Index: llvm/trunk/include/llvm/Analysis/LoopAccessAnalysis.h =================================================================== --- llvm/trunk/include/llvm/Analysis/LoopAccessAnalysis.h +++ llvm/trunk/include/llvm/Analysis/LoopAccessAnalysis.h @@ -660,12 +660,15 @@ /// \brief Try to sort an array of loads / stores. /// /// An array of loads / stores can only be sorted if all pointer operands -/// refer to the same object, and the differences between these pointers +/// refer to the same object, and the differences between these pointers /// are known to be constant. If that is the case, this returns true, and the /// sorted array is returned in \p Sorted. Otherwise, this returns false, and /// \p Sorted is invalid. +// If \p Mask is not null, it also returns the \p Mask which is the shuffle +// mask for actual memory access order. bool sortMemAccesses(ArrayRef VL, const DataLayout &DL, - ScalarEvolution &SE, SmallVectorImpl &Sorted); + ScalarEvolution &SE, SmallVectorImpl &Sorted, + SmallVectorImpl *Mask = nullptr); /// \brief Returns true if the memory operations \p A and \p B are consecutive. /// This is a simple API that does not depend on the analysis pass. Index: llvm/trunk/lib/Analysis/LoopAccessAnalysis.cpp =================================================================== --- llvm/trunk/lib/Analysis/LoopAccessAnalysis.cpp +++ llvm/trunk/lib/Analysis/LoopAccessAnalysis.cpp @@ -1040,7 +1040,8 @@ bool llvm::sortMemAccesses(ArrayRef VL, const DataLayout &DL, ScalarEvolution &SE, - SmallVectorImpl &Sorted) { + SmallVectorImpl &Sorted, + SmallVectorImpl *Mask) { SmallVector, 4> OffValPairs; OffValPairs.reserve(VL.size()); Sorted.reserve(VL.size()); @@ -1050,7 +1051,6 @@ Value *Ptr0 = getPointerOperand(VL[0]); const SCEV *Scev0 = SE.getSCEV(Ptr0); Value *Obj0 = GetUnderlyingObject(Ptr0, DL); - for (auto *Val : VL) { // The only kind of access we care about here is load. if (!isa(Val)) @@ -1077,14 +1077,30 @@ OffValPairs.emplace_back(Diff->getAPInt().getSExtValue(), Val); } - std::sort(OffValPairs.begin(), OffValPairs.end(), - [](const std::pair &Left, - const std::pair &Right) { - return Left.first < Right.first; + SmallVector UseOrder(VL.size()); + for (unsigned i = 0; i < VL.size(); i++) { + UseOrder[i] = i; + } + + // Sort the memory accesses and keep the order of their uses in UseOrder. + std::sort(UseOrder.begin(), UseOrder.end(), + [&OffValPairs](unsigned Left, unsigned Right) { + return OffValPairs[Left].first < OffValPairs[Right].first; }); - for (auto &it : OffValPairs) - Sorted.push_back(it.second); + for (unsigned i = 0; i < VL.size(); i++) + Sorted.emplace_back(OffValPairs[UseOrder[i]].second); + + // Sort UseOrder to compute the Mask. + if (Mask) { + Mask->reserve(VL.size()); + for (unsigned i = 0; i < VL.size(); i++) + Mask->emplace_back(i); + std::sort(Mask->begin(), Mask->end(), + [&UseOrder](unsigned Left, unsigned Right) { + return UseOrder[Left] < UseOrder[Right]; + }); + } return true; } Index: llvm/trunk/lib/Transforms/Vectorize/SLPVectorizer.cpp =================================================================== --- llvm/trunk/lib/Transforms/Vectorize/SLPVectorizer.cpp +++ llvm/trunk/lib/Transforms/Vectorize/SLPVectorizer.cpp @@ -423,10 +423,8 @@ /// be vectorized to use the original vector (or aggregate "bitcast" to a vector). bool canReuseExtract(ArrayRef VL, unsigned Opcode) const; - /// Vectorize a single entry in the tree. VL icontains all isomorphic scalars - /// in order of its usage in a user program, for example ADD1, ADD2 and so on - /// or LOAD1 , LOAD2 etc. - Value *vectorizeTree(ArrayRef VL, TreeEntry *E); + /// Vectorize a single entry in the tree. + Value *vectorizeTree(TreeEntry *E); /// Vectorize a single entry in the tree, starting in \p VL. Value *vectorizeTree(ArrayRef VL); @@ -466,8 +464,8 @@ SmallVectorImpl &Left, SmallVectorImpl &Right); struct TreeEntry { - TreeEntry() : Scalars(), VectorizedValue(nullptr), - NeedToGather(0), NeedToShuffle(0) {} + TreeEntry() + : Scalars(), VectorizedValue(nullptr), NeedToGather(0), ShuffleMask() {} /// \returns true if the scalars in VL are equal to this entry. bool isSame(ArrayRef VL) const { @@ -495,19 +493,23 @@ /// Do we need to gather this sequence ? bool NeedToGather; - /// Do we need to shuffle the load ? - bool NeedToShuffle; + /// Records optional suffle mask for jumbled memory accesses in this. + SmallVector ShuffleMask; + }; /// Create a new VectorizableTree entry. TreeEntry *newTreeEntry(ArrayRef VL, bool Vectorized, - bool NeedToShuffle) { + ArrayRef ShuffleMask = None) { VectorizableTree.emplace_back(); int idx = VectorizableTree.size() - 1; TreeEntry *Last = &VectorizableTree[idx]; Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); Last->NeedToGather = !Vectorized; - Last->NeedToShuffle = NeedToShuffle; + if (!ShuffleMask.empty()) + Last->ShuffleMask.insert(Last->ShuffleMask.begin(), ShuffleMask.begin(), + ShuffleMask.end()); + if (Vectorized) { for (int i = 0, e = VL.size(); i != e; ++i) { assert(!ScalarToTreeEntry.count(VL[i]) && "Scalar already in tree!"); @@ -1030,21 +1032,21 @@ if (Depth == RecursionMaxDepth) { DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); - newTreeEntry(VL, false, false); + newTreeEntry(VL, false); return; } // Don't handle vectors. if (VL[0]->getType()->isVectorTy()) { DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); - newTreeEntry(VL, false, false); + newTreeEntry(VL, false); return; } if (StoreInst *SI = dyn_cast(VL[0])) if (SI->getValueOperand()->getType()->isVectorTy()) { DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); - newTreeEntry(VL, false, false); + newTreeEntry(VL, false); return; } unsigned Opcode = getSameOpcode(VL); @@ -1061,7 +1063,7 @@ // If all of the operands are identical or constant we have a simple solution. if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !Opcode) { DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); - newTreeEntry(VL, false, false); + newTreeEntry(VL, false); return; } @@ -1073,7 +1075,7 @@ if (EphValues.count(VL[i])) { DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << ") is ephemeral.\n"); - newTreeEntry(VL, false, false); + newTreeEntry(VL, false); return; } } @@ -1086,7 +1088,7 @@ DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n"); if (E->Scalars[i] != VL[i]) { DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); - newTreeEntry(VL, false, false); + newTreeEntry(VL, false); return; } } @@ -1099,7 +1101,7 @@ if (ScalarToTreeEntry.count(VL[i])) { DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << ") is already in tree.\n"); - newTreeEntry(VL, false, false); + newTreeEntry(VL, false); return; } } @@ -1109,7 +1111,7 @@ for (unsigned i = 0, e = VL.size(); i != e; ++i) { if (MustGather.count(VL[i])) { DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); - newTreeEntry(VL, false, false); + newTreeEntry(VL, false); return; } } @@ -1123,7 +1125,7 @@ // Don't go into unreachable blocks. They may contain instructions with // dependency cycles which confuse the final scheduling. DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); - newTreeEntry(VL, false, false); + newTreeEntry(VL, false); return; } @@ -1132,7 +1134,7 @@ for (unsigned j = i+1; j < e; ++j) if (VL[i] == VL[j]) { DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); - newTreeEntry(VL, false, false); + newTreeEntry(VL, false); return; } @@ -1147,7 +1149,7 @@ assert((!BS.getScheduleData(VL[0]) || !BS.getScheduleData(VL[0])->isPartOfBundle()) && "tryScheduleBundle should cancelScheduling on failure"); - newTreeEntry(VL, false, false); + newTreeEntry(VL, false); return; } DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); @@ -1164,12 +1166,12 @@ if (Term) { DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n"); BS.cancelScheduling(VL); - newTreeEntry(VL, false, false); + newTreeEntry(VL, false); return; } } - newTreeEntry(VL, true, false); + newTreeEntry(VL, true); DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { @@ -1191,7 +1193,7 @@ } else { BS.cancelScheduling(VL); } - newTreeEntry(VL, Reuse, false); + newTreeEntry(VL, Reuse); return; } case Instruction::Load: { @@ -1207,7 +1209,7 @@ if (DL->getTypeSizeInBits(ScalarTy) != DL->getTypeAllocSizeInBits(ScalarTy)) { BS.cancelScheduling(VL); - newTreeEntry(VL, false, false); + newTreeEntry(VL, false); DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); return; } @@ -1218,7 +1220,7 @@ LoadInst *L = cast(VL[i]); if (!L->isSimple()) { BS.cancelScheduling(VL); - newTreeEntry(VL, false, false); + newTreeEntry(VL, false); DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); return; } @@ -1238,7 +1240,7 @@ if (Consecutive) { ++NumLoadsWantToKeepOrder; - newTreeEntry(VL, true, false); + newTreeEntry(VL, true); DEBUG(dbgs() << "SLP: added a vector of loads.\n"); return; } @@ -1255,7 +1257,8 @@ if (VL.size() > 2 && !ReverseConsecutive) { bool ShuffledLoads = true; SmallVector Sorted; - if (sortMemAccesses(VL, *DL, *SE, Sorted)) { + SmallVector Mask; + if (sortMemAccesses(VL, *DL, *SE, Sorted, &Mask)) { auto NewVL = makeArrayRef(Sorted.begin(), Sorted.end()); for (unsigned i = 0, e = NewVL.size() - 1; i < e; ++i) { if (!isConsecutiveAccess(NewVL[i], NewVL[i + 1], *DL, *SE)) { @@ -1264,14 +1267,14 @@ } } if (ShuffledLoads) { - newTreeEntry(NewVL, true, true); + newTreeEntry(NewVL, true, makeArrayRef(Mask.begin(), Mask.end())); return; } } } BS.cancelScheduling(VL); - newTreeEntry(VL, false, false); + newTreeEntry(VL, false); if (ReverseConsecutive) { ++NumLoadsWantToChangeOrder; @@ -1298,12 +1301,12 @@ Type *Ty = cast(Val)->getOperand(0)->getType(); if (Ty != SrcTy || !isValidElementType(Ty)) { BS.cancelScheduling(VL); - newTreeEntry(VL, false, false); + newTreeEntry(VL, false); DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n"); return; } } - newTreeEntry(VL, true, false); + newTreeEntry(VL, true); DEBUG(dbgs() << "SLP: added a vector of casts.\n"); for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { @@ -1326,13 +1329,13 @@ if (Cmp->getPredicate() != P0 || Cmp->getOperand(0)->getType() != ComparedTy) { BS.cancelScheduling(VL); - newTreeEntry(VL, false, false); + newTreeEntry(VL, false); DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n"); return; } } - newTreeEntry(VL, true, false); + newTreeEntry(VL, true); DEBUG(dbgs() << "SLP: added a vector of compares.\n"); for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { @@ -1364,7 +1367,7 @@ case Instruction::And: case Instruction::Or: case Instruction::Xor: { - newTreeEntry(VL, true, false); + newTreeEntry(VL, true); DEBUG(dbgs() << "SLP: added a vector of bin op.\n"); // Sort operands of the instructions so that each side is more likely to @@ -1393,7 +1396,7 @@ if (cast(Val)->getNumOperands() != 2) { DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); BS.cancelScheduling(VL); - newTreeEntry(VL, false, false); + newTreeEntry(VL, false); return; } } @@ -1406,7 +1409,7 @@ if (Ty0 != CurTy) { DEBUG(dbgs() << "SLP: not-vectorizable GEP (different types).\n"); BS.cancelScheduling(VL); - newTreeEntry(VL, false, false); + newTreeEntry(VL, false); return; } } @@ -1418,12 +1421,12 @@ DEBUG( dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n"); BS.cancelScheduling(VL); - newTreeEntry(VL, false, false); + newTreeEntry(VL, false); return; } } - newTreeEntry(VL, true, false); + newTreeEntry(VL, true); DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); for (unsigned i = 0, e = 2; i < e; ++i) { ValueList Operands; @@ -1440,12 +1443,12 @@ for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { BS.cancelScheduling(VL); - newTreeEntry(VL, false, false); + newTreeEntry(VL, false); DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); return; } - newTreeEntry(VL, true, false); + newTreeEntry(VL, true); DEBUG(dbgs() << "SLP: added a vector of stores.\n"); ValueList Operands; @@ -1463,7 +1466,7 @@ Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); if (!isTriviallyVectorizable(ID)) { BS.cancelScheduling(VL); - newTreeEntry(VL, false, false); + newTreeEntry(VL, false); DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); return; } @@ -1477,7 +1480,7 @@ getVectorIntrinsicIDForCall(CI2, TLI) != ID || !CI->hasIdenticalOperandBundleSchema(*CI2)) { BS.cancelScheduling(VL); - newTreeEntry(VL, false, false); + newTreeEntry(VL, false); DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i] << "\n"); return; @@ -1488,7 +1491,7 @@ Value *A1J = CI2->getArgOperand(1); if (A1I != A1J) { BS.cancelScheduling(VL); - newTreeEntry(VL, false, false); + newTreeEntry(VL, false); DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI << " argument "<< A1I<<"!=" << A1J << "\n"); @@ -1501,14 +1504,14 @@ CI->op_begin() + CI->getBundleOperandsEndIndex(), CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { BS.cancelScheduling(VL); - newTreeEntry(VL, false, false); + newTreeEntry(VL, false); DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" << *CI << "!=" << *VL[i] << '\n'); return; } } - newTreeEntry(VL, true, false); + newTreeEntry(VL, true); for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { ValueList Operands; // Prepare the operand vector. @@ -1525,11 +1528,11 @@ // then do not vectorize this instruction. if (!isAltShuffle) { BS.cancelScheduling(VL); - newTreeEntry(VL, false, false); + newTreeEntry(VL, false); DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); return; } - newTreeEntry(VL, true, false); + newTreeEntry(VL, true); DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); // Reorder operands if reordering would enable vectorization. @@ -1553,7 +1556,7 @@ } default: BS.cancelScheduling(VL); - newTreeEntry(VL, false, false); + newTreeEntry(VL, false); DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); return; } @@ -1792,7 +1795,7 @@ TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0); int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0); - if (E->NeedToShuffle) { + if (!E->ShuffleMask.empty()) { VecLdCost += TTI->getShuffleCost( TargetTransformInfo::SK_PermuteSingleSrc, VecTy, 0); } @@ -2358,8 +2361,9 @@ if (ScalarToTreeEntry.count(VL[0])) { int Idx = ScalarToTreeEntry[VL[0]]; TreeEntry *E = &VectorizableTree[Idx]; - if (E->isSame(VL) || (E->NeedToShuffle && E->isFoundJumbled(VL, *DL, *SE))) - return vectorizeTree(VL, E); + if (E->isSame(VL) || + (!E->ShuffleMask.empty() && E->isFoundJumbled(VL, *DL, *SE))) + return vectorizeTree(E); } Type *ScalarTy = VL[0]->getType(); @@ -2370,10 +2374,10 @@ return Gather(VL, VecTy); } -Value *BoUpSLP::vectorizeTree(ArrayRef VL, TreeEntry *E) { +Value *BoUpSLP::vectorizeTree(TreeEntry *E) { IRBuilder<>::InsertPointGuard Guard(Builder); - if (E->VectorizedValue && !E->NeedToShuffle) { + if (E->VectorizedValue && E->ShuffleMask.empty()) { DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); return E->VectorizedValue; } @@ -2611,27 +2615,18 @@ // As program order of scalar loads are jumbled, the vectorized 'load' // must be followed by a 'shuffle' with the required jumbled mask. - if (!VL.empty() && (E->NeedToShuffle)) { - assert(VL.size() == E->Scalars.size() && - "Equal number of scalars expected"); + if (!E->ShuffleMask.empty()) { SmallVector Mask; - for (Value *Val : VL) { - if (ScalarToTreeEntry.count(Val)) { - int Idx = ScalarToTreeEntry[Val]; - TreeEntry *E = &VectorizableTree[Idx]; - for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) { - if (E->Scalars[Lane] == Val) { - Mask.push_back(Builder.getInt32(Lane)); - break; - } - } - } + for (unsigned Lane = 0, LE = E->ShuffleMask.size(); Lane != LE; + ++Lane) { + Mask.push_back(Builder.getInt32(E->ShuffleMask[Lane])); } - // Generate shuffle for jumbled memory access Value *Undef = UndefValue::get(VecTy); Value *Shuf = Builder.CreateShuffleVector((Value *)LI, Undef, ConstantVector::get(Mask)); + E->VectorizedValue = Shuf; + ++NumVectorInstructions; return Shuf; } @@ -2816,7 +2811,7 @@ } Builder.SetInsertPoint(&F->getEntryBlock().front()); - auto *VectorRoot = vectorizeTree(ArrayRef(), &VectorizableTree[0]); + auto *VectorRoot = vectorizeTree(&VectorizableTree[0]); // If the vectorized tree can be rewritten in a smaller type, we truncate the // vectorized root. InstCombine will then rewrite the entire expression. We @@ -2861,8 +2856,20 @@ Value *Vec = E->VectorizedValue; assert(Vec && "Can't find vectorizable value"); - - Value *Lane = Builder.getInt32(ExternalUse.Lane); + unsigned i = 0; + Value *Lane; + // In case vectorizable scalars use are not in-order, scalars would have + // been shuffled.Recompute the proper Lane of ExternalUse. + if (!E->ShuffleMask.empty()) { + SmallVector Val(E->ShuffleMask.size()); + for (; i < E->ShuffleMask.size(); i++) { + if (E->ShuffleMask[i] == (unsigned)ExternalUse.Lane) + break; + } + Lane = Builder.getInt32(i); + } else { + Lane = Builder.getInt32(ExternalUse.Lane); + } // If User == nullptr, the Scalar is used as extra arg. Generate // ExtractElement instruction and update the record for this scalar in // ExternallyUsedValues. Index: llvm/trunk/test/Transforms/SLPVectorizer/X86/jumbled-load-bug.ll =================================================================== --- llvm/trunk/test/Transforms/SLPVectorizer/X86/jumbled-load-bug.ll +++ llvm/trunk/test/Transforms/SLPVectorizer/X86/jumbled-load-bug.ll @@ -0,0 +1,43 @@ +; NOTE: Assertions have been autogenerated by utils/update_test_checks.py +; RUN: opt < %s -S -slp-vectorizer | FileCheck %s + +target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128" +target triple = "x86_64-unknown-linux-gnu" + +define <4 x i32> @zot() #0 { +; CHECK-LABEL: @zot( +; CHECK-NEXT: bb: +; CHECK-NEXT: [[P0:%.*]] = getelementptr inbounds [4 x i8], [4 x i8]* undef, i64 undef, i64 0 +; CHECK-NEXT: [[P1:%.*]] = getelementptr inbounds [4 x i8], [4 x i8]* undef, i64 undef, i64 1 +; CHECK-NEXT: [[P2:%.*]] = getelementptr inbounds [4 x i8], [4 x i8]* undef, i64 undef, i64 2 +; CHECK-NEXT: [[P3:%.*]] = getelementptr inbounds [4 x i8], [4 x i8]* undef, i64 undef, i64 3 +; CHECK-NEXT: [[TMP0:%.*]] = bitcast i8* [[P0]] to <4 x i8>* +; CHECK-NEXT: [[TMP1:%.*]] = load <4 x i8>, <4 x i8>* [[TMP0]], align 1 +; CHECK-NEXT: [[TMP2:%.*]] = shufflevector <4 x i8> [[TMP1]], <4 x i8> undef, <4 x i32> +; CHECK-NEXT: [[TMP3:%.*]] = extractelement <4 x i8> [[TMP2]], i32 0 +; CHECK-NEXT: [[I0:%.*]] = insertelement <4 x i8> undef, i8 [[TMP3]], i32 0 +; CHECK-NEXT: [[TMP4:%.*]] = extractelement <4 x i8> [[TMP2]], i32 1 +; CHECK-NEXT: [[I1:%.*]] = insertelement <4 x i8> [[I0]], i8 [[TMP4]], i32 1 +; CHECK-NEXT: [[TMP5:%.*]] = extractelement <4 x i8> [[TMP2]], i32 2 +; CHECK-NEXT: [[I2:%.*]] = insertelement <4 x i8> [[I1]], i8 [[TMP5]], i32 2 +; CHECK-NEXT: [[TMP6:%.*]] = extractelement <4 x i8> [[TMP2]], i32 3 +; CHECK-NEXT: [[I3:%.*]] = insertelement <4 x i8> [[I2]], i8 [[TMP6]], i32 3 +; CHECK-NEXT: [[RET:%.*]] = zext <4 x i8> [[I3]] to <4 x i32> +; CHECK-NEXT: ret <4 x i32> [[RET]] +; +bb: + %p0 = getelementptr inbounds [4 x i8], [4 x i8]* undef, i64 undef, i64 0 + %p1 = getelementptr inbounds [4 x i8], [4 x i8]* undef, i64 undef, i64 1 + %p2 = getelementptr inbounds [4 x i8], [4 x i8]* undef, i64 undef, i64 2 + %p3 = getelementptr inbounds [4 x i8], [4 x i8]* undef, i64 undef, i64 3 + %v3 = load i8, i8* %p3, align 1 + %v2 = load i8, i8* %p2, align 1 + %v0 = load i8, i8* %p0, align 1 + %v1 = load i8, i8* %p1, align 1 + %i0 = insertelement <4 x i8> undef, i8 %v1, i32 0 + %i1 = insertelement <4 x i8> %i0, i8 %v0, i32 1 + %i2 = insertelement <4 x i8> %i1, i8 %v2, i32 2 + %i3 = insertelement <4 x i8> %i2, i8 %v3, i32 3 + %ret = zext <4 x i8> %i3 to <4 x i32> + ret <4 x i32> %ret +} Index: llvm/trunk/test/Transforms/SLPVectorizer/X86/jumbled-same.ll =================================================================== --- llvm/trunk/test/Transforms/SLPVectorizer/X86/jumbled-same.ll +++ llvm/trunk/test/Transforms/SLPVectorizer/X86/jumbled-same.ll @@ -13,7 +13,7 @@ ; CHECK-NEXT: [[TMP0:%.*]] = load <4 x i32>, <4 x i32>* bitcast ([4 x i32]* @b to <4 x i32>*), align 4 ; CHECK-NEXT: [[TMP1:%.*]] = shufflevector <4 x i32> [[TMP0]], <4 x i32> undef, <4 x i32> ; CHECK-NEXT: [[TMP2:%.*]] = icmp sgt <4 x i32> [[TMP1]], zeroinitializer -; CHECK-NEXT: [[TMP3:%.*]] = extractelement <4 x i32> [[TMP0]], i32 1 +; CHECK-NEXT: [[TMP3:%.*]] = extractelement <4 x i32> [[TMP1]], i32 0 ; CHECK-NEXT: [[TMP4:%.*]] = insertelement <4 x i32> undef, i32 [[TMP3]], i32 0 ; CHECK-NEXT: [[TMP5:%.*]] = insertelement <4 x i32> [[TMP4]], i32 ptrtoint (i32 ()* @fn1 to i32), i32 1 ; CHECK-NEXT: [[TMP6:%.*]] = insertelement <4 x i32> [[TMP5]], i32 ptrtoint (i32 ()* @fn1 to i32), i32 2