Index: llvm/include/llvm/CodeGen/ISDOpcodes.h =================================================================== --- llvm/include/llvm/CodeGen/ISDOpcodes.h +++ llvm/include/llvm/CodeGen/ISDOpcodes.h @@ -537,6 +537,13 @@ /// FSINCOS - Compute both fsin and fcos as a single operation. FSINCOS, + /// FRECPI - Perform one iteration of the Newton series approximation of + /// x^-1. + FRECPI, + /// FRSQRTI - Perform one iteration of the Newton series approximation of + /// x^-1/2. + FRSQRTI, + /// LOAD and STORE have token chains as their first operand, then the same /// operands as an LLVM load/store instruction, then an offset node that /// is added / subtracted from the base pointer to form the address (for Index: llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp =================================================================== --- llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp +++ llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp @@ -364,6 +364,8 @@ SDNodeFlags *Flags, bool Reciprocal); SDValue buildSqrtNRTwoConst(SDValue Op, SDValue Est, unsigned Iterations, SDNodeFlags *Flags, bool Reciprocal); + SDValue buildSqrtNRNative(SDValue Op, SDValue Est, unsigned Iterations, + SDNodeFlags *Flags, bool Reciprocal); SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1, bool DemandHighBits = true); SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1); @@ -14497,41 +14499,49 @@ return S; } -SDValue DAGCombiner::BuildReciprocalEstimate(SDValue Op, SDNodeFlags *Flags) { +/// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) +/// For the reciprocal, we need to find the zero of the function: +/// F(X) = A X - 1 [which has a zero at X = 1/A] +/// => +/// X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form +/// does not require additional intermediate precision] +SDValue DAGCombiner::BuildReciprocalEstimate(SDValue Arg, SDNodeFlags *Flags) { if (Level >= AfterLegalizeDAG) return SDValue(); // Expose the DAG combiner to the target combiner implementations. TargetLowering::DAGCombinerInfo DCI(DAG, Level, false, this); - unsigned Iterations = 0; - if (SDValue Est = TLI.getRecipEstimate(Op, DCI, Iterations)) { + if (SDValue Est = TLI.getRecipEstimate(Arg, DCI, Iterations)) { if (Iterations) { - // Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) - // For the reciprocal, we need to find the zero of the function: - // F(X) = A X - 1 [which has a zero at X = 1/A] - // => - // X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form - // does not require additional intermediate precision] - EVT VT = Op.getValueType(); - SDLoc DL(Op); - SDValue FPOne = DAG.getConstantFP(1.0, DL, VT); - AddToWorklist(Est.getNode()); - // Newton iterations: Est = Est + Est (1 - Arg * Est) - for (unsigned i = 0; i < Iterations; ++i) { - SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Op, Est, Flags); - AddToWorklist(NewEst.getNode()); + EVT VT = Arg.getValueType(); + SDLoc DL(Arg); + + if (TLI.hasTargetDAGCombine((ISD::NodeType)ISD::FRECPI)) + // Newton iterations for reciprocal. + for (unsigned i = 0; i < Iterations; ++i) { + Est = DAG.getNode(ISD::FRECPI, DL, VT, Arg, Est, Flags); + AddToWorklist(Est.getNode()); + } + else { + SDValue One = DAG.getConstantFP(1.0, DL, VT); + + // Newton iterations: Est = Est + Est (1 - Arg * Est) + for (unsigned i = 0; i < Iterations; ++i) { + SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Arg, Est, Flags); + AddToWorklist(NewEst.getNode()); - NewEst = DAG.getNode(ISD::FSUB, DL, VT, FPOne, NewEst, Flags); - AddToWorklist(NewEst.getNode()); + NewEst = DAG.getNode(ISD::FSUB, DL, VT, One, NewEst, Flags); + AddToWorklist(NewEst.getNode()); - NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags); - AddToWorklist(NewEst.getNode()); + NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags); + AddToWorklist(NewEst.getNode()); - Est = DAG.getNode(ISD::FADD, DL, VT, Est, NewEst, Flags); - AddToWorklist(Est.getNode()); + Est = DAG.getNode(ISD::FADD, DL, VT, Est, NewEst, Flags); + AddToWorklist(Est.getNode()); + } } } return Est; @@ -14634,6 +14644,33 @@ return Est; } +/// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) +/// For the reciprocal sqrt, we need to find the zero of the function: +/// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)] +/// => +/// X_{i+1} = (-0.5 * X_i) * (A * X_i * X_i + (-3.0)) +SDValue DAGCombiner::buildSqrtNRNative(SDValue Arg, SDValue Est, + unsigned Iterations, + SDNodeFlags *Flags, bool Reciprocal) { + EVT VT = Arg.getValueType(); + SDLoc DL(Arg); + + // Newton iterations for reciprocal square root: + // E = the details are target dependent. + for (unsigned i = 0; i < Iterations; ++i) { + Est = DAG.getNode(ISD::FRSQRTI, DL, VT, Arg, Est, Flags); + AddToWorklist(Est.getNode()); + } + + if (!Reciprocal) { + // Calculate the square root . + Est = DAG.getNode(ISD::FMUL, DL, VT, Arg, Est, Flags); + AddToWorklist(Est.getNode()); + } + + return Est; +} + /// Build code to calculate either rsqrt(Op) or sqrt(Op). In the latter case /// Op*rsqrt(Op) is actually computed, so additional postprocessing is needed if /// Op can be zero. @@ -14649,9 +14686,13 @@ if (SDValue Est = TLI.getRsqrtEstimate(Op, DCI, Iterations, UseOneConstNR)) { AddToWorklist(Est.getNode()); if (Iterations) { - Est = UseOneConstNR - ? buildSqrtNROneConst(Op, Est, Iterations, Flags, Reciprocal) - : buildSqrtNRTwoConst(Op, Est, Iterations, Flags, Reciprocal); + // Check if the target supports the estimate step natively. + if (TLI.hasTargetDAGCombine((ISD::NodeType)ISD::FRSQRTI)) + Est = buildSqrtNRNative(Op, Est, Iterations, Flags, Reciprocal); + else + Est = UseOneConstNR + ? buildSqrtNROneConst(Op, Est, Iterations, Flags, Reciprocal) + : buildSqrtNRTwoConst(Op, Est, Iterations, Flags, Reciprocal); } return Est; } Index: llvm/lib/CodeGen/SelectionDAG/SelectionDAGDumper.cpp =================================================================== --- llvm/lib/CodeGen/SelectionDAG/SelectionDAGDumper.cpp +++ llvm/lib/CodeGen/SelectionDAG/SelectionDAGDumper.cpp @@ -200,6 +200,8 @@ case ISD::FMA: return "fma"; case ISD::FMAD: return "fmad"; case ISD::FREM: return "frem"; + case ISD::FRECPI: return "FRecpI"; + case ISD::FRSQRTI: return "FRSqrtI"; case ISD::FCOPYSIGN: return "fcopysign"; case ISD::FGETSIGN: return "fgetsign"; case ISD::FCANONICALIZE: return "fcanonicalize"; Index: llvm/lib/Target/AArch64/AArch64ISelLowering.h =================================================================== --- llvm/lib/Target/AArch64/AArch64ISelLowering.h +++ llvm/lib/Target/AArch64/AArch64ISelLowering.h @@ -187,9 +187,9 @@ SMULL, UMULL, - // Reciprocal estimates. - FRECPE, - FRSQRTE, + // Reciprocal estimates and steps. + FRECPE, FRECPS, + FRSQRTE, FRSQRTS, // NEON Load/Store with post-increment base updates LD2post = ISD::FIRST_TARGET_MEMORY_OPCODE, Index: llvm/lib/Target/AArch64/AArch64ISelLowering.cpp =================================================================== --- llvm/lib/Target/AArch64/AArch64ISelLowering.cpp +++ llvm/lib/Target/AArch64/AArch64ISelLowering.cpp @@ -495,6 +495,10 @@ setTargetDAGCombine(ISD::INSERT_VECTOR_ELT); setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); + // AArch64 has instrs which perform part of the Newton series iterations. + setTargetDAGCombine(ISD::FRECPI); + setTargetDAGCombine(ISD::FRSQRTI); + MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 8; MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 4; MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = 4; @@ -953,8 +957,10 @@ case AArch64ISD::ST4LANEpost: return "AArch64ISD::ST4LANEpost"; case AArch64ISD::SMULL: return "AArch64ISD::SMULL"; case AArch64ISD::UMULL: return "AArch64ISD::UMULL"; - case AArch64ISD::FRSQRTE: return "AArch64ISD::FRSQRTE"; case AArch64ISD::FRECPE: return "AArch64ISD::FRECPE"; + case AArch64ISD::FRECPS: return "AArch64ISD::FRECPS"; + case AArch64ISD::FRSQRTE: return "AArch64ISD::FRSQRTE"; + case AArch64ISD::FRSQRTS: return "AArch64ISD::FRSQRTS"; } return nullptr; } @@ -4588,7 +4594,7 @@ SDValue AArch64TargetLowering::getRsqrtEstimate(SDValue Operand, DAGCombinerInfo &DCI, unsigned &ExtraSteps, bool &UseOneConst) const { - UseOneConst = true; + UseOneConst = false; return getEstimate(*Subtarget, DCI, AArch64ISD::FRSQRTE, Operand, ExtraSteps); } @@ -7810,6 +7816,45 @@ DAG.getConstant(C, DL, MVT::i32)); } +static SDValue performFRECPICombine + (SDNode *N, SelectionDAG &DAG, const AArch64Subtarget *Subtarget) { + SDValue Arg = N->getOperand(0), + Est = N->getOperand(1); + + SDLoc DL(Arg); + EVT VT = Arg.getValueType(); + + SDNodeFlags Flags; + Flags.setUnsafeAlgebra(true); + + // Newton reciprocal iteration: Est * (2 - Arg * Est) + // AArch64 reciprocal iteration instruction: (2 - M * N) + SDValue NewEst = DAG.getNode(AArch64ISD::FRECPS, DL, VT, Arg, Est, &Flags); + NewEst = DAG.getNode(ISD::FMUL, DL, VT, NewEst, Est, &Flags); + + return NewEst; +} + +static SDValue performFRSQRTICombine + (SDNode *N, SelectionDAG &DAG, const AArch64Subtarget *Subtarget) { + SDValue Arg = N->getOperand(0), + Est = N->getOperand(1); + + SDLoc DL(Arg); + EVT VT = Arg.getValueType(); + + SDNodeFlags Flags; + Flags.setUnsafeAlgebra(true); + + // Newton reciprocal square root iteration: Est * 0.5 * (3 - Arg * Est^2) + // AArch64 reciprocal square root iteration instruction: 0.5 * (3 - M * N) + SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, Est, &Flags); + NewEst = DAG.getNode(AArch64ISD::FRSQRTS, DL, VT, Arg, NewEst, &Flags); + NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, &Flags); + + return NewEst; +} + /// An EXTR instruction is made up of two shifts, ORed together. This helper /// searches for and classifies those shifts. static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount, @@ -9898,6 +9943,10 @@ return performPostLD1Combine(N, DCI, true); case ISD::EXTRACT_VECTOR_ELT: return performAcrossLaneAddReductionCombine(N, DAG, Subtarget); + case ISD::FRECPI: + return performFRECPICombine(N, DAG, Subtarget); + case ISD::FRSQRTI: + return performFRSQRTICombine(N, DAG, Subtarget); case ISD::INTRINSIC_VOID: case ISD::INTRINSIC_W_CHAIN: switch (cast(N->getOperand(1))->getZExtValue()) { Index: llvm/lib/Target/AArch64/AArch64InstrInfo.td =================================================================== --- llvm/lib/Target/AArch64/AArch64InstrInfo.td +++ llvm/lib/Target/AArch64/AArch64InstrInfo.td @@ -287,7 +287,9 @@ def AArch64umull : SDNode<"AArch64ISD::UMULL", SDT_AArch64mull>; def AArch64frecpe : SDNode<"AArch64ISD::FRECPE", SDTFPUnaryOp>; +def AArch64frecps : SDNode<"AArch64ISD::FRECPS", SDTFPBinOp>; def AArch64frsqrte : SDNode<"AArch64ISD::FRSQRTE", SDTFPUnaryOp>; +def AArch64frsqrts : SDNode<"AArch64ISD::FRSQRTS", SDTFPBinOp>; def AArch64saddv : SDNode<"AArch64ISD::SADDV", SDT_AArch64UnaryVec>; def AArch64uaddv : SDNode<"AArch64ISD::UADDV", SDT_AArch64UnaryVec>; @@ -3414,6 +3416,17 @@ def : Pat<(v2f64 (AArch64frecpe (v2f64 FPR128:$Rn))), (FRECPEv2f64 FPR128:$Rn)>; +def : Pat<(f32 (AArch64frecps (f32 FPR32:$Rn), (f32 FPR32:$Rm))), + (FRECPS32 FPR32:$Rn, FPR32:$Rm)>; +def : Pat<(v2f32 (AArch64frecps (v2f32 V64:$Rn), (v2f32 V64:$Rm))), + (FRECPSv2f32 V64:$Rn, V64:$Rm)>; +def : Pat<(v4f32 (AArch64frecps (v4f32 FPR128:$Rn), (v4f32 FPR128:$Rm))), + (FRECPSv4f32 FPR128:$Rn, FPR128:$Rm)>; +def : Pat<(f64 (AArch64frecps (f64 FPR64:$Rn), (f64 FPR64:$Rm))), + (FRECPS64 FPR64:$Rn, FPR64:$Rm)>; +def : Pat<(v2f64 (AArch64frecps (v2f64 FPR128:$Rn), (v2f64 FPR128:$Rm))), + (FRECPSv2f64 FPR128:$Rn, FPR128:$Rm)>; + def : Pat<(f32 (int_aarch64_neon_frecpx (f32 FPR32:$Rn))), (FRECPXv1i32 FPR32:$Rn)>; def : Pat<(f64 (int_aarch64_neon_frecpx (f64 FPR64:$Rn))), @@ -3439,6 +3452,17 @@ def : Pat<(v2f64 (AArch64frsqrte (v2f64 FPR128:$Rn))), (FRSQRTEv2f64 FPR128:$Rn)>; +def : Pat<(f32 (AArch64frsqrts (f32 FPR32:$Rn), (f32 FPR32:$Rm))), + (FRSQRTS32 FPR32:$Rn, FPR32:$Rm)>; +def : Pat<(v2f32 (AArch64frsqrts (v2f32 V64:$Rn), (v2f32 V64:$Rm))), + (FRSQRTSv2f32 V64:$Rn, V64:$Rm)>; +def : Pat<(v4f32 (AArch64frsqrts (v4f32 FPR128:$Rn), (v4f32 FPR128:$Rm))), + (FRSQRTSv4f32 FPR128:$Rn, FPR128:$Rm)>; +def : Pat<(f64 (AArch64frsqrts (f64 FPR64:$Rn), (f64 FPR64:$Rm))), + (FRSQRTS64 FPR64:$Rn, FPR64:$Rm)>; +def : Pat<(v2f64 (AArch64frsqrts (v2f64 FPR128:$Rn), (v2f64 FPR128:$Rm))), + (FRSQRTSv2f64 FPR128:$Rn, FPR128:$Rm)>; + // If an integer is about to be converted to a floating point value, // just load it on the floating point unit. // Here are the patterns for 8 and 16-bits to float. Index: llvm/test/CodeGen/AArch64/recp-fastmath.ll =================================================================== --- llvm/test/CodeGen/AArch64/recp-fastmath.ll +++ llvm/test/CodeGen/AArch64/recp-fastmath.ll @@ -13,7 +13,7 @@ ; CHECK-LABEL: frecp: ; CHECK-NEXT: BB#0 ; CHECK-NEXT: frecpe -; CHECK-NEXT: fmov +; CHECK-NEXT: frecps } define <2 x float> @f2recp(<2 x float> %x) #0 { @@ -27,8 +27,8 @@ ; CHECK-LABEL: f2recp: ; CHECK-NEXT: BB#0 -; CHECK-NEXT: fmov ; CHECK-NEXT: frecpe +; CHECK-NEXT: frecps } define <4 x float> @f4recp(<4 x float> %x) #0 { @@ -42,8 +42,8 @@ ; CHECK-LABEL: f4recp: ; CHECK-NEXT: BB#0 -; CHECK-NEXT: fmov ; CHECK-NEXT: frecpe +; CHECK-NEXT: frecps } define <8 x float> @f8recp(<8 x float> %x) #0 { @@ -58,9 +58,10 @@ ; CHECK-LABEL: f8recp: ; CHECK-NEXT: BB#0 -; CHECK-NEXT: fmov ; CHECK-NEXT: frecpe -; CHECK: frecpe +; CHECK-NEXT: frecpe +; CHECK-NEXT: frecps +; CHECK: frecps } define double @drecp(double %x) #0 { @@ -75,7 +76,7 @@ ; CHECK-LABEL: drecp: ; CHECK-NEXT: BB#0 ; CHECK-NEXT: frecpe -; CHECK-NEXT: fmov +; CHECK-NEXT: frecps } define <2 x double> @d2recp(<2 x double> %x) #0 { @@ -89,8 +90,8 @@ ; CHECK-LABEL: d2recp: ; CHECK-NEXT: BB#0 -; CHECK-NEXT: fmov ; CHECK-NEXT: frecpe +; CHECK-NEXT: frecps } define <4 x double> @d4recp(<4 x double> %x) #0 { @@ -105,9 +106,10 @@ ; CHECK-LABEL: d4recp: ; CHECK-NEXT: BB#0 -; CHECK-NEXT: fmov ; CHECK-NEXT: frecpe -; CHECK: frecpe +; CHECK-NEXT: frecpe +; CHECK-NEXT: frecps +; CHECK: frecps } attributes #0 = { nounwind "unsafe-fp-math"="true" } Index: llvm/test/CodeGen/AArch64/sqrt-fastmath.ll =================================================================== --- llvm/test/CodeGen/AArch64/sqrt-fastmath.ll +++ llvm/test/CodeGen/AArch64/sqrt-fastmath.ll @@ -21,8 +21,9 @@ ; CHECK-LABEL: fsqrt: ; CHECK-NEXT: BB#0 -; CHECK-NEXT: fmov ; CHECK-NEXT: frsqrte +; CHECK-NEXT: fmul +; CHECK-NEXT: frsqrts } define <2 x float> @f2sqrt(<2 x float> %a) #0 { @@ -35,9 +36,9 @@ ; CHECK-LABEL: f2sqrt: ; CHECK-NEXT: BB#0 -; CHECK-NEXT: fmov -; CHECK-NEXT: mov ; CHECK-NEXT: frsqrte +; CHECK-NEXT: fmul +; CHECK-NEXT: frsqrts } define <4 x float> @f4sqrt(<4 x float> %a) #0 { @@ -50,9 +51,9 @@ ; CHECK-LABEL: f4sqrt: ; CHECK-NEXT: BB#0 -; CHECK-NEXT: fmov -; CHECK-NEXT: mov ; CHECK-NEXT: frsqrte +; CHECK-NEXT: fmul +; CHECK-NEXT: frsqrts } define <8 x float> @f8sqrt(<8 x float> %a) #0 { @@ -66,10 +67,10 @@ ; CHECK-LABEL: f8sqrt: ; CHECK-NEXT: BB#0 -; CHECK-NEXT: fmov -; CHECK-NEXT: mov ; CHECK-NEXT: frsqrte -; CHECK: frsqrte +; CHECK-NEXT: fmul +; CHECK-NEXT: frsqrte +; CHECK-NEXT: frsqrts } define double @dsqrt(double %a) #0 { @@ -82,8 +83,9 @@ ; CHECK-LABEL: dsqrt: ; CHECK-NEXT: BB#0 -; CHECK-NEXT: fmov ; CHECK-NEXT: frsqrte +; CHECK-NEXT: fmul +; CHECK-NEXT: frsqrts } define <2 x double> @d2sqrt(<2 x double> %a) #0 { @@ -96,9 +98,9 @@ ; CHECK-LABEL: d2sqrt: ; CHECK-NEXT: BB#0 -; CHECK-NEXT: fmov -; CHECK-NEXT: mov ; CHECK-NEXT: frsqrte +; CHECK-NEXT: fmul +; CHECK-NEXT: frsqrts } define <4 x double> @d4sqrt(<4 x double> %a) #0 { @@ -112,10 +114,10 @@ ; CHECK-LABEL: d4sqrt: ; CHECK-NEXT: BB#0 -; CHECK-NEXT: fmov -; CHECK-NEXT: mov ; CHECK-NEXT: frsqrte -; CHECK: frsqrte +; CHECK-NEXT: fmul +; CHECK-NEXT: frsqrte +; CHECK-NEXT: frsqrts } define float @frsqrt(float %a) #0 { @@ -129,8 +131,9 @@ ; CHECK-LABEL: frsqrt: ; CHECK-NEXT: BB#0 -; CHECK-NEXT: fmov ; CHECK-NEXT: frsqrte +; CHECK-NEXT: fmul +; CHECK-NEXT: frsqrts } define <2 x float> @f2rsqrt(<2 x float> %a) #0 { @@ -144,8 +147,9 @@ ; CHECK-LABEL: f2rsqrt: ; CHECK-NEXT: BB#0 -; CHECK-NEXT: fmov ; CHECK-NEXT: frsqrte +; CHECK-NEXT: fmul +; CHECK-NEXT: frsqrts } define <4 x float> @f4rsqrt(<4 x float> %a) #0 { @@ -159,8 +163,9 @@ ; CHECK-LABEL: f4rsqrt: ; CHECK-NEXT: BB#0 -; CHECK-NEXT: fmov ; CHECK-NEXT: frsqrte +; CHECK-NEXT: fmul +; CHECK-NEXT: frsqrts } define <8 x float> @f8rsqrt(<8 x float> %a) #0 { @@ -175,9 +180,10 @@ ; CHECK-LABEL: f8rsqrt: ; CHECK-NEXT: BB#0 -; CHECK-NEXT: fmov ; CHECK-NEXT: frsqrte -; CHECK: frsqrte +; CHECK-NEXT: fmul +; CHECK-NEXT: frsqrte +; CHECK-NEXT: frsqrts } define double @drsqrt(double %a) #0 { @@ -191,8 +197,9 @@ ; CHECK-LABEL: drsqrt: ; CHECK-NEXT: BB#0 -; CHECK-NEXT: fmov ; CHECK-NEXT: frsqrte +; CHECK-NEXT: fmul +; CHECK-NEXT: frsqrts } define <2 x double> @d2rsqrt(<2 x double> %a) #0 { @@ -206,8 +213,9 @@ ; CHECK-LABEL: d2rsqrt: ; CHECK-NEXT: BB#0 -; CHECK-NEXT: fmov ; CHECK-NEXT: frsqrte +; CHECK-NEXT: fmul +; CHECK-NEXT: frsqrts } define <4 x double> @d4rsqrt(<4 x double> %a) #0 { @@ -222,9 +230,10 @@ ; CHECK-LABEL: d4rsqrt: ; CHECK-NEXT: BB#0 -; CHECK-NEXT: fmov ; CHECK-NEXT: frsqrte -; CHECK: frsqrte +; CHECK-NEXT: fmul +; CHECK-NEXT: frsqrte +; CHECK-NEXT: frsqrts } attributes #0 = { nounwind "unsafe-fp-math"="true" }