Index: include/polly/CodeGen/IslNodeBuilder.h =================================================================== --- include/polly/CodeGen/IslNodeBuilder.h +++ include/polly/CodeGen/IslNodeBuilder.h @@ -75,6 +75,13 @@ void addParameters(__isl_take isl_set *Context); + /// Create Values which hold the sizes of the outermost dimension of all + /// Fortran arrays in the current scop. + /// + /// @returns False, if a problem occurred and a Fortran array was not + /// materialized. True otherwise. + bool materializeFortranArrayOutermostDimension(); + /// Generate code that evaluates @p Condition at run-time. /// /// This function is typically called to generate the LLVM-IR for the Index: include/polly/ScopInfo.h =================================================================== --- include/polly/ScopInfo.h +++ include/polly/ScopInfo.h @@ -264,6 +264,12 @@ /// with old sizes bool updateSizes(ArrayRef Sizes, bool CheckConsistency = true); + /// Make the ScopArrayInfo model a Fortran array. + /// It receives the Fortran array descriptor and stores this. + /// It also adds a piecewise expression for the outermost dimension + /// since this information is available for Fortran arrays at runtime. + void applyAndSetFAD(Value *FAD); + /// Destructor to free the isl id of the base pointer. ~ScopArrayInfo(); @@ -420,6 +426,10 @@ /// The scop this SAI object belongs to. Scop &S; + + /// If this array models a Fortran array, then this points + /// to the Fortran array descriptor. + Value *FAD; }; /// Represent memory accesses in statements. @@ -891,6 +901,10 @@ /// the dimension of the innermost loop containing the statement. __isl_give isl_set *getStride(__isl_take const isl_map *Schedule) const; + /// Get the FortranArrayDescriptor corresponding to this memory access if + /// it exists, and nullptr otherwise. + Value *getFortranArrayDescriptor() const { return this->FAD; }; + /// Is the stride of the access equal to a certain width? Schedule is a map /// from the statement to a schedule where the innermost dimension is the /// dimension of the innermost loop containing the statement. @@ -2063,6 +2077,9 @@ /// all memory accesses have been modeled and canonicalized. void assumeNoOutOfBounds(); + /// Mark arrays that have memory accesses with FortranArrayDescriptor. + void markFortranArrays(); + /// Finalize all access relations. /// /// When building up access relations, temporary access relations that Index: lib/Analysis/ScopInfo.cpp =================================================================== --- lib/Analysis/ScopInfo.cpp +++ lib/Analysis/ScopInfo.cpp @@ -247,7 +247,8 @@ ArrayRef Sizes, MemoryKind Kind, const DataLayout &DL, Scop *S, const char *BaseName) - : BasePtr(BasePtr), ElementType(ElementType), Kind(Kind), DL(DL), S(*S) { + : BasePtr(BasePtr), ElementType(ElementType), Kind(Kind), DL(DL), S(*S), + FAD(nullptr) { std::string BasePtrName = BaseName ? BaseName : getIslCompatibleName("MemRef", BasePtr, S->getNextArrayIdx(), @@ -318,6 +319,37 @@ } } +/// Make the ScopArrayInfo model a Fortran Array +void ScopArrayInfo::applyAndSetFAD(Value *FAD) { + assert(FAD && "got invalid Fortran array descriptor"); + if (this->FAD) { + assert(this->FAD == FAD && + "receiving different array descriptors for same array"); + return; + } + + assert(DimensionSizesPw.size() > 0 && !DimensionSizesPw[0]); + assert(!this->FAD); + this->FAD = FAD; + + isl_space *Space = isl_space_set_alloc(S.getIslCtx(), 1, 0); + + std::string param_name = getName(); + param_name += "_fortranarr_size"; + // TODO: see if we need to add `this` as the id user pointer + isl_id *IdPwAff = isl_id_alloc(S.getIslCtx(), param_name.c_str(), nullptr); + + Space = isl_space_set_dim_id(Space, isl_dim_param, 0, IdPwAff); + isl_basic_set *Identity = isl_basic_set_universe(Space); + isl_local_space *LocalSpace = isl_basic_set_get_local_space(Identity); + isl_basic_set_free(Identity); + + isl_pw_aff *PwAff = + isl_pw_aff_from_aff(isl_aff_var_on_domain(LocalSpace, isl_dim_param, 0)); + + DimensionSizesPw[0] = PwAff; +} + bool ScopArrayInfo::updateSizes(ArrayRef NewSizes, bool CheckConsistency) { int SharedDims = std::min(NewSizes.size(), DimensionSizes.size()); @@ -374,7 +406,12 @@ void ScopArrayInfo::print(raw_ostream &OS, bool SizeAsPwAff) const { OS.indent(8) << *getElementType() << " " << getName(); unsigned u = 0; - if (getNumberOfDimensions() > 0 && !getDimensionSize(0)) { + // If this is a Fortran array, then we can print the outermost dimension + // as a pwAff even though there is no SCEV information. + bool IsOutermostSizeKnown = SizeAsPwAff && FAD; + + if (!IsOutermostSizeKnown && getNumberOfDimensions() > 0 && + !getDimensionSize(0)) { OS << "[*]"; u++; } @@ -2175,6 +2212,40 @@ } } +static isl_set *addFortranArrayParams(__isl_give isl_set *Context, + Scop::array_range Arrays) { + + std::vector OutermostSizeIds; + for (auto Array : Arrays) { + // To check if an array is a Fortran array, we check if it has a PwAff + // for its outermost dimension. Fortran arrays will have this since the + // outermost dimension size can be picked up from their runtime description. + // TODO: actually need to check if it has a FAD, but for now this works. + if (Array->getNumberOfDimensions() > 0) { + isl_pw_aff *PwAff = Array->getDimensionSizePw(0); + if (!PwAff) + continue; + + isl_id *Id = isl_pw_aff_get_dim_id(PwAff, isl_dim_param, 0); + isl_pw_aff_free(PwAff); + assert(Id && "Invalid Id for PwAff expression in Fortran array"); + OutermostSizeIds.push_back(Id); + } + } + + const int NumTrueParams = isl_set_dim(Context, isl_dim_param); + Context = isl_set_add_dims(Context, isl_dim_param, OutermostSizeIds.size()); + + for (size_t i = 0; i < OutermostSizeIds.size(); i++) { + Context = isl_set_set_dim_id(Context, isl_dim_param, NumTrueParams + i, + OutermostSizeIds[i]); + Context = + isl_set_lower_bound_si(Context, isl_dim_param, NumTrueParams + i, 0); + } + + return Context; +} + void Scop::realignParams() { if (PollyIgnoreParamBounds) return; @@ -2191,13 +2262,15 @@ // Align the parameters of all data structures to the model. Context = isl_set_align_params(Context, Space); + // Add the Fortran arrays bounds parameters into the Context. + Context = addFortranArrayParams(Context, arrays()); + // As all parameters are known add bounds to them. addParameterBounds(); for (ScopStmt &Stmt : *this) Stmt.realignParams(); - // Simplify the schedule according to the context too. Schedule = isl_schedule_gist_domain_params(Schedule, getContext()); } @@ -3442,11 +3515,29 @@ return; } +void Scop::markFortranArrays() { + for (ScopStmt &Stmt : Stmts) { + for (MemoryAccess *MemAcc : Stmt) { + Value *FAD = MemAcc->getFortranArrayDescriptor(); + if (!FAD) + continue; + + // TODO: const_cast-ing to edit + ScopArrayInfo *SAI = + const_cast(MemAcc->getLatestScopArrayInfo()); + assert(SAI && "memory access into a Fortran array does not " + "have an associated ScopArrayInfo"); + SAI->applyAndSetFAD(FAD); + } + } +} + void Scop::finalizeAccesses() { updateAccessDimensionality(); foldSizeConstantsToRight(); foldAccessRelations(); assumeNoOutOfBounds(); + markFortranArrays(); } Scop::~Scop() { Index: lib/CodeGen/IslNodeBuilder.cpp =================================================================== --- lib/CodeGen/IslNodeBuilder.cpp +++ lib/CodeGen/IslNodeBuilder.cpp @@ -995,6 +995,92 @@ return true; } +/// Generate the computation of the size of the outermost dimension from the +/// Fortran array descriptor (in this case, `@g_arr`). The final `%size` +/// contains the size of the array. +/// +/// %arrty = type { i8*, i64, i64, [3 x %desc.dimensionty] } +/// %desc.dimensionty = type { i64, i64, i64 } +/// @g_arr = global %arrty zeroinitializer, align 32 +/// ... +/// %0 = load i64, i64* getelementptr inbounds +/// (%arrty, %arrty* @g_arr, i64 0, i32 3, i64 0, i32 2) +/// %1 = load i64, i64* getelementptr inbounds +/// (%arrty, %arrty* @g_arr, i64 0, i32 3, i64 0, i32 1) +/// %2 = sub nsw i64 %0, %1 +/// %size = add nsw i64 %2, 1 +static Value *buildFADOutermostDimensionLoad(Value *GlobalDescriptor, + PollyIRBuilder &Builder, + std::string ArrayName) { + assert(GlobalDescriptor && "invalid global descriptor given"); + + Value *endIdx[4] = {Builder.getInt64(0), Builder.getInt32(3), + Builder.getInt64(0), Builder.getInt32(2)}; + Value *endPtr = Builder.CreateInBoundsGEP(GlobalDescriptor, endIdx, + ArrayName + "_end_ptr"); + Value *end = Builder.CreateLoad(endPtr, ArrayName + "_end"); + + Value *beginIdx[4] = {Builder.getInt64(0), Builder.getInt32(3), + Builder.getInt64(0), Builder.getInt32(1)}; + Value *beginPtr = Builder.CreateInBoundsGEP(GlobalDescriptor, beginIdx, + ArrayName + "_begin_ptr"); + Value *begin = Builder.CreateLoad(beginPtr, ArrayName + "_begin"); + + Value *size = + Builder.CreateNSWSub(end, begin, ArrayName + "_end_begin_delta"); + Type *endType = dyn_cast(end->getType()); + assert(endType && "expected type of end to be integral"); + + size = Builder.CreateNSWAdd(end, + ConstantInt::get(endType, 1, /* signed = */ true), + ArrayName + "_size"); + + return size; +} + +bool IslNodeBuilder::materializeFortranArrayOutermostDimension() { + for (const ScopStmt &Stmt : S) { + for (const MemoryAccess *Access : Stmt) { + if (!Access->isArrayKind()) + continue; + + const ScopArrayInfo *Array = Access->getScopArrayInfo(); + if (!Array) + continue; + + if (Array->getNumberOfDimensions() == 0) + continue; + + Value *FAD = Access->getFortranArrayDescriptor(); + if (!FAD) + continue; + + isl_pw_aff *ParametricPwAff = Array->getDimensionSizePw(0); + assert(ParametricPwAff && "parameteric pw_aff corresponding " + "to outermost dimension does not " + "exist"); + + isl_id *Id = isl_pw_aff_get_dim_id(ParametricPwAff, isl_dim_param, 0); + isl_pw_aff_free(ParametricPwAff); + + assert(Id && "pw_aff is not parametric"); + + if (IDToValue.count(Id)) { + isl_id_free(Id); + continue; + } + + Value *FinalValue = + buildFADOutermostDimensionLoad(FAD, Builder, Array->getName()); + assert(FinalValue && "unable to build Fortran array " + "descriptor load of outermost dimension"); + IDToValue[Id] = FinalValue; + isl_id_free(Id); + } + } + return true; +} + /// Add the number of dimensions in @p BS to @p U. static isl_stat countTotalDims(__isl_take isl_basic_set *BS, void *U) { unsigned *NumTotalDim = static_cast(U); @@ -1313,6 +1399,12 @@ // Materialize values for the parameters of the SCoP. materializeParameters(); + // materialize the outermost dimension parameters for a Fortran array. + // NOTE: materializeParameters() does not work since it looks through + // the SCEVs. We don't have a corresponding SCEV for the array size + // parameter + materializeFortranArrayOutermostDimension(); + // Generate values for the current loop iteration for all surrounding loops. // // We may also reference loops outside of the scop which do not contain the Index: lib/CodeGen/PPCGCodeGeneration.cpp =================================================================== --- lib/CodeGen/PPCGCodeGeneration.cpp +++ lib/CodeGen/PPCGCodeGeneration.cpp @@ -2163,9 +2163,17 @@ for (unsigned i = 1; i < NumDims; ++i) Extent = isl_set_lower_bound_si(Extent, isl_dim_set, i, 0); - for (unsigned i = 1; i < NumDims; ++i) { + for (unsigned i = 0; i < NumDims; ++i) { isl_pw_aff *PwAff = const_cast(Array->getDimensionSizePw(i)); + + // isl_pw_aff can be NULL for zero dimension. Only in the case of a + // Fortran array will we have a legitimate dimension. + if (!PwAff) { + assert(i == 0 && "invalid dimension isl_pw_aff for nonzero dimension"); + continue; + } + isl_pw_aff *Val = isl_pw_aff_from_aff(isl_aff_var_on_domain( isl_local_space_from_space(Array->getSpace()), isl_dim_set, i)); PwAff = isl_pw_aff_add_dims(PwAff, isl_dim_in, Index: test/Isl/CodeGen/fortran_array_runtime_size_generation.ll =================================================================== --- /dev/null +++ test/Isl/CodeGen/fortran_array_runtime_size_generation.ll @@ -0,0 +1,82 @@ +; Check that the runtime size computation is generated for Fortran arrays. + +; PPCG code generation backend: +; RUN: opt %loadPolly -S -polly-detect-fortran-arrays \ +; RUN: -polly-target=gpu -polly-acc-mincompute=0 \ +; RUN: -polly-codegen-ppcg < %s | FileCheck %s + +; Regular code generation backend: +; RUN: opt %loadPolly -S -polly-detect-fortran-arrays \ +; RUN: -polly-codegen < %s | FileCheck %s + +; What the input fortran code should look like. NOTE: this is fake, the +; .ll file was hand-written. +; +; MODULE testmod +; USE data_parameters, ONLY : & +; IMPLICIT NONE +; +; INTEGER (KIND=iintegers), ALLOCATABLE, PRIVATE :: & +; arrin(:), arrout(:) +; CONTAINS +; +; SUBROUTINE test() +; INTEGER (KIND=iintegers) :: i +; +; DO i = 1, 100 +; arrout(i) = arrin(i) * arrin(i) +; END DO +; END SUBROUTINE test +; END MODULE testmod + +target datalayout = "e-p:64:64:64-S128-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i32:64:64-f16:16:16-f32:32:32-f64:64:64-f128:128:128-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64" +target triple = "x86_64-unknown-linux-gnu" + +module asm "\09.ident\09\22GCC: (GNU) 4.6.4 LLVM: 3.3.1\22" + +%"struct.array1_real(kind=8)" = type { i8*, i32, i32, [1 x %struct.descriptor_dimension] } +%struct.descriptor_dimension = type { i32, i32, i32 } + +@arrin = unnamed_addr global %"struct.array1_real(kind=8)" zeroinitializer, align 32 +@arrout = unnamed_addr global %"struct.array1_real(kind=8)" zeroinitializer, align 32 + +; Function Attrs: nounwind uwtable +define void @__src_soil_MOD_terra1() unnamed_addr #0 { +entry: + br label %entry.split + +entry.split: ; preds = %entry + %rawmemin1 = load i32*, i32** bitcast (%"struct.array1_real(kind=8)"* @arrin to i32**), align 32, !tbaa !0 + %rawmemout2 = load i32*, i32** bitcast (%"struct.array1_real(kind=8)"* @arrout to i32**), align 32, !tbaa !0 + br label %for.body + +for.body: ; preds = %entry.split, %for.body + %indvars.iv = phi i64 [ 1, %entry.split ], [ %indvars.iv.next4, %for.body ] + %inslot = getelementptr inbounds i32, i32* %rawmemin1, i64 %indvars.iv + %inval = load i32, i32* %inslot, align 8 + %outslot = getelementptr inbounds i32, i32* %rawmemout2, i64 %indvars.iv + %out = mul nsw i32 %inval, %inval + store i32 %out, i32* %outslot, align 8 + %indvars.iv.next4 = add nuw nsw i64 %indvars.iv, 1 + %exitcond = icmp eq i64 %indvars.iv.next4, 100 + br i1 %exitcond, label %return, label %for.body + +return: ; preds = %for.body + ret void +} + +attributes #0 = { nounwind uwtable } + +!0 = !{!1, !1, i32 0} +!1 = !{!"alias set 3: void*", !2} +!2 = distinct !{!2} + + +; CHECK: %MemRef_rawmemin1_end = load i32, i32* getelementptr inbounds (%"struct.array1_real(kind=8)", %"struct.array1_real(kind=8)"* @arrin, i64 0, i32 3, i64 0, i32 2) +; CHECK-NEXT: %MemRef_rawmemin1_begin = load i32, i32* getelementptr inbounds (%"struct.array1_real(kind=8)", %"struct.array1_real(kind=8)"* @arrin, i64 0, i32 3, i64 0, i32 1) +; CHECK-NEXT: %MemRef_rawmemin1_end_begin_delta = sub nsw i32 %MemRef_rawmemin1_end, %MemRef_rawmemin1_begin +; CHECK-NEXT: %MemRef_rawmemin1_size = add nsw i32 %MemRef_rawmemin1_end, 1 +; CHECK-NEXT: %MemRef_rawmemout2_end = load i32, i32* getelementptr inbounds (%"struct.array1_real(kind=8)", %"struct.array1_real(kind=8)"* @arrout, i64 0, i32 3, i64 0, i32 2) +; CHECK-NEXT: %MemRef_rawmemout2_begin = load i32, i32* getelementptr inbounds (%"struct.array1_real(kind=8)", %"struct.array1_real(kind=8)"* @arrout, i64 0, i32 3, i64 0, i32 1) +; CHECK-NEXT: %MemRef_rawmemout2_end_begin_delta = sub nsw i32 %MemRef_rawmemout2_end, %MemRef_rawmemout2_begin +; CHECK-NEXT: %MemRef_rawmemout2_size = add nsw i32 %MemRef_rawmemout2_end, 1 Index: test/ScopInfo/fortran_array_param_nonmalloc_nonvectored_read_and_write.ll =================================================================== --- test/ScopInfo/fortran_array_param_nonmalloc_nonvectored_read_and_write.ll +++ test/ScopInfo/fortran_array_param_nonmalloc_nonvectored_read_and_write.ll @@ -88,6 +88,6 @@ } ; CHECK: ReadAccess := [Reduction Type: NONE] [Fortran array descriptor: xs] [Scalar: 0] -; CHECK-NEXT: [p_0_loaded_from_n] -> { Stmt_9[i0] -> MemRef0[o0] }; +; CHECK-NEXT: [p_0_loaded_from_n, MemRef0_fortranarr_size, MemRef1_fortranarr_size] -> { Stmt_9[i0] -> MemRef0[o0] }; ; CHECK-NEXT: MayWriteAccess := [Reduction Type: NONE] [Fortran array descriptor: ys] [Scalar: 0] -; CHECK-NEXT: [p_0_loaded_from_n] -> { Stmt_9[i0] -> MemRef1[o0] }; +; CHECK-NEXT: [p_0_loaded_from_n, MemRef0_fortranarr_size, MemRef1_fortranarr_size] -> { Stmt_9[i0] -> MemRef1[o0] };