and open a new module. In HandleExtern, we just need to add one line to @@ -595,19 +482,10 @@ the language by writing arbitrary C++ code to implement operations. For example, if we add: -.. code-block:: c++ - - #ifdef LLVM_ON_WIN32 - #define DLLEXPORT __declspec(dllexport) - #else - #define DLLEXPORT - #endif - - /// putchard - putchar that takes a double and returns 0. - extern "C" DLLEXPORT double putchard(double X) { - fputc((char)X, stderr); - return 0; - } +.. literalinclude:: /../examples/Kaleidoscope/Chapter4/toy.cpp + :language: c++ + :start-after: chapter4-extern + :end-before: chapter4-extern Note, that for Windows we need to actually export the functions because the dynamic symbol loader will use GetProcAddress to find the symbols. Index: docs/tutorial/LangImpl05.rst =================================================================== --- docs/tutorial/LangImpl05.rst +++ docs/tutorial/LangImpl05.rst @@ -63,49 +63,33 @@ The lexer extensions are straightforward. First we add new enum values for the relevant tokens: -.. code-block:: c++ - - // control - tok_if = -6, - tok_then = -7, - tok_else = -8, +.. literalinclude:: /../examples/Kaleidoscope/Chapter5/toy.cpp + :language: c++ + :start-after: chapter5-tokens1 + :end-before: chapter5-tokens1 + :lines: 1-4 + :dedent: 2 Once we have that, we recognize the new keywords in the lexer. This is pretty simple stuff: -.. code-block:: c++ - - ... - if (IdentifierStr == "def") - return tok_def; - if (IdentifierStr == "extern") - return tok_extern; - if (IdentifierStr == "if") - return tok_if; - if (IdentifierStr == "then") - return tok_then; - if (IdentifierStr == "else") - return tok_else; - return tok_identifier; +.. literalinclude:: /../examples/Kaleidoscope/Chapter5/toy.cpp + :language: c++ + :start-after: chapter5-gettok + :end-before: chapter5-gettok + :lines: -10,15 + :emphasize-lines: 5-10 + :dedent: 4 AST Extensions for If/Then/Else ------------------------------- To represent the new expression we add a new AST node for it: -.. code-block:: c++ - - /// IfExprAST - Expression class for if/then/else. - class IfExprAST : public ExprAST { - std::unique_ptr Cond, Then, Else; - - public: - IfExprAST(std::unique_ptr Cond, std::unique_ptr Then, - std::unique_ptr Else) - : Cond(std::move(Cond)), Then(std::move(Then)), Else(std::move(Else)) {} - - Value *codegen() override; - }; +.. literalinclude:: /../examples/Kaleidoscope/Chapter5/toy.cpp + :language: c++ + :start-after: chapter5-IfExprAST + :end-before: chapter5-IfExprAST The AST node just has pointers to the various subexpressions. @@ -116,56 +100,19 @@ the AST node to build, our parsing logic is relatively straightforward. First we define a new parsing function: -.. code-block:: c++ - - /// ifexpr ::= 'if' expression 'then' expression 'else' expression - static std::unique_ptr ParseIfExpr() { - getNextToken(); // eat the if. - - // condition. - auto Cond = ParseExpression(); - if (!Cond) - return nullptr; - - if (CurTok != tok_then) - return LogError("expected then"); - getNextToken(); // eat the then - - auto Then = ParseExpression(); - if (!Then) - return nullptr; - - if (CurTok != tok_else) - return LogError("expected else"); - - getNextToken(); - - auto Else = ParseExpression(); - if (!Else) - return nullptr; - - return llvm::make_unique(std::move(Cond), std::move(Then), - std::move(Else)); - } +.. literalinclude:: /../examples/Kaleidoscope/Chapter5/toy.cpp + :language: c++ + :start-after: chapter5-ParseIfExpr + :end-before: chapter5-ParseIfExpr Next we hook it up as a primary expression: -.. code-block:: c++ - - static std::unique_ptr ParsePrimary() { - switch (CurTok) { - default: - return LogError("unknown token when expecting an expression"); - case tok_identifier: - return ParseIdentifierExpr(); - case tok_number: - return ParseNumberExpr(); - case '(': - return ParseParenExpr(); - case tok_if: - return ParseIfExpr(); - } - } +.. literalinclude:: /../examples/Kaleidoscope/Chapter5/toy.cpp + :language: c++ + :start-after: chapter5-ParsePrimary + :end-before: chapter5-ParsePrimary + :lines: -12,15- + :emphasize-lines: 11-12 LLVM IR for If/Then/Else ------------------------ @@ -284,33 +231,20 @@ In order to generate code for this, we implement the ``codegen`` method for ``IfExprAST``: -.. code-block:: c++ - - Value *IfExprAST::codegen() { - Value *CondV = Cond->codegen(); - if (!CondV) - return nullptr; - - // Convert condition to a bool by comparing non-equal to 0.0. - CondV = Builder.CreateFCmpONE( - CondV, ConstantFP::get(TheContext, APFloat(0.0)), "ifcond"); +.. literalinclude:: /../examples/Kaleidoscope/Chapter5/toy.cpp + :language: c++ + :start-after: chapter5-IfExprAST-codegen1 + :end-before: chapter5-IfExprAST-codegen1 This code is straightforward and similar to what we saw before. We emit the expression for the condition, then compare that value to zero to get a truth value as a 1-bit (bool) value. -.. code-block:: c++ - - Function *TheFunction = Builder.GetInsertBlock()->getParent(); - - // Create blocks for the then and else cases. Insert the 'then' block at the - // end of the function. - BasicBlock *ThenBB = - BasicBlock::Create(TheContext, "then", TheFunction); - BasicBlock *ElseBB = BasicBlock::Create(TheContext, "else"); - BasicBlock *MergeBB = BasicBlock::Create(TheContext, "ifcont"); - - Builder.CreateCondBr(CondV, ThenBB, ElseBB); +.. literalinclude:: /../examples/Kaleidoscope/Chapter5/toy.cpp + :language: c++ + :start-after: chapter5-IfExprAST-codegen2 + :end-before: chapter5-IfExprAST-codegen2 + :dedent: 2 This code creates the basic blocks that are related to the if/then/else statement, and correspond directly to the blocks in the example above. @@ -333,18 +267,11 @@ inserted into the function yet. This is all ok: it is the standard way that LLVM supports forward references. -.. code-block:: c++ - - // Emit then value. - Builder.SetInsertPoint(ThenBB); - - Value *ThenV = Then->codegen(); - if (!ThenV) - return nullptr; - - Builder.CreateBr(MergeBB); - // Codegen of 'Then' can change the current block, update ThenBB for the PHI. - ThenBB = Builder.GetInsertBlock(); +.. literalinclude:: /../examples/Kaleidoscope/Chapter5/toy.cpp + :language: c++ + :start-after: chapter5-IfExprAST-codegen3 + :end-before: chapter5-IfExprAST-codegen3 + :dedent: 2 After the conditional branch is inserted, we move the builder to start inserting into the "then" block. Strictly speaking, this call moves the @@ -374,19 +301,11 @@ the notion of the current block, we are required to get an up-to-date value for code that will set up the Phi node. -.. code-block:: c++ - - // Emit else block. - TheFunction->getBasicBlockList().push_back(ElseBB); - Builder.SetInsertPoint(ElseBB); - - Value *ElseV = Else->codegen(); - if (!ElseV) - return nullptr; - - Builder.CreateBr(MergeBB); - // codegen of 'Else' can change the current block, update ElseBB for the PHI. - ElseBB = Builder.GetInsertBlock(); +.. literalinclude:: /../examples/Kaleidoscope/Chapter5/toy.cpp + :language: c++ + :start-after: chapter5-IfExprAST-codegen4 + :end-before: chapter5-IfExprAST-codegen4 + :dedent: 2 Code generation for the 'else' block is basically identical to codegen for the 'then' block. The only significant difference is the first line, @@ -395,18 +314,10 @@ 'then' and 'else' blocks are emitted, we can finish up with the merge code: -.. code-block:: c++ - - // Emit merge block. - TheFunction->getBasicBlockList().push_back(MergeBB); - Builder.SetInsertPoint(MergeBB); - PHINode *PN = - Builder.CreatePHI(Type::getDoubleTy(TheContext), 2, "iftmp"); - - PN->addIncoming(ThenV, ThenBB); - PN->addIncoming(ElseV, ElseBB); - return PN; - } +.. literalinclude:: /../examples/Kaleidoscope/Chapter5/toy.cpp + :language: c++ + :start-after: chapter5-IfExprAST-codegen5 + :end-before: chapter5-IfExprAST-codegen5 The first two lines here are now familiar: the first adds the "merge" block to the Function object (it was previously floating, like the else @@ -458,29 +369,23 @@ The lexer extensions are the same sort of thing as for if/then/else: -.. code-block:: c++ - - ... in enum Token ... - // control - tok_if = -6, tok_then = -7, tok_else = -8, - tok_for = -9, tok_in = -10 - - ... in gettok ... - if (IdentifierStr == "def") - return tok_def; - if (IdentifierStr == "extern") - return tok_extern; - if (IdentifierStr == "if") - return tok_if; - if (IdentifierStr == "then") - return tok_then; - if (IdentifierStr == "else") - return tok_else; - if (IdentifierStr == "for") - return tok_for; - if (IdentifierStr == "in") - return tok_in; - return tok_identifier; +In the Token enum: + +.. literalinclude:: /../examples/Kaleidoscope/Chapter5/toy.cpp + :language: c++ + :start-after: chapter5-tokens1 + :end-before: chapter5-tokens1 + :emphasize-lines: 5-6 + :dedent: 2 + +In the gettok function: + +.. literalinclude:: /../examples/Kaleidoscope/Chapter5/toy.cpp + :language: c++ + :start-after: chapter5-gettok + :end-before: chapter5-gettok + :emphasize-lines: 11-14 + :dedent: 4 AST Extensions for the 'for' Loop --------------------------------- @@ -488,22 +393,10 @@ The AST node is just as simple. It basically boils down to capturing the variable name and the constituent expressions in the node. -.. code-block:: c++ - - /// ForExprAST - Expression class for for/in. - class ForExprAST : public ExprAST { - std::string VarName; - std::unique_ptr Start, End, Step, Body; - - public: - ForExprAST(const std::string &VarName, std::unique_ptr Start, - std::unique_ptr End, std::unique_ptr Step, - std::unique_ptr Body) - : VarName(VarName), Start(std::move(Start)), End(std::move(End)), - Step(std::move(Step)), Body(std::move(Body)) {} - - Value *codegen() override; - }; +.. literalinclude:: /../examples/Kaleidoscope/Chapter5/toy.cpp + :language: c++ + :start-after: chapter5-ForExprAST + :end-before: chapter5-ForExprAST Parser Extensions for the 'for' Loop ------------------------------------ @@ -513,76 +406,18 @@ checking to see if the second comma is present. If not, it sets the step value to null in the AST node: -.. code-block:: c++ - - /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression - static std::unique_ptr ParseForExpr() { - getNextToken(); // eat the for. - - if (CurTok != tok_identifier) - return LogError("expected identifier after for"); - - std::string IdName = IdentifierStr; - getNextToken(); // eat identifier. - - if (CurTok != '=') - return LogError("expected '=' after for"); - getNextToken(); // eat '='. - - - auto Start = ParseExpression(); - if (!Start) - return nullptr; - if (CurTok != ',') - return LogError("expected ',' after for start value"); - getNextToken(); - - auto End = ParseExpression(); - if (!End) - return nullptr; - - // The step value is optional. - std::unique_ptr Step; - if (CurTok == ',') { - getNextToken(); - Step = ParseExpression(); - if (!Step) - return nullptr; - } - - if (CurTok != tok_in) - return LogError("expected 'in' after for"); - getNextToken(); // eat 'in'. - - auto Body = ParseExpression(); - if (!Body) - return nullptr; - - return llvm::make_unique(IdName, std::move(Start), - std::move(End), std::move(Step), - std::move(Body)); - } +.. literalinclude:: /../examples/Kaleidoscope/Chapter5/toy.cpp + :language: c++ + :start-after: chapter5-ParseForExpr + :end-before: chapter5-ParseForExpr And again we hook it up as a primary expression: -.. code-block:: c++ - - static std::unique_ptr ParsePrimary() { - switch (CurTok) { - default: - return LogError("unknown token when expecting an expression"); - case tok_identifier: - return ParseIdentifierExpr(); - case tok_number: - return ParseNumberExpr(); - case '(': - return ParseParenExpr(); - case tok_if: - return ParseIfExpr(); - case tok_for: - return ParseForExpr(); - } - } +.. literalinclude:: /../examples/Kaleidoscope/Chapter5/toy.cpp + :language: c++ + :start-after: chapter5-ParsePrimary + :end-before: chapter5-ParsePrimary + :emphasize-lines: 13-14 LLVM IR for the 'for' Loop -------------------------- @@ -628,13 +463,10 @@ The first part of codegen is very simple: we just output the start expression for the loop value: -.. code-block:: c++ - - Value *ForExprAST::codegen() { - // Emit the start code first, without 'variable' in scope. - Value *StartVal = Start->codegen(); - if (!StartVal) - return nullptr; +.. literalinclude:: /../examples/Kaleidoscope/Chapter5/toy.cpp + :language: c++ + :start-after: chapter5-ForExprAST-codegen1 + :end-before: chapter5-ForExprAST-codegen1 With this out of the way, the next step is to set up the LLVM basic block for the start of the loop body. In the case above, the whole loop @@ -642,17 +474,11 @@ of multiple blocks (e.g. if it contains an if/then/else or a for/in expression). -.. code-block:: c++ - - // Make the new basic block for the loop header, inserting after current - // block. - Function *TheFunction = Builder.GetInsertBlock()->getParent(); - BasicBlock *PreheaderBB = Builder.GetInsertBlock(); - BasicBlock *LoopBB = - BasicBlock::Create(TheContext, "loop", TheFunction); - - // Insert an explicit fall through from the current block to the LoopBB. - Builder.CreateBr(LoopBB); +.. literalinclude:: /../examples/Kaleidoscope/Chapter5/toy.cpp + :language: c++ + :start-after: chapter5-ForExprAST-codegen2 + :end-before: chapter5-ForExprAST-codegen2 + :dedent: 2 This code is similar to what we saw for if/then/else. Because we will need it to create the Phi node, we remember the block that falls through @@ -660,15 +486,11 @@ the loop and create an unconditional branch for the fall-through between the two blocks. -.. code-block:: c++ - - // Start insertion in LoopBB. - Builder.SetInsertPoint(LoopBB); - - // Start the PHI node with an entry for Start. - PHINode *Variable = Builder.CreatePHI(Type::getDoubleTy(TheContext), - 2, VarName.c_str()); - Variable->addIncoming(StartVal, PreheaderBB); +.. literalinclude:: /../examples/Kaleidoscope/Chapter5/toy.cpp + :language: c++ + :start-after: chapter5-ForExprAST-codegen3 + :end-before: chapter5-ForExprAST-codegen3 + :dedent: 2 Now that the "preheader" for the loop is set up, we switch to emitting code for the loop body. To begin with, we move the insertion point and @@ -677,18 +499,11 @@ node. Note that the Phi will eventually get a second value for the backedge, but we can't set it up yet (because it doesn't exist!). -.. code-block:: c++ - - // Within the loop, the variable is defined equal to the PHI node. If it - // shadows an existing variable, we have to restore it, so save it now. - Value *OldVal = NamedValues[VarName]; - NamedValues[VarName] = Variable; - - // Emit the body of the loop. This, like any other expr, can change the - // current BB. Note that we ignore the value computed by the body, but don't - // allow an error. - if (!Body->codegen()) - return nullptr; +.. literalinclude:: /../examples/Kaleidoscope/Chapter5/toy.cpp + :language: c++ + :start-after: chapter5-ForExprAST-codegen4 + :end-before: chapter5-ForExprAST-codegen4 + :dedent: 2 Now the code starts to get more interesting. Our 'for' loop introduces a new variable to the symbol table. This means that our symbol table can @@ -707,53 +522,32 @@ variable: any references to it will naturally find it in the symbol table. -.. code-block:: c++ - - // Emit the step value. - Value *StepVal = nullptr; - if (Step) { - StepVal = Step->codegen(); - if (!StepVal) - return nullptr; - } else { - // If not specified, use 1.0. - StepVal = ConstantFP::get(TheContext, APFloat(1.0)); - } - - Value *NextVar = Builder.CreateFAdd(Variable, StepVal, "nextvar"); +.. literalinclude:: /../examples/Kaleidoscope/Chapter5/toy.cpp + :language: c++ + :start-after: chapter5-ForExprAST-codegen5 + :end-before: chapter5-ForExprAST-codegen5 + :dedent: 2 Now that the body is emitted, we compute the next value of the iteration variable by adding the step value, or 1.0 if it isn't present. '``NextVar``' will be the value of the loop variable on the next iteration of the loop. -.. code-block:: c++ - - // Compute the end condition. - Value *EndCond = End->codegen(); - if (!EndCond) - return nullptr; - - // Convert condition to a bool by comparing non-equal to 0.0. - EndCond = Builder.CreateFCmpONE( - EndCond, ConstantFP::get(TheContext, APFloat(0.0)), "loopcond"); +.. literalinclude:: /../examples/Kaleidoscope/Chapter5/toy.cpp + :language: c++ + :start-after: chapter5-ForExprAST-codegen6 + :end-before: chapter5-ForExprAST-codegen6 + :dedent: 2 Finally, we evaluate the exit value of the loop, to determine whether the loop should exit. This mirrors the condition evaluation for the if/then/else statement. -.. code-block:: c++ - - // Create the "after loop" block and insert it. - BasicBlock *LoopEndBB = Builder.GetInsertBlock(); - BasicBlock *AfterBB = - BasicBlock::Create(TheContext, "afterloop", TheFunction); - - // Insert the conditional branch into the end of LoopEndBB. - Builder.CreateCondBr(EndCond, LoopBB, AfterBB); - - // Any new code will be inserted in AfterBB. - Builder.SetInsertPoint(AfterBB); +.. literalinclude:: /../examples/Kaleidoscope/Chapter5/toy.cpp + :language: c++ + :start-after: chapter5-ForExprAST-codegen7 + :end-before: chapter5-ForExprAST-codegen7 + :dedent: 2 With the code for the body of the loop complete, we just need to finish up the control flow for it. This code remembers the end block (for the @@ -763,20 +557,10 @@ future code is emitted in the "afterloop" block, so it sets the insertion position to it. -.. code-block:: c++ - - // Add a new entry to the PHI node for the backedge. - Variable->addIncoming(NextVar, LoopEndBB); - - // Restore the unshadowed variable. - if (OldVal) - NamedValues[VarName] = OldVal; - else - NamedValues.erase(VarName); - - // for expr always returns 0.0. - return Constant::getNullValue(Type::getDoubleTy(TheContext)); - } +.. literalinclude:: /../examples/Kaleidoscope/Chapter5/toy.cpp + :language: c++ + :start-after: chapter5-ForExprAST-codegen8 + :end-before: chapter5-ForExprAST-codegen8 The final code handles various cleanups: now that we have the "NextVar" value, we can add the incoming value to the loop PHI node. After that, Index: docs/tutorial/LangImpl06.rst =================================================================== --- docs/tutorial/LangImpl06.rst +++ docs/tutorial/LangImpl06.rst @@ -127,35 +127,10 @@ as prototypes, we have to extend the ``PrototypeAST`` AST node like this: -.. code-block:: c++ - - /// PrototypeAST - This class represents the "prototype" for a function, - /// which captures its argument names as well as if it is an operator. - class PrototypeAST { - std::string Name; - std::vector Args; - bool IsOperator; - unsigned Precedence; // Precedence if a binary op. - - public: - PrototypeAST(const std::string &name, std::vector Args, - bool IsOperator = false, unsigned Prec = 0) - : Name(name), Args(std::move(Args)), IsOperator(IsOperator), - Precedence(Prec) {} - - Function *codegen(); - const std::string &getName() const { return Name; } - - bool isUnaryOp() const { return IsOperator && Args.size() == 1; } - bool isBinaryOp() const { return IsOperator && Args.size() == 2; } - - char getOperatorName() const { - assert(isUnaryOp() || isBinaryOp()); - return Name[Name.size() - 1]; - } - - unsigned getBinaryPrecedence() const { return Precedence; } - }; +.. literalinclude:: /../examples/Kaleidoscope/Chapter6/toy.cpp + :language: c++ + :start-after: chapter6-PrototypeAST + :end-before: chapter6-PrototypeAST Basically, in addition to knowing a name for the prototype, we now keep track of whether it was an operator, and if it was, what precedence @@ -164,63 +139,11 @@ operators). Now that we have a way to represent the prototype for a user-defined operator, we need to parse it: -.. code-block:: c++ - - /// prototype - /// ::= id '(' id* ')' - /// ::= binary LETTER number? (id, id) - static std::unique_ptr ParsePrototype() { - std::string FnName; - - unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary. - unsigned BinaryPrecedence = 30; - - switch (CurTok) { - default: - return LogErrorP("Expected function name in prototype"); - case tok_identifier: - FnName = IdentifierStr; - Kind = 0; - getNextToken(); - break; - case tok_binary: - getNextToken(); - if (!isascii(CurTok)) - return LogErrorP("Expected binary operator"); - FnName = "binary"; - FnName += (char)CurTok; - Kind = 2; - getNextToken(); - - // Read the precedence if present. - if (CurTok == tok_number) { - if (NumVal < 1 || NumVal > 100) - return LogErrorP("Invalid precedence: must be 1..100"); - BinaryPrecedence = (unsigned)NumVal; - getNextToken(); - } - break; - } - - if (CurTok != '(') - return LogErrorP("Expected '(' in prototype"); - - std::vector ArgNames; - while (getNextToken() == tok_identifier) - ArgNames.push_back(IdentifierStr); - if (CurTok != ')') - return LogErrorP("Expected ')' in prototype"); - - // success. - getNextToken(); // eat ')'. - - // Verify right number of names for operator. - if (Kind && ArgNames.size() != Kind) - return LogErrorP("Invalid number of operands for operator"); - - return llvm::make_unique(FnName, std::move(ArgNames), Kind != 0, - BinaryPrecedence); - } +.. literalinclude:: /../examples/Kaleidoscope/Chapter6/toy.cpp + :language: c++ + :start-after: chapter6-ParsePrototype + :end-before: chapter6-ParsePrototype + :lines: -18,28- This is all fairly straightforward parsing code, and we have already seen a lot of similar code in the past. One interesting part about the @@ -234,38 +157,10 @@ operators. Given our current structure, this is a simple addition of a default case for our existing binary operator node: -.. code-block:: c++ - - Value *BinaryExprAST::codegen() { - Value *L = LHS->codegen(); - Value *R = RHS->codegen(); - if (!L || !R) - return nullptr; - - switch (Op) { - case '+': - return Builder.CreateFAdd(L, R, "addtmp"); - case '-': - return Builder.CreateFSub(L, R, "subtmp"); - case '*': - return Builder.CreateFMul(L, R, "multmp"); - case '<': - L = Builder.CreateFCmpULT(L, R, "cmptmp"); - // Convert bool 0/1 to double 0.0 or 1.0 - return Builder.CreateUIToFP(L, Type::getDoubleTy(TheContext), - "booltmp"); - default: - break; - } - - // If it wasn't a builtin binary operator, it must be a user defined one. Emit - // a call to it. - Function *F = getFunction(std::string("binary") + Op); - assert(F && "binary operator not found!"); - - Value *Ops[2] = { L, R }; - return Builder.CreateCall(F, Ops, "binop"); - } +.. literalinclude:: /../examples/Kaleidoscope/Chapter6/toy.cpp + :language: c++ + :start-after: chapter6-BinaryExprAST-codegen + :end-before: chapter6-BinaryExprAST-codegen As you can see above, the new code is actually really simple. It just does a lookup for the appropriate operator in the symbol table and @@ -275,24 +170,10 @@ The final piece of code we are missing, is a bit of top-level magic: -.. code-block:: c++ - - Function *FunctionAST::codegen() { - // Transfer ownership of the prototype to the FunctionProtos map, but keep a - // reference to it for use below. - auto &P = *Proto; - FunctionProtos[Proto->getName()] = std::move(Proto); - Function *TheFunction = getFunction(P.getName()); - if (!TheFunction) - return nullptr; - - // If this is an operator, install it. - if (P.isBinaryOp()) - BinopPrecedence[P.getOperatorName()] = P.getBinaryPrecedence(); - - // Create a new basic block to start insertion into. - BasicBlock *BB = BasicBlock::Create(TheContext, "entry", TheFunction); - ... +.. literalinclude:: /../examples/Kaleidoscope/Chapter6/toy.cpp + :language: c++ + :start-after: chapter6-FunctionAST-codegen + :end-before: chapter6-FunctionAST-codegen Basically, before codegening a function, if it is a user-defined operator, we register it in the precedence table. This allows the binary @@ -313,42 +194,20 @@ simple support for the 'unary' keyword to the lexer. In addition to that, we need an AST node: -.. code-block:: c++ - - /// UnaryExprAST - Expression class for a unary operator. - class UnaryExprAST : public ExprAST { - char Opcode; - std::unique_ptr Operand; - - public: - UnaryExprAST(char Opcode, std::unique_ptr Operand) - : Opcode(Opcode), Operand(std::move(Operand)) {} - - Value *codegen() override; - }; +.. literalinclude:: /../examples/Kaleidoscope/Chapter6/toy.cpp + :language: c++ + :start-after: chapter6-UnaryExprAST + :end-before: chapter6-UnaryExprAST This AST node is very simple and obvious by now. It directly mirrors the binary operator AST node, except that it only has one child. With this, we need to add the parsing logic. Parsing a unary operator is pretty simple: we'll add a new function to do it: -.. code-block:: c++ - - /// unary - /// ::= primary - /// ::= '!' unary - static std::unique_ptr ParseUnary() { - // If the current token is not an operator, it must be a primary expr. - if (!isascii(CurTok) || CurTok == '(' || CurTok == ',') - return ParsePrimary(); - - // If this is a unary operator, read it. - int Opc = CurTok; - getNextToken(); - if (auto Operand = ParseUnary()) - return llvm::make_unique(Opc, std::move(Operand)); - return nullptr; - } +.. literalinclude:: /../examples/Kaleidoscope/Chapter6/toy.cpp + :language: c++ + :start-after: chapter6-ParseUnary + :end-before: chapter6-ParseUnary The grammar we add is pretty straightforward here. If we see a unary operator when parsing a primary operator, we eat the operator as a @@ -374,72 +233,33 @@ return nullptr; ... } - /// expression - /// ::= unary binoprhs - /// - static std::unique_ptr ParseExpression() { - auto LHS = ParseUnary(); - if (!LHS) - return nullptr; - - return ParseBinOpRHS(0, std::move(LHS)); - } + +.. literalinclude:: /../examples/Kaleidoscope/Chapter6/toy.cpp + :language: c++ + :start-after: chapter6-ParseExpression + :end-before: chapter6-ParseExpression With these two simple changes, we are now able to parse unary operators and build the AST for them. Next up, we need to add parser support for prototypes, to parse the unary operator prototype. We extend the binary operator code above with: -.. code-block:: c++ - - /// prototype - /// ::= id '(' id* ')' - /// ::= binary LETTER number? (id, id) - /// ::= unary LETTER (id) - static std::unique_ptr ParsePrototype() { - std::string FnName; - - unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary. - unsigned BinaryPrecedence = 30; - - switch (CurTok) { - default: - return LogErrorP("Expected function name in prototype"); - case tok_identifier: - FnName = IdentifierStr; - Kind = 0; - getNextToken(); - break; - case tok_unary: - getNextToken(); - if (!isascii(CurTok)) - return LogErrorP("Expected unary operator"); - FnName = "unary"; - FnName += (char)CurTok; - Kind = 1; - getNextToken(); - break; - case tok_binary: - ... +.. literalinclude:: /../examples/Kaleidoscope/Chapter6/toy.cpp + :language: c++ + :start-after: chapter6-ParsePrototype + :end-before: chapter6-ParsePrototype + :emphasize-lines: 19-27 + :lines: -28 As with binary operators, we name unary operators with a name that includes the operator character. This assists us at code generation time. Speaking of, the final piece we need to add is codegen support for unary operators. It looks like this: -.. code-block:: c++ - - Value *UnaryExprAST::codegen() { - Value *OperandV = Operand->codegen(); - if (!OperandV) - return nullptr; - - Function *F = getFunction(std::string("unary") + Opcode); - if (!F) - return LogErrorV("Unknown unary operator"); - - return Builder.CreateCall(F, OperandV, "unop"); - } +.. literalinclude:: /../examples/Kaleidoscope/Chapter6/toy.cpp + :language: c++ + :start-after: chapter6-UnaryExprAST-codegen + :end-before: chapter6-UnaryExprAST-codegen This code is similar to, but simpler than, the code for binary operators. It is simpler primarily because it doesn't need to handle any Index: docs/tutorial/LangImpl07.rst =================================================================== --- docs/tutorial/LangImpl07.rst +++ docs/tutorial/LangImpl07.rst @@ -331,17 +331,10 @@ function that ensures that the allocas are created in the entry block of the function: -.. code-block:: c++ - - /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of - /// the function. This is used for mutable variables etc. - static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction, - const std::string &VarName) { - IRBuilder<> TmpB(&TheFunction->getEntryBlock(), - TheFunction->getEntryBlock().begin()); - return TmpB.CreateAlloca(Type::getDoubleTy(TheContext), 0, - VarName.c_str()); - } +.. literalinclude:: /../examples/Kaleidoscope/Chapter7/toy.cpp + :language: c++ + :start-after: chapter7-CreateEntryBlockAlloca + :end-before: chapter7-CreateEntryBlockAlloca This funny looking code creates an IRBuilder object that is pointing at the first instruction (.begin()) of the entry block. It then creates an @@ -353,50 +346,27 @@ code generating a reference to them actually needs to produce a load from the stack slot: -.. code-block:: c++ - - Value *VariableExprAST::codegen() { - // Look this variable up in the function. - Value *V = NamedValues[Name]; - if (!V) - return LogErrorV("Unknown variable name"); - - // Load the value. - return Builder.CreateLoad(V, Name.c_str()); - } +.. literalinclude:: /../examples/Kaleidoscope/Chapter7/toy.cpp + :language: c++ + :start-after: chapter7-VariableExprAST-codegen + :end-before: chapter7-VariableExprAST-codegen As you can see, this is pretty straightforward. Now we need to update the things that define the variables to set up the alloca. We'll start with ``ForExprAST::codegen()`` (see the `full code listing <#id1>`_ for the unabridged code): -.. code-block:: c++ - - Function *TheFunction = Builder.GetInsertBlock()->getParent(); +.. literalinclude:: /../examples/Kaleidoscope/Chapter7/toy.cpp + :language: c++ + :start-after: chapter7-ForExprAST-codegen1 + :end-before: chapter7-ForExprAST-codegen1 + :dedent: 2 - // Create an alloca for the variable in the entry block. - AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName); - - // Emit the start code first, without 'variable' in scope. - Value *StartVal = Start->codegen(); - if (!StartVal) - return nullptr; - - // Store the value into the alloca. - Builder.CreateStore(StartVal, Alloca); - ... - - // Compute the end condition. - Value *EndCond = End->codegen(); - if (!EndCond) - return nullptr; - - // Reload, increment, and restore the alloca. This handles the case where - // the body of the loop mutates the variable. - Value *CurVar = Builder.CreateLoad(Alloca); - Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar"); - Builder.CreateStore(NextVar, Alloca); - ... +.. literalinclude:: /../examples/Kaleidoscope/Chapter7/toy.cpp + :language: c++ + :start-after: chapter7-ForExprAST-codegen2 + :end-before: chapter7-ForExprAST-codegen2 + :dedent: 2 This code is virtually identical to the code `before we allowed mutable variables `_. The big difference is that we @@ -406,27 +376,15 @@ To support mutable argument variables, we need to also make allocas for them. The code for this is also pretty simple: -.. code-block:: c++ +.. literalinclude:: /../examples/Kaleidoscope/Chapter7/toy.cpp + :language: c++ + :start-after: chapter7-FunctionAST-codegen1 + :end-before: chapter7-FunctionAST-codegen1 - Function *FunctionAST::codegen() { - ... - Builder.SetInsertPoint(BB); - - // Record the function arguments in the NamedValues map. - NamedValues.clear(); - for (auto &Arg : TheFunction->args()) { - // Create an alloca for this variable. - AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, Arg.getName()); - - // Store the initial value into the alloca. - Builder.CreateStore(&Arg, Alloca); - - // Add arguments to variable symbol table. - NamedValues[Arg.getName()] = Alloca; - } - - if (Value *RetVal = Body->codegen()) { - ... +.. literalinclude:: /../examples/Kaleidoscope/Chapter7/toy.cpp + :language: c++ + :start-after: chapter7-FunctionAST-codegen2 + :end-before: chapter7-FunctionAST-codegen2 For each argument, we make an alloca, store the input value to the function into the alloca, and register the alloca as the memory location @@ -436,15 +394,12 @@ The final missing piece is adding the mem2reg pass, which allows us to get good codegen once again: -.. code-block:: c++ - - // Promote allocas to registers. - TheFPM->add(createPromoteMemoryToRegisterPass()); - // Do simple "peephole" optimizations and bit-twiddling optzns. - TheFPM->add(createInstructionCombiningPass()); - // Reassociate expressions. - TheFPM->add(createReassociatePass()); - ... +.. literalinclude:: /../examples/Kaleidoscope/Chapter7/toy.cpp + :language: c++ + :start-after: chapter7-passes + :end-before: chapter7-passes + :emphasize-lines: 1-2 + :dedent: 2 It is interesting to see what the code looks like before and after the mem2reg optimization runs. For example, this is the before/after code @@ -572,15 +527,10 @@ takes care of all the parsing and AST generation. We just need to implement codegen for the assignment operator. This looks like: -.. code-block:: c++ - - Value *BinaryExprAST::codegen() { - // Special case '=' because we don't want to emit the LHS as an expression. - if (Op == '=') { - // Assignment requires the LHS to be an identifier. - VariableExprAST *LHSE = dynamic_cast(LHS.get()); - if (!LHSE) - return LogErrorV("destination of '=' must be a variable"); +.. literalinclude:: /../examples/Kaleidoscope/Chapter7/toy.cpp + :language: c++ + :start-after: chapter7-BinaryExprAST-codegen1 + :end-before: chapter7-BinaryExprAST-codegen1 Unlike the rest of the binary operators, our assignment operator doesn't follow the "emit LHS, emit RHS, do computation" model. As such, it is @@ -589,22 +539,11 @@ is invalid to have "(x+1) = expr" - only things like "x = expr" are allowed. -.. code-block:: c++ - - // Codegen the RHS. - Value *Val = RHS->codegen(); - if (!Val) - return nullptr; - - // Look up the name. - Value *Variable = NamedValues[LHSE->getName()]; - if (!Variable) - return LogErrorV("Unknown variable name"); - - Builder.CreateStore(Val, Variable); - return Val; - } - ... +.. literalinclude:: /../examples/Kaleidoscope/Chapter7/toy.cpp + :language: c++ + :start-after: chapter7-BinaryExprAST-codegen2 + :end-before: chapter7-BinaryExprAST-codegen2 + :dedent: 2 Once we have the variable, codegen'ing the assignment is straightforward: we emit the RHS of the assignment, create a store, and @@ -670,20 +609,10 @@ The next step is to define the AST node that we will construct. For var/in, it looks like this: -.. code-block:: c++ - - /// VarExprAST - Expression class for var/in - class VarExprAST : public ExprAST { - std::vector>> VarNames; - std::unique_ptr Body; - - public: - VarExprAST(std::vector>> VarNames, - std::unique_ptr Body) - : VarNames(std::move(VarNames)), Body(std::move(Body)) {} - - Value *codegen() override; - }; +.. literalinclude:: /../examples/Kaleidoscope/Chapter7/toy.cpp + :language: c++ + :start-after: chapter7-VarExprAST + :end-before: chapter7-VarExprAST var/in allows a list of names to be defined all at once, and each name can optionally have an initializer value. As such, we capture this @@ -693,164 +622,71 @@ With this in place, we can define the parser pieces. The first thing we do is add it as a primary expression: -.. code-block:: c++ - - /// primary - /// ::= identifierexpr - /// ::= numberexpr - /// ::= parenexpr - /// ::= ifexpr - /// ::= forexpr - /// ::= varexpr - static std::unique_ptr ParsePrimary() { - switch (CurTok) { - default: - return LogError("unknown token when expecting an expression"); - case tok_identifier: - return ParseIdentifierExpr(); - case tok_number: - return ParseNumberExpr(); - case '(': - return ParseParenExpr(); - case tok_if: - return ParseIfExpr(); - case tok_for: - return ParseForExpr(); - case tok_var: - return ParseVarExpr(); - } - } +.. literalinclude:: /../examples/Kaleidoscope/Chapter7/toy.cpp + :language: c++ + :start-after: chapter7-ParsePrimary + :end-before: chapter7-ParsePrimary + :emphasize-lines: 22-23 Next we define ParseVarExpr: -.. code-block:: c++ - - /// varexpr ::= 'var' identifier ('=' expression)? - // (',' identifier ('=' expression)?)* 'in' expression - static std::unique_ptr ParseVarExpr() { - getNextToken(); // eat the var. - - std::vector>> VarNames; - - // At least one variable name is required. - if (CurTok != tok_identifier) - return LogError("expected identifier after var"); +.. literalinclude:: /../examples/Kaleidoscope/Chapter7/toy.cpp + :language: c++ + :start-after: chapter7-ParseVarExpr1 + :end-before: chapter7-ParseVarExpr1 The first part of this code parses the list of identifier/expr pairs into the local ``VarNames`` vector. -.. code-block:: c++ - - while (1) { - std::string Name = IdentifierStr; - getNextToken(); // eat identifier. - - // Read the optional initializer. - std::unique_ptr Init; - if (CurTok == '=') { - getNextToken(); // eat the '='. - - Init = ParseExpression(); - if (!Init) return nullptr; - } - - VarNames.push_back(std::make_pair(Name, std::move(Init))); - - // End of var list, exit loop. - if (CurTok != ',') break; - getNextToken(); // eat the ','. - - if (CurTok != tok_identifier) - return LogError("expected identifier list after var"); - } +.. literalinclude:: /../examples/Kaleidoscope/Chapter7/toy.cpp + :language: c++ + :start-after: chapter7-ParseVarExpr2 + :end-before: chapter7-ParseVarExpr2 + :dedent: 2 Once all the variables are parsed, we then parse the body and create the AST node: -.. code-block:: c++ - - // At this point, we have to have 'in'. - if (CurTok != tok_in) - return LogError("expected 'in' keyword after 'var'"); - getNextToken(); // eat 'in'. - - auto Body = ParseExpression(); - if (!Body) - return nullptr; - - return llvm::make_unique(std::move(VarNames), - std::move(Body)); - } +.. literalinclude:: /../examples/Kaleidoscope/Chapter7/toy.cpp + :language: c++ + :start-after: chapter7-ParseVarExpr3 + :end-before: chapter7-ParseVarExpr3 Now that we can parse and represent the code, we need to support emission of LLVM IR for it. This code starts out with: -.. code-block:: c++ - - Value *VarExprAST::codegen() { - std::vector OldBindings; - - Function *TheFunction = Builder.GetInsertBlock()->getParent(); - - // Register all variables and emit their initializer. - for (unsigned i = 0, e = VarNames.size(); i != e; ++i) { - const std::string &VarName = VarNames[i].first; - ExprAST *Init = VarNames[i].second.get(); +.. literalinclude:: /../examples/Kaleidoscope/Chapter7/toy.cpp + :language: c++ + :start-after: chapter7-VarExprAST-codegen1 + :end-before: chapter7-VarExprAST-codegen1 Basically it loops over all the variables, installing them one at a time. For each variable we put into the symbol table, we remember the previous value that we replace in OldBindings. -.. code-block:: c++ - - // Emit the initializer before adding the variable to scope, this prevents - // the initializer from referencing the variable itself, and permits stuff - // like this: - // var a = 1 in - // var a = a in ... # refers to outer 'a'. - Value *InitVal; - if (Init) { - InitVal = Init->codegen(); - if (!InitVal) - return nullptr; - } else { // If not specified, use 0.0. - InitVal = ConstantFP::get(TheContext, APFloat(0.0)); - } - - AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName); - Builder.CreateStore(InitVal, Alloca); - - // Remember the old variable binding so that we can restore the binding when - // we unrecurse. - OldBindings.push_back(NamedValues[VarName]); - - // Remember this binding. - NamedValues[VarName] = Alloca; - } +.. literalinclude:: /../examples/Kaleidoscope/Chapter7/toy.cpp + :language: c++ + :start-after: chapter7-VarExprAST-codegen2 + :end-before: chapter7-VarExprAST-codegen2 + :dedent: 2 There are more comments here than code. The basic idea is that we emit the initializer, create the alloca, then update the symbol table to point to it. Once all the variables are installed in the symbol table, we evaluate the body of the var/in expression: -.. code-block:: c++ - - // Codegen the body, now that all vars are in scope. - Value *BodyVal = Body->codegen(); - if (!BodyVal) - return nullptr; +.. literalinclude:: /../examples/Kaleidoscope/Chapter7/toy.cpp + :language: c++ + :start-after: chapter7-VarExprAST-codegen3 + :end-before: chapter7-VarExprAST-codegen3 + :dedent: 2 Finally, before returning, we restore the previous variable bindings: -.. code-block:: c++ - - // Pop all our variables from scope. - for (unsigned i = 0, e = VarNames.size(); i != e; ++i) - NamedValues[VarNames[i].first] = OldBindings[i]; - - // Return the body computation. - return BodyVal; - } +.. literalinclude:: /../examples/Kaleidoscope/Chapter7/toy.cpp + :language: c++ + :start-after: chapter7-VarExprAST-codegen4 + :end-before: chapter7-VarExprAST-codegen4 The end result of all of this is that we get properly scoped variable definitions, and we even (trivially) allow mutation of them :). Index: docs/tutorial/LangImpl08.rst =================================================================== --- docs/tutorial/LangImpl08.rst +++ docs/tutorial/LangImpl08.rst @@ -40,9 +40,11 @@ current machine. LLVM provides ``sys::getDefaultTargetTriple``, which returns the target triple of the current machine. -.. code-block:: c++ - - auto TargetTriple = sys::getDefaultTargetTriple(); +.. literalinclude:: /../examples/Kaleidoscope/Chapter8/toy.cpp + :language: c++ + :start-after: chapter8-TargetTriple + :end-before: chapter8-TargetTriple + :dedent: 2 LLVM doesn't require us to link in all the target functionality. For example, if we're just using the JIT, we don't need @@ -53,28 +55,19 @@ For this example, we'll initialize all the targets for emitting object code. -.. code-block:: c++ - - InitializeAllTargetInfos(); - InitializeAllTargets(); - InitializeAllTargetMCs(); - InitializeAllAsmParsers(); - InitializeAllAsmPrinters(); +.. literalinclude:: /../examples/Kaleidoscope/Chapter8/toy.cpp + :language: c++ + :start-after: chapter8-initialize + :end-before: chapter8-initialize + :dedent: 2 We can now use our target triple to get a ``Target``: -.. code-block:: c++ - - std::string Error; - auto Target = TargetRegistry::lookupTarget(TargetTriple, Error); - - // Print an error and exit if we couldn't find the requested target. - // This generally occurs if we've forgotten to initialise the - // TargetRegistry or we have a bogus target triple. - if (!Target) { - errs() << Error; - return 1; - } +.. literalinclude:: /../examples/Kaleidoscope/Chapter8/toy.cpp + :language: c++ + :start-after: chapter8-lookup + :end-before: chapter8-lookup + :dedent: 2 Target Machine ============== @@ -108,14 +101,11 @@ For our example, we'll use the generic CPU without any additional features, options or relocation model. -.. code-block:: c++ - - auto CPU = "generic"; - auto Features = ""; - - TargetOptions opt; - auto RM = Optional(); - auto TargetMachine = Target->createTargetMachine(TargetTriple, CPU, Features, opt, RM); +.. literalinclude:: /../examples/Kaleidoscope/Chapter8/toy.cpp + :language: c++ + :start-after: chapter8-target-machine + :end-before: chapter8-target-machine + :dedent: 2 Configuring the Module @@ -127,43 +117,32 @@ this. Optimizations benefit from knowing about the target and data layout. -.. code-block:: c++ +.. literalinclude:: /../examples/Kaleidoscope/Chapter8/toy.cpp + :language: c++ + :start-after: chapter8-module + :end-before: chapter8-module + :dedent: 2 - TheModule->setDataLayout(TargetMachine->createDataLayout()); - TheModule->setTargetTriple(TargetTriple); - Emit Object Code ================ We're ready to emit object code! Let's define where we want to write our file to: -.. code-block:: c++ - - auto Filename = "output.o"; - std::error_code EC; - raw_fd_ostream dest(Filename, EC, sys::fs::F_None); - - if (EC) { - errs() << "Could not open file: " << EC.message(); - return 1; - } +.. literalinclude:: /../examples/Kaleidoscope/Chapter8/toy.cpp + :language: c++ + :start-after: chapter8-emit + :end-before: chapter8-emit + :dedent: 2 Finally, we define a pass that emits object code, then we run that pass: -.. code-block:: c++ - - legacy::PassManager pass; - auto FileType = TargetMachine::CGFT_ObjectFile; - - if (TargetMachine->addPassesToEmitFile(pass, dest, FileType)) { - errs() << "TargetMachine can't emit a file of this type"; - return 1; - } - - pass.run(*TheModule); - dest.flush(); +.. literalinclude:: /../examples/Kaleidoscope/Chapter8/toy.cpp + :language: c++ + :start-after: chapter8-pass + :end-before: chapter8-pass + :dedent: 2 Putting It All Together ======================= Index: examples/Kaleidoscope/Chapter2/toy.cpp =================================================================== --- examples/Kaleidoscope/Chapter2/toy.cpp +++ examples/Kaleidoscope/Chapter2/toy.cpp @@ -12,6 +12,7 @@ // Lexer //===----------------------------------------------------------------------===// +/// [chapter1-token] // The lexer returns tokens [0-255] if it is an unknown character, otherwise one // of these for known things. enum Token { @@ -28,7 +29,9 @@ static std::string IdentifierStr; // Filled in if tok_identifier static double NumVal; // Filled in if tok_number +/// [chapter1-token] +/// [chapter1-gettok1] /// gettok - Return the next token from standard input. static int gettok() { static int LastChar = ' '; @@ -36,7 +39,9 @@ // Skip any whitespace. while (isspace(LastChar)) LastChar = getchar(); + /// [chapter1-gettok1] + /// [chapter1-gettok2] if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]* IdentifierStr = LastChar; while (isalnum((LastChar = getchar()))) @@ -48,7 +53,9 @@ return tok_extern; return tok_identifier; } + /// [chapter1-gettok2] + /// [chapter1-gettok3] if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+ std::string NumStr; do { @@ -59,7 +66,9 @@ NumVal = strtod(NumStr.c_str(), nullptr); return tok_number; } + /// [chapter1-gettok3] + /// [chapter1-gettok4] if (LastChar == '#') { // Comment until end of line. do @@ -69,7 +78,9 @@ if (LastChar != EOF) return gettok(); } + /// [chapter1-gettok4] + /// [chapter1-gettok5] // Check for end of file. Don't eat the EOF. if (LastChar == EOF) return tok_eof; @@ -79,6 +90,7 @@ LastChar = getchar(); return ThisChar; } +/// [chapter1-gettok5] //===----------------------------------------------------------------------===// // Abstract Syntax Tree (aka Parse Tree) @@ -86,6 +98,7 @@ namespace { +/// [chapter2-ExprAST] /// ExprAST - Base class for all expression nodes. class ExprAST { public: @@ -99,7 +112,9 @@ public: NumberExprAST(double Val) : Val(Val) {} }; +/// [chapter2-ExprAST] +/// [chapter2-VariableExprAST] /// VariableExprAST - Expression class for referencing a variable, like "a". class VariableExprAST : public ExprAST { std::string Name; @@ -129,7 +144,9 @@ std::vector> Args) : Callee(Callee), Args(std::move(Args)) {} }; +/// [chapter2-VariableExprAST] +/// [chapter2-PrototypeAST] /// PrototypeAST - This class represents the "prototype" for a function, /// which captures its name, and its argument names (thus implicitly the number /// of arguments the function takes). @@ -154,6 +171,7 @@ std::unique_ptr Body) : Proto(std::move(Proto)), Body(std::move(Body)) {} }; +/// [chapter2-PrototypeAST] } // end anonymous namespace @@ -161,12 +179,15 @@ // Parser //===----------------------------------------------------------------------===// +/// [chapter2-CurTok] /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current /// token the parser is looking at. getNextToken reads another token from the /// lexer and updates CurTok with its results. static int CurTok; static int getNextToken() { return CurTok = gettok(); } +/// [chapter2-CurTok] +/// [chapter2-BinopPrecedence] /// BinopPrecedence - This holds the precedence for each binary operator that is /// defined. static std::map BinopPrecedence; @@ -182,7 +203,9 @@ return -1; return TokPrec; } +/// [chapter2-BinopPrecedence] +/// [chapter2-logging] /// LogError* - These are little helper functions for error handling. std::unique_ptr LogError(const char *Str) { fprintf(stderr, "Error: %s\n", Str); @@ -192,16 +215,20 @@ LogError(Str); return nullptr; } +/// [chapter2-logging] static std::unique_ptr ParseExpression(); +/// [chapter2-ParseNumberExpr] /// numberexpr ::= number static std::unique_ptr ParseNumberExpr() { auto Result = llvm::make_unique(NumVal); getNextToken(); // consume the number return std::move(Result); } +/// [chapter2-ParseNumberExpr] +/// [chapter2-ParseParenExpr] /// parenexpr ::= '(' expression ')' static std::unique_ptr ParseParenExpr() { getNextToken(); // eat (. @@ -214,7 +241,9 @@ getNextToken(); // eat ). return V; } +/// [chapter2-ParseParenExpr] +/// [chapter2-ParseIdentifierExpr] /// identifierexpr /// ::= identifier /// ::= identifier '(' expression* ')' @@ -250,7 +279,9 @@ return llvm::make_unique(IdName, std::move(Args)); } +/// [chapter2-ParseIdentifierExpr] +/// [chapter2-ParsePrimary] /// primary /// ::= identifierexpr /// ::= numberexpr @@ -267,7 +298,9 @@ return ParseParenExpr(); } } +/// [chapter2-ParsePrimary] +/// [chapter2-ParseBinOpRHS1] /// binoprhs /// ::= ('+' primary)* static std::unique_ptr ParseBinOpRHS(int ExprPrec, @@ -280,7 +313,9 @@ // consume it, otherwise we are done. if (TokPrec < ExprPrec) return LHS; + /// [chapter2-ParseBinOpRHS1] + /// [chapter2-ParseBinOpRHS2] // Okay, we know this is a binop. int BinOp = CurTok; getNextToken(); // eat binop @@ -289,7 +324,9 @@ auto RHS = ParsePrimary(); if (!RHS) return nullptr; + /// [chapter2-ParseBinOpRHS2] + /// [chapter2-ParseBinOpRHS3] // If BinOp binds less tightly with RHS than the operator after RHS, let // the pending operator take RHS as its LHS. int NextPrec = GetTokPrecedence(); @@ -304,7 +341,9 @@ std::move(RHS)); } } +/// [chapter2-ParseBinOpRHS3] +/// [chapter2-ParseExpression] /// expression /// ::= primary binoprhs /// @@ -315,7 +354,9 @@ return ParseBinOpRHS(0, std::move(LHS)); } +/// [chapter2-ParseExpression] +/// [chapter2-ParsePrototype] /// prototype /// ::= id '(' id* ')' static std::unique_ptr ParsePrototype() { @@ -339,7 +380,9 @@ return llvm::make_unique(FnName, std::move(ArgNames)); } +/// [chapter2-ParsePrototype] +/// [chapter2-ParseDefinition] /// definition ::= 'def' prototype expression static std::unique_ptr ParseDefinition() { getNextToken(); // eat def. @@ -351,7 +394,9 @@ return llvm::make_unique(std::move(Proto), std::move(E)); return nullptr; } +/// [chapter2-ParseDefinition] +/// [chapter2-ParseTopLevelExpr] /// toplevelexpr ::= expression static std::unique_ptr ParseTopLevelExpr() { if (auto E = ParseExpression()) { @@ -362,12 +407,15 @@ } return nullptr; } +/// [chapter2-ParseTopLevelExpr] +/// [chapter2-ParseExtern] /// external ::= 'extern' prototype static std::unique_ptr ParseExtern() { getNextToken(); // eat extern. return ParsePrototype(); } +/// [chapter2-ParseExtern] //===----------------------------------------------------------------------===// // Top-Level parsing @@ -401,6 +449,7 @@ } } +/// [chapter2-MainLoop] /// top ::= definition | external | expression | ';' static void MainLoop() { while (true) { @@ -423,11 +472,13 @@ } } } +/// [chapter2-MainLoop] //===----------------------------------------------------------------------===// // Main driver code. //===----------------------------------------------------------------------===// +/// [chapter2-SetBinopPrecedence] int main() { // Install standard binary operators. // 1 is lowest precedence. @@ -435,6 +486,7 @@ BinopPrecedence['+'] = 20; BinopPrecedence['-'] = 20; BinopPrecedence['*'] = 40; // highest. + /// [chapter2-SetBinopPrecedence] // Prime the first token. fprintf(stderr, "ready> "); Index: examples/Kaleidoscope/Chapter3/toy.cpp =================================================================== --- examples/Kaleidoscope/Chapter3/toy.cpp +++ examples/Kaleidoscope/Chapter3/toy.cpp @@ -98,6 +98,7 @@ namespace { +/// [chapter3-ExprAST-codegen] /// ExprAST - Base class for all expression nodes. class ExprAST { public: @@ -115,6 +116,7 @@ Value *codegen() override; }; +/// [chapter3-ExprAST-codegen] /// VariableExprAST - Expression class for referencing a variable, like "a". class VariableExprAST : public ExprAST { @@ -399,6 +401,7 @@ // Code Generation //===----------------------------------------------------------------------===// +/// [chapter3-globals] static LLVMContext TheContext; static IRBuilder<> Builder(TheContext); static std::unique_ptr TheModule; @@ -408,11 +411,15 @@ LogError(Str); return nullptr; } +/// [chapter3-globals] +/// [chapter3-NumberExprAST-codegen] Value *NumberExprAST::codegen() { return ConstantFP::get(TheContext, APFloat(Val)); } +/// [chapter3-NumberExprAST-codegen] +/// [chapter3-VariableExprAST-codegen] Value *VariableExprAST::codegen() { // Look this variable up in the function. Value *V = NamedValues[Name]; @@ -420,7 +427,9 @@ return LogErrorV("Unknown variable name"); return V; } +/// [chapter3-VariableExprAST-codegen] +/// [chapter3-BinaryExprAST-codegen] Value *BinaryExprAST::codegen() { Value *L = LHS->codegen(); Value *R = RHS->codegen(); @@ -442,7 +451,9 @@ return LogErrorV("invalid binary operator"); } } +/// [chapter3-BinaryExprAST-codegen] +/// [chapter3-CallExprAST-codegen] Value *CallExprAST::codegen() { // Look up the name in the global module table. Function *CalleeF = TheModule->getFunction(Callee); @@ -462,7 +473,9 @@ return Builder.CreateCall(CalleeF, ArgsV, "calltmp"); } +/// [chapter3-CallExprAST-codegen] +/// [chapter3-PrototypeAST-codegen1] Function *PrototypeAST::codegen() { // Make the function type: double(double,double) etc. std::vector Doubles(Args.size(), Type::getDoubleTy(TheContext)); @@ -471,7 +484,9 @@ Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule.get()); + /// [chapter3-PrototypeAST-codegen1] + /// [chapter3-PrototypeAST-codegen2] // Set names for all arguments. unsigned Idx = 0; for (auto &Arg : F->args()) @@ -479,7 +494,9 @@ return F; } +/// [chapter3-PrototypeAST-codegen2] +/// [chapter3-FunctionAST-codegen1] Function *FunctionAST::codegen() { // First, check for an existing function from a previous 'extern' declaration. Function *TheFunction = TheModule->getFunction(Proto->getName()); @@ -490,6 +507,8 @@ if (!TheFunction) return nullptr; + /// [chapter3-FunctionAST-codegen1] + /// [chapter3-FunctionAST-codegen2] // Create a new basic block to start insertion into. BasicBlock *BB = BasicBlock::Create(TheContext, "entry", TheFunction); Builder.SetInsertPoint(BB); @@ -498,7 +517,9 @@ NamedValues.clear(); for (auto &Arg : TheFunction->args()) NamedValues[Arg.getName()] = &Arg; + /// [chapter3-FunctionAST-codegen2] + /// [chapter3-FunctionAST-codegen3] if (Value *RetVal = Body->codegen()) { // Finish off the function. Builder.CreateRet(RetVal); @@ -508,11 +529,14 @@ return TheFunction; } + /// [chapter3-FunctionAST-codegen3] + /// [chapter3-FunctionAST-codegen4] // Error reading body, remove function. TheFunction->eraseFromParent(); return nullptr; } +/// [chapter3-FunctionAST-codegen4] //===----------------------------------------------------------------------===// // Top-Level parsing and JIT Driver Index: examples/Kaleidoscope/Chapter4/toy.cpp =================================================================== --- examples/Kaleidoscope/Chapter4/toy.cpp +++ examples/Kaleidoscope/Chapter4/toy.cpp @@ -413,7 +413,9 @@ static std::unique_ptr TheModule; static std::map NamedValues; static std::unique_ptr TheFPM; +/// [chapter4-TheJIT] static std::unique_ptr TheJIT; +/// [chapter4-TheJIT] static std::map> FunctionProtos; Value *LogErrorV(const char *Str) { @@ -421,6 +423,7 @@ return nullptr; } +/// [chapter4-getFunction] Function *getFunction(std::string Name) { // First, see if the function has already been added to the current module. if (auto *F = TheModule->getFunction(Name)) @@ -435,6 +438,7 @@ // If no existing prototype exists, return null. return nullptr; } +/// [chapter4-getFunction] Value *NumberExprAST::codegen() { return ConstantFP::get(TheContext, APFloat(Val)); @@ -470,6 +474,7 @@ } } +/// [chapter4-CallExprAST-codegen] Value *CallExprAST::codegen() { // Look up the name in the global module table. Function *CalleeF = getFunction(Callee); @@ -489,6 +494,7 @@ return Builder.CreateCall(CalleeF, ArgsV, "calltmp"); } +/// [chapter4-CallExprAST-codegen] Function *PrototypeAST::codegen() { // Make the function type: double(double,double) etc. @@ -507,6 +513,7 @@ return F; } +/// [chapter4-FunctionAST-codegen] Function *FunctionAST::codegen() { // Transfer ownership of the prototype to the FunctionProtos map, but keep a // reference to it for use below. @@ -525,6 +532,7 @@ for (auto &Arg : TheFunction->args()) NamedValues[Arg.getName()] = &Arg; + /// [chapter4-run-passes] if (Value *RetVal = Body->codegen()) { // Finish off the function. Builder.CreateRet(RetVal); @@ -537,16 +545,19 @@ return TheFunction; } + /// [chapter4-run-passes] // Error reading body, remove function. TheFunction->eraseFromParent(); return nullptr; } +/// [chapter4-FunctionAST-codegen] //===----------------------------------------------------------------------===// // Top-Level parsing and JIT Driver //===----------------------------------------------------------------------===// +/// [chapter4-InitializeModuleAndPassManager] static void InitializeModuleAndPassManager() { // Open a new module. TheModule = llvm::make_unique("my cool jit", TheContext); @@ -566,7 +577,9 @@ TheFPM->doInitialization(); } +/// [chapter4-InitializeModuleAndPassManager] +/// [chapter4-HandleDefinition+HandleExtern] static void HandleDefinition() { if (auto FnAST = ParseDefinition()) { if (auto *FnIR = FnAST->codegen()) { @@ -595,7 +608,9 @@ getNextToken(); } } +/// [chapter4-HandleDefinition+HandleExtern] +/// [chapter4-HandleTopLevelExpression] static void HandleTopLevelExpression() { // Evaluate a top-level expression into an anonymous function. if (auto FnAST = ParseTopLevelExpr()) { @@ -622,6 +637,7 @@ getNextToken(); } } +/// [chapter4-HandleTopLevelExpression] /// top ::= definition | external | expression | ';' static void MainLoop() { @@ -650,6 +666,7 @@ // "Library" functions that can be "extern'd" from user code. //===----------------------------------------------------------------------===// +/// [chapter4-extern] #ifdef LLVM_ON_WIN32 #define DLLEXPORT __declspec(dllexport) #else @@ -667,11 +684,13 @@ fprintf(stderr, "%f\n", X); return 0; } +/// [chapter4-extern] //===----------------------------------------------------------------------===// // Main driver code. //===----------------------------------------------------------------------===// +/// [chapter4-main] int main() { InitializeNativeTarget(); InitializeNativeTargetAsmPrinter(); @@ -697,3 +716,4 @@ return 0; } +/// [chapter4-main] Index: examples/Kaleidoscope/Chapter5/toy.cpp =================================================================== --- examples/Kaleidoscope/Chapter5/toy.cpp +++ examples/Kaleidoscope/Chapter5/toy.cpp @@ -47,12 +47,14 @@ tok_identifier = -4, tok_number = -5, + /// [chapter5-tokens1] // control tok_if = -6, tok_then = -7, tok_else = -8, tok_for = -9, tok_in = -10 + /// [chapter5-tokens1] }; static std::string IdentifierStr; // Filled in if tok_identifier @@ -71,6 +73,7 @@ while (isalnum((LastChar = getchar()))) IdentifierStr += LastChar; + /// [chapter5-gettok] if (IdentifierStr == "def") return tok_def; if (IdentifierStr == "extern") @@ -86,6 +89,7 @@ if (IdentifierStr == "in") return tok_in; return tok_identifier; + /// [chapter5-gettok] } if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+ @@ -179,6 +183,7 @@ Value *codegen() override; }; +/// [chapter5-IfExprAST] /// IfExprAST - Expression class for if/then/else. class IfExprAST : public ExprAST { std::unique_ptr Cond, Then, Else; @@ -190,7 +195,9 @@ Value *codegen() override; }; +/// [chapter5-IfExprAST] +/// [chapter5-ForExprAST] /// ForExprAST - Expression class for for/in. class ForExprAST : public ExprAST { std::string VarName; @@ -205,6 +212,7 @@ Value *codegen() override; }; +/// [chapter5-ForExprAST] /// PrototypeAST - This class represents the "prototype" for a function, /// which captures its name, and its argument names (thus implicitly the number @@ -331,6 +339,7 @@ return llvm::make_unique(IdName, std::move(Args)); } +/// [chapter5-ParseIfExpr] /// ifexpr ::= 'if' expression 'then' expression 'else' expression static std::unique_ptr ParseIfExpr() { getNextToken(); // eat the if. @@ -360,7 +369,9 @@ return llvm::make_unique(std::move(Cond), std::move(Then), std::move(Else)); } +/// [chapter5-ParseIfExpr] +/// [chapter5-ParseForExpr] /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression static std::unique_ptr ParseForExpr() { getNextToken(); // eat the for. @@ -406,6 +417,7 @@ return llvm::make_unique(IdName, std::move(Start), std::move(End), std::move(Step), std::move(Body)); } +/// [chapter5-ParseForExpr] /// primary /// ::= identifierexpr @@ -413,6 +425,7 @@ /// ::= parenexpr /// ::= ifexpr /// ::= forexpr +/// [chapter5-ParsePrimary] static std::unique_ptr ParsePrimary() { switch (CurTok) { default: @@ -429,6 +442,7 @@ return ParseForExpr(); } } +/// [chapter5-ParsePrimary] /// binoprhs /// ::= ('+' primary)* @@ -617,6 +631,7 @@ return Builder.CreateCall(CalleeF, ArgsV, "calltmp"); } +/// [chapter5-IfExprAST-codegen1] Value *IfExprAST::codegen() { Value *CondV = Cond->codegen(); if (!CondV) @@ -625,7 +640,9 @@ // Convert condition to a bool by comparing non-equal to 0.0. CondV = Builder.CreateFCmpONE( CondV, ConstantFP::get(TheContext, APFloat(0.0)), "ifcond"); + /// [chapter5-IfExprAST-codegen1] + /// [chapter5-IfExprAST-codegen2] Function *TheFunction = Builder.GetInsertBlock()->getParent(); // Create blocks for the then and else cases. Insert the 'then' block at the @@ -635,7 +652,9 @@ BasicBlock *MergeBB = BasicBlock::Create(TheContext, "ifcont"); Builder.CreateCondBr(CondV, ThenBB, ElseBB); + /// [chapter5-IfExprAST-codegen2] + /// [chapter5-IfExprAST-codegen3] // Emit then value. Builder.SetInsertPoint(ThenBB); @@ -646,7 +665,9 @@ Builder.CreateBr(MergeBB); // Codegen of 'Then' can change the current block, update ThenBB for the PHI. ThenBB = Builder.GetInsertBlock(); + /// [chapter5-IfExprAST-codegen3] + /// [chapter5-IfExprAST-codegen4] // Emit else block. TheFunction->getBasicBlockList().push_back(ElseBB); Builder.SetInsertPoint(ElseBB); @@ -658,7 +679,9 @@ Builder.CreateBr(MergeBB); // Codegen of 'Else' can change the current block, update ElseBB for the PHI. ElseBB = Builder.GetInsertBlock(); + /// [chapter5-IfExprAST-codegen4] + /// [chapter5-IfExprAST-codegen5] // Emit merge block. TheFunction->getBasicBlockList().push_back(MergeBB); Builder.SetInsertPoint(MergeBB); @@ -668,6 +691,7 @@ PN->addIncoming(ElseV, ElseBB); return PN; } +/// [chapter5-IfExprAST-codegen5] // Output for-loop as: // ... @@ -684,12 +708,15 @@ // endcond = endexpr // br endcond, loop, endloop // outloop: +/// [chapter5-ForExprAST-codegen1] Value *ForExprAST::codegen() { // Emit the start code first, without 'variable' in scope. Value *StartVal = Start->codegen(); if (!StartVal) return nullptr; + /// [chapter5-ForExprAST-codegen1] + /// [chapter5-ForExprAST-codegen2] // Make the new basic block for the loop header, inserting after current // block. Function *TheFunction = Builder.GetInsertBlock()->getParent(); @@ -698,7 +725,9 @@ // Insert an explicit fall through from the current block to the LoopBB. Builder.CreateBr(LoopBB); + /// [chapter5-ForExprAST-codegen2] + /// [chapter5-ForExprAST-codegen3] // Start insertion in LoopBB. Builder.SetInsertPoint(LoopBB); @@ -706,7 +735,9 @@ PHINode *Variable = Builder.CreatePHI(Type::getDoubleTy(TheContext), 2, VarName); Variable->addIncoming(StartVal, PreheaderBB); + /// [chapter5-ForExprAST-codegen3] + /// [chapter5-ForExprAST-codegen4] // Within the loop, the variable is defined equal to the PHI node. If it // shadows an existing variable, we have to restore it, so save it now. Value *OldVal = NamedValues[VarName]; @@ -717,7 +748,9 @@ // allow an error. if (!Body->codegen()) return nullptr; + /// [chapter5-ForExprAST-codegen4] + /// [chapter5-ForExprAST-codegen5] // Emit the step value. Value *StepVal = nullptr; if (Step) { @@ -730,7 +763,9 @@ } Value *NextVar = Builder.CreateFAdd(Variable, StepVal, "nextvar"); + /// [chapter5-ForExprAST-codegen5] + /// [chapter5-ForExprAST-codegen6] // Compute the end condition. Value *EndCond = End->codegen(); if (!EndCond) @@ -739,7 +774,9 @@ // Convert condition to a bool by comparing non-equal to 0.0. EndCond = Builder.CreateFCmpONE( EndCond, ConstantFP::get(TheContext, APFloat(0.0)), "loopcond"); + /// [chapter5-ForExprAST-codegen6] + /// [chapter5-ForExprAST-codegen7] // Create the "after loop" block and insert it. BasicBlock *LoopEndBB = Builder.GetInsertBlock(); BasicBlock *AfterBB = @@ -750,7 +787,9 @@ // Any new code will be inserted in AfterBB. Builder.SetInsertPoint(AfterBB); + /// [chapter5-ForExprAST-codegen7] + /// [chapter5-ForExprAST-codegen8] // Add a new entry to the PHI node for the backedge. Variable->addIncoming(NextVar, LoopEndBB); @@ -763,6 +802,7 @@ // for expr always returns 0.0. return Constant::getNullValue(Type::getDoubleTy(TheContext)); } +/// [chapter5-ForExprAST-codegen8] Function *PrototypeAST::codegen() { // Make the function type: double(double,double) etc. Index: examples/Kaleidoscope/Chapter6/toy.cpp =================================================================== --- examples/Kaleidoscope/Chapter6/toy.cpp +++ examples/Kaleidoscope/Chapter6/toy.cpp @@ -161,6 +161,7 @@ Value *codegen() override; }; +/// [chapter6-UnaryExprAST] /// UnaryExprAST - Expression class for a unary operator. class UnaryExprAST : public ExprAST { char Opcode; @@ -172,6 +173,7 @@ Value *codegen() override; }; +/// [chapter6-UnaryExprAST] /// BinaryExprAST - Expression class for a binary operator. class BinaryExprAST : public ExprAST { @@ -226,6 +228,7 @@ Value *codegen() override; }; +/// [chapter6-PrototypeAST] /// PrototypeAST - This class represents the "prototype" for a function, /// which captures its name, and its argument names (thus implicitly the number /// of arguments the function takes), as well as if it is an operator. @@ -254,6 +257,7 @@ unsigned getBinaryPrecedence() const { return Precedence; } }; +/// [chapter6-PrototypeAST] /// FunctionAST - This class represents a function definition itself. class FunctionAST { @@ -464,6 +468,7 @@ } } +/// [chapter6-ParseUnary] /// unary /// ::= primary /// ::= '!' unary @@ -479,6 +484,7 @@ return llvm::make_unique(Opc, std::move(Operand)); return nullptr; } +/// [chapter6-ParseUnary] /// binoprhs /// ::= ('+' unary)* @@ -517,6 +523,7 @@ } } +/// [chapter6-ParseExpression] /// expression /// ::= unary binoprhs /// @@ -527,7 +534,9 @@ return ParseBinOpRHS(0, std::move(LHS)); } +/// [chapter6-ParseExpression] +/// [chapter6-ParsePrototype] /// prototype /// ::= id '(' id* ')' /// ::= binary LETTER number? (id, id) @@ -593,6 +602,7 @@ return llvm::make_unique(FnName, ArgNames, Kind != 0, BinaryPrecedence); } +/// [chapter6-ParsePrototype] /// definition ::= 'def' prototype expression static std::unique_ptr ParseDefinition() { @@ -667,6 +677,7 @@ return V; } +/// [chapter6-UnaryExprAST-codegen] Value *UnaryExprAST::codegen() { Value *OperandV = Operand->codegen(); if (!OperandV) @@ -678,7 +689,9 @@ return Builder.CreateCall(F, OperandV, "unop"); } +/// [chapter6-UnaryExprAST-codegen] +/// [chapter6-BinaryExprAST-codegen] Value *BinaryExprAST::codegen() { Value *L = LHS->codegen(); Value *R = RHS->codegen(); @@ -708,6 +721,7 @@ Value *Ops[] = {L, R}; return Builder.CreateCall(F, Ops, "binop"); } +/// [chapter6-BinaryExprAST-codegen] Value *CallExprAST::codegen() { // Look up the name in the global module table. @@ -893,6 +907,7 @@ return F; } +/// [chapter6-FunctionAST-codegen] Function *FunctionAST::codegen() { // Transfer ownership of the prototype to the FunctionProtos map, but keep a // reference to it for use below. @@ -908,6 +923,7 @@ // Create a new basic block to start insertion into. BasicBlock *BB = BasicBlock::Create(TheContext, "entry", TheFunction); + /// [chapter6-FunctionAST-codegen] Builder.SetInsertPoint(BB); // Record the function arguments in the NamedValues map. Index: examples/Kaleidoscope/Chapter7/toy.cpp =================================================================== --- examples/Kaleidoscope/Chapter7/toy.cpp +++ examples/Kaleidoscope/Chapter7/toy.cpp @@ -233,6 +233,7 @@ Value *codegen() override; }; +/// [chapter7-VarExprAST] /// VarExprAST - Expression class for var/in class VarExprAST : public ExprAST { std::vector>> VarNames; @@ -246,6 +247,7 @@ Value *codegen() override; }; +/// [chapter7-VarExprAST] /// PrototypeAST - This class represents the "prototype" for a function, /// which captures its name, and its argument names (thus implicitly the number @@ -462,6 +464,7 @@ std::move(Step), std::move(Body)); } +/// [chapter7-ParseVarExpr1] /// varexpr ::= 'var' identifier ('=' expression)? // (',' identifier ('=' expression)?)* 'in' expression static std::unique_ptr ParseVarExpr() { @@ -472,7 +475,9 @@ // At least one variable name is required. if (CurTok != tok_identifier) return LogError("expected identifier after var"); + /// [chapter7-ParseVarExpr1] + /// [chapter7-ParseVarExpr2] while (true) { std::string Name = IdentifierStr; getNextToken(); // eat identifier. @@ -497,7 +502,9 @@ if (CurTok != tok_identifier) return LogError("expected identifier list after var"); } + /// [chapter7-ParseVarExpr2] + /// [chapter7-ParseVarExpr3] // At this point, we have to have 'in'. if (CurTok != tok_in) return LogError("expected 'in' keyword after 'var'"); @@ -509,7 +516,9 @@ return llvm::make_unique(std::move(VarNames), std::move(Body)); } +/// [chapter7-ParseVarExpr3] +/// [chapter7-ParsePrimary] /// primary /// ::= identifierexpr /// ::= numberexpr @@ -535,6 +544,7 @@ return ParseVarExpr(); } } +/// [chapter7-ParsePrimary] /// unary /// ::= primary @@ -727,6 +737,7 @@ return nullptr; } +/// [chapter7-CreateEntryBlockAlloca] /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of /// the function. This is used for mutable variables etc. static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction, @@ -735,11 +746,13 @@ TheFunction->getEntryBlock().begin()); return TmpB.CreateAlloca(Type::getDoubleTy(TheContext), nullptr, VarName); } +/// [chapter7-CreateEntryBlockAlloca] Value *NumberExprAST::codegen() { return ConstantFP::get(TheContext, APFloat(Val)); } +/// [chapter7-VariableExprAST-codegen] Value *VariableExprAST::codegen() { // Look this variable up in the function. Value *V = NamedValues[Name]; @@ -749,6 +762,7 @@ // Load the value. return Builder.CreateLoad(V, Name.c_str()); } +/// [chapter7-VariableExprAST-codegen] Value *UnaryExprAST::codegen() { Value *OperandV = Operand->codegen(); @@ -762,6 +776,7 @@ return Builder.CreateCall(F, OperandV, "unop"); } +/// [chapter7-BinaryExprAST-codegen1] Value *BinaryExprAST::codegen() { // Special case '=' because we don't want to emit the LHS as an expression. if (Op == '=') { @@ -772,6 +787,8 @@ VariableExprAST *LHSE = static_cast(LHS.get()); if (!LHSE) return LogErrorV("destination of '=' must be a variable"); + /// [chapter7-BinaryExprAST-codegen1] + /// [chapter7-BinaryExprAST-codegen2] // Codegen the RHS. Value *Val = RHS->codegen(); if (!Val) @@ -785,6 +802,7 @@ Builder.CreateStore(Val, Variable); return Val; } + /// [chapter7-BinaryExprAST-codegen2] Value *L = LHS->codegen(); Value *R = RHS->codegen(); @@ -907,6 +925,7 @@ // br endcond, loop, endloop // outloop: Value *ForExprAST::codegen() { + /// [chapter7-ForExprAST-codegen1] Function *TheFunction = Builder.GetInsertBlock()->getParent(); // Create an alloca for the variable in the entry block. @@ -919,6 +938,7 @@ // Store the value into the alloca. Builder.CreateStore(StartVal, Alloca); + /// [chapter7-ForExprAST-codegen1] // Make the new basic block for the loop header, inserting after current // block. @@ -952,6 +972,7 @@ StepVal = ConstantFP::get(TheContext, APFloat(1.0)); } + /// [chapter7-ForExprAST-codegen2] // Compute the end condition. Value *EndCond = End->codegen(); if (!EndCond) @@ -962,6 +983,7 @@ Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str()); Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar"); Builder.CreateStore(NextVar, Alloca); + /// [chapter7-ForExprAST-codegen2] // Convert condition to a bool by comparing non-equal to 0.0. EndCond = Builder.CreateFCmpONE( @@ -987,6 +1009,7 @@ return Constant::getNullValue(Type::getDoubleTy(TheContext)); } +/// [chapter7-VarExprAST-codegen1] Value *VarExprAST::codegen() { std::vector OldBindings; @@ -996,7 +1019,9 @@ for (unsigned i = 0, e = VarNames.size(); i != e; ++i) { const std::string &VarName = VarNames[i].first; ExprAST *Init = VarNames[i].second.get(); + /// [chapter7-VarExprAST-codegen1] + /// [chapter7-VarExprAST-codegen2] // Emit the initializer before adding the variable to scope, this prevents // the initializer from referencing the variable itself, and permits stuff // like this: @@ -1021,12 +1046,16 @@ // Remember this binding. NamedValues[VarName] = Alloca; } + /// [chapter7-VarExprAST-codegen2] + /// [chapter7-VarExprAST-codegen3] // Codegen the body, now that all vars are in scope. Value *BodyVal = Body->codegen(); if (!BodyVal) return nullptr; + /// [chapter7-VarExprAST-codegen3] + /// [chapter7-VarExprAST-codegen4] // Pop all our variables from scope. for (unsigned i = 0, e = VarNames.size(); i != e; ++i) NamedValues[VarNames[i].first] = OldBindings[i]; @@ -1034,6 +1063,7 @@ // Return the body computation. return BodyVal; } +/// [chapter7-VarExprAST-codegen4] Function *PrototypeAST::codegen() { // Make the function type: double(double,double) etc. @@ -1052,7 +1082,9 @@ return F; } +/// [chapter7-FunctionAST-codegen1] Function *FunctionAST::codegen() { + /// [chapter7-FunctionAST-codegen1] // Transfer ownership of the prototype to the FunctionProtos map, but keep a // reference to it for use below. auto &P = *Proto; @@ -1067,6 +1099,7 @@ // Create a new basic block to start insertion into. BasicBlock *BB = BasicBlock::Create(TheContext, "entry", TheFunction); + /// [chapter7-FunctionAST-codegen2] Builder.SetInsertPoint(BB); // Record the function arguments in the NamedValues map. @@ -1083,6 +1116,7 @@ } if (Value *RetVal = Body->codegen()) { + /// [chapter7-FunctionAST-codegen2] // Finish off the function. Builder.CreateRet(RetVal); @@ -1115,12 +1149,14 @@ // Create a new pass manager attached to it. TheFPM = llvm::make_unique(TheModule.get()); + /// [chapter7-passes] // Promote allocas to registers. TheFPM->add(createPromoteMemoryToRegisterPass()); // Do simple "peephole" optimizations and bit-twiddling optzns. TheFPM->add(createInstructionCombiningPass()); // Reassociate expressions. TheFPM->add(createReassociatePass()); + /// [chapter7-passes] // Eliminate Common SubExpressions. TheFPM->add(createGVNPass()); // Simplify the control flow graph (deleting unreachable blocks, etc). Index: examples/Kaleidoscope/Chapter8/toy.cpp =================================================================== --- examples/Kaleidoscope/Chapter8/toy.cpp +++ examples/Kaleidoscope/Chapter8/toy.cpp @@ -1213,15 +1213,19 @@ MainLoop(); // Initialize the target registry etc. + /// [chapter8-initialize] InitializeAllTargetInfos(); InitializeAllTargets(); InitializeAllTargetMCs(); InitializeAllAsmParsers(); InitializeAllAsmPrinters(); + /// [chapter8-initialize] + /// [chapter8-TargetTriple] auto TargetTriple = sys::getDefaultTargetTriple(); - TheModule->setTargetTriple(TargetTriple); + /// [chapter8-TargetTriple] + /// [chapter8-lookup] std::string Error; auto Target = TargetRegistry::lookupTarget(TargetTriple, Error); @@ -1232,7 +1236,9 @@ errs() << Error; return 1; } + /// [chapter8-lookup] + /// [chapter8-target-machine] auto CPU = "generic"; auto Features = ""; @@ -1240,9 +1246,14 @@ auto RM = Optional(); auto TheTargetMachine = Target->createTargetMachine(TargetTriple, CPU, Features, opt, RM); + /// [chapter8-target-machine] + /// [chapter8-module] TheModule->setDataLayout(TheTargetMachine->createDataLayout()); + TheModule->setTargetTriple(TargetTriple); + /// [chapter8-module] + /// [chapter8-emit] auto Filename = "output.o"; std::error_code EC; raw_fd_ostream dest(Filename, EC, sys::fs::F_None); @@ -1251,7 +1262,9 @@ errs() << "Could not open file: " << EC.message(); return 1; } + /// [chapter8-emit] + /// [chapter8-pass] legacy::PassManager pass; auto FileType = TargetMachine::CGFT_ObjectFile; @@ -1262,6 +1275,7 @@ pass.run(*TheModule); dest.flush(); + /// [chapter8-pass] outs() << "Wrote " << Filename << "\n";