Index: lib/Transforms/Vectorize/LoopVectorize.cpp =================================================================== --- lib/Transforms/Vectorize/LoopVectorize.cpp +++ lib/Transforms/Vectorize/LoopVectorize.cpp @@ -299,6 +299,18 @@ return nullptr; } +/// A helper function that returns true if the given type is irregular. The +/// type is irregular if its allocated size doesn't equal the store size of an +/// element of the corresponding vector type at the given vectorization factor. +static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF = 1) { + auto *VectorTy = Ty; + if (VF > 1) + VectorTy = VectorType::get(Ty, VF); + auto ScalarAllocatedSize = DL.getTypeAllocSize(Ty); + auto VectorElementSize = DL.getTypeStoreSize(VectorTy) / VF; + return ScalarAllocatedSize != VectorElementSize; +} + /// InnerLoopVectorizer vectorizes loops which contain only one basic /// block to a specified vectorization factor (VF). /// This class performs the widening of scalars into vectors, or multiple @@ -1611,6 +1623,20 @@ unsigned getNumLoads() const { return LAI->getNumLoads(); } unsigned getNumPredStores() const { return NumPredStores; } + /// Returns true if \p S is an unmasked store instruction in a predicated + /// block that will be scalarized during vectorization. + bool isUnmaskedPredicatedStore(StoreInst *S); + + /// Returns true if \p I is a memory instruction that has a consecutive or + /// consecutive-like pointer operand. Consecutive-like pointers are pointers + /// that are treated like consecutive pointers during vectorization. The + /// pointer operands of interleaved accesses are an example. + bool hasConsecutiveLikePtrOperand(Instruction *I); + + /// Returns true if \p I is a memory instruction that may be scalarized + /// during vectorization. + bool memoryInstructionMayBeScalarized(Instruction *I); + private: /// Check if a single basic block loop is vectorizable. /// At this point we know that this is a loop with a constant trip count @@ -2733,14 +2759,15 @@ if (!Alignment) Alignment = DL.getABITypeAlignment(ScalarDataTy); unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); - uint64_t ScalarAllocatedSize = DL.getTypeAllocSize(ScalarDataTy); - uint64_t VectorElementSize = DL.getTypeStoreSize(DataTy) / VF; - if (SI && Legal->blockNeedsPredication(SI->getParent()) && - !Legal->isMaskRequired(SI)) + // If the instruction is an unmasked store located in a predicated block, it + // must be scalarized. + if (SI && Legal->isUnmaskedPredicatedStore(SI)) return scalarizeInstruction(Instr, true); - if (ScalarAllocatedSize != VectorElementSize) + // If the instruction's allocated type size doesn't equal it's stored type + // size, it requires padding and must be scalarized. + if (hasIrregularType(ScalarDataTy, DL, VF)) return scalarizeInstruction(Instr); // If the pointer is loop invariant scalarize the load. @@ -5273,6 +5300,48 @@ } } +bool LoopVectorizationLegality::hasConsecutiveLikePtrOperand(Instruction *I) { + if (isAccessInterleaved(I)) + return true; + if (auto *Ptr = getPointerOperand(I)) + return isConsecutivePtr(Ptr); + return false; +} + +bool LoopVectorizationLegality::isUnmaskedPredicatedStore(StoreInst *S) { + return blockNeedsPredication(S->getParent()) && !isMaskRequired(S); +} + +bool LoopVectorizationLegality::memoryInstructionMayBeScalarized( + Instruction *I) { + + // If the instruction doesn't have a consecutive or consecutive-like pointer + // operand, it may be scalarized. + if (!hasConsecutiveLikePtrOperand(I)) + return true; + + // Get and ensure we have a valid memory instruction. + LoadInst *LI = dyn_cast(I); + StoreInst *SI = dyn_cast(I); + assert((LI || SI) && "Invalid memory instruction"); + + // If the instruction is an unasked store located in a predicated block, it + // will be scalarized. + if (SI && isUnmaskedPredicatedStore(SI)) + return true; + + // If the instruction's allocated type size doesn't equal it's stored type + // size, it requires padding and may be scalarized. + auto &DL = I->getModule()->getDataLayout(); + auto *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType(); + if (hasIrregularType(ScalarDataTy, DL)) + return true; + + // Otherwise, the memory instruction should be vectorized if the rest of the + // loop is. + return false; +} + void LoopVectorizationLegality::collectLoopUniforms() { // We now know that the loop is vectorizable! // Collect instructions inside the loop that will remain uniform after @@ -5294,21 +5363,40 @@ DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n"); } - // Add all consecutive pointer values; these values will be uniform after - // vectorization (and subsequent cleanup). Although non-consecutive, we also - // add the pointer operands of interleaved accesses since they are treated - // like consecutive pointers during vectorization. + // Holds consecutive and consecutive-like pointers. Consecutive-like pointers + // are pointers that are treated like consecutive pointers during + // vectorization. The pointer operands of interleaved accesses are an + // example. + SmallPtrSet ConsecutiveLikePtrs; + + // Holds pointer operands of instructions that are possibly non-uniform. + SmallPtrSet PossibleNonUniformPtrs; + + // Iterate over the instructions in the loop, and collect all consecutive and + // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible + // that a pointer operand use will be scalarized, we collect the pointer + // operand in PossibleNonUniformPtrs instead. We use two sets here because a + // single getelementptr instruction can be used by both vectorized and + // scalarized memory instructions. For example, if a loop loads and stores + // from the same location, but the store is conditional, the store will be + // scalarized, and the getelementptr won't remain uniform. for (auto *BB : TheLoop->blocks()) for (auto &I : *BB) { - Instruction *Ptr = nullptr; - if (I.getType()->isPointerTy() && isConsecutivePtr(&I)) - Ptr = &I; - else if (isAccessInterleaved(&I)) - Ptr = cast(getPointerOperand(&I)); - else + auto *Ptr = dyn_cast_or_null(getPointerOperand(&I)); + if (!Ptr) continue; - Worklist.insert(Ptr); - DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ptr << "\n"); + if (memoryInstructionMayBeScalarized(&I)) + PossibleNonUniformPtrs.insert(Ptr); + else + ConsecutiveLikePtrs.insert(Ptr); + } + + // Add to the Worklist all consecutive and consecutive-like pointers that + // aren't also identified as possibly non-uniform. + for (auto *V : ConsecutiveLikePtrs) + if (!PossibleNonUniformPtrs.count(V)) { + DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n"); + Worklist.insert(V); } // Expand Worklist in topological order: whenever a new instruction Index: test/Transforms/LoopVectorize/consecutive-ptr-uniforms.ll =================================================================== --- /dev/null +++ test/Transforms/LoopVectorize/consecutive-ptr-uniforms.ll @@ -0,0 +1,268 @@ +; REQUIRES: asserts +; RUN: opt < %s -loop-vectorize -force-vector-width=4 -force-vector-interleave=1 -instcombine -debug-only=loop-vectorize -disable-output -print-after=instcombine 2>&1 | FileCheck %s +; RUN: opt < %s -loop-vectorize -force-vector-width=4 -force-vector-interleave=1 -enable-interleaved-mem-accesses -enable-cond-stores-vec -instcombine -debug-only=loop-vectorize -disable-output -print-after=instcombine 2>&1 | FileCheck %s --check-prefix=INTER + +target datalayout = "e-m:e-i64:64-i128:128-n32:64-S128" + +%pair = type { i32, i32 } + +; CHECK-LABEL: consecutive_ptr_forward +; +; Check that a forward consecutive pointer is recognized as uniform and remains +; uniform after vectorization. +; +; CHECK: LV: Found uniform instruction: %tmp1 = getelementptr inbounds i32, i32* %a, i64 %i +; CHECK: vector.body +; CHECK: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] +; CHECK-NOT: getelementptr +; CHECK: getelementptr inbounds i32, i32* %a, i64 %index +; CHECK-NOT: getelementptr +; CHECK: br i1 {{.*}}, label %middle.block, label %vector.body +; +define i32 @consecutive_ptr_forward(i32* %a, i64 %n) { +entry: + br label %for.body + +for.body: + %i = phi i64 [ %i.next, %for.body ], [ 0, %entry ] + %tmp0 = phi i32 [ %tmp3, %for.body ], [ 0, %entry ] + %tmp1 = getelementptr inbounds i32, i32* %a, i64 %i + %tmp2 = load i32, i32* %tmp1, align 8 + %tmp3 = add i32 %tmp0, %tmp2 + %i.next = add nuw nsw i64 %i, 1 + %cond = icmp slt i64 %i.next, %n + br i1 %cond, label %for.body, label %for.end + +for.end: + %tmp4 = phi i32 [ %tmp3, %for.body ] + ret i32 %tmp4 +} + +; CHECK-LABEL: consecutive_ptr_reverse +; +; Check that a reverse consecutive pointer is recognized as uniform and remains +; uniform after vectorization. +; +; CHECK: LV: Found uniform instruction: %tmp1 = getelementptr inbounds i32, i32* %a, i64 %i +; CHECK: vector.body +; CHECK: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] +; CHECK: %offset.idx = sub i64 %n, %index +; CHECK-NOT: getelementptr +; CHECK: %[[G0:.+]] = getelementptr inbounds i32, i32* %a, i64 %offset.idx +; CHECK: getelementptr i32, i32* %[[G0]], i64 -3 +; CHECK-NOT: getelementptr +; CHECK: br i1 {{.*}}, label %middle.block, label %vector.body +; +define i32 @consecutive_ptr_reverse(i32* %a, i64 %n) { +entry: + br label %for.body + +for.body: + %i = phi i64 [ %i.next, %for.body ], [ %n, %entry ] + %tmp0 = phi i32 [ %tmp3, %for.body ], [ 0, %entry ] + %tmp1 = getelementptr inbounds i32, i32* %a, i64 %i + %tmp2 = load i32, i32* %tmp1, align 8 + %tmp3 = add i32 %tmp0, %tmp2 + %i.next = add nuw nsw i64 %i, -1 + %cond = icmp sgt i64 %i.next, 0 + br i1 %cond, label %for.body, label %for.end + +for.end: + %tmp4 = phi i32 [ %tmp3, %for.body ] + ret i32 %tmp4 +} +; CHECK-LABEL: interleaved_access_forward +; +; Check that a consecutive-like pointer used by a forward interleaved group is +; recognized as uniform and remains uniform after vectorization. When +; interleaved memory accesses aren't enabled, the pointer should not be +; recognized as uniform, and it should not be uniform after vectorization. +; +; CHECK-NOT: LV: Found uniform instruction: %tmp1 = getelementptr inbounds %pair, %pair* %p, i64 %i, i32 0 +; CHECK-NOT: LV: Found uniform instruction: %tmp2 = getelementptr inbounds %pair, %pair* %p, i64 %i, i32 1 +; CHECK: vector.body +; CHECK: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] +; CHECK: %[[I1:.+]] = or i64 %index, 1 +; CHECK: %[[I2:.+]] = or i64 %index, 2 +; CHECK: %[[I3:.+]] = or i64 %index, 3 +; CHECK: getelementptr inbounds %pair, %pair* %p, i64 %index, i32 0 +; CHECK: getelementptr inbounds %pair, %pair* %p, i64 %[[I1]], i32 0 +; CHECK: getelementptr inbounds %pair, %pair* %p, i64 %[[I2]], i32 0 +; CHECK: getelementptr inbounds %pair, %pair* %p, i64 %[[I3]], i32 0 +; CHECK: getelementptr inbounds %pair, %pair* %p, i64 %index, i32 1 +; CHECK: getelementptr inbounds %pair, %pair* %p, i64 %[[I1]], i32 1 +; CHECK: getelementptr inbounds %pair, %pair* %p, i64 %[[I2]], i32 1 +; CHECK: getelementptr inbounds %pair, %pair* %p, i64 %[[I3]], i32 1 +; CHECK: br i1 {{.*}}, label %middle.block, label %vector.body +; +; INTER: LV: Found uniform instruction: %tmp1 = getelementptr inbounds %pair, %pair* %p, i64 %i, i32 0 +; INTER: LV: Found uniform instruction: %tmp2 = getelementptr inbounds %pair, %pair* %p, i64 %i, i32 1 +; INTER: vector.body +; INTER: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] +; INTER-NOT: getelementptr +; INTER: getelementptr inbounds %pair, %pair* %p, i64 %index, i32 0 +; INTER-NOT: getelementptr +; INTER: br i1 {{.*}}, label %middle.block, label %vector.body +; +define i32 @interleaved_access_forward(%pair* %p, i64 %n) { +entry: + br label %for.body + +for.body: + %i = phi i64 [ %i.next, %for.body ], [ 0, %entry ] + %tmp0 = phi i32 [ %tmp6, %for.body ], [ 0, %entry ] + %tmp1 = getelementptr inbounds %pair, %pair* %p, i64 %i, i32 0 + %tmp2 = getelementptr inbounds %pair, %pair* %p, i64 %i, i32 1 + %tmp3 = load i32, i32* %tmp1, align 8 + %tmp4 = load i32, i32* %tmp2, align 8 + %tmp5 = add i32 %tmp3, %tmp4 + %tmp6 = add i32 %tmp0, %tmp5 + %i.next = add nuw nsw i64 %i, 1 + %cond = icmp slt i64 %i.next, %n + br i1 %cond, label %for.body, label %for.end + +for.end: + %tmp14 = phi i32 [ %tmp6, %for.body ] + ret i32 %tmp14 +} + +; CHECK-LABEL: interleaved_access_reverse +; +; Check that a consecutive-like pointer used by a reverse interleaved group is +; recognized as uniform and remains uniform after vectorization. When +; interleaved memory accesses aren't enabled, the pointer should not be +; recognized as uniform, and it should not be uniform after vectorization. +; +; recognized as uniform, and it should not be uniform after vectorization. +; CHECK-NOT: LV: Found uniform instruction: %tmp1 = getelementptr inbounds %pair, %pair* %p, i64 %i, i32 0 +; CHECK-NOT: LV: Found uniform instruction: %tmp2 = getelementptr inbounds %pair, %pair* %p, i64 %i, i32 1 +; CHECK: vector.body +; CHECK: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] +; CHECK: %offset.idx = sub i64 %n, %index +; CHECK: %[[I1:.+]] = add i64 %offset.idx, -1 +; CHECK: %[[I2:.+]] = add i64 %offset.idx, -2 +; CHECK: %[[I3:.+]] = add i64 %offset.idx, -3 +; CHECK: getelementptr inbounds %pair, %pair* %p, i64 %offset.idx, i32 0 +; CHECK: getelementptr inbounds %pair, %pair* %p, i64 %[[I1]], i32 0 +; CHECK: getelementptr inbounds %pair, %pair* %p, i64 %[[I2]], i32 0 +; CHECK: getelementptr inbounds %pair, %pair* %p, i64 %[[I3]], i32 0 +; CHECK: getelementptr inbounds %pair, %pair* %p, i64 %offset.idx, i32 1 +; CHECK: getelementptr inbounds %pair, %pair* %p, i64 %[[I1]], i32 1 +; CHECK: getelementptr inbounds %pair, %pair* %p, i64 %[[I2]], i32 1 +; CHECK: getelementptr inbounds %pair, %pair* %p, i64 %[[I3]], i32 1 +; CHECK: br i1 {{.*}}, label %middle.block, label %vector.body +; +; INTER: LV: Found uniform instruction: %tmp1 = getelementptr inbounds %pair, %pair* %p, i64 %i, i32 0 +; INTER: LV: Found uniform instruction: %tmp2 = getelementptr inbounds %pair, %pair* %p, i64 %i, i32 1 +; INTER: vector.body +; INTER: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] +; INTER: %offset.idx = sub i64 %n, %index +; INTER-NOT: getelementptr +; INTER: %[[G0:.+]] = getelementptr inbounds %pair, %pair* %p, i64 %offset.idx, i32 0 +; INTER: getelementptr i32, i32* %[[G0]], i64 -6 +; INTER-NOT: getelementptr +; INTER: br i1 {{.*}}, label %middle.block, label %vector.body +; +define i32 @interleaved_access_reverse(%pair* %p, i64 %n) { +entry: + br label %for.body + +for.body: + %i = phi i64 [ %i.next, %for.body ], [ %n, %entry ] + %tmp0 = phi i32 [ %tmp6, %for.body ], [ 0, %entry ] + %tmp1 = getelementptr inbounds %pair, %pair* %p, i64 %i, i32 0 + %tmp2 = getelementptr inbounds %pair, %pair* %p, i64 %i, i32 1 + %tmp3 = load i32, i32* %tmp1, align 8 + %tmp4 = load i32, i32* %tmp2, align 8 + %tmp5 = add i32 %tmp3, %tmp4 + %tmp6 = add i32 %tmp0, %tmp5 + %i.next = add nuw nsw i64 %i, -1 + %cond = icmp sgt i64 %i.next, 0 + br i1 %cond, label %for.body, label %for.end + +for.end: + %tmp14 = phi i32 [ %tmp6, %for.body ] + ret i32 %tmp14 +} + +; CHECK-LABEL: predicated_store +; +; Check that a consecutive-like pointer used by a forward interleaved group and +; scalarized store is not recognized as uniform and is not uniform after +; vectorization. The store is scalarized because it's in a predicated block. +; Even though the load in this example is vectorized and only uses the pointer +; as if it were uniform, the store is scalarized, making the pointer +; non-uniform. +; +; INTER-NOT: LV: Found uniform instruction: %tmp0 = getelementptr inbounds %pair, %pair* %p, i64 %i, i32 0 +; INTER: vector.body +; INTER: %index = phi i64 [ 0, %vector.ph ], [ %index.next, {{.*}} ] +; INTER: %[[I1:.+]] = or i64 %index, 1 +; INTER: %[[I2:.+]] = or i64 %index, 2 +; INTER: %[[I3:.+]] = or i64 %index, 3 +; INTER: %[[G0:.+]] = getelementptr inbounds %pair, %pair* %p, i64 %index, i32 0 +; INTER: getelementptr inbounds %pair, %pair* %p, i64 %[[I1]], i32 0 +; INTER: getelementptr inbounds %pair, %pair* %p, i64 %[[I2]], i32 0 +; INTER: getelementptr inbounds %pair, %pair* %p, i64 %[[I3]], i32 0 +; INTER: %[[B0:.+]] = bitcast i32* %[[G0]] to <8 x i32>* +; INTER: %wide.vec = load <8 x i32>, <8 x i32>* %[[B0]], align 8 +; INTER: br i1 {{.*}}, label %middle.block, label %vector.body +; +define void @predicated_store(%pair *%p, i32 %x, i64 %n) { +entry: + br label %for.body + +for.body: + %i = phi i64 [ %i.next, %if.merge ], [ 0, %entry ] + %tmp0 = getelementptr inbounds %pair, %pair* %p, i64 %i, i32 0 + %tmp1 = load i32, i32* %tmp0, align 8 + %tmp2 = icmp eq i32 %tmp1, %x + br i1 %tmp2, label %if.then, label %if.merge + +if.then: + store i32 %tmp1, i32* %tmp0, align 8 + br label %if.merge + +if.merge: + %i.next = add nuw nsw i64 %i, 1 + %cond = icmp slt i64 %i.next, %n + br i1 %cond, label %for.body, label %for.end + +for.end: + ret void +} + +; CHECK-LABEL: irregular_type +; +; Check that a consecutive pointer used by a scalarized store is not recognized +; as uniform and is not uniform after vectorization. The store is scalarized +; because the stored type may required padding. +; +; CHECK-NOT: LV: Found uniform instruction: %tmp1 = getelementptr inbounds x86_fp80, x86_fp80* %a, i64 %i +; CHECK: vector.body +; CHECK: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] +; CHECK: %[[I1:.+]] = or i64 %index, 1 +; CHECK: %[[I2:.+]] = or i64 %index, 2 +; CHECK: %[[I3:.+]] = or i64 %index, 3 +; CHECK: getelementptr inbounds x86_fp80, x86_fp80* %a, i64 %index +; CHECK: getelementptr inbounds x86_fp80, x86_fp80* %a, i64 %[[I1]] +; CHECK: getelementptr inbounds x86_fp80, x86_fp80* %a, i64 %[[I2]] +; CHECK: getelementptr inbounds x86_fp80, x86_fp80* %a, i64 %[[I3]] +; CHECK: br i1 {{.*}}, label %middle.block, label %vector.body +; +define void @irregular_type(x86_fp80* %a, i64 %n) { +entry: + br label %for.body + +for.body: + %i = phi i64 [ 0, %entry ], [ %i.next, %for.body ] + %tmp0 = sitofp i32 1 to x86_fp80 + %tmp1 = getelementptr inbounds x86_fp80, x86_fp80* %a, i64 %i + store x86_fp80 %tmp0, x86_fp80* %tmp1, align 16 + %i.next = add i64 %i, 1 + %cond = icmp slt i64 %i.next, %n + br i1 %cond, label %for.body, label %for.end + +for.end: + ret void +}