Index: lib/Transforms/Utils/SimplifyLibCalls.cpp =================================================================== --- lib/Transforms/Utils/SimplifyLibCalls.cpp +++ lib/Transforms/Utils/SimplifyLibCalls.cpp @@ -18,6 +18,7 @@ #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/Triple.h" +#include "llvm/Analysis/ConstantFolding.h" #include "llvm/Analysis/OptimizationDiagnosticInfo.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/ValueTracking.h" @@ -751,29 +752,44 @@ } // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0 + // TODO: The case where both inputs are constants does not need to be limited + // to legal integers or equality comparison. See block below this. if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) { - IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8); unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType); - if (getKnownAlignment(LHS, DL, CI) >= PrefAlignment && - getKnownAlignment(RHS, DL, CI) >= PrefAlignment) { + // First, see if we can fold either argument to a constant. + Value *LHSV = nullptr; + if (auto *LHSC = dyn_cast(LHS)) { + LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo()); + LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL); + } + Value *RHSV = nullptr; + if (auto *RHSC = dyn_cast(RHS)) { + RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo()); + RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL); + } + // Don't generate unaligned loads. If either source is constant data, + // alignment doesn't matter for that source because there is no load. + if (!LHSV && getKnownAlignment(LHS, DL, CI) >= PrefAlignment) { Type *LHSPtrTy = IntType->getPointerTo(LHS->getType()->getPointerAddressSpace()); + LHSV = B.CreateLoad(B.CreateBitCast(LHS, LHSPtrTy), "lhsv"); + } + + if (!RHSV && getKnownAlignment(RHS, DL, CI) >= PrefAlignment) { Type *RHSPtrTy = IntType->getPointerTo(RHS->getType()->getPointerAddressSpace()); + RHSV = B.CreateLoad(B.CreateBitCast(RHS, RHSPtrTy), "rhsv"); + } - Value *LHSV = - B.CreateLoad(B.CreateBitCast(LHS, LHSPtrTy, "lhsc"), "lhsv"); - Value *RHSV = - B.CreateLoad(B.CreateBitCast(RHS, RHSPtrTy, "rhsc"), "rhsv"); - + if (LHSV && RHSV) return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp"); - } } - // Constant folding: memcmp(x, y, l) -> cnst (all arguments are constant) + // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const). + // TODO: This is limited to i8 arrays. StringRef LHSStr, RHSStr; if (getConstantStringInfo(LHS, LHSStr) && getConstantStringInfo(RHS, RHSStr)) { Index: test/Transforms/InstCombine/memcmp-constant-fold.ll =================================================================== --- test/Transforms/InstCombine/memcmp-constant-fold.ll +++ test/Transforms/InstCombine/memcmp-constant-fold.ll @@ -0,0 +1,65 @@ +; RUN: opt < %s -instcombine -S -data-layout=e-n32 | FileCheck %s --check-prefix=ALL --check-prefix=LE +; RUN: opt < %s -instcombine -S -data-layout=E-n32 | FileCheck %s --check-prefix=ALL --check-prefix=BE + +declare i32 @memcmp(i8*, i8*, i64) + +; The alignment of this constant does not matter. We constant fold the load. + +@charbuf = private unnamed_addr constant [4 x i8] [i8 0, i8 0, i8 0, i8 1], align 1 + +define i1 @memcmp_4bytes_unaligned_constant_i8(i8* align 4 %x) { +; LE-LABEL: @memcmp_4bytes_unaligned_constant_i8( +; LE-NEXT: [[TMP1:%.*]] = bitcast i8* %x to i32* +; LE-NEXT: [[LHSV:%.*]] = load i32, i32* [[TMP1]], align 4 +; LE-NEXT: [[TMP2:%.*]] = icmp eq i32 [[LHSV]], 16777216 +; LE-NEXT: ret i1 [[TMP2]] +; +; BE-LABEL: @memcmp_4bytes_unaligned_constant_i8( +; BE-NEXT: [[TMP1:%.*]] = bitcast i8* %x to i32* +; BE-NEXT: [[LHSV:%.*]] = load i32, i32* [[TMP1]], align 4 +; BE-NEXT: [[TMP2:%.*]] = icmp eq i32 [[LHSV]], 1 +; BE-NEXT: ret i1 [[TMP2]] +; + %call = tail call i32 @memcmp(i8* %x, i8* getelementptr inbounds ([4 x i8], [4 x i8]* @charbuf, i64 0, i64 0), i64 4) + %cmpeq0 = icmp eq i32 %call, 0 + ret i1 %cmpeq0 +} + +; We still don't care about alignment of the constant. We are not limited to constant folding only i8 arrays. +; It doesn't matter if the constant operand is the first operand to the memcmp. + +@intbuf_unaligned = private unnamed_addr constant [4 x i16] [i16 1, i16 2, i16 3, i16 4], align 1 + +define i1 @memcmp_4bytes_unaligned_constant_i16(i8* align 4 %x) { +; LE-LABEL: @memcmp_4bytes_unaligned_constant_i16( +; LE-NEXT: [[TMP1:%.*]] = bitcast i8* %x to i32* +; LE-NEXT: [[RHSV:%.*]] = load i32, i32* [[TMP1]], align 4 +; LE-NEXT: [[TMP2:%.*]] = icmp eq i32 [[RHSV]], 131073 +; LE-NEXT: ret i1 [[TMP2]] +; +; BE-LABEL: @memcmp_4bytes_unaligned_constant_i16( +; BE-NEXT: [[TMP1:%.*]] = bitcast i8* %x to i32* +; BE-NEXT: [[RHSV:%.*]] = load i32, i32* [[TMP1]], align 4 +; BE-NEXT: [[TMP2:%.*]] = icmp eq i32 [[RHSV]], 65538 +; BE-NEXT: ret i1 [[TMP2]] +; + %call = tail call i32 @memcmp(i8* bitcast (i16* getelementptr inbounds ([4 x i16], [4 x i16]* @intbuf_unaligned, i64 0, i64 0) to i8*), i8* %x, i64 4) + %cmpeq0 = icmp eq i32 %call, 0 + ret i1 %cmpeq0 +} + +; TODO: Any memcmp where all arguments are constants should be constant folded. Currently, we only handle i8 array constants. + +@intbuf = private unnamed_addr constant [2 x i32] [i32 0, i32 1], align 4 + +define i1 @memcmp_3bytes_aligned_constant_i32(i8* align 4 %x) { +; ALL-LABEL: @memcmp_3bytes_aligned_constant_i32( +; ALL-NEXT: [[CALL:%.*]] = tail call i32 @memcmp(i8* bitcast (i32* getelementptr inbounds ([2 x i32], [2 x i32]* @intbuf, i64 0, i64 1) to i8*), i8* bitcast ([2 x i32]* @intbuf to i8*), i64 3) +; ALL-NEXT: [[CMPEQ0:%.*]] = icmp eq i32 [[CALL]], 0 +; ALL-NEXT: ret i1 [[CMPEQ0]] +; + %call = tail call i32 @memcmp(i8* bitcast (i32* getelementptr inbounds ([2 x i32], [2 x i32]* @intbuf, i64 0, i64 1) to i8*), i8* bitcast (i32* getelementptr inbounds ([2 x i32], [2 x i32]* @intbuf, i64 0, i64 0) to i8*), i64 3) + %cmpeq0 = icmp eq i32 %call, 0 + ret i1 %cmpeq0 +} +