Index: lib/Transforms/Vectorize/SLPVectorizer.cpp =================================================================== --- lib/Transforms/Vectorize/SLPVectorizer.cpp +++ lib/Transforms/Vectorize/SLPVectorizer.cpp @@ -284,11 +284,10 @@ case Instruction::Sub: return Instruction::Add; default: - return 0; + return Op; } } -/// true if the \p Value is odd, false otherwise. static bool isOdd(unsigned Value) { return Value & 1; } @@ -313,45 +312,119 @@ return OpValue; } -///\returns bool representing if Opcode \p Op can be part -/// of an alternate sequence which can later be merged as -/// a ShuffleVector instruction. -static bool canCombineAsAltInst(unsigned Op) { - return Op == Instruction::FAdd || Op == Instruction::FSub || - Op == Instruction::Sub || Op == Instruction::Add; +/// Checks if the \p Opcode can be considered as an operand of a (possibly) +/// binary operation \p I. +/// \returns The code of the binary operation of instruction \p I if the +/// instruction with \p Opcode can be considered as an operand of \p I with the +/// default value. +static unsigned tryToRepresentAsInstArg(unsigned Opcode, Instruction *I) { + assert(!sameOpcodeOrAlt(Opcode, getAltOpcode(Opcode), I->getOpcode()) + && "Invalid Opcode"); + if (Opcode != Instruction::PHI && isa(I) && + (I->getType()->isIntegerTy() || I->hasUnsafeAlgebra())) + return I->getOpcode(); + return 0; } -/// \returns ShuffleVector instruction if instructions in \p VL have -/// alternate fadd,fsub / fsub,fadd/add,sub/sub,add sequence. -/// (i.e. e.g. opcodes of fadd,fsub,fadd,fsub...) -static unsigned isAltInst(ArrayRef VL) { - Instruction *I0 = dyn_cast(VL[0]); +namespace { +/// Contains data for the instructions going to be vectorized. +struct RawInstructionsData { + /// Main Opcode of the instructions going to be vectorized. + unsigned Opcode = 0; + /// Position of the first instruction with the \a Opcode. + unsigned OpcodePos = 0; + /// Need an additional analysis (if at least one of the instruction is not + /// same instruction kind as an instruction at OpcodePos position in the + /// list). + bool NeedAnalysis = false; + /// The list of instructions have some instructions with alternate opcodes. + bool HasAltOpcodes = false; +}; +} // namespace + +/// Checks the list of the vectorized instructions \p VL and returns info about +/// this list. +static RawInstructionsData getMainOpcode(ArrayRef VL) { + auto *I0 = dyn_cast(VL[0]); + if (!I0) + return {}; + RawInstructionsData Res; unsigned Opcode = I0->getOpcode(); unsigned AltOpcode = getAltOpcode(Opcode); - for (int i = 1, e = VL.size(); i < e; i++) { - Instruction *I = dyn_cast(VL[i]); - if (!I || I->getOpcode() != (isOdd(i) ? AltOpcode : Opcode)) - return 0; + unsigned NewOpcodePos = 0; + // Walk through the list of the vectorized instructions + // in order to check its structure described by RawInstructionsData. + for (unsigned Cnt = 0, E = VL.size(); Cnt != E; ++Cnt) { + auto *I = dyn_cast(VL[Cnt]); + if (!I) + return {}; + if (!sameOpcodeOrAlt(Opcode, AltOpcode, I->getOpcode())) { + if (unsigned NewOpcode = tryToRepresentAsInstArg(Opcode, I)) { + if (!Instruction::isBinaryOp(Opcode) || + !Instruction::isCommutative(Opcode)) { + NewOpcodePos = Cnt; + Opcode = NewOpcode; + AltOpcode = getAltOpcode(Opcode); + Res.NeedAnalysis = true; + } + } else if (tryToRepresentAsInstArg(I->getOpcode(), + cast(VL[NewOpcodePos]))) + Res.NeedAnalysis = true; + else + return {}; + } else if (Opcode != I->getOpcode()) { + Res.HasAltOpcodes = true; + if (Res.NeedAnalysis && isOdd(NewOpcodePos)) + std::swap(Opcode, AltOpcode); + } } - return Instruction::ShuffleVector; + Res.Opcode = Opcode; + Res.OpcodePos = NewOpcodePos; + return Res; } -/// \returns The opcode if all of the Instructions in \p VL have the same -/// opcode, or zero. -static unsigned getSameOpcode(ArrayRef VL) { - Instruction *I0 = dyn_cast(VL[0]); - if (!I0) - return 0; - unsigned Opcode = I0->getOpcode(); - for (int i = 1, e = VL.size(); i < e; i++) { - Instruction *I = dyn_cast(VL[i]); - if (!I || Opcode != I->getOpcode()) { - if (canCombineAsAltInst(Opcode) && i == 1) - return isAltInst(VL); - return 0; +namespace { +/// Main data required for vectorization of instructions. +struct InstructionsState { + /// The very first instruction in the list with the main opcode. + Value *OpValue = nullptr; + /// The main opcode for the list of instructions. + unsigned Opcode = 0; + /// Some of the instructions in the list have alternate opcodes. + bool IsAltShuffle = false; + InstructionsState() = default; + InstructionsState(Value *OpValue, unsigned Opcode, bool IsAltShuffle) + : OpValue(OpValue), Opcode(Opcode), IsAltShuffle(IsAltShuffle) {} +}; +} // namespace + +/// \returns analysis of the Instructions in \p VL described in +/// InstructionsState, the Opcode that we suppose the whole list +/// could be vectorized even if its structure is diverse. +static InstructionsState getSameOpcode(ArrayRef VL) { + auto Res = getMainOpcode(VL); + unsigned Opcode = Res.Opcode; + if (!Res.NeedAnalysis && !Res.HasAltOpcodes) + return InstructionsState(VL[Res.OpcodePos], Opcode, false); + auto *OpInst = cast(VL[Res.OpcodePos]); + unsigned AltOpcode = getAltOpcode(Opcode); + // Examine each element in the list instructions VL to determine + // if some operations there could be considered as an alternative + // (for example as subtraction relates to addition operation) or + // operation could be an operand of a (possibly) binary operation. + for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { + auto *I = cast(VL[Cnt]); + unsigned InstOpcode = I->getOpcode(); + if (Res.NeedAnalysis && !sameOpcodeOrAlt(Opcode, AltOpcode, InstOpcode)) + if (tryToRepresentAsInstArg(InstOpcode, OpInst)) + InstOpcode = (Res.HasAltOpcodes && isOdd(Cnt)) ? AltOpcode : Opcode; + if ((Res.HasAltOpcodes && + InstOpcode != (isOdd(Cnt) ? AltOpcode : Opcode)) || + (!Res.HasAltOpcodes && InstOpcode != Opcode)) { + return InstructionsState(OpInst, 0, false); } } - return Opcode; + return InstructionsState(OpInst, Opcode, Res.HasAltOpcodes); } /// \returns true if all of the values in \p VL have the same type or false @@ -495,6 +568,7 @@ void deleteTree() { VectorizableTree.clear(); ScalarToTreeEntry.clear(); + ExtraScalarToTreeEntry.clear(); MustGather.clear(); ExternalUses.clear(); NumLoadsWantToKeepOrder = 0; @@ -635,22 +709,40 @@ /// The TreeEntry index containing the user of this entry. We can actually /// have multiple users so the data structure is not truly a tree. SmallVector UserTreeIndices; + + /// Info about instruction in this tree entry. + InstructionsState State; }; /// Create a new VectorizableTree entry. TreeEntry *newTreeEntry(ArrayRef VL, bool Vectorized, - int &UserTreeIdx) { + int &UserTreeIdx, const InstructionsState &S) { + assert((!Vectorized || S.Opcode != 0) && + "Vectorized TreeEntry without opcode"); VectorizableTree.emplace_back(VectorizableTree); int idx = VectorizableTree.size() - 1; TreeEntry *Last = &VectorizableTree[idx]; Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); Last->NeedToGather = !Vectorized; if (Vectorized) { + Last->State = S; + unsigned AltOpcode = getAltOpcode(S.Opcode); for (int i = 0, e = VL.size(); i != e; ++i) { - assert(!getTreeEntry(VL[i]) && "Scalar already in tree!"); - ScalarToTreeEntry[VL[i]] = idx; + unsigned RealOpcode = + (S.IsAltShuffle && isOdd(i)) ? AltOpcode : S.Opcode; + Value *Key = (cast(VL[i])->getOpcode() == RealOpcode) + ? VL[i] + : S.OpValue; + assert(!getTreeEntry(VL[i], Key) && "Scalar already in tree!"); + if (VL[i] == Key) + ScalarToTreeEntry[Key] = idx; + else + ExtraScalarToTreeEntry[VL[i]][Key] = idx; } } else { + Last->State.Opcode = 0; + Last->State.OpValue = VL[0]; + Last->State.IsAltShuffle = false; MustGather.insert(VL.begin(), VL.end()); } @@ -678,9 +770,25 @@ return nullptr; } + TreeEntry *getTreeEntry(Value *V, Value *OpValue) { + if (V == OpValue) + return getTreeEntry(V); + auto I = ExtraScalarToTreeEntry.find(V); + if (I != ExtraScalarToTreeEntry.end()) { + auto &STT = I->second; + auto STTI = STT.find(OpValue); + if (STTI != STT.end()) + return &VectorizableTree[STTI->second]; + } + return nullptr; + } + /// Maps a specific scalar to its tree entry. SmallDenseMap ScalarToTreeEntry; + /// Maps a specific scalar to its tree entry(s) with leading scalar. + SmallDenseMap> ExtraScalarToTreeEntry; + /// A list of scalars that we found that we need to keep as scalars. ValueSet MustGather; @@ -1257,9 +1365,15 @@ continue; // For each lane: + const unsigned Opcode = Entry->State.Opcode; + const unsigned AltOpcode = getAltOpcode(Opcode); for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { Value *Scalar = Entry->Scalars[Lane]; + if (!sameOpcodeOrAlt(Opcode, AltOpcode, + cast(Scalar)->getOpcode())) + continue; + // Check if the scalar is externally used as an extra arg. auto ExtI = ExternallyUsedValues.find(Scalar); if (ExtI != ExternallyUsedValues.end()) { @@ -1302,45 +1416,67 @@ } } +static Value *getDefaultConstantForOpcode(unsigned Opcode, Type *Ty) { + switch(Opcode) { + case Instruction::Add: + case Instruction::Sub: + case Instruction::Or: + case Instruction::Xor: + return ConstantInt::getNullValue(Ty); + case Instruction::Mul: + case Instruction::UDiv: + case Instruction::SDiv: + case Instruction::URem: + case Instruction::SRem: + return ConstantInt::get(Ty, /*V=*/1); + case Instruction::FAdd: + case Instruction::FSub: + return ConstantFP::get(Ty, /*V=*/0.0); + case Instruction::FMul: + case Instruction::FDiv: + case Instruction::FRem: + return ConstantFP::get(Ty, /*V=*/1.0); + case Instruction::And: + return ConstantInt::getAllOnesValue(Ty); + case Instruction::Shl: + case Instruction::LShr: + case Instruction::AShr: + return ConstantInt::getNullValue(Type::getInt32Ty(Ty->getContext())); + default: + break; + } + llvm_unreachable("unknown binop for default constant value"); +} + void BoUpSLP::buildTree_rec(ArrayRef VL, unsigned Depth, int UserTreeIdx) { - bool isAltShuffle = false; assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); + InstructionsState S = getSameOpcode(VL); if (Depth == RecursionMaxDepth) { DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); - newTreeEntry(VL, false, UserTreeIdx); + newTreeEntry(VL, false, UserTreeIdx, S); return; } // Don't handle vectors. - if (VL[0]->getType()->isVectorTy()) { + if (S.OpValue->getType()->isVectorTy()) { DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); - newTreeEntry(VL, false, UserTreeIdx); + newTreeEntry(VL, false, UserTreeIdx, S); return; } - if (StoreInst *SI = dyn_cast(VL[0])) + if (StoreInst *SI = dyn_cast(S.OpValue)) if (SI->getValueOperand()->getType()->isVectorTy()) { DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); - newTreeEntry(VL, false, UserTreeIdx); + newTreeEntry(VL, false, UserTreeIdx, S); return; } - unsigned Opcode = getSameOpcode(VL); - - // Check that this shuffle vector refers to the alternate - // sequence of opcodes. - if (Opcode == Instruction::ShuffleVector) { - Instruction *I0 = dyn_cast(VL[0]); - unsigned Op = I0->getOpcode(); - if (Op != Instruction::ShuffleVector) - isAltShuffle = true; - } // If all of the operands are identical or constant we have a simple solution. - if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !Opcode) { + if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.Opcode) { DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); - newTreeEntry(VL, false, UserTreeIdx); + newTreeEntry(VL, false, UserTreeIdx, S); return; } @@ -1352,34 +1488,40 @@ if (EphValues.count(VL[i])) { DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << ") is ephemeral.\n"); - newTreeEntry(VL, false, UserTreeIdx); + newTreeEntry(VL, false, UserTreeIdx, S); return; } } // Check if this is a duplicate of another entry. - if (TreeEntry *E = getTreeEntry(VL[0])) { + if (TreeEntry *E = getTreeEntry(S.OpValue)) { for (unsigned i = 0, e = VL.size(); i != e; ++i) { DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n"); if (E->Scalars[i] != VL[i]) { DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); - newTreeEntry(VL, false, UserTreeIdx); + newTreeEntry(VL, false, UserTreeIdx, S); return; } } // Record the reuse of the tree node. FIXME, currently this is only used to // properly draw the graph rather than for the actual vectorization. E->UserTreeIndices.push_back(UserTreeIdx); - DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *VL[0] << ".\n"); + DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue << ".\n"); return; } // Check that none of the instructions in the bundle are already in the tree. + unsigned AltOpcode = getAltOpcode(S.Opcode); for (unsigned i = 0, e = VL.size(); i != e; ++i) { - if (ScalarToTreeEntry.count(VL[i])) { + unsigned RealOpcode = (S.IsAltShuffle && isOdd(i)) ? AltOpcode : S.Opcode; + auto *I = dyn_cast(VL[i]); + if (!I) + continue; + Value *Key = (I->getOpcode() == RealOpcode) ? I : S.OpValue; + if (getTreeEntry(I, Key)) { DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << ") is already in tree.\n"); - newTreeEntry(VL, false, UserTreeIdx); + newTreeEntry(VL, false, UserTreeIdx, S); return; } } @@ -1389,21 +1531,21 @@ for (unsigned i = 0, e = VL.size(); i != e; ++i) { if (MustGather.count(VL[i])) { DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); - newTreeEntry(VL, false, UserTreeIdx); + newTreeEntry(VL, false, UserTreeIdx, S); return; } } // Check that all of the users of the scalars that we want to vectorize are // schedulable. - Instruction *VL0 = cast(VL[0]); + auto *VL0 = cast(S.OpValue); BasicBlock *BB = VL0->getParent(); if (!DT->isReachableFromEntry(BB)) { // Don't go into unreachable blocks. They may contain instructions with // dependency cycles which confuse the final scheduling. DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); - newTreeEntry(VL, false, UserTreeIdx); + newTreeEntry(VL, false, UserTreeIdx, S); return; } @@ -1412,7 +1554,7 @@ for (unsigned j = i+1; j < e; ++j) if (VL[i] == VL[j]) { DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); - newTreeEntry(VL, false, UserTreeIdx); + newTreeEntry(VL, false, UserTreeIdx, S); return; } @@ -1422,17 +1564,19 @@ } BlockScheduling &BS = *BSRef.get(); - if (!BS.tryScheduleBundle(VL, this, VL0)) { + if (!BS.tryScheduleBundle(VL, this, S.OpValue)) { DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); assert((!BS.getScheduleData(VL0) || !BS.getScheduleData(VL0)->isPartOfBundle()) && "tryScheduleBundle should cancelScheduling on failure"); - newTreeEntry(VL, false, UserTreeIdx); + newTreeEntry(VL, false, UserTreeIdx, S); return; } DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); - switch (Opcode) { + unsigned ShuffleOrOp = S.IsAltShuffle ? + (unsigned) Instruction::ShuffleVector : S.Opcode; + switch (ShuffleOrOp) { case Instruction::PHI: { PHINode *PH = dyn_cast(VL0); @@ -1444,12 +1588,12 @@ if (Term) { DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n"); BS.cancelScheduling(VL, VL0); - newTreeEntry(VL, false, UserTreeIdx); + newTreeEntry(VL, false, UserTreeIdx, S); return; } } - newTreeEntry(VL, true, UserTreeIdx); + newTreeEntry(VL, true, UserTreeIdx, S); DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { @@ -1471,7 +1615,7 @@ } else { BS.cancelScheduling(VL, VL0); } - newTreeEntry(VL, Reuse, UserTreeIdx); + newTreeEntry(VL, Reuse, UserTreeIdx, S); return; } case Instruction::Load: { @@ -1487,7 +1631,7 @@ if (DL->getTypeSizeInBits(ScalarTy) != DL->getTypeAllocSizeInBits(ScalarTy)) { BS.cancelScheduling(VL, VL0); - newTreeEntry(VL, false, UserTreeIdx); + newTreeEntry(VL, false, UserTreeIdx, S); DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); return; } @@ -1498,7 +1642,7 @@ LoadInst *L = cast(VL[i]); if (!L->isSimple()) { BS.cancelScheduling(VL, VL0); - newTreeEntry(VL, false, UserTreeIdx); + newTreeEntry(VL, false, UserTreeIdx, S); DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); return; } @@ -1520,7 +1664,7 @@ if (Consecutive) { ++NumLoadsWantToKeepOrder; - newTreeEntry(VL, true, UserTreeIdx); + newTreeEntry(VL, true, UserTreeIdx, S); DEBUG(dbgs() << "SLP: added a vector of loads.\n"); return; } @@ -1535,7 +1679,7 @@ } BS.cancelScheduling(VL, VL0); - newTreeEntry(VL, false, UserTreeIdx); + newTreeEntry(VL, false, UserTreeIdx, S); if (ReverseConsecutive) { ++NumLoadsWantToChangeOrder; @@ -1562,12 +1706,12 @@ Type *Ty = cast(VL[i])->getOperand(0)->getType(); if (Ty != SrcTy || !isValidElementType(Ty)) { BS.cancelScheduling(VL, VL0); - newTreeEntry(VL, false, UserTreeIdx); + newTreeEntry(VL, false, UserTreeIdx, S); DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n"); return; } } - newTreeEntry(VL, true, UserTreeIdx); + newTreeEntry(VL, true, UserTreeIdx, S); DEBUG(dbgs() << "SLP: added a vector of casts.\n"); for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { @@ -1590,13 +1734,13 @@ if (Cmp->getPredicate() != P0 || Cmp->getOperand(0)->getType() != ComparedTy) { BS.cancelScheduling(VL, VL0); - newTreeEntry(VL, false, UserTreeIdx); + newTreeEntry(VL, false, UserTreeIdx, S); DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n"); return; } } - newTreeEntry(VL, true, UserTreeIdx); + newTreeEntry(VL, true, UserTreeIdx, S); DEBUG(dbgs() << "SLP: added a vector of compares.\n"); for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { @@ -1628,14 +1772,14 @@ case Instruction::And: case Instruction::Or: case Instruction::Xor: { - newTreeEntry(VL, true, UserTreeIdx); + newTreeEntry(VL, true, UserTreeIdx, S); DEBUG(dbgs() << "SLP: added a vector of bin op.\n"); // Sort operands of the instructions so that each side is more likely to // have the same opcode. if (isa(VL0) && VL0->isCommutative()) { ValueList Left, Right; - reorderInputsAccordingToOpcode(VL0->getOpcode(), VL, Left, Right); + reorderInputsAccordingToOpcode(S.Opcode, VL, Left, Right); buildTree_rec(Left, Depth + 1, UserTreeIdx); buildTree_rec(Right, Depth + 1, UserTreeIdx); return; @@ -1644,8 +1788,19 @@ for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { ValueList Operands; // Prepare the operand vector. - for (Value *j : VL) - Operands.push_back(cast(j)->getOperand(i)); + for (Value *VecOp : VL) { + auto *I = cast(VecOp); + Value *Operand; + if (I->getOpcode() != S.Opcode) { + assert(Instruction::isBinaryOp(S.Opcode) && + "Expected a binary operation."); + Operand = isOdd(i) + ? getDefaultConstantForOpcode(S.Opcode, I->getType()) + : VecOp; + } else + Operand = I->getOperand(i); + Operands.push_back(Operand); + } buildTree_rec(Operands, Depth + 1, UserTreeIdx); } @@ -1657,7 +1812,7 @@ if (cast(VL[j])->getNumOperands() != 2) { DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); BS.cancelScheduling(VL, VL0); - newTreeEntry(VL, false, UserTreeIdx); + newTreeEntry(VL, false, UserTreeIdx, S); return; } } @@ -1670,7 +1825,7 @@ if (Ty0 != CurTy) { DEBUG(dbgs() << "SLP: not-vectorizable GEP (different types).\n"); BS.cancelScheduling(VL, VL0); - newTreeEntry(VL, false, UserTreeIdx); + newTreeEntry(VL, false, UserTreeIdx, S); return; } } @@ -1682,12 +1837,12 @@ DEBUG( dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n"); BS.cancelScheduling(VL, VL0); - newTreeEntry(VL, false, UserTreeIdx); + newTreeEntry(VL, false, UserTreeIdx, S); return; } } - newTreeEntry(VL, true, UserTreeIdx); + newTreeEntry(VL, true, UserTreeIdx, S); DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); for (unsigned i = 0, e = 2; i < e; ++i) { ValueList Operands; @@ -1704,12 +1859,12 @@ for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { BS.cancelScheduling(VL, VL0); - newTreeEntry(VL, false, UserTreeIdx); + newTreeEntry(VL, false, UserTreeIdx, S); DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); return; } - newTreeEntry(VL, true, UserTreeIdx); + newTreeEntry(VL, true, UserTreeIdx, S); DEBUG(dbgs() << "SLP: added a vector of stores.\n"); ValueList Operands; @@ -1727,7 +1882,7 @@ Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); if (!isTriviallyVectorizable(ID)) { BS.cancelScheduling(VL, VL0); - newTreeEntry(VL, false, UserTreeIdx); + newTreeEntry(VL, false, UserTreeIdx, S); DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); return; } @@ -1741,7 +1896,7 @@ getVectorIntrinsicIDForCall(CI2, TLI) != ID || !CI->hasIdenticalOperandBundleSchema(*CI2)) { BS.cancelScheduling(VL, VL0); - newTreeEntry(VL, false, UserTreeIdx); + newTreeEntry(VL, false, UserTreeIdx, S); DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i] << "\n"); return; @@ -1752,7 +1907,7 @@ Value *A1J = CI2->getArgOperand(1); if (A1I != A1J) { BS.cancelScheduling(VL, VL0); - newTreeEntry(VL, false, UserTreeIdx); + newTreeEntry(VL, false, UserTreeIdx, S); DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI << " argument "<< A1I<<"!=" << A1J << "\n"); @@ -1765,14 +1920,14 @@ CI->op_begin() + CI->getBundleOperandsEndIndex(), CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { BS.cancelScheduling(VL, VL0); - newTreeEntry(VL, false, UserTreeIdx); + newTreeEntry(VL, false, UserTreeIdx, S); DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" << *CI << "!=" << *VL[i] << '\n'); return; } } - newTreeEntry(VL, true, UserTreeIdx); + newTreeEntry(VL, true, UserTreeIdx, S); for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { ValueList Operands; // Prepare the operand vector. @@ -1787,19 +1942,19 @@ case Instruction::ShuffleVector: { // If this is not an alternate sequence of opcode like add-sub // then do not vectorize this instruction. - if (!isAltShuffle) { + if (!S.IsAltShuffle) { BS.cancelScheduling(VL, VL0); - newTreeEntry(VL, false, UserTreeIdx); + newTreeEntry(VL, false, UserTreeIdx, S); DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); return; } - newTreeEntry(VL, true, UserTreeIdx); + newTreeEntry(VL, true, UserTreeIdx, S); DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); // Reorder operands if reordering would enable vectorization. if (isa(VL0)) { ValueList Left, Right; - reorderAltShuffleOperands(VL0->getOpcode(), VL, Left, Right); + reorderAltShuffleOperands(S.Opcode, VL, Left, Right); buildTree_rec(Left, Depth + 1, UserTreeIdx); buildTree_rec(Right, Depth + 1, UserTreeIdx); return; @@ -1808,8 +1963,19 @@ for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { ValueList Operands; // Prepare the operand vector. - for (Value *j : VL) - Operands.push_back(cast(j)->getOperand(i)); + for (Value *VecOp : VL) { + auto *I = cast(VecOp); + Value *Operand; + if (!sameOpcodeOrAlt(S.Opcode, AltOpcode, I->getOpcode())) { + assert(Instruction::isBinaryOp(S.Opcode) && + "Expected a binary operation."); + Operand = isOdd(i) + ? getDefaultConstantForOpcode(S.Opcode, I->getType()) + : VecOp; + } else + Operand = I->getOperand(i); + Operands.push_back(Operand); + } buildTree_rec(Operands, Depth + 1, UserTreeIdx); } @@ -1817,7 +1983,7 @@ } default: BS.cancelScheduling(VL, VL0); - newTreeEntry(VL, false, UserTreeIdx); + newTreeEntry(VL, false, UserTreeIdx, S); DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); return; } @@ -1852,7 +2018,7 @@ Instruction *E0 = cast(OpValue); assert(E0->getOpcode() == Instruction::ExtractElement || E0->getOpcode() == Instruction::ExtractValue); - assert(E0->getOpcode() == getSameOpcode(VL) && "Invalid opcode"); + assert(E0->getOpcode() == getSameOpcode(VL).Opcode && "Invalid opcode"); // Check if all of the extracts come from the same vector and from the // correct offset. Value *Vec = E0->getOperand(0); @@ -1916,7 +2082,7 @@ if (isSplat(VL)) { return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); } - if (getSameOpcode(VL) == Instruction::ExtractElement) { + if (getSameOpcode(VL).Opcode == Instruction::ExtractElement) { Optional ShuffleKind = isShuffle(VL); if (ShuffleKind.hasValue()) { int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy); @@ -1938,16 +2104,17 @@ } return getGatherCost(E->Scalars); } - unsigned Opcode = getSameOpcode(VL); - assert(Opcode && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); - Instruction *VL0 = cast(VL[0]); - switch (Opcode) { + assert(E->State.Opcode && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); + Instruction *VL0 = cast(E->State.OpValue); + unsigned ShuffleOrOp = E->State.IsAltShuffle ? + (unsigned) Instruction::ShuffleVector : E->State.Opcode; + switch (ShuffleOrOp) { case Instruction::PHI: { return 0; } case Instruction::ExtractValue: case Instruction::ExtractElement: { - if (canReuseExtract(VL, VL0)) { + if (canReuseExtract(VL, E->State.OpValue)) { int DeadCost = 0; for (unsigned i = 0, e = VL.size(); i < e; ++i) { Instruction *E = cast(VL[i]); @@ -1991,8 +2158,8 @@ // Calculate the cost of this instruction. VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); int ScalarCost = VecTy->getNumElements() * - TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty(), VL0); - int VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy, VL0); + TTI->getCmpSelInstrCost(ShuffleOrOp, ScalarTy, Builder.getInt1Ty(), VL0); + int VecCost = TTI->getCmpSelInstrCost(ShuffleOrOp, VecTy, MaskTy, VL0); return VecCost - ScalarCost; } case Instruction::Add: @@ -2029,34 +2196,33 @@ // If instead not all operands are constants, then set the operand kind // to OK_AnyValue. If all operands are constants but not the same, // then set the operand kind to OK_NonUniformConstantValue. - ConstantInt *CInt = nullptr; - for (unsigned i = 0; i < VL.size(); ++i) { - const Instruction *I = cast(VL[i]); - if (!isa(I->getOperand(1))) { - Op2VK = TargetTransformInfo::OK_AnyValue; - break; - } - if (i == 0) { - CInt = cast(I->getOperand(1)); - continue; + if (auto *CInt = dyn_cast(VL0->getOperand(1))) { + const unsigned Opcode = E->State.Opcode; + for (auto *V : VL) { + auto *I = cast(V); + if (I == VL0 || Opcode != I->getOpcode()) + continue; + if (!isa(I->getOperand(1))) { + Op2VK = TargetTransformInfo::OK_AnyValue; + break; + } + if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && + CInt != cast(I->getOperand(1))) + Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; } + // FIXME: Currently cost of model modification for division by power of + // 2 is handled for X86 and AArch64. Add support for other targets. if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && - CInt != cast(I->getOperand(1))) - Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; - } - // FIXME: Currently cost of model modification for division by power of - // 2 is handled for X86 and AArch64. Add support for other targets. - if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && CInt && - CInt->getValue().isPowerOf2()) - Op2VP = TargetTransformInfo::OP_PowerOf2; + CInt->getValue().isPowerOf2()) + Op2VP = TargetTransformInfo::OP_PowerOf2; + } else + Op2VK = TargetTransformInfo::OK_AnyValue; - SmallVector Operands(VL0->operand_values()); - int ScalarCost = - VecTy->getNumElements() * - TTI->getArithmeticInstrCost(Opcode, ScalarTy, Op1VK, Op2VK, Op1VP, - Op2VP, Operands); - int VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy, Op1VK, Op2VK, - Op1VP, Op2VP, Operands); + int ScalarCost = VecTy->getNumElements() * + TTI->getArithmeticInstrCost(E->State.Opcode, ScalarTy, + Op1VK, Op2VK, Op1VP, Op2VP); + int VecCost = TTI->getArithmeticInstrCost(E->State.Opcode, VecTy, Op1VK, + Op2VK, Op1VP, Op2VP); return VecCost - ScalarCost; } case Instruction::GetElementPtr: { @@ -2122,23 +2288,18 @@ TargetTransformInfo::OK_AnyValue; TargetTransformInfo::OperandValueKind Op2VK = TargetTransformInfo::OK_AnyValue; - int ScalarCost = 0; - int VecCost = 0; - for (Value *i : VL) { - Instruction *I = cast(i); - if (!I) - break; - ScalarCost += - TTI->getArithmeticInstrCost(I->getOpcode(), ScalarTy, Op1VK, Op2VK); - } + unsigned AltOpcode = getAltOpcode(E->State.Opcode); + int ScalarCost = + TTI->getArithmeticInstrCost(E->State.Opcode, ScalarTy, Op1VK, Op2VK) * + VL.size() / 2; + ScalarCost += + TTI->getArithmeticInstrCost(AltOpcode, ScalarTy, Op1VK, Op2VK) * + VL.size() / 2; // VecCost is equal to sum of the cost of creating 2 vectors // and the cost of creating shuffle. - Instruction *I0 = cast(VL[0]); - VecCost = - TTI->getArithmeticInstrCost(I0->getOpcode(), VecTy, Op1VK, Op2VK); - Instruction *I1 = cast(VL[1]); - VecCost += - TTI->getArithmeticInstrCost(I1->getOpcode(), VecTy, Op1VK, Op2VK); + int VecCost = + TTI->getArithmeticInstrCost(E->State.Opcode, VecTy, Op1VK, Op2VK); + VecCost += TTI->getArithmeticInstrCost(AltOpcode, VecTy, Op1VK, Op2VK); VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Alternate, VecTy, 0); return VecCost - ScalarCost; @@ -2205,7 +2366,7 @@ Instruction *PrevInst = nullptr; for (const auto &N : VectorizableTree) { - Instruction *Inst = dyn_cast(N.Scalars[0]); + Instruction *Inst = dyn_cast(N.State.OpValue); if (!Inst) continue; @@ -2265,7 +2426,7 @@ for (TreeEntry &TE : VectorizableTree) { int C = getEntryCost(&TE); DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with " - << *TE.Scalars[0] << ".\n"); + << *TE.State.OpValue << ".\n"); Cost += C; } @@ -2286,7 +2447,7 @@ // extend the extracted value back to the original type. Here, we account // for the extract and the added cost of the sign extend if needed. auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth); - auto *ScalarRoot = VectorizableTree[0].Scalars[0]; + auto *ScalarRoot = VectorizableTree[0].State.OpValue; if (MinBWs.count(ScalarRoot)) { auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); auto Extend = @@ -2349,13 +2510,15 @@ SmallVectorImpl &Right) { // Push left and right operands of binary operation into Left and Right unsigned AltOpcode = getAltOpcode(Opcode); - (void)AltOpcode; for (Value *V : VL) { auto *I = cast(V); - assert(sameOpcodeOrAlt(Opcode, AltOpcode, I->getOpcode()) && - "Incorrect instruction in vector"); - Left.push_back(I->getOperand(0)); - Right.push_back(I->getOperand(1)); + if (sameOpcodeOrAlt(Opcode, AltOpcode, I->getOpcode())) { + Left.push_back(I->getOperand(0)); + Right.push_back(I->getOperand(1)); + } else { + Left.push_back(I); + Right.push_back(getDefaultConstantForOpcode(Opcode, I->getType())); + } } // Reorder if we have a commutative operation and consecutive access @@ -2404,8 +2567,13 @@ int i, unsigned Opcode, Instruction &I, ArrayRef Left, ArrayRef Right, bool AllSameOpcodeLeft, bool AllSameOpcodeRight, bool SplatLeft, bool SplatRight, Value *&VLeft, Value *&VRight) { - VLeft = I.getOperand(0); - VRight = I.getOperand(1); + if (I.getOpcode() == Opcode) { + VLeft = I.getOperand(0); + VRight = I.getOperand(1); + } else { + VLeft = &I; + VRight = getDefaultConstantForOpcode(Opcode, I.getType()); + } // If we have "SplatRight", try to see if commuting is needed to preserve it. if (SplatRight) { if (VRight == Right[i - 1]) @@ -2470,8 +2638,15 @@ // Peel the first iteration out of the loop since there's nothing // interesting to do anyway and it simplifies the checks in the loop. auto *I = cast(VL[0]); - Value *VLeft = I->getOperand(0); - Value *VRight = I->getOperand(1); + Value *VLeft; + Value *VRight; + if (I->getOpcode() == Opcode) { + VLeft = I->getOperand(0); + VRight = I->getOperand(1); + } else { + VLeft = I; + VRight = getDefaultConstantForOpcode(Opcode, I->getType()); + } if (!isa(VRight) && isa(VLeft)) // Favor having instruction to the right. FIXME: why? std::swap(VLeft, VRight); @@ -2657,12 +2832,16 @@ } Value *BoUpSLP::vectorizeTree(ArrayRef VL) { - if (TreeEntry *E = getTreeEntry(VL[0])) - if (E->isSame(VL)) - return vectorizeTree(E); + InstructionsState S = getSameOpcode(VL); + if (S.Opcode) { + if (TreeEntry *E = getTreeEntry(S.OpValue)) { + if (E->isSame(VL)) + return vectorizeTree(E); + } + } - Type *ScalarTy = VL[0]->getType(); - if (StoreInst *SI = dyn_cast(VL[0])) + Type *ScalarTy = S.OpValue->getType(); + if (StoreInst *SI = dyn_cast(S.OpValue)) ScalarTy = SI->getValueOperand()->getType(); VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); @@ -2673,11 +2852,11 @@ IRBuilder<>::InsertPointGuard Guard(Builder); if (E->VectorizedValue) { - DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); + DEBUG(dbgs() << "SLP: Diamond merged for " << *E->State.OpValue << ".\n"); return E->VectorizedValue; } - Instruction *VL0 = cast(E->Scalars[0]); + Instruction *VL0 = cast(E->State.OpValue); Type *ScalarTy = VL0->getType(); if (StoreInst *SI = dyn_cast(VL0)) ScalarTy = SI->getValueOperand()->getType(); @@ -2690,9 +2869,9 @@ return V; } - unsigned Opcode = getSameOpcode(E->Scalars); - - switch (Opcode) { + unsigned ShuffleOrOp = E->State.IsAltShuffle ? + (unsigned) Instruction::ShuffleVector : E->State.Opcode; + switch (ShuffleOrOp) { case Instruction::PHI: { PHINode *PH = dyn_cast(VL0); Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); @@ -2801,7 +2980,7 @@ CmpInst::Predicate P0 = cast(VL0)->getPredicate(); Value *V; - if (Opcode == Instruction::FCmp) + if (E->State.Opcode == Instruction::FCmp) V = Builder.CreateFCmp(P0, L, R); else V = Builder.CreateICmp(P0, L, R); @@ -2853,13 +3032,19 @@ case Instruction::Xor: { ValueList LHSVL, RHSVL; if (isa(VL0) && VL0->isCommutative()) - reorderInputsAccordingToOpcode(VL0->getOpcode(), - E->Scalars, LHSVL, RHSVL); + reorderInputsAccordingToOpcode(E->State.Opcode, E->Scalars, LHSVL, + RHSVL); else for (Value *V : E->Scalars) { auto *I = cast(V); - LHSVL.push_back(I->getOperand(0)); - RHSVL.push_back(I->getOperand(1)); + if (I->getOpcode() == E->State.Opcode) { + LHSVL.push_back(I->getOperand(0)); + RHSVL.push_back(I->getOperand(1)); + } else { + LHSVL.push_back(V); + RHSVL.push_back( + getDefaultConstantForOpcode(E->State.Opcode, I->getType())); + } } setInsertPointAfterBundle(E->Scalars, VL0); @@ -2870,8 +3055,8 @@ if (Value *V = alreadyVectorized(E->Scalars, VL0)) return V; - BinaryOperator *BinOp = cast(VL0); - Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS); + Value *V = Builder.CreateBinOp( + static_cast(E->State.Opcode), LHS, RHS); E->VectorizedValue = V; propagateIRFlags(E->VectorizedValue, E->Scalars, VL0); ++NumVectorInstructions; @@ -3022,8 +3207,9 @@ } case Instruction::ShuffleVector: { ValueList LHSVL, RHSVL; - assert(isa(VL0) && "Invalid Shuffle Vector Operand"); - reorderAltShuffleOperands(VL0->getOpcode(), E->Scalars, LHSVL, RHSVL); + assert(Instruction::isBinaryOp(E->State.Opcode) && + "Invalid Shuffle Vector Operand"); + reorderAltShuffleOperands(E->State.Opcode, E->Scalars, LHSVL, RHSVL); setInsertPointAfterBundle(E->Scalars, VL0); Value *LHS = vectorizeTree(LHSVL); @@ -3033,13 +3219,13 @@ return V; // Create a vector of LHS op1 RHS - BinaryOperator *BinOp0 = cast(VL0); - Value *V0 = Builder.CreateBinOp(BinOp0->getOpcode(), LHS, RHS); + Value *V0 = Builder.CreateBinOp( + static_cast(E->State.Opcode), LHS, RHS); + unsigned AltOpcode = getAltOpcode(E->State.Opcode); // Create a vector of LHS op2 RHS - Instruction *VL1 = cast(E->Scalars[1]); - BinaryOperator *BinOp1 = cast(VL1); - Value *V1 = Builder.CreateBinOp(BinOp1->getOpcode(), LHS, RHS); + Value *V1 = Builder.CreateBinOp( + static_cast(AltOpcode), LHS, RHS); // Create shuffle to take alternate operations from the vector. // Also, gather up odd and even scalar ops to propagate IR flags to @@ -3058,8 +3244,13 @@ } Value *ShuffleMask = ConstantVector::get(Mask); - propagateIRFlags(V0, EvenScalars); - propagateIRFlags(V1, OddScalars); + InstructionsState S = getSameOpcode(EvenScalars); + assert(!S.IsAltShuffle && "Unexpected alternate opcode"); + propagateIRFlags(V0, EvenScalars, S.OpValue); + + S = getSameOpcode(OddScalars); + assert(!S.IsAltShuffle && "Unexpected alternate opcode"); + propagateIRFlags(V1, OddScalars, S.OpValue); Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask); E->VectorizedValue = V; @@ -3094,7 +3285,7 @@ // If the vectorized tree can be rewritten in a smaller type, we truncate the // vectorized root. InstCombine will then rewrite the entire expression. We // sign extend the extracted values below. - auto *ScalarRoot = VectorizableTree[0].Scalars[0]; + auto *ScalarRoot = VectorizableTree[0].State.OpValue; if (MinBWs.count(ScalarRoot)) { if (auto *I = dyn_cast(VectorRoot)) Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); @@ -3198,14 +3389,21 @@ for (TreeEntry &EIdx : VectorizableTree) { TreeEntry *Entry = &EIdx; + // No need to handle users of gathered values. + if (Entry->NeedToGather) + continue; + + assert(Entry->VectorizedValue && "Can't find vectorizable value"); + // For each lane: + const unsigned Opcode = Entry->State.Opcode; + const unsigned AltOpcode = getAltOpcode(Opcode); for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { Value *Scalar = Entry->Scalars[Lane]; - // No need to handle users of gathered values. - if (Entry->NeedToGather) - continue; - assert(Entry->VectorizedValue && "Can't find vectorizable value"); + if (!sameOpcodeOrAlt(Opcode, AltOpcode, + cast(Scalar)->getOpcode())) + continue; Type *Ty = Scalar->getType(); if (!Ty->isVoidTy()) { @@ -3338,7 +3536,7 @@ } for (Value *V : VL) { - ScheduleData *BundleMember = getScheduleData(V); + ScheduleData *BundleMember = getScheduleData(V, isOneOf(OpValue, V)); assert(BundleMember && "no ScheduleData for bundle member (maybe not in same basic block)"); if (BundleMember->IsScheduled) { @@ -3411,7 +3609,7 @@ if (isa(OpValue)) return; - ScheduleData *Bundle = getScheduleData(OpValue); + ScheduleData *Bundle = getScheduleData(OpValue)->FirstInBundle; DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); assert(!Bundle->IsScheduled && "Can't cancel bundle which is already scheduled"); @@ -3525,12 +3723,6 @@ for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { ScheduleData *SD = ScheduleDataMap[I]; if (!SD) { - // Allocate a new ScheduleData for the instruction. - if (ChunkPos >= ChunkSize) { - ScheduleDataChunks.push_back( - llvm::make_unique(ChunkSize)); - ChunkPos = 0; - } SD = allocateScheduleDataChunks(); ScheduleDataMap[I] = SD; SD->Inst = I; @@ -3721,7 +3913,7 @@ I = I->getNextNode()) { BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { assert(SD->isPartOfBundle() == - (getTreeEntry(SD->Inst) != nullptr) && + (getTreeEntry(SD->Inst, SD->OpValue) != nullptr) && "scheduler and vectorizer bundle mismatch"); SD->FirstInBundle->SchedulingPriority = Idx++; if (SD->isSchedulingEntity()) { @@ -3744,12 +3936,14 @@ ScheduleData *BundleMember = picked; while (BundleMember) { Instruction *pickedInst = BundleMember->Inst; - if (LastScheduledInst->getNextNode() != pickedInst) { + bool SameOpcode = pickedInst == BundleMember->OpValue; + if (SameOpcode && LastScheduledInst->getNextNode() != pickedInst) { BS->BB->getInstList().remove(pickedInst); BS->BB->getInstList().insert(LastScheduledInst->getIterator(), pickedInst); } - LastScheduledInst = pickedInst; + if (SameOpcode) + LastScheduledInst = pickedInst; BundleMember = BundleMember->NextInBundle; } @@ -4914,7 +5108,9 @@ OperationData VectReductionData(ReductionData.getOpcode(), VectorizedTree, ReducedSubTree); VectorizedTree = VectReductionData.createOp(Builder, "bin.rdx"); - propagateIRFlags(VectorizedTree, ReductionOps); + InstructionsState S = getSameOpcode(ReductionOps); + assert(!S.IsAltShuffle && "Unexpected alternate opcode"); + propagateIRFlags(VectorizedTree, ReductionOps, S.OpValue); } else VectorizedTree = ReducedSubTree; i += ReduxWidth; @@ -4929,7 +5125,9 @@ OperationData VectReductionData(ReductionData.getOpcode(), VectorizedTree, I); VectorizedTree = VectReductionData.createOp(Builder); - propagateIRFlags(VectorizedTree, ReductionOps); + InstructionsState S = getSameOpcode(ReductionOps); + assert(!S.IsAltShuffle && "Unexpected alternate opcode"); + propagateIRFlags(VectorizedTree, ReductionOps, S.OpValue); } for (auto &Pair : ExternallyUsedValues) { assert(!Pair.second.empty() && @@ -4940,7 +5138,9 @@ OperationData VectReductionData(ReductionData.getOpcode(), VectorizedTree, Pair.first); VectorizedTree = VectReductionData.createOp(Builder, "bin.extra"); - propagateIRFlags(VectorizedTree, I); + InstructionsState S = getSameOpcode(I); + assert(!S.IsAltShuffle && "Unexpected alternate opcode"); + propagateIRFlags(VectorizedTree, I, S.OpValue); } } // Update users. @@ -5011,7 +5211,9 @@ OperationData VectReductionData(ReductionData.getOpcode(), LeftShuf, RightShuf); TmpVec = VectReductionData.createOp(Builder, "bin.rdx"); - propagateIRFlags(TmpVec, RedOps); + InstructionsState S = getSameOpcode(RedOps); + assert(!S.IsAltShuffle && "Unexpected alternate opcode"); + propagateIRFlags(TmpVec, RedOps, S.OpValue); } // The result is in the first element of the vector. Index: test/Transforms/SLPVectorizer/X86/vect_copyable_in_binops.ll =================================================================== --- test/Transforms/SLPVectorizer/X86/vect_copyable_in_binops.ll +++ test/Transforms/SLPVectorizer/X86/vect_copyable_in_binops.ll @@ -43,22 +43,16 @@ ; CHECK-LABEL: @add1( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[INCDEC_PTR:%.*]] = getelementptr inbounds i32, i32* [[SRC:%.*]], i64 1 -; CHECK-NEXT: [[TMP0:%.*]] = load i32, i32* [[SRC]], align 4 ; CHECK-NEXT: [[INCDEC_PTR1:%.*]] = getelementptr inbounds i32, i32* [[DST:%.*]], i64 1 -; CHECK-NEXT: store i32 [[TMP0]], i32* [[DST]], align 4 ; CHECK-NEXT: [[INCDEC_PTR2:%.*]] = getelementptr inbounds i32, i32* [[SRC]], i64 2 -; CHECK-NEXT: [[TMP1:%.*]] = load i32, i32* [[INCDEC_PTR]], align 4 -; CHECK-NEXT: [[ADD3:%.*]] = add nsw i32 [[TMP1]], 1 ; CHECK-NEXT: [[INCDEC_PTR4:%.*]] = getelementptr inbounds i32, i32* [[DST]], i64 2 -; CHECK-NEXT: store i32 [[ADD3]], i32* [[INCDEC_PTR1]], align 4 ; CHECK-NEXT: [[INCDEC_PTR5:%.*]] = getelementptr inbounds i32, i32* [[SRC]], i64 3 -; CHECK-NEXT: [[TMP2:%.*]] = load i32, i32* [[INCDEC_PTR2]], align 4 -; CHECK-NEXT: [[ADD6:%.*]] = add nsw i32 [[TMP2]], 2 ; CHECK-NEXT: [[INCDEC_PTR7:%.*]] = getelementptr inbounds i32, i32* [[DST]], i64 3 -; CHECK-NEXT: store i32 [[ADD6]], i32* [[INCDEC_PTR4]], align 4 -; CHECK-NEXT: [[TMP3:%.*]] = load i32, i32* [[INCDEC_PTR5]], align 4 -; CHECK-NEXT: [[ADD9:%.*]] = add nsw i32 [[TMP3]], 3 -; CHECK-NEXT: store i32 [[ADD9]], i32* [[INCDEC_PTR7]], align 4 +; CHECK-NEXT: [[TMP0:%.*]] = bitcast i32* [[SRC]] to <4 x i32>* +; CHECK-NEXT: [[TMP1:%.*]] = load <4 x i32>, <4 x i32>* [[TMP0]], align 4 +; CHECK-NEXT: [[TMP2:%.*]] = add nsw <4 x i32> , [[TMP1]] +; CHECK-NEXT: [[TMP3:%.*]] = bitcast i32* [[DST]] to <4 x i32>* +; CHECK-NEXT: store <4 x i32> [[TMP2]], <4 x i32>* [[TMP3]], align 4 ; CHECK-NEXT: ret void ; entry: @@ -86,22 +80,16 @@ ; CHECK-LABEL: @sub0( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[INCDEC_PTR:%.*]] = getelementptr inbounds i32, i32* [[SRC:%.*]], i64 1 -; CHECK-NEXT: [[TMP0:%.*]] = load i32, i32* [[SRC]], align 4 -; CHECK-NEXT: [[SUB:%.*]] = add nsw i32 [[TMP0]], -1 ; CHECK-NEXT: [[INCDEC_PTR1:%.*]] = getelementptr inbounds i32, i32* [[DST:%.*]], i64 1 -; CHECK-NEXT: store i32 [[SUB]], i32* [[DST]], align 4 ; CHECK-NEXT: [[INCDEC_PTR2:%.*]] = getelementptr inbounds i32, i32* [[SRC]], i64 2 -; CHECK-NEXT: [[TMP1:%.*]] = load i32, i32* [[INCDEC_PTR]], align 4 ; CHECK-NEXT: [[INCDEC_PTR3:%.*]] = getelementptr inbounds i32, i32* [[DST]], i64 2 -; CHECK-NEXT: store i32 [[TMP1]], i32* [[INCDEC_PTR1]], align 4 ; CHECK-NEXT: [[INCDEC_PTR4:%.*]] = getelementptr inbounds i32, i32* [[SRC]], i64 3 -; CHECK-NEXT: [[TMP2:%.*]] = load i32, i32* [[INCDEC_PTR2]], align 4 -; CHECK-NEXT: [[SUB5:%.*]] = add nsw i32 [[TMP2]], -2 ; CHECK-NEXT: [[INCDEC_PTR6:%.*]] = getelementptr inbounds i32, i32* [[DST]], i64 3 -; CHECK-NEXT: store i32 [[SUB5]], i32* [[INCDEC_PTR3]], align 4 -; CHECK-NEXT: [[TMP3:%.*]] = load i32, i32* [[INCDEC_PTR4]], align 4 -; CHECK-NEXT: [[SUB8:%.*]] = add nsw i32 [[TMP3]], -3 -; CHECK-NEXT: store i32 [[SUB8]], i32* [[INCDEC_PTR6]], align 4 +; CHECK-NEXT: [[TMP0:%.*]] = bitcast i32* [[SRC]] to <4 x i32>* +; CHECK-NEXT: [[TMP1:%.*]] = load <4 x i32>, <4 x i32>* [[TMP0]], align 4 +; CHECK-NEXT: [[TMP2:%.*]] = add nsw <4 x i32> , [[TMP1]] +; CHECK-NEXT: [[TMP3:%.*]] = bitcast i32* [[DST]] to <4 x i32>* +; CHECK-NEXT: store <4 x i32> [[TMP2]], <4 x i32>* [[TMP3]], align 4 ; CHECK-NEXT: ret void ; entry: @@ -205,22 +193,18 @@ ; CHECK-LABEL: @addsub0( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[INCDEC_PTR:%.*]] = getelementptr inbounds i32, i32* [[SRC:%.*]], i64 1 -; CHECK-NEXT: [[TMP0:%.*]] = load i32, i32* [[SRC]], align 4 -; CHECK-NEXT: [[SUB:%.*]] = add nsw i32 [[TMP0]], -1 ; CHECK-NEXT: [[INCDEC_PTR1:%.*]] = getelementptr inbounds i32, i32* [[DST:%.*]], i64 1 -; CHECK-NEXT: store i32 [[SUB]], i32* [[DST]], align 4 ; CHECK-NEXT: [[INCDEC_PTR2:%.*]] = getelementptr inbounds i32, i32* [[SRC]], i64 2 -; CHECK-NEXT: [[TMP1:%.*]] = load i32, i32* [[INCDEC_PTR]], align 4 ; CHECK-NEXT: [[INCDEC_PTR3:%.*]] = getelementptr inbounds i32, i32* [[DST]], i64 2 -; CHECK-NEXT: store i32 [[TMP1]], i32* [[INCDEC_PTR1]], align 4 ; CHECK-NEXT: [[INCDEC_PTR4:%.*]] = getelementptr inbounds i32, i32* [[SRC]], i64 3 -; CHECK-NEXT: [[TMP2:%.*]] = load i32, i32* [[INCDEC_PTR2]], align 4 -; CHECK-NEXT: [[SUB5:%.*]] = add nsw i32 [[TMP2]], -2 ; CHECK-NEXT: [[INCDEC_PTR6:%.*]] = getelementptr inbounds i32, i32* [[DST]], i64 3 -; CHECK-NEXT: store i32 [[SUB5]], i32* [[INCDEC_PTR3]], align 4 -; CHECK-NEXT: [[TMP3:%.*]] = load i32, i32* [[INCDEC_PTR4]], align 4 -; CHECK-NEXT: [[SUB8:%.*]] = sub nsw i32 [[TMP3]], -3 -; CHECK-NEXT: store i32 [[SUB8]], i32* [[INCDEC_PTR6]], align 4 +; CHECK-NEXT: [[TMP0:%.*]] = bitcast i32* [[SRC]] to <4 x i32>* +; CHECK-NEXT: [[TMP1:%.*]] = load <4 x i32>, <4 x i32>* [[TMP0]], align 4 +; CHECK-NEXT: [[TMP2:%.*]] = add nsw <4 x i32> [[TMP1]], +; CHECK-NEXT: [[TMP3:%.*]] = sub nsw <4 x i32> [[TMP1]], +; CHECK-NEXT: [[TMP4:%.*]] = shufflevector <4 x i32> [[TMP2]], <4 x i32> [[TMP3]], <4 x i32> +; CHECK-NEXT: [[TMP5:%.*]] = bitcast i32* [[DST]] to <4 x i32>* +; CHECK-NEXT: store <4 x i32> [[TMP4]], <4 x i32>* [[TMP5]], align 4 ; CHECK-NEXT: ret void ; entry: @@ -248,22 +232,18 @@ ; CHECK-LABEL: @addsub1( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[INCDEC_PTR:%.*]] = getelementptr inbounds i32, i32* [[SRC:%.*]], i64 1 -; CHECK-NEXT: [[TMP0:%.*]] = load i32, i32* [[SRC]], align 4 -; CHECK-NEXT: [[SUB:%.*]] = add nsw i32 [[TMP0]], -1 ; CHECK-NEXT: [[INCDEC_PTR1:%.*]] = getelementptr inbounds i32, i32* [[DST:%.*]], i64 1 -; CHECK-NEXT: store i32 [[SUB]], i32* [[DST]], align 4 ; CHECK-NEXT: [[INCDEC_PTR2:%.*]] = getelementptr inbounds i32, i32* [[SRC]], i64 2 -; CHECK-NEXT: [[TMP1:%.*]] = load i32, i32* [[INCDEC_PTR]], align 4 -; CHECK-NEXT: [[SUB1:%.*]] = sub nsw i32 [[TMP1]], -1 ; CHECK-NEXT: [[INCDEC_PTR3:%.*]] = getelementptr inbounds i32, i32* [[DST]], i64 2 -; CHECK-NEXT: store i32 [[SUB1]], i32* [[INCDEC_PTR1]], align 4 ; CHECK-NEXT: [[INCDEC_PTR4:%.*]] = getelementptr inbounds i32, i32* [[SRC]], i64 3 -; CHECK-NEXT: [[TMP2:%.*]] = load i32, i32* [[INCDEC_PTR2]], align 4 ; CHECK-NEXT: [[INCDEC_PTR6:%.*]] = getelementptr inbounds i32, i32* [[DST]], i64 3 -; CHECK-NEXT: store i32 [[TMP2]], i32* [[INCDEC_PTR3]], align 4 -; CHECK-NEXT: [[TMP3:%.*]] = load i32, i32* [[INCDEC_PTR4]], align 4 -; CHECK-NEXT: [[SUB8:%.*]] = sub nsw i32 [[TMP3]], -3 -; CHECK-NEXT: store i32 [[SUB8]], i32* [[INCDEC_PTR6]], align 4 +; CHECK-NEXT: [[TMP0:%.*]] = bitcast i32* [[SRC]] to <4 x i32>* +; CHECK-NEXT: [[TMP1:%.*]] = load <4 x i32>, <4 x i32>* [[TMP0]], align 4 +; CHECK-NEXT: [[TMP2:%.*]] = add nsw <4 x i32> [[TMP1]], +; CHECK-NEXT: [[TMP3:%.*]] = sub nsw <4 x i32> [[TMP1]], +; CHECK-NEXT: [[TMP4:%.*]] = shufflevector <4 x i32> [[TMP2]], <4 x i32> [[TMP3]], <4 x i32> +; CHECK-NEXT: [[TMP5:%.*]] = bitcast i32* [[DST]] to <4 x i32>* +; CHECK-NEXT: store <4 x i32> [[TMP4]], <4 x i32>* [[TMP5]], align 4 ; CHECK-NEXT: ret void ; entry: @@ -291,22 +271,16 @@ ; CHECK-LABEL: @mul( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[INCDEC_PTR:%.*]] = getelementptr inbounds i32, i32* [[SRC:%.*]], i64 1 -; CHECK-NEXT: [[TMP0:%.*]] = load i32, i32* [[SRC]], align 4 -; CHECK-NEXT: [[MUL:%.*]] = mul nsw i32 [[TMP0]], 257 ; CHECK-NEXT: [[INCDEC_PTR1:%.*]] = getelementptr inbounds i32, i32* [[DST:%.*]], i64 1 -; CHECK-NEXT: store i32 [[MUL]], i32* [[DST]], align 4 ; CHECK-NEXT: [[INCDEC_PTR2:%.*]] = getelementptr inbounds i32, i32* [[SRC]], i64 2 -; CHECK-NEXT: [[TMP1:%.*]] = load i32, i32* [[INCDEC_PTR]], align 4 -; CHECK-NEXT: [[MUL3:%.*]] = mul nsw i32 [[TMP1]], -3 ; CHECK-NEXT: [[INCDEC_PTR4:%.*]] = getelementptr inbounds i32, i32* [[DST]], i64 2 -; CHECK-NEXT: store i32 [[MUL3]], i32* [[INCDEC_PTR1]], align 4 ; CHECK-NEXT: [[INCDEC_PTR5:%.*]] = getelementptr inbounds i32, i32* [[SRC]], i64 3 -; CHECK-NEXT: [[TMP2:%.*]] = load i32, i32* [[INCDEC_PTR2]], align 4 ; CHECK-NEXT: [[INCDEC_PTR7:%.*]] = getelementptr inbounds i32, i32* [[DST]], i64 3 -; CHECK-NEXT: store i32 [[TMP2]], i32* [[INCDEC_PTR4]], align 4 -; CHECK-NEXT: [[TMP3:%.*]] = load i32, i32* [[INCDEC_PTR5]], align 4 -; CHECK-NEXT: [[MUL9:%.*]] = mul nsw i32 [[TMP3]], -9 -; CHECK-NEXT: store i32 [[MUL9]], i32* [[INCDEC_PTR7]], align 4 +; CHECK-NEXT: [[TMP0:%.*]] = bitcast i32* [[SRC]] to <4 x i32>* +; CHECK-NEXT: [[TMP1:%.*]] = load <4 x i32>, <4 x i32>* [[TMP0]], align 4 +; CHECK-NEXT: [[TMP2:%.*]] = mul nsw <4 x i32> , [[TMP1]] +; CHECK-NEXT: [[TMP3:%.*]] = bitcast i32* [[DST]] to <4 x i32>* +; CHECK-NEXT: store <4 x i32> [[TMP2]], <4 x i32>* [[TMP3]], align 4 ; CHECK-NEXT: ret void ; entry: @@ -334,22 +308,16 @@ ; CHECK-LABEL: @shl0( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[INCDEC_PTR:%.*]] = getelementptr inbounds i32, i32* [[SRC:%.*]], i64 1 -; CHECK-NEXT: [[TMP0:%.*]] = load i32, i32* [[SRC]], align 4 ; CHECK-NEXT: [[INCDEC_PTR1:%.*]] = getelementptr inbounds i32, i32* [[DST:%.*]], i64 1 -; CHECK-NEXT: store i32 [[TMP0]], i32* [[DST]], align 4 ; CHECK-NEXT: [[INCDEC_PTR2:%.*]] = getelementptr inbounds i32, i32* [[SRC]], i64 2 -; CHECK-NEXT: [[TMP1:%.*]] = load i32, i32* [[INCDEC_PTR]], align 4 -; CHECK-NEXT: [[SHL:%.*]] = shl i32 [[TMP1]], 1 ; CHECK-NEXT: [[INCDEC_PTR3:%.*]] = getelementptr inbounds i32, i32* [[DST]], i64 2 -; CHECK-NEXT: store i32 [[SHL]], i32* [[INCDEC_PTR1]], align 4 ; CHECK-NEXT: [[INCDEC_PTR4:%.*]] = getelementptr inbounds i32, i32* [[SRC]], i64 3 -; CHECK-NEXT: [[TMP2:%.*]] = load i32, i32* [[INCDEC_PTR2]], align 4 -; CHECK-NEXT: [[SHL5:%.*]] = shl i32 [[TMP2]], 2 ; CHECK-NEXT: [[INCDEC_PTR6:%.*]] = getelementptr inbounds i32, i32* [[DST]], i64 3 -; CHECK-NEXT: store i32 [[SHL5]], i32* [[INCDEC_PTR3]], align 4 -; CHECK-NEXT: [[TMP3:%.*]] = load i32, i32* [[INCDEC_PTR4]], align 4 -; CHECK-NEXT: [[SHL8:%.*]] = shl i32 [[TMP3]], 3 -; CHECK-NEXT: store i32 [[SHL8]], i32* [[INCDEC_PTR6]], align 4 +; CHECK-NEXT: [[TMP0:%.*]] = bitcast i32* [[SRC]] to <4 x i32>* +; CHECK-NEXT: [[TMP1:%.*]] = load <4 x i32>, <4 x i32>* [[TMP0]], align 4 +; CHECK-NEXT: [[TMP2:%.*]] = shl <4 x i32> [[TMP1]], +; CHECK-NEXT: [[TMP3:%.*]] = bitcast i32* [[DST]] to <4 x i32>* +; CHECK-NEXT: store <4 x i32> [[TMP2]], <4 x i32>* [[TMP3]], align 4 ; CHECK-NEXT: ret void ; entry: @@ -453,22 +421,16 @@ ; CHECK-LABEL: @add1f( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[INCDEC_PTR:%.*]] = getelementptr inbounds float, float* [[SRC:%.*]], i64 1 -; CHECK-NEXT: [[TMP0:%.*]] = load float, float* [[SRC]], align 4 ; CHECK-NEXT: [[INCDEC_PTR1:%.*]] = getelementptr inbounds float, float* [[DST:%.*]], i64 1 -; CHECK-NEXT: store float [[TMP0]], float* [[DST]], align 4 ; CHECK-NEXT: [[INCDEC_PTR2:%.*]] = getelementptr inbounds float, float* [[SRC]], i64 2 -; CHECK-NEXT: [[TMP1:%.*]] = load float, float* [[INCDEC_PTR]], align 4 -; CHECK-NEXT: [[ADD3:%.*]] = fadd fast float [[TMP1]], 1.000000e+00 ; CHECK-NEXT: [[INCDEC_PTR4:%.*]] = getelementptr inbounds float, float* [[DST]], i64 2 -; CHECK-NEXT: store float [[ADD3]], float* [[INCDEC_PTR1]], align 4 ; CHECK-NEXT: [[INCDEC_PTR5:%.*]] = getelementptr inbounds float, float* [[SRC]], i64 3 -; CHECK-NEXT: [[TMP2:%.*]] = load float, float* [[INCDEC_PTR2]], align 4 -; CHECK-NEXT: [[ADD6:%.*]] = fadd fast float [[TMP2]], 2.000000e+00 ; CHECK-NEXT: [[INCDEC_PTR7:%.*]] = getelementptr inbounds float, float* [[DST]], i64 3 -; CHECK-NEXT: store float [[ADD6]], float* [[INCDEC_PTR4]], align 4 -; CHECK-NEXT: [[TMP3:%.*]] = load float, float* [[INCDEC_PTR5]], align 4 -; CHECK-NEXT: [[ADD9:%.*]] = fadd fast float [[TMP3]], 3.000000e+00 -; CHECK-NEXT: store float [[ADD9]], float* [[INCDEC_PTR7]], align 4 +; CHECK-NEXT: [[TMP0:%.*]] = bitcast float* [[SRC]] to <4 x float>* +; CHECK-NEXT: [[TMP1:%.*]] = load <4 x float>, <4 x float>* [[TMP0]], align 4 +; CHECK-NEXT: [[TMP2:%.*]] = fadd fast <4 x float> , [[TMP1]] +; CHECK-NEXT: [[TMP3:%.*]] = bitcast float* [[DST]] to <4 x float>* +; CHECK-NEXT: store <4 x float> [[TMP2]], <4 x float>* [[TMP3]], align 4 ; CHECK-NEXT: ret void ; entry: @@ -496,22 +458,16 @@ ; CHECK-LABEL: @sub0f( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[INCDEC_PTR:%.*]] = getelementptr inbounds float, float* [[SRC:%.*]], i64 1 -; CHECK-NEXT: [[TMP0:%.*]] = load float, float* [[SRC]], align 4 -; CHECK-NEXT: [[ADD:%.*]] = fadd fast float [[TMP0]], -1.000000e+00 ; CHECK-NEXT: [[INCDEC_PTR1:%.*]] = getelementptr inbounds float, float* [[DST:%.*]], i64 1 -; CHECK-NEXT: store float [[ADD]], float* [[DST]], align 4 ; CHECK-NEXT: [[INCDEC_PTR2:%.*]] = getelementptr inbounds float, float* [[SRC]], i64 2 -; CHECK-NEXT: [[TMP1:%.*]] = load float, float* [[INCDEC_PTR]], align 4 ; CHECK-NEXT: [[INCDEC_PTR4:%.*]] = getelementptr inbounds float, float* [[DST]], i64 2 -; CHECK-NEXT: store float [[TMP1]], float* [[INCDEC_PTR1]], align 4 ; CHECK-NEXT: [[INCDEC_PTR5:%.*]] = getelementptr inbounds float, float* [[SRC]], i64 3 -; CHECK-NEXT: [[TMP2:%.*]] = load float, float* [[INCDEC_PTR2]], align 4 -; CHECK-NEXT: [[ADD6:%.*]] = fadd fast float [[TMP2]], -2.000000e+00 ; CHECK-NEXT: [[INCDEC_PTR7:%.*]] = getelementptr inbounds float, float* [[DST]], i64 3 -; CHECK-NEXT: store float [[ADD6]], float* [[INCDEC_PTR4]], align 4 -; CHECK-NEXT: [[TMP3:%.*]] = load float, float* [[INCDEC_PTR5]], align 4 -; CHECK-NEXT: [[ADD9:%.*]] = fadd fast float [[TMP3]], -3.000000e+00 -; CHECK-NEXT: store float [[ADD9]], float* [[INCDEC_PTR7]], align 4 +; CHECK-NEXT: [[TMP0:%.*]] = bitcast float* [[SRC]] to <4 x float>* +; CHECK-NEXT: [[TMP1:%.*]] = load <4 x float>, <4 x float>* [[TMP0]], align 4 +; CHECK-NEXT: [[TMP2:%.*]] = fadd fast <4 x float> , [[TMP1]] +; CHECK-NEXT: [[TMP3:%.*]] = bitcast float* [[DST]] to <4 x float>* +; CHECK-NEXT: store <4 x float> [[TMP2]], <4 x float>* [[TMP3]], align 4 ; CHECK-NEXT: ret void ; entry: @@ -615,22 +571,18 @@ ; CHECK-LABEL: @addsub0f( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[INCDEC_PTR:%.*]] = getelementptr inbounds float, float* [[SRC:%.*]], i64 1 -; CHECK-NEXT: [[TMP0:%.*]] = load float, float* [[SRC]], align 4 -; CHECK-NEXT: [[SUB:%.*]] = fadd fast float [[TMP0]], -1.000000e+00 ; CHECK-NEXT: [[INCDEC_PTR1:%.*]] = getelementptr inbounds float, float* [[DST:%.*]], i64 1 -; CHECK-NEXT: store float [[SUB]], float* [[DST]], align 4 ; CHECK-NEXT: [[INCDEC_PTR2:%.*]] = getelementptr inbounds float, float* [[SRC]], i64 2 -; CHECK-NEXT: [[TMP1:%.*]] = load float, float* [[INCDEC_PTR]], align 4 ; CHECK-NEXT: [[INCDEC_PTR3:%.*]] = getelementptr inbounds float, float* [[DST]], i64 2 -; CHECK-NEXT: store float [[TMP1]], float* [[INCDEC_PTR1]], align 4 ; CHECK-NEXT: [[INCDEC_PTR4:%.*]] = getelementptr inbounds float, float* [[SRC]], i64 3 -; CHECK-NEXT: [[TMP2:%.*]] = load float, float* [[INCDEC_PTR2]], align 4 -; CHECK-NEXT: [[SUB5:%.*]] = fadd fast float [[TMP2]], -2.000000e+00 ; CHECK-NEXT: [[INCDEC_PTR6:%.*]] = getelementptr inbounds float, float* [[DST]], i64 3 -; CHECK-NEXT: store float [[SUB5]], float* [[INCDEC_PTR3]], align 4 -; CHECK-NEXT: [[TMP3:%.*]] = load float, float* [[INCDEC_PTR4]], align 4 -; CHECK-NEXT: [[SUB8:%.*]] = fsub fast float [[TMP3]], -3.000000e+00 -; CHECK-NEXT: store float [[SUB8]], float* [[INCDEC_PTR6]], align 4 +; CHECK-NEXT: [[TMP0:%.*]] = bitcast float* [[SRC]] to <4 x float>* +; CHECK-NEXT: [[TMP1:%.*]] = load <4 x float>, <4 x float>* [[TMP0]], align 4 +; CHECK-NEXT: [[TMP2:%.*]] = fadd fast <4 x float> [[TMP1]], +; CHECK-NEXT: [[TMP3:%.*]] = fsub fast <4 x float> [[TMP1]], +; CHECK-NEXT: [[TMP4:%.*]] = shufflevector <4 x float> [[TMP2]], <4 x float> [[TMP3]], <4 x i32> +; CHECK-NEXT: [[TMP5:%.*]] = bitcast float* [[DST]] to <4 x float>* +; CHECK-NEXT: store <4 x float> [[TMP4]], <4 x float>* [[TMP5]], align 4 ; CHECK-NEXT: ret void ; entry: @@ -658,22 +610,18 @@ ; CHECK-LABEL: @addsub1f( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[INCDEC_PTR:%.*]] = getelementptr inbounds float, float* [[SRC:%.*]], i64 1 -; CHECK-NEXT: [[TMP0:%.*]] = load float, float* [[SRC]], align 4 -; CHECK-NEXT: [[SUB:%.*]] = fadd fast float [[TMP0]], -1.000000e+00 ; CHECK-NEXT: [[INCDEC_PTR1:%.*]] = getelementptr inbounds float, float* [[DST:%.*]], i64 1 -; CHECK-NEXT: store float [[SUB]], float* [[DST]], align 4 ; CHECK-NEXT: [[INCDEC_PTR2:%.*]] = getelementptr inbounds float, float* [[SRC]], i64 2 -; CHECK-NEXT: [[TMP1:%.*]] = load float, float* [[INCDEC_PTR]], align 4 -; CHECK-NEXT: [[SUB1:%.*]] = fsub fast float [[TMP1]], -1.000000e+00 ; CHECK-NEXT: [[INCDEC_PTR3:%.*]] = getelementptr inbounds float, float* [[DST]], i64 2 -; CHECK-NEXT: store float [[SUB1]], float* [[INCDEC_PTR1]], align 4 ; CHECK-NEXT: [[INCDEC_PTR4:%.*]] = getelementptr inbounds float, float* [[SRC]], i64 3 -; CHECK-NEXT: [[TMP2:%.*]] = load float, float* [[INCDEC_PTR2]], align 4 ; CHECK-NEXT: [[INCDEC_PTR6:%.*]] = getelementptr inbounds float, float* [[DST]], i64 3 -; CHECK-NEXT: store float [[TMP2]], float* [[INCDEC_PTR3]], align 4 -; CHECK-NEXT: [[TMP3:%.*]] = load float, float* [[INCDEC_PTR4]], align 4 -; CHECK-NEXT: [[SUB8:%.*]] = fsub fast float [[TMP3]], -3.000000e+00 -; CHECK-NEXT: store float [[SUB8]], float* [[INCDEC_PTR6]], align 4 +; CHECK-NEXT: [[TMP0:%.*]] = bitcast float* [[SRC]] to <4 x float>* +; CHECK-NEXT: [[TMP1:%.*]] = load <4 x float>, <4 x float>* [[TMP0]], align 4 +; CHECK-NEXT: [[TMP2:%.*]] = fadd fast <4 x float> [[TMP1]], +; CHECK-NEXT: [[TMP3:%.*]] = fsub fast <4 x float> [[TMP1]], +; CHECK-NEXT: [[TMP4:%.*]] = shufflevector <4 x float> [[TMP2]], <4 x float> [[TMP3]], <4 x i32> +; CHECK-NEXT: [[TMP5:%.*]] = bitcast float* [[DST]] to <4 x float>* +; CHECK-NEXT: store <4 x float> [[TMP4]], <4 x float>* [[TMP5]], align 4 ; CHECK-NEXT: ret void ; entry: @@ -701,22 +649,16 @@ ; CHECK-LABEL: @mulf( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[INCDEC_PTR:%.*]] = getelementptr inbounds float, float* [[SRC:%.*]], i64 1 -; CHECK-NEXT: [[TMP0:%.*]] = load float, float* [[SRC]], align 4 -; CHECK-NEXT: [[SUB:%.*]] = fmul fast float [[TMP0]], 2.570000e+02 ; CHECK-NEXT: [[INCDEC_PTR1:%.*]] = getelementptr inbounds float, float* [[DST:%.*]], i64 1 -; CHECK-NEXT: store float [[SUB]], float* [[DST]], align 4 ; CHECK-NEXT: [[INCDEC_PTR2:%.*]] = getelementptr inbounds float, float* [[SRC]], i64 2 -; CHECK-NEXT: [[TMP1:%.*]] = load float, float* [[INCDEC_PTR]], align 4 -; CHECK-NEXT: [[SUB3:%.*]] = fmul fast float [[TMP1]], -3.000000e+00 ; CHECK-NEXT: [[INCDEC_PTR4:%.*]] = getelementptr inbounds float, float* [[DST]], i64 2 -; CHECK-NEXT: store float [[SUB3]], float* [[INCDEC_PTR1]], align 4 ; CHECK-NEXT: [[INCDEC_PTR5:%.*]] = getelementptr inbounds float, float* [[SRC]], i64 3 -; CHECK-NEXT: [[TMP2:%.*]] = load float, float* [[INCDEC_PTR2]], align 4 ; CHECK-NEXT: [[INCDEC_PTR7:%.*]] = getelementptr inbounds float, float* [[DST]], i64 3 -; CHECK-NEXT: store float [[TMP2]], float* [[INCDEC_PTR4]], align 4 -; CHECK-NEXT: [[TMP3:%.*]] = load float, float* [[INCDEC_PTR5]], align 4 -; CHECK-NEXT: [[SUB9:%.*]] = fmul fast float [[TMP3]], -9.000000e+00 -; CHECK-NEXT: store float [[SUB9]], float* [[INCDEC_PTR7]], align 4 +; CHECK-NEXT: [[TMP0:%.*]] = bitcast float* [[SRC]] to <4 x float>* +; CHECK-NEXT: [[TMP1:%.*]] = load <4 x float>, <4 x float>* [[TMP0]], align 4 +; CHECK-NEXT: [[TMP2:%.*]] = fmul fast <4 x float> , [[TMP1]] +; CHECK-NEXT: [[TMP3:%.*]] = bitcast float* [[DST]] to <4 x float>* +; CHECK-NEXT: store <4 x float> [[TMP2]], <4 x float>* [[TMP3]], align 4 ; CHECK-NEXT: ret void ; entry: @@ -825,22 +767,16 @@ ; CHECK-LABEL: @sub0fn( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[INCDEC_PTR:%.*]] = getelementptr inbounds float, float* [[SRC:%.*]], i64 1 -; CHECK-NEXT: [[TMP0:%.*]] = load float, float* [[SRC]], align 4 -; CHECK-NEXT: [[ADD:%.*]] = fadd fast float [[TMP0]], -1.000000e+00 ; CHECK-NEXT: [[INCDEC_PTR1:%.*]] = getelementptr inbounds float, float* [[DST:%.*]], i64 1 -; CHECK-NEXT: store float [[ADD]], float* [[DST]], align 4 ; CHECK-NEXT: [[INCDEC_PTR2:%.*]] = getelementptr inbounds float, float* [[SRC]], i64 2 -; CHECK-NEXT: [[TMP1:%.*]] = load float, float* [[INCDEC_PTR]], align 4 ; CHECK-NEXT: [[INCDEC_PTR4:%.*]] = getelementptr inbounds float, float* [[DST]], i64 2 -; CHECK-NEXT: store float [[TMP1]], float* [[INCDEC_PTR1]], align 4 ; CHECK-NEXT: [[INCDEC_PTR5:%.*]] = getelementptr inbounds float, float* [[SRC]], i64 3 -; CHECK-NEXT: [[TMP2:%.*]] = load float, float* [[INCDEC_PTR2]], align 4 -; CHECK-NEXT: [[ADD6:%.*]] = fadd float [[TMP2]], -2.000000e+00 ; CHECK-NEXT: [[INCDEC_PTR7:%.*]] = getelementptr inbounds float, float* [[DST]], i64 3 -; CHECK-NEXT: store float [[ADD6]], float* [[INCDEC_PTR4]], align 4 -; CHECK-NEXT: [[TMP3:%.*]] = load float, float* [[INCDEC_PTR5]], align 4 -; CHECK-NEXT: [[ADD9:%.*]] = fadd float [[TMP3]], -3.000000e+00 -; CHECK-NEXT: store float [[ADD9]], float* [[INCDEC_PTR7]], align 4 +; CHECK-NEXT: [[TMP0:%.*]] = bitcast float* [[SRC]] to <4 x float>* +; CHECK-NEXT: [[TMP1:%.*]] = load <4 x float>, <4 x float>* [[TMP0]], align 4 +; CHECK-NEXT: [[TMP2:%.*]] = fadd <4 x float> , [[TMP1]] +; CHECK-NEXT: [[TMP3:%.*]] = bitcast float* [[DST]] to <4 x float>* +; CHECK-NEXT: store <4 x float> [[TMP2]], <4 x float>* [[TMP3]], align 4 ; CHECK-NEXT: ret void ; entry: