Index: lib/Transform/ScheduleOptimizer.cpp =================================================================== --- lib/Transform/ScheduleOptimizer.cpp +++ lib/Transform/ScheduleOptimizer.cpp @@ -899,6 +899,21 @@ return isl_schedule_node_child(isl_schedule_node_child(Node, 0), 0); } +/// Get the size of the widest type of the matrix multiplication operands +/// in bytes. +/// +/// @param MMI Parameters of the matrix multiplication operands. +/// @return The size of the widest type of the matrix multiplication operands +/// in bytes. +static uint64_t getMatMulTypeSize(MatMulInfoTy MMI) { + auto *S = MMI.A->getStatement()->getParent(); + auto &DL = S->getFunction().getParent()->getDataLayout(); + auto ElementSizeA = DL.getTypeAllocSize(MMI.A->getElementType()); + auto ElementSizeB = DL.getTypeAllocSize(MMI.B->getElementType()); + auto ElementSizeC = DL.getTypeAllocSize(MMI.WriteToC->getElementType()); + return std::max({ElementSizeA, ElementSizeB, ElementSizeC}); +} + /// Get parameters of the BLIS micro kernel. /// /// We choose the Mr and Nr parameters of the micro kernel to be large enough @@ -908,10 +923,11 @@ /// release more registers for entries of multiplied matrices. /// /// @param TTI Target Transform Info. +/// @param MMI Parameters of the matrix multiplication operands. /// @return The structure of type MicroKernelParamsTy. /// @see MicroKernelParamsTy static struct MicroKernelParamsTy -getMicroKernelParams(const llvm::TargetTransformInfo *TTI) { +getMicroKernelParams(const llvm::TargetTransformInfo *TTI, MatMulInfoTy MMI) { assert(TTI && "The target transform info should be provided."); // Nvec - Number of double-precision floating-point numbers that can be hold @@ -920,7 +936,11 @@ if (RegisterBitwidth == -1) RegisterBitwidth = TTI->getRegisterBitWidth(true); - auto Nvec = RegisterBitwidth / 64; + auto ElementSize = getMatMulTypeSize(MMI) * 8; + assert(ElementSize > 0 && + "The element size of the matrix multiplication " + "operands should be greater than zero."); + auto Nvec = RegisterBitwidth / ElementSize; if (Nvec == 0) Nvec = 2; int Nr = @@ -939,11 +959,13 @@ /// /// @param MicroKernelParams Parameters of the micro-kernel /// to be taken into account. +/// @param MMI Parameters of the matrix multiplication operands. /// @return The structure of type MacroKernelParamsTy. /// @see MacroKernelParamsTy /// @see MicroKernelParamsTy static struct MacroKernelParamsTy -getMacroKernelParams(const MicroKernelParamsTy &MicroKernelParams) { +getMacroKernelParams(const MicroKernelParamsTy &MicroKernelParams, + MatMulInfoTy MMI) { // According to www.cs.utexas.edu/users/flame/pubs/TOMS-BLIS-Analytical.pdf, // it requires information about the first two levels of a cache to determine // all the parameters of a macro-kernel. It also checks that an associativity @@ -959,10 +981,15 @@ int Car = floor( (FirstCacheLevelAssociativity - 1) / (1 + static_cast(MicroKernelParams.Nr) / MicroKernelParams.Mr)); + auto ElementSize = getMatMulTypeSize(MMI); + assert(ElementSize > 0 && + "The element size of the matrix multiplication " + "operands should be greater than zero."); int Kc = (Car * FirstCacheLevelSize) / - (MicroKernelParams.Mr * FirstCacheLevelAssociativity * 8); - double Cac = static_cast(Kc * 8 * SecondCacheLevelAssociativity) / - SecondCacheLevelSize; + (MicroKernelParams.Mr * FirstCacheLevelAssociativity * ElementSize); + double Cac = + static_cast(Kc * ElementSize * SecondCacheLevelAssociativity) / + SecondCacheLevelSize; int Mc = floor((SecondCacheLevelAssociativity - 2) / Cac); int Nc = PollyPatternMatchingNcQuotient * MicroKernelParams.Nr; return {Mc, Nc, Kc}; @@ -1198,8 +1225,8 @@ Node = permuteBandNodeDimensions(Node, NewJ, DimOutNum - 2); NewK = MMI.k == DimOutNum - 2 ? MMI.j : MMI.k; Node = permuteBandNodeDimensions(Node, NewK, DimOutNum - 1); - auto MicroKernelParams = getMicroKernelParams(TTI); - auto MacroKernelParams = getMacroKernelParams(MicroKernelParams); + auto MicroKernelParams = getMicroKernelParams(TTI, MMI); + auto MacroKernelParams = getMacroKernelParams(MicroKernelParams, MMI); Node = createMacroKernel(Node, MacroKernelParams); Node = createMicroKernel(Node, MicroKernelParams); if (MacroKernelParams.Mc == 1 || MacroKernelParams.Nc == 1 || Index: test/ScheduleOptimizer/pattern-matching-based-opts_6.ll =================================================================== --- /dev/null +++ test/ScheduleOptimizer/pattern-matching-based-opts_6.ll @@ -0,0 +1,156 @@ +; RUN: opt %loadPolly -polly-opt-isl -polly-pattern-matching-based-opts=true \ +; RUN: -polly-target-throughput-vector-fma=1 \ +; RUN: -polly-target-latency-vector-fma=8 \ +; RUN: -analyze -polly-ast -polly-target-1st-cache-level-associativity=8 \ +; RUN: -polly-target-2nd-cache-level-associativity=8 \ +; RUN: -polly-target-1st-cache-level-size=32768 \ +; RUN: -polly-target-vector-register-bitwidth=256 \ +; RUN: -polly-target-2nd-cache-level-size=262144 < %s \ +; RUN: | FileCheck %s +; +; /* C := A * B + C */ +; /* Elements of the matrices A, B, C have the float type. */ +; /* The type size of elements of the matrix multiplication operands is used +; to determine the parameters of the code produced by the optimization +; of the matrix multiplication (e.g. bounds of the loops of the loop +; nest, the innermost loop body). This test checks the form of +; the generated loop nest. See getMicroKernelParams and +; getMacroKernelParams from lib/Transform/ScheduleOptimizer.cpp +; for details. */ +; for (i = 0; i < _PB_NI; i++) +; for (j = 0; j < _PB_NJ; j++) +; for (k = 0; k < _PB_NK; ++k) +; C[i][j] += A[i][k] * B[k][j]; +; +; CHECK: // 1st level tiling - Tiles +; CHECK-NEXT: for (int c1 = 0; c1 <= 2; c1 += 1) { +; CHECK-NEXT: for (int c3 = 0; c3 <= 1023; c3 += 1) +; CHECK-NEXT: for (int c4 = 384 * c1; c4 <= min(1023, 384 * c1 + 383); c4 += 1) +; CHECK-NEXT: CopyStmt_0(0, c3, c4); +; CHECK-NEXT: for (int c2 = 0; c2 <= 7; c2 += 1) { +; CHECK-NEXT: for (int c3 = 128 * c2; c3 <= 128 * c2 + 127; c3 += 1) +; CHECK-NEXT: for (int c5 = 384 * c1; c5 <= min(1023, 384 * c1 + 383); c5 += 1) +; CHECK-NEXT: CopyStmt_1(c3, 0, c5); +; CHECK-NEXT: // 1st level tiling - Points +; CHECK-NEXT: // Register tiling - Tiles +; CHECK-NEXT: for (int c3 = 0; c3 <= 127; c3 += 1) +; CHECK-NEXT: for (int c4 = 0; c4 <= 15; c4 += 1) +; CHECK-NEXT: for (int c5 = 0; c5 <= min(383, -384 * c1 + 1023); c5 += 1) { +; CHECK-NEXT: // Register tiling - Points +; CHECK-NEXT: { +; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4, 8 * c3, 384 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4, 8 * c3 + 1, 384 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4, 8 * c3 + 2, 384 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4, 8 * c3 + 3, 384 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4, 8 * c3 + 4, 384 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4, 8 * c3 + 5, 384 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4, 8 * c3 + 6, 384 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4, 8 * c3 + 7, 384 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 1, 8 * c3, 384 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 1, 8 * c3 + 1, 384 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 1, 8 * c3 + 2, 384 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 1, 8 * c3 + 3, 384 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 1, 8 * c3 + 4, 384 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 1, 8 * c3 + 5, 384 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 1, 8 * c3 + 6, 384 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 1, 8 * c3 + 7, 384 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 2, 8 * c3, 384 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 2, 8 * c3 + 1, 384 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 2, 8 * c3 + 2, 384 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 2, 8 * c3 + 3, 384 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 2, 8 * c3 + 4, 384 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 2, 8 * c3 + 5, 384 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 2, 8 * c3 + 6, 384 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 2, 8 * c3 + 7, 384 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 3, 8 * c3, 384 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 3, 8 * c3 + 1, 384 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 3, 8 * c3 + 2, 384 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 3, 8 * c3 + 3, 384 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 3, 8 * c3 + 4, 384 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 3, 8 * c3 + 5, 384 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 3, 8 * c3 + 6, 384 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 3, 8 * c3 + 7, 384 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 4, 8 * c3, 384 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 4, 8 * c3 + 1, 384 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 4, 8 * c3 + 2, 384 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 4, 8 * c3 + 3, 384 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 4, 8 * c3 + 4, 384 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 4, 8 * c3 + 5, 384 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 4, 8 * c3 + 6, 384 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 4, 8 * c3 + 7, 384 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 5, 8 * c3, 384 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 5, 8 * c3 + 1, 384 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 5, 8 * c3 + 2, 384 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 5, 8 * c3 + 3, 384 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 5, 8 * c3 + 4, 384 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 5, 8 * c3 + 5, 384 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 5, 8 * c3 + 6, 384 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 5, 8 * c3 + 7, 384 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 6, 8 * c3, 384 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 6, 8 * c3 + 1, 384 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 6, 8 * c3 + 2, 384 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 6, 8 * c3 + 3, 384 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 6, 8 * c3 + 4, 384 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 6, 8 * c3 + 5, 384 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 6, 8 * c3 + 6, 384 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 6, 8 * c3 + 7, 384 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 7, 8 * c3, 384 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 7, 8 * c3 + 1, 384 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 7, 8 * c3 + 2, 384 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 7, 8 * c3 + 3, 384 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 7, 8 * c3 + 4, 384 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 7, 8 * c3 + 5, 384 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 7, 8 * c3 + 6, 384 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 7, 8 * c3 + 7, 384 * c1 + c5); +; CHECK-NEXT: } +; CHECK-NEXT: } +; CHECK-NEXT: } +; CHECK-NEXT: } +; +target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128" +target triple = "x86_64-unknown-unknown" + +; Function Attrs: noinline nounwind uwtable +define internal void @kernel_gemm(i32 %ni, i32 %nj, i32 %nk, float %alpha, float %beta, [1024 x float]* %C, [1024 x float]* %A, [1024 x float]* %B) #0 { +entry: + br label %entry.split + +entry.split: ; preds = %entry + br label %for.cond1.preheader + +for.cond1.preheader: ; preds = %for.inc20, %entry.split + %indvars.iv41 = phi i64 [ 0, %entry.split ], [ %indvars.iv.next42, %for.inc20 ] + br label %for.cond4.preheader + +for.cond4.preheader: ; preds = %for.inc17, %for.cond1.preheader + %indvars.iv38 = phi i64 [ 0, %for.cond1.preheader ], [ %indvars.iv.next39, %for.inc17 ] + br label %for.body6 + +for.body6: ; preds = %for.body6, %for.cond4.preheader + %indvars.iv = phi i64 [ 0, %for.cond4.preheader ], [ %indvars.iv.next, %for.body6 ] + %arrayidx8 = getelementptr inbounds [1024 x float], [1024 x float]* %A, i64 %indvars.iv41, i64 %indvars.iv + %tmp = load float, float* %arrayidx8, align 4 + %arrayidx12 = getelementptr inbounds [1024 x float], [1024 x float]* %B, i64 %indvars.iv, i64 %indvars.iv38 + %tmp1 = load float, float* %arrayidx12, align 4 + %mul = fmul float %tmp, %tmp1 + %arrayidx16 = getelementptr inbounds [1024 x float], [1024 x float]* %C, i64 %indvars.iv41, i64 %indvars.iv38 + %tmp2 = load float, float* %arrayidx16, align 4 + %add = fadd float %tmp2, %mul + store float %add, float* %arrayidx16, align 4 + %indvars.iv.next = add nuw nsw i64 %indvars.iv, 1 + %exitcond = icmp ne i64 %indvars.iv.next, 1024 + br i1 %exitcond, label %for.body6, label %for.inc17 + +for.inc17: ; preds = %for.body6 + %indvars.iv.next39 = add nuw nsw i64 %indvars.iv38, 1 + %exitcond40 = icmp ne i64 %indvars.iv.next39, 1024 + br i1 %exitcond40, label %for.cond4.preheader, label %for.inc20 + +for.inc20: ; preds = %for.inc17 + %indvars.iv.next42 = add nuw nsw i64 %indvars.iv41, 1 + %exitcond43 = icmp ne i64 %indvars.iv.next42, 1024 + br i1 %exitcond43, label %for.cond1.preheader, label %for.end22 + +for.end22: ; preds = %for.inc20 + ret void +} Index: test/ScheduleOptimizer/pattern-matching-based-opts_7.ll =================================================================== --- /dev/null +++ test/ScheduleOptimizer/pattern-matching-based-opts_7.ll @@ -0,0 +1,126 @@ +; RUN: opt %loadPolly -polly-opt-isl -polly-pattern-matching-based-opts=true \ +; RUN: -polly-target-throughput-vector-fma=1 \ +; RUN: -polly-target-latency-vector-fma=8 \ +; RUN: -analyze -polly-ast -polly-target-1st-cache-level-associativity=8 \ +; RUN: -polly-target-2nd-cache-level-associativity=8 \ +; RUN: -polly-target-1st-cache-level-size=32768 \ +; RUN: -polly-target-vector-register-bitwidth=256 \ +; RUN: -polly-target-2nd-cache-level-size=262144 < %s \ +; RUN: | FileCheck %s +; +; /* C := A * B + C */ +; /* Elements of the matrices B, C have the double type. */ +; /* Elements of the matrix A have the float type. */ +; /* The type size of elements of the matrix multiplication operands is used +; to determine the parameters of the code produced by the optimization +; of the matrix multiplication (e.g. bounds of the loops of the loop +; nest, the innermost loop body). This test checks the form of +; the generated loop nest. See getMicroKernelParams and +; getMacroKernelParams from lib/Transform/ScheduleOptimizer.cpp +; for details. */ +; for (i = 0; i < _PB_NI; i++) +; for (j = 0; j < _PB_NJ; j++) +; for (k = 0; k < _PB_NK; ++k) +; C[i][j] += A[i][k] * B[k][j]; +; +; CHECK: // 1st level tiling - Tiles +; CHECK-NEXT: for (int c1 = 0; c1 <= 3; c1 += 1) { +; CHECK-NEXT: for (int c3 = 0; c3 <= 1023; c3 += 1) +; CHECK-NEXT: for (int c4 = 256 * c1; c4 <= 256 * c1 + 255; c4 += 1) +; CHECK-NEXT: CopyStmt_0(0, c3, c4); +; CHECK-NEXT: for (int c2 = 0; c2 <= 10; c2 += 1) { +; CHECK-NEXT: for (int c3 = 96 * c2; c3 <= min(1023, 96 * c2 + 95); c3 += 1) +; CHECK-NEXT: for (int c5 = 256 * c1; c5 <= 256 * c1 + 255; c5 += 1) +; CHECK-NEXT: CopyStmt_1(c3, 0, c5); +; CHECK-NEXT: // 1st level tiling - Points +; CHECK-NEXT: // Register tiling - Tiles +; CHECK-NEXT: for (int c3 = 0; c3 <= 127; c3 += 1) +; CHECK-NEXT: for (int c4 = 0; c4 <= min(23, -24 * c2 + 255); c4 += 1) +; CHECK-NEXT: for (int c5 = 0; c5 <= 255; c5 += 1) { +; CHECK-NEXT: // Register tiling - Points +; CHECK-NEXT: { +; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4, 8 * c3, 256 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4, 8 * c3 + 1, 256 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4, 8 * c3 + 2, 256 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4, 8 * c3 + 3, 256 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4, 8 * c3 + 4, 256 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4, 8 * c3 + 5, 256 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4, 8 * c3 + 6, 256 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4, 8 * c3 + 7, 256 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 1, 8 * c3, 256 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 1, 8 * c3 + 1, 256 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 1, 8 * c3 + 2, 256 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 1, 8 * c3 + 3, 256 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 1, 8 * c3 + 4, 256 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 1, 8 * c3 + 5, 256 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 1, 8 * c3 + 6, 256 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 1, 8 * c3 + 7, 256 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 2, 8 * c3, 256 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 2, 8 * c3 + 1, 256 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 2, 8 * c3 + 2, 256 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 2, 8 * c3 + 3, 256 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 2, 8 * c3 + 4, 256 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 2, 8 * c3 + 5, 256 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 2, 8 * c3 + 6, 256 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 2, 8 * c3 + 7, 256 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 3, 8 * c3, 256 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 3, 8 * c3 + 1, 256 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 3, 8 * c3 + 2, 256 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 3, 8 * c3 + 3, 256 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 3, 8 * c3 + 4, 256 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 3, 8 * c3 + 5, 256 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 3, 8 * c3 + 6, 256 * c1 + c5); +; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 3, 8 * c3 + 7, 256 * c1 + c5); +; CHECK-NEXT: } +; CHECK-NEXT: } +; CHECK-NEXT: } +; CHECK-NEXT: } +; +target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128" +target triple = "x86_64-unknown-unknown" + +; Function Attrs: noinline nounwind uwtable +define internal void @kernel_gemm(i32 %ni, i32 %nj, i32 %nk, double %alpha, double %beta, [1024 x double]* %C, [1024 x float]* %A, [1024 x double]* %B) #0 { +entry: + br label %entry.split + +entry.split: ; preds = %entry + br label %for.cond1.preheader + +for.cond1.preheader: ; preds = %for.inc20, %entry.split + %indvars.iv41 = phi i64 [ 0, %entry.split ], [ %indvars.iv.next42, %for.inc20 ] + br label %for.cond4.preheader + +for.cond4.preheader: ; preds = %for.inc17, %for.cond1.preheader + %indvars.iv38 = phi i64 [ 0, %for.cond1.preheader ], [ %indvars.iv.next39, %for.inc17 ] + br label %for.body6 + +for.body6: ; preds = %for.body6, %for.cond4.preheader + %indvars.iv = phi i64 [ 0, %for.cond4.preheader ], [ %indvars.iv.next, %for.body6 ] + %arrayidx8 = getelementptr inbounds [1024 x float], [1024 x float]* %A, i64 %indvars.iv41, i64 %indvars.iv + %tmp = load float, float* %arrayidx8, align 4 + %conv = fpext float %tmp to double + %arrayidx12 = getelementptr inbounds [1024 x double], [1024 x double]* %B, i64 %indvars.iv, i64 %indvars.iv38 + %tmp1 = load double, double* %arrayidx12, align 8 + %mul = fmul double %conv, %tmp1 + %arrayidx16 = getelementptr inbounds [1024 x double], [1024 x double]* %C, i64 %indvars.iv41, i64 %indvars.iv38 + %tmp2 = load double, double* %arrayidx16, align 8 + %add = fadd double %tmp2, %mul + store double %add, double* %arrayidx16, align 8 + %indvars.iv.next = add nuw nsw i64 %indvars.iv, 1 + %exitcond = icmp ne i64 %indvars.iv.next, 1024 + br i1 %exitcond, label %for.body6, label %for.inc17 + +for.inc17: ; preds = %for.body6 + %indvars.iv.next39 = add nuw nsw i64 %indvars.iv38, 1 + %exitcond40 = icmp ne i64 %indvars.iv.next39, 1024 + br i1 %exitcond40, label %for.cond4.preheader, label %for.inc20 + +for.inc20: ; preds = %for.inc17 + %indvars.iv.next42 = add nuw nsw i64 %indvars.iv41, 1 + %exitcond43 = icmp ne i64 %indvars.iv.next42, 1024 + br i1 %exitcond43, label %for.cond1.preheader, label %for.end22 + +for.end22: ; preds = %for.inc20 + ret void +}