Index: compiler-rt/lib/asan/asan_posix.cc =================================================================== --- compiler-rt/lib/asan/asan_posix.cc +++ compiler-rt/lib/asan/asan_posix.cc @@ -35,56 +35,13 @@ void AsanOnDeadlySignal(int signo, void *siginfo, void *context) { ScopedDeadlySignal signal_scope(GetCurrentThread()); - int code = (int)((siginfo_t*)siginfo)->si_code; // Write the first message using fd=2, just in case. // It may actually fail to write in case stderr is closed. internal_write(2, SanitizerToolName, internal_strlen(SanitizerToolName)); static const char kDeadlySignal[] = ":DEADLYSIGNAL\n"; internal_write(2, kDeadlySignal, sizeof(kDeadlySignal) - 1); SignalContext sig = SignalContext::Create(siginfo, context); - - // Access at a reasonable offset above SP, or slightly below it (to account - // for x86_64 or PowerPC redzone, ARM push of multiple registers, etc) is - // probably a stack overflow. -#ifdef __s390__ - // On s390, the fault address in siginfo points to start of the page, not - // to the precise word that was accessed. Mask off the low bits of sp to - // take it into account. - bool IsStackAccess = sig.addr >= (sig.sp & ~0xFFF) && - sig.addr < sig.sp + 0xFFFF; -#else - bool IsStackAccess = sig.addr + 512 > sig.sp && sig.addr < sig.sp + 0xFFFF; -#endif - -#if __powerpc__ - // Large stack frames can be allocated with e.g. - // lis r0,-10000 - // stdux r1,r1,r0 # store sp to [sp-10000] and update sp by -10000 - // If the store faults then sp will not have been updated, so test above - // will not work, because the fault address will be more than just "slightly" - // below sp. - if (!IsStackAccess && IsAccessibleMemoryRange(sig.pc, 4)) { - u32 inst = *(unsigned *)sig.pc; - u32 ra = (inst >> 16) & 0x1F; - u32 opcd = inst >> 26; - u32 xo = (inst >> 1) & 0x3FF; - // Check for store-with-update to sp. The instructions we accept are: - // stbu rs,d(ra) stbux rs,ra,rb - // sthu rs,d(ra) sthux rs,ra,rb - // stwu rs,d(ra) stwux rs,ra,rb - // stdu rs,ds(ra) stdux rs,ra,rb - // where ra is r1 (the stack pointer). - if (ra == 1 && - (opcd == 39 || opcd == 45 || opcd == 37 || opcd == 62 || - (opcd == 31 && (xo == 247 || xo == 439 || xo == 183 || xo == 181)))) - IsStackAccess = true; - } -#endif // __powerpc__ - - // We also check si_code to filter out SEGV caused by something else other - // then hitting the guard page or unmapped memory, like, for example, - // unaligned memory access. - if (IsStackAccess && (code == si_SEGV_MAPERR || code == si_SEGV_ACCERR)) + if (IsStackOverflow(((siginfo_t *)siginfo)->si_code, sig)) ReportStackOverflow(sig); else ReportDeadlySignal(signo, sig); Index: compiler-rt/lib/sanitizer_common/sanitizer_common.h =================================================================== --- compiler-rt/lib/sanitizer_common/sanitizer_common.h +++ compiler-rt/lib/sanitizer_common/sanitizer_common.h @@ -306,6 +306,7 @@ // Functions related to signal handling. typedef void (*SignalHandlerType)(int, void *, void *); HandleSignalMode GetHandleSignalMode(int signum); +bool IsStackOverflow(int code, const struct SignalContext &sig); void InstallDeadlySignalHandlers(SignalHandlerType handler); const char *DescribeSignalOrException(int signo); // Alternative signal stack (POSIX-only). Index: compiler-rt/lib/sanitizer_common/sanitizer_posix.cc =================================================================== --- compiler-rt/lib/sanitizer_common/sanitizer_posix.cc +++ compiler-rt/lib/sanitizer_common/sanitizer_posix.cc @@ -321,6 +321,53 @@ return "UNKNOWN SIGNAL"; } +#if !SANITIZER_GO +bool IsStackOverflow(int code, const SignalContext &sig) { + // Access at a reasonable offset above SP, or slightly below it (to account + // for x86_64 or PowerPC redzone, ARM push of multiple registers, etc) is + // probably a stack overflow. +#ifdef __s390__ + // On s390, the fault address in siginfo points to start of the page, not + // to the precise word that was accessed. Mask off the low bits of sp to + // take it into account. + bool IsStackAccess = + sig.addr >= (sig.sp & ~0xFFF) && sig.addr < sig.sp + 0xFFFF; +#else + bool IsStackAccess = sig.addr + 512 > sig.sp && sig.addr < sig.sp + 0xFFFF; +#endif + +#if __powerpc__ + // Large stack frames can be allocated with e.g. + // lis r0,-10000 + // stdux r1,r1,r0 # store sp to [sp-10000] and update sp by -10000 + // If the store faults then sp will not have been updated, so test above + // will not work, because the fault address will be more than just "slightly" + // below sp. + if (!IsStackAccess && IsAccessibleMemoryRange(sig.pc, 4)) { + u32 inst = *(unsigned *)sig.pc; + u32 ra = (inst >> 16) & 0x1F; + u32 opcd = inst >> 26; + u32 xo = (inst >> 1) & 0x3FF; + // Check for store-with-update to sp. The instructions we accept are: + // stbu rs,d(ra) stbux rs,ra,rb + // sthu rs,d(ra) sthux rs,ra,rb + // stwu rs,d(ra) stwux rs,ra,rb + // stdu rs,ds(ra) stdux rs,ra,rb + // where ra is r1 (the stack pointer). + if (ra == 1 && + (opcd == 39 || opcd == 45 || opcd == 37 || opcd == 62 || + (opcd == 31 && (xo == 247 || xo == 439 || xo == 183 || xo == 181)))) + IsStackAccess = true; + } +#endif // __powerpc__ + + // We also check si_code to filter out SEGV caused by something else other + // then hitting the guard page or unmapped memory, like, for example, + // unaligned memory access. + return IsStackAccess && (code == si_SEGV_MAPERR || code == si_SEGV_ACCERR); +} +#endif //! SANITIZER_GO + } // namespace __sanitizer #endif // SANITIZER_POSIX