Index: llvm/trunk/lib/Analysis/ValueTracking.cpp =================================================================== --- llvm/trunk/lib/Analysis/ValueTracking.cpp +++ llvm/trunk/lib/Analysis/ValueTracking.cpp @@ -848,6 +848,14 @@ computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); + // If the shift amount could be greater than or equal to the bit-width of the LHS, the + // value could be undef, so we don't know anything about it. + if ((~KnownZero).uge(BitWidth)) { + KnownZero.clearAllBits(); + KnownOne.clearAllBits(); + return; + } + // Note: We cannot use KnownZero.getLimitedValue() here, because if // BitWidth > 64 and any upper bits are known, we'll end up returning the // limit value (which implies all bits are known). Index: llvm/trunk/test/Transforms/InstCombine/zext-or-icmp.ll =================================================================== --- llvm/trunk/test/Transforms/InstCombine/zext-or-icmp.ll +++ llvm/trunk/test/Transforms/InstCombine/zext-or-icmp.ll @@ -19,3 +19,33 @@ ; CHECK-NEXT: ret i8 %zext } +; Here, widening the or from i1 to i32 and removing one of the icmps would +; widen an undef value (created by the out-of-range shift), increasing the +; range of valid values for the return, so we can't do it. +define i32 @dont_widen_undef() { +entry: + br label %block2 + +block1: + br label %block2 + +block2: + %m.011 = phi i32 [ 33, %entry ], [ 0, %block1 ] + %cmp.i = icmp ugt i32 %m.011, 1 + %m.1.op = lshr i32 1, %m.011 + %sext.mask = and i32 %m.1.op, 65535 + %cmp115 = icmp ne i32 %sext.mask, 0 + %cmp1 = or i1 %cmp.i, %cmp115 + %conv2 = zext i1 %cmp1 to i32 + ret i32 %conv2 + +; CHECK-LABEL: dont_widen_undef( +; CHECK: %m.011 = phi i32 [ 33, %entry ], [ 0, %block1 ] +; CHECK-NEXT: %cmp.i = icmp ugt i32 %m.011, 1 +; CHECK-NEXT: %m.1.op = lshr i32 1, %m.011 +; CHECK-NEXT: %sext.mask = and i32 %m.1.op, 65535 +; CHECK-NEXT: %cmp115 = icmp ne i32 %sext.mask, 0 +; CHECK-NEXT: %cmp1 = or i1 %cmp.i, %cmp115 +; CHECK-NEXT: %conv2 = zext i1 %cmp1 to i32 +; CHECK-NEXT: ret i32 %conv2 +}