diff --git a/mlir/include/mlir/Dialect/Linalg/TransformOps/LinalgTransformOps.td b/mlir/include/mlir/Dialect/Linalg/TransformOps/LinalgTransformOps.td --- a/mlir/include/mlir/Dialect/Linalg/TransformOps/LinalgTransformOps.td +++ b/mlir/include/mlir/Dialect/Linalg/TransformOps/LinalgTransformOps.td @@ -2078,8 +2078,20 @@ [DeclareOpInterfaceMethods, TransformOpInterface, ReportTrackingListenerFailuresOpTrait]> { let description = [{ - Vectorize the target ops, which must be Linalg ops, with masked vectors - of the specified size. + Vectorize the target ops, which must be Linalg ops. + + Use the optional vector sizes to specify exactly what configuration the + vectorizer should use. It will then use masked vectors of the specified + size to enforce this configuration ("masked vectorisation"). If no vector + sizes are specified, the vectorizer will infer the shapes to use from the + target Linalg ops ("regular vectorization"). More specifically: + + ```mlir + # Masked vectorization - vector sizes are specified explicitly + transform.structured.vectorize_one_op %target vector_sizes [1, 4] : !transform.any_op + # Regular vectorization - vector sizes are inferred from the target Op + transform.structured.vectorize_one_op %target vector_sizes : !transform.any_op + ``` The vector sizes can be either static or dynamic (SSA values). In case of SSA values, the handle must be mapped to exactly one payload op with @@ -2089,14 +2101,14 @@ counterpart iteration space sizes. Typically this operator should be applied to linalg operations that have - already be tiled to the appropriate sizes. + already been tiled to the appropriate sizes. #### Return modes: - This operation produces a definite failure if the dynamic vector sizes (SSA - values) do not satisfy the constraints mentioned above. It produces a - silenceable failure if at least one target op is not a Linalg op or fails to - vectorize. + This operation produces a silenceable failure if at least one target op is + not a Linalg op or fails to vectorize. It produces a definite failure if + the dynamic vector sizes (SSA values) do not satisfy the constraints + mentioned above. }]; let arguments = (ins TransformHandleTypeInterface:$target, @@ -2109,11 +2121,12 @@ let results = (outs); let assemblyFormat = [{ - $target + $target oilist( `vector_sizes` custom($vector_sizes, $static_vector_sizes, type($vector_sizes), $scalable_sizes) + ) attr-dict `:` type($target) }]; diff --git a/mlir/test/Dialect/Linalg/vectorization.mlir b/mlir/test/Dialect/Linalg/vectorization.mlir --- a/mlir/test/Dialect/Linalg/vectorization.mlir +++ b/mlir/test/Dialect/Linalg/vectorization.mlir @@ -13,8 +13,7 @@ transform.sequence failures(propagate) { ^bb1(%arg1: !transform.any_op): %0 = transform.structured.match ops{["linalg.dot"]} in %arg1 : (!transform.any_op) -> !transform.any_op - %1 = get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op - %2 = transform.structured.vectorize %1 { disable_multi_reduction_to_contract_patterns } : (!transform.any_op) -> !transform.any_op + transform.structured.masked_vectorize %0 : !transform.any_op } // ----- diff --git a/mlir/test/Dialect/Linalg/vectorize-tensor-extract.mlir b/mlir/test/Dialect/Linalg/vectorize-tensor-extract.mlir --- a/mlir/test/Dialect/Linalg/vectorize-tensor-extract.mlir +++ b/mlir/test/Dialect/Linalg/vectorize-tensor-extract.mlir @@ -35,13 +35,12 @@ } // ----- - -#map1 = affine_map<(d0, d1, d2) -> (d0, d1, d2)> +#map = affine_map<(d0, d1, d2) -> (d0, d1, d2)> func.func @vectorize_nd_tensor_extract_constant_idx(%arg0: tensor<3x3xf32>, %arg2: tensor<1x1x3xf32>) -> tensor<1x1x3xf32> { %c0 = arith.constant 1 : index %c1 = arith.constant 2 : index %2 = linalg.generic { - indexing_maps = [#map1], + indexing_maps = [#map], iterator_types = ["parallel", "parallel", "parallel"] } outs(%arg2 : tensor<1x1x3xf32>) { ^bb0(%arg4: f32): @@ -51,23 +50,22 @@ return %2 : tensor<1x1x3xf32> } +// CHECK: #[[$MAP:.*]] = affine_map<(d0, d1) -> (0, 0, 0)> // CHECK-LABEL: func.func @vectorize_nd_tensor_extract_constant_idx( // CHECK-SAME: %[[ARG_0:.*]]: tensor<3x3xf32>, // CHECK-SAME: %[[ARG_1:.*]]: tensor<1x1x3xf32>) -> tensor<1x1x3xf32> { -// CHECK: %[[C0:.*]] = arith.constant 0 : index -// CHECK: %[[C1:.*]] = arith.constant 1 : index -// CHECK: %[[C2:.*]] = arith.constant 2 : index -// CHECK: %[[EXTRACT:.*]] = tensor.extract %[[ARG_0]]{{\[}}%[[C1]], %[[C2]]] : tensor<3x3xf32> -// CHECK: %[[BCAST:.*]] = vector.broadcast %[[EXTRACT]] : f32 to vector<1x1x3xf32> -// CHECK: %[[VAL_7:.*]] = vector.transfer_write %[[BCAST]], %[[ARG_1]][%[[C0]], %[[C0]], %[[C0]]] {in_bounds = [true, true, true]} : vector<1x1x3xf32>, tensor<1x1x3xf32> -// CHECK: return %[[VAL_7]] : tensor<1x1x3xf32> -// CHECK: } +// CHECK-DAG: %[[C1:.*]] = arith.constant 1 : index +// CHECK-DAG: %[[C2:.*]] = arith.constant 2 : index +// CHECK-DAG: arith.constant 0.000000e+00 : f32 +// CHECK-DAG: %[[C0_f32:.*]] = arith.constant 0.000000e+00 : f32 +// CHECK: %[[READ:.*]] = vector.transfer_read %[[ARG_0]][%[[C1]], %[[C2]]], %[[C0_f32]] {in_bounds = [true, true, true], permutation_map = #[[$MAP]]} : tensor<3x3xf32>, vector<1x1x3xf32> +// CHECK: %[[C0_4:.*]] = arith.constant 0 : index +// CHECK: vector.transfer_write %[[READ]], %[[ARG_1]][%[[C0_4]], %[[C0_4]], %[[C0_4]]] : vector<1x1x3xf32>, tensor<1x1x3xf32> transform.sequence failures(propagate) { ^bb1(%arg1: !transform.any_op): %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op - %1 = get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op - %2 = transform.structured.vectorize %1 { vectorize_nd_extract } : (!transform.any_op) -> !transform.any_op + transform.structured.masked_vectorize %0 { vectorize_nd_extract } : !transform.any_op } // -----