diff --git a/mlir/test/Integration/Dialect/Linalg/CPU/test-matmul-masked-vec.mlir b/mlir/test/Integration/Dialect/Linalg/CPU/test-matmul-masked-vec.mlir new file mode 100644 --- /dev/null +++ b/mlir/test/Integration/Dialect/Linalg/CPU/test-matmul-masked-vec.mlir @@ -0,0 +1,58 @@ +// RUN: mlir-opt %s -test-transform-dialect-interpreter -test-transform-dialect-erase-schedule -one-shot-bufferize -func-bufferize -lower-vector-mask --test-lower-to-llvm | \ +// RUN: mlir-cpu-runner -e main -entry-point-result=void --shared-libs=%mlir_c_runner_utils,%mlir_runner_utils | \ +// RUN: FileCheck %s + +func.func private @printMemrefF32(%ptr : tensor<*xf32>) + +func.func @main() { + %c4 = arith.constant 4 : index + %c8 = arith.constant 8 : index + + %A = arith.constant dense<[ + [ 1.1, 2.1 ], + [ 1.2, 2.2 ], + [ 1.3, 2.3 ], + [ 1.4, 2.4 ], + [ 1.5, 2.5 ], + [ 1.6, 2.6 ], + [ 1.7, 2.7 ], + [ 1.8, 2.8 ] + ]> : tensor<8x2xf32> + %B = arith.constant dense<[ + [ 10.1, 11.1, 12.1, 13.1 ], + [ 10.2, 11.2, 12.2, 13.2 ] + ]> : tensor<2x4xf32> + %C_dyn = bufferization.alloc_tensor(%c8, %c4) : tensor + + %A_dyn = tensor.cast %A : tensor<8x2xf32> to tensor + %B_dyn = tensor.cast %B : tensor<2x4xf32> to tensor + + %c0_i32 = arith.constant 0 : i32 + %C_init = linalg.fill ins(%c0_i32 : i32) outs(%C_dyn : tensor) -> tensor + + %res = linalg.matmul ins(%A_dyn, %B_dyn: tensor, tensor) + outs(%C_init: tensor) -> tensor + %xf = tensor.cast %res : tensor to tensor<*xf32> + + // CHECK: {{\[}}[32.53, 35.73, 38.93, 42.13], + // CHECK-NEXT: [34.56, 37.96, 41.36, 44.76], + // CHECK-NEXT: [36.59, 40.19, 43.79, 47.39], + // CHECK-NEXT: [38.62, 42.42, 46.22, 50.02], + // CHECK-NEXT: [0, 0, 0, 0], + // CHECK-NEXT: [0, 0, 0, 0], + // CHECK-NEXT: [0, 0, 0, 0], + // CHECK-NEXT: [0, 0, 0, 0]] + call @printMemrefF32(%xf) : (tensor<*xf32>) -> () + + return +} + +transform.sequence failures(propagate) { +^bb1(%arg1: !transform.any_op): + %0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op + %func_op = get_parent_op %0 : (!transform.any_op) -> !transform.op<"func.func"> + transform.structured.masked_vectorize %0 vector_sizes [4, 4, 2] : !transform.any_op + transform.apply_patterns to %func_op { + transform.apply_patterns.vector.lower_multi_reduction lowering_strategy = "innerreduction" + } : !transform.op<"func.func"> +}