Index: clang/lib/Sema/SemaCUDA.cpp =================================================================== --- clang/lib/Sema/SemaCUDA.cpp +++ clang/lib/Sema/SemaCUDA.cpp @@ -230,7 +230,11 @@ (CallerTarget == CFT_Host && CalleeTarget == CFT_Global) || (CallerTarget == CFT_Global && CalleeTarget == CFT_Device)) return CFP_Native; - + if (getLangOpts().HIPStdPar && + (CallerTarget == CFT_Global || CallerTarget == CFT_Device || + CallerTarget == CFT_HostDevice) && + CalleeTarget == CFT_Host) + return CFP_HostDevice; // (d) HostDevice behavior depends on compilation mode. if (CallerTarget == CFT_HostDevice) { // It's OK to call a compilation-mode matching function from an HD one. @@ -877,7 +881,7 @@ if (!ShouldCheck || !Capture.isReferenceCapture()) return; auto DiagKind = SemaDiagnosticBuilder::K_Deferred; - if (Capture.isVariableCapture()) { + if (!getLangOpts().HIPStdPar && Capture.isVariableCapture()) { SemaDiagnosticBuilder(DiagKind, Capture.getLocation(), diag::err_capture_bad_target, Callee, *this) << Capture.getVariable(); Index: clang/lib/Sema/SemaExpr.cpp =================================================================== --- clang/lib/Sema/SemaExpr.cpp +++ clang/lib/Sema/SemaExpr.cpp @@ -19014,7 +19014,7 @@ // Diagnose ODR-use of host global variables in device functions. // Reference of device global variables in host functions is allowed // through shadow variables therefore it is not diagnosed. - if (SemaRef.LangOpts.CUDAIsDevice) { + if (SemaRef.LangOpts.CUDAIsDevice && !SemaRef.LangOpts.HIPStdPar) { SemaRef.targetDiag(Loc, diag::err_ref_bad_target) << /*host*/ 2 << /*variable*/ 1 << Var << UserTarget; SemaRef.targetDiag(Var->getLocation(), Index: clang/test/SemaStdPar/device-can-call-host.cpp =================================================================== --- /dev/null +++ clang/test/SemaStdPar/device-can-call-host.cpp @@ -0,0 +1,91 @@ +// RUN: %clang %s --stdpar --stdpar-path=%S/Inputs \ +// RUN: --stdpar-thrust-path=%S/Inputs --stdpar-prim-path=%S/Inputs \ +// RUN: --offload-device-only -emit-llvm -o /dev/null -Xclang -verify + +// Note: These would happen implicitly, within the implementation of the +// accelerator specific algorithm library, and not from user code. + +// Calls from the accelerator side to implicitly host (i.e. unannotated) +// functions are fine. + +// expected-no-diagnostics + +extern "C" void host_fn() {} + +struct Dummy {}; + +struct S { + S() {} + ~S() { host_fn(); } + + int x; +}; + +struct T { + __device__ void hd() { host_fn(); } + + __device__ void hd3(); + + void h() {} + + void operator+(); + void operator-(const T&) {} + + operator Dummy() { return Dummy(); } +}; + +__device__ void T::hd3() { host_fn(); } + +template __device__ void hd2() { host_fn(); } + +__global__ void kernel() { hd2(); } + +__device__ void hd() { host_fn(); } + +template __device__ void hd3() { host_fn(); } +__device__ void device_fn() { hd3(); } + +__device__ void local_var() { + S s; +} + +__device__ void explicit_destructor(S *s) { + s->~S(); +} + +__device__ void hd_member_fn() { + T t; + + t.hd(); +} + +__device__ void h_member_fn() { + T t; + t.h(); +} + +__device__ void unaryOp() { + T t; + (void) +t; +} + +__device__ void binaryOp() { + T t; + (void) (t - t); +} + +__device__ void implicitConversion() { + T t; + Dummy d = t; +} + +template +struct TmplStruct { + template __device__ void fn() {} +}; + +template <> +template <> +__device__ void TmplStruct::fn() { host_fn(); } + +__device__ void double_specialization() { TmplStruct().fn(); } Index: stdpar_sema.patch =================================================================== --- /dev/null +++ stdpar_sema.patch @@ -0,0 +1,22776 @@ +diff --git a/clang/lib/Sema/SemaCUDA.cpp b/clang/lib/Sema/SemaCUDA.cpp +index cfea6493ced7..d97fd54700b4 100644 +--- a/clang/lib/Sema/SemaCUDA.cpp ++++ b/clang/lib/Sema/SemaCUDA.cpp +@@ -1,962 +1,966 @@ + //===--- SemaCUDA.cpp - Semantic Analysis for CUDA constructs -------------===// + // + // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. + // See https://llvm.org/LICENSE.txt for license information. + // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception + // + //===----------------------------------------------------------------------===// + /// \file + /// This file implements semantic analysis for CUDA constructs. + /// + //===----------------------------------------------------------------------===// + + #include "clang/AST/ASTContext.h" + #include "clang/AST/Decl.h" + #include "clang/AST/ExprCXX.h" + #include "clang/Basic/Cuda.h" + #include "clang/Basic/TargetInfo.h" + #include "clang/Lex/Preprocessor.h" + #include "clang/Sema/Lookup.h" + #include "clang/Sema/ScopeInfo.h" + #include "clang/Sema/Sema.h" + #include "clang/Sema/SemaDiagnostic.h" + #include "clang/Sema/SemaInternal.h" + #include "clang/Sema/Template.h" + #include "llvm/ADT/SmallVector.h" + #include + using namespace clang; + + template static bool hasExplicitAttr(const VarDecl *D) { + if (!D) + return false; + if (auto *A = D->getAttr()) + return !A->isImplicit(); + return false; + } + + void Sema::PushForceCUDAHostDevice() { + assert(getLangOpts().CUDA && "Should only be called during CUDA compilation"); + ForceCUDAHostDeviceDepth++; + } + + bool Sema::PopForceCUDAHostDevice() { + assert(getLangOpts().CUDA && "Should only be called during CUDA compilation"); + if (ForceCUDAHostDeviceDepth == 0) + return false; + ForceCUDAHostDeviceDepth--; + return true; + } + + ExprResult Sema::ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc, + MultiExprArg ExecConfig, + SourceLocation GGGLoc) { + FunctionDecl *ConfigDecl = Context.getcudaConfigureCallDecl(); + if (!ConfigDecl) + return ExprError(Diag(LLLLoc, diag::err_undeclared_var_use) + << getCudaConfigureFuncName()); + QualType ConfigQTy = ConfigDecl->getType(); + + DeclRefExpr *ConfigDR = new (Context) + DeclRefExpr(Context, ConfigDecl, false, ConfigQTy, VK_LValue, LLLLoc); + MarkFunctionReferenced(LLLLoc, ConfigDecl); + + return BuildCallExpr(S, ConfigDR, LLLLoc, ExecConfig, GGGLoc, nullptr, + /*IsExecConfig=*/true); + } + + Sema::CUDAFunctionTarget + Sema::IdentifyCUDATarget(const ParsedAttributesView &Attrs) { + bool HasHostAttr = false; + bool HasDeviceAttr = false; + bool HasGlobalAttr = false; + bool HasInvalidTargetAttr = false; + for (const ParsedAttr &AL : Attrs) { + switch (AL.getKind()) { + case ParsedAttr::AT_CUDAGlobal: + HasGlobalAttr = true; + break; + case ParsedAttr::AT_CUDAHost: + HasHostAttr = true; + break; + case ParsedAttr::AT_CUDADevice: + HasDeviceAttr = true; + break; + case ParsedAttr::AT_CUDAInvalidTarget: + HasInvalidTargetAttr = true; + break; + default: + break; + } + } + + if (HasInvalidTargetAttr) + return CFT_InvalidTarget; + + if (HasGlobalAttr) + return CFT_Global; + + if (HasHostAttr && HasDeviceAttr) + return CFT_HostDevice; + + if (HasDeviceAttr) + return CFT_Device; + + return CFT_Host; + } + + template + static bool hasAttr(const FunctionDecl *D, bool IgnoreImplicitAttr) { + return D->hasAttrs() && llvm::any_of(D->getAttrs(), [&](Attr *Attribute) { + return isa(Attribute) && + !(IgnoreImplicitAttr && Attribute->isImplicit()); + }); + } + + /// IdentifyCUDATarget - Determine the CUDA compilation target for this function + Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D, + bool IgnoreImplicitHDAttr) { + // Code that lives outside a function is run on the host. + if (D == nullptr) + return CFT_Host; + + if (D->hasAttr()) + return CFT_InvalidTarget; + + if (D->hasAttr()) + return CFT_Global; + + if (hasAttr(D, IgnoreImplicitHDAttr)) { + if (hasAttr(D, IgnoreImplicitHDAttr)) + return CFT_HostDevice; + return CFT_Device; + } else if (hasAttr(D, IgnoreImplicitHDAttr)) { + return CFT_Host; + } else if ((D->isImplicit() || !D->isUserProvided()) && + !IgnoreImplicitHDAttr) { + // Some implicit declarations (like intrinsic functions) are not marked. + // Set the most lenient target on them for maximal flexibility. + return CFT_HostDevice; + } + + return CFT_Host; + } + + /// IdentifyTarget - Determine the CUDA compilation target for this variable. + Sema::CUDAVariableTarget Sema::IdentifyCUDATarget(const VarDecl *Var) { + if (Var->hasAttr()) + return CVT_Unified; + // Only constexpr and const variabless with implicit constant attribute + // are emitted on both sides. Such variables are promoted to device side + // only if they have static constant intializers on device side. + if ((Var->isConstexpr() || Var->getType().isConstQualified()) && + Var->hasAttr() && + !hasExplicitAttr(Var)) + return CVT_Both; + if (Var->hasAttr() || Var->hasAttr() || + Var->hasAttr() || + Var->getType()->isCUDADeviceBuiltinSurfaceType() || + Var->getType()->isCUDADeviceBuiltinTextureType()) + return CVT_Device; + // Function-scope static variable without explicit device or constant + // attribute are emitted + // - on both sides in host device functions + // - on device side in device or global functions + if (auto *FD = dyn_cast(Var->getDeclContext())) { + switch (IdentifyCUDATarget(FD)) { + case CFT_HostDevice: + return CVT_Both; + case CFT_Device: + case CFT_Global: + return CVT_Device; + default: + return CVT_Host; + } + } + return CVT_Host; + } + + // * CUDA Call preference table + // + // F - from, + // T - to + // Ph - preference in host mode + // Pd - preference in device mode + // H - handled in (x) + // Preferences: N:native, SS:same side, HD:host-device, WS:wrong side, --:never. + // + // | F | T | Ph | Pd | H | + // |----+----+-----+-----+-----+ + // | d | d | N | N | (c) | + // | d | g | -- | -- | (a) | + // | d | h | -- | -- | (e) | + // | d | hd | HD | HD | (b) | + // | g | d | N | N | (c) | + // | g | g | -- | -- | (a) | + // | g | h | -- | -- | (e) | + // | g | hd | HD | HD | (b) | + // | h | d | -- | -- | (e) | + // | h | g | N | N | (c) | + // | h | h | N | N | (c) | + // | h | hd | HD | HD | (b) | + // | hd | d | WS | SS | (d) | + // | hd | g | SS | -- |(d/a)| + // | hd | h | SS | WS | (d) | + // | hd | hd | HD | HD | (b) | + + Sema::CUDAFunctionPreference + Sema::IdentifyCUDAPreference(const FunctionDecl *Caller, + const FunctionDecl *Callee) { + assert(Callee && "Callee must be valid."); + CUDAFunctionTarget CallerTarget = IdentifyCUDATarget(Caller); + CUDAFunctionTarget CalleeTarget = IdentifyCUDATarget(Callee); + + // If one of the targets is invalid, the check always fails, no matter what + // the other target is. + if (CallerTarget == CFT_InvalidTarget || CalleeTarget == CFT_InvalidTarget) + return CFP_Never; + + // (a) Can't call global from some contexts until we support CUDA's + // dynamic parallelism. + if (CalleeTarget == CFT_Global && + (CallerTarget == CFT_Global || CallerTarget == CFT_Device)) + return CFP_Never; + + // (b) Calling HostDevice is OK for everyone. + if (CalleeTarget == CFT_HostDevice) + return CFP_HostDevice; + + // (c) Best case scenarios + if (CalleeTarget == CallerTarget || + (CallerTarget == CFT_Host && CalleeTarget == CFT_Global) || + (CallerTarget == CFT_Global && CalleeTarget == CFT_Device)) + return CFP_Native; +- ++ if (getLangOpts().HIPStdPar && ++ (CallerTarget == CFT_Global || CallerTarget == CFT_Device || ++ CallerTarget == CFT_HostDevice) && ++ CalleeTarget == CFT_Host) ++ return CFP_HostDevice; + // (d) HostDevice behavior depends on compilation mode. + if (CallerTarget == CFT_HostDevice) { + // It's OK to call a compilation-mode matching function from an HD one. + if ((getLangOpts().CUDAIsDevice && CalleeTarget == CFT_Device) || + (!getLangOpts().CUDAIsDevice && + (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))) + return CFP_SameSide; + + // Calls from HD to non-mode-matching functions (i.e., to host functions + // when compiling in device mode or to device functions when compiling in + // host mode) are allowed at the sema level, but eventually rejected if + // they're ever codegened. TODO: Reject said calls earlier. + return CFP_WrongSide; + } + + // (e) Calling across device/host boundary is not something you should do. + if ((CallerTarget == CFT_Host && CalleeTarget == CFT_Device) || + (CallerTarget == CFT_Device && CalleeTarget == CFT_Host) || + (CallerTarget == CFT_Global && CalleeTarget == CFT_Host)) + return CFP_Never; + + llvm_unreachable("All cases should've been handled by now."); + } + + template static bool hasImplicitAttr(const FunctionDecl *D) { + if (!D) + return false; + if (auto *A = D->getAttr()) + return A->isImplicit(); + return D->isImplicit(); + } + + bool Sema::isCUDAImplicitHostDeviceFunction(const FunctionDecl *D) { + bool IsImplicitDevAttr = hasImplicitAttr(D); + bool IsImplicitHostAttr = hasImplicitAttr(D); + return IsImplicitDevAttr && IsImplicitHostAttr; + } + + void Sema::EraseUnwantedCUDAMatches( + const FunctionDecl *Caller, + SmallVectorImpl> &Matches) { + if (Matches.size() <= 1) + return; + + using Pair = std::pair; + + // Gets the CUDA function preference for a call from Caller to Match. + auto GetCFP = [&](const Pair &Match) { + return IdentifyCUDAPreference(Caller, Match.second); + }; + + // Find the best call preference among the functions in Matches. + CUDAFunctionPreference BestCFP = GetCFP(*std::max_element( + Matches.begin(), Matches.end(), + [&](const Pair &M1, const Pair &M2) { return GetCFP(M1) < GetCFP(M2); })); + + // Erase all functions with lower priority. + llvm::erase_if(Matches, + [&](const Pair &Match) { return GetCFP(Match) < BestCFP; }); + } + + /// When an implicitly-declared special member has to invoke more than one + /// base/field special member, conflicts may occur in the targets of these + /// members. For example, if one base's member __host__ and another's is + /// __device__, it's a conflict. + /// This function figures out if the given targets \param Target1 and + /// \param Target2 conflict, and if they do not it fills in + /// \param ResolvedTarget with a target that resolves for both calls. + /// \return true if there's a conflict, false otherwise. + static bool + resolveCalleeCUDATargetConflict(Sema::CUDAFunctionTarget Target1, + Sema::CUDAFunctionTarget Target2, + Sema::CUDAFunctionTarget *ResolvedTarget) { + // Only free functions and static member functions may be global. + assert(Target1 != Sema::CFT_Global); + assert(Target2 != Sema::CFT_Global); + + if (Target1 == Sema::CFT_HostDevice) { + *ResolvedTarget = Target2; + } else if (Target2 == Sema::CFT_HostDevice) { + *ResolvedTarget = Target1; + } else if (Target1 != Target2) { + return true; + } else { + *ResolvedTarget = Target1; + } + + return false; + } + + bool Sema::inferCUDATargetForImplicitSpecialMember(CXXRecordDecl *ClassDecl, + CXXSpecialMember CSM, + CXXMethodDecl *MemberDecl, + bool ConstRHS, + bool Diagnose) { + // If the defaulted special member is defined lexically outside of its + // owning class, or the special member already has explicit device or host + // attributes, do not infer. + bool InClass = MemberDecl->getLexicalParent() == MemberDecl->getParent(); + bool HasH = MemberDecl->hasAttr(); + bool HasD = MemberDecl->hasAttr(); + bool HasExplicitAttr = + (HasD && !MemberDecl->getAttr()->isImplicit()) || + (HasH && !MemberDecl->getAttr()->isImplicit()); + if (!InClass || HasExplicitAttr) + return false; + + std::optional InferredTarget; + + // We're going to invoke special member lookup; mark that these special + // members are called from this one, and not from its caller. + ContextRAII MethodContext(*this, MemberDecl); + + // Look for special members in base classes that should be invoked from here. + // Infer the target of this member base on the ones it should call. + // Skip direct and indirect virtual bases for abstract classes. + llvm::SmallVector Bases; + for (const auto &B : ClassDecl->bases()) { + if (!B.isVirtual()) { + Bases.push_back(&B); + } + } + + if (!ClassDecl->isAbstract()) { + llvm::append_range(Bases, llvm::make_pointer_range(ClassDecl->vbases())); + } + + for (const auto *B : Bases) { + const RecordType *BaseType = B->getType()->getAs(); + if (!BaseType) { + continue; + } + + CXXRecordDecl *BaseClassDecl = cast(BaseType->getDecl()); + Sema::SpecialMemberOverloadResult SMOR = + LookupSpecialMember(BaseClassDecl, CSM, + /* ConstArg */ ConstRHS, + /* VolatileArg */ false, + /* RValueThis */ false, + /* ConstThis */ false, + /* VolatileThis */ false); + + if (!SMOR.getMethod()) + continue; + + CUDAFunctionTarget BaseMethodTarget = IdentifyCUDATarget(SMOR.getMethod()); + if (!InferredTarget) { + InferredTarget = BaseMethodTarget; + } else { + bool ResolutionError = resolveCalleeCUDATargetConflict( + *InferredTarget, BaseMethodTarget, &*InferredTarget); + if (ResolutionError) { + if (Diagnose) { + Diag(ClassDecl->getLocation(), + diag::note_implicit_member_target_infer_collision) + << (unsigned)CSM << *InferredTarget << BaseMethodTarget; + } + MemberDecl->addAttr(CUDAInvalidTargetAttr::CreateImplicit(Context)); + return true; + } + } + } + + // Same as for bases, but now for special members of fields. + for (const auto *F : ClassDecl->fields()) { + if (F->isInvalidDecl()) { + continue; + } + + const RecordType *FieldType = + Context.getBaseElementType(F->getType())->getAs(); + if (!FieldType) { + continue; + } + + CXXRecordDecl *FieldRecDecl = cast(FieldType->getDecl()); + Sema::SpecialMemberOverloadResult SMOR = + LookupSpecialMember(FieldRecDecl, CSM, + /* ConstArg */ ConstRHS && !F->isMutable(), + /* VolatileArg */ false, + /* RValueThis */ false, + /* ConstThis */ false, + /* VolatileThis */ false); + + if (!SMOR.getMethod()) + continue; + + CUDAFunctionTarget FieldMethodTarget = + IdentifyCUDATarget(SMOR.getMethod()); + if (!InferredTarget) { + InferredTarget = FieldMethodTarget; + } else { + bool ResolutionError = resolveCalleeCUDATargetConflict( + *InferredTarget, FieldMethodTarget, &*InferredTarget); + if (ResolutionError) { + if (Diagnose) { + Diag(ClassDecl->getLocation(), + diag::note_implicit_member_target_infer_collision) + << (unsigned)CSM << *InferredTarget << FieldMethodTarget; + } + MemberDecl->addAttr(CUDAInvalidTargetAttr::CreateImplicit(Context)); + return true; + } + } + } + + + // If no target was inferred, mark this member as __host__ __device__; + // it's the least restrictive option that can be invoked from any target. + bool NeedsH = true, NeedsD = true; + if (InferredTarget) { + if (*InferredTarget == CFT_Device) + NeedsH = false; + else if (*InferredTarget == CFT_Host) + NeedsD = false; + } + + // We either setting attributes first time, or the inferred ones must match + // previously set ones. + if (NeedsD && !HasD) + MemberDecl->addAttr(CUDADeviceAttr::CreateImplicit(Context)); + if (NeedsH && !HasH) + MemberDecl->addAttr(CUDAHostAttr::CreateImplicit(Context)); + + return false; + } + + bool Sema::isEmptyCudaConstructor(SourceLocation Loc, CXXConstructorDecl *CD) { + if (!CD->isDefined() && CD->isTemplateInstantiation()) + InstantiateFunctionDefinition(Loc, CD->getFirstDecl()); + + // (E.2.3.1, CUDA 7.5) A constructor for a class type is considered + // empty at a point in the translation unit, if it is either a + // trivial constructor + if (CD->isTrivial()) + return true; + + // ... or it satisfies all of the following conditions: + // The constructor function has been defined. + // The constructor function has no parameters, + // and the function body is an empty compound statement. + if (!(CD->hasTrivialBody() && CD->getNumParams() == 0)) + return false; + + // Its class has no virtual functions and no virtual base classes. + if (CD->getParent()->isDynamicClass()) + return false; + + // Union ctor does not call ctors of its data members. + if (CD->getParent()->isUnion()) + return true; + + // The only form of initializer allowed is an empty constructor. + // This will recursively check all base classes and member initializers + if (!llvm::all_of(CD->inits(), [&](const CXXCtorInitializer *CI) { + if (const CXXConstructExpr *CE = + dyn_cast(CI->getInit())) + return isEmptyCudaConstructor(Loc, CE->getConstructor()); + return false; + })) + return false; + + return true; + } + + bool Sema::isEmptyCudaDestructor(SourceLocation Loc, CXXDestructorDecl *DD) { + // No destructor -> no problem. + if (!DD) + return true; + + if (!DD->isDefined() && DD->isTemplateInstantiation()) + InstantiateFunctionDefinition(Loc, DD->getFirstDecl()); + + // (E.2.3.1, CUDA 7.5) A destructor for a class type is considered + // empty at a point in the translation unit, if it is either a + // trivial constructor + if (DD->isTrivial()) + return true; + + // ... or it satisfies all of the following conditions: + // The destructor function has been defined. + // and the function body is an empty compound statement. + if (!DD->hasTrivialBody()) + return false; + + const CXXRecordDecl *ClassDecl = DD->getParent(); + + // Its class has no virtual functions and no virtual base classes. + if (ClassDecl->isDynamicClass()) + return false; + + // Union does not have base class and union dtor does not call dtors of its + // data members. + if (DD->getParent()->isUnion()) + return true; + + // Only empty destructors are allowed. This will recursively check + // destructors for all base classes... + if (!llvm::all_of(ClassDecl->bases(), [&](const CXXBaseSpecifier &BS) { + if (CXXRecordDecl *RD = BS.getType()->getAsCXXRecordDecl()) + return isEmptyCudaDestructor(Loc, RD->getDestructor()); + return true; + })) + return false; + + // ... and member fields. + if (!llvm::all_of(ClassDecl->fields(), [&](const FieldDecl *Field) { + if (CXXRecordDecl *RD = Field->getType() + ->getBaseElementTypeUnsafe() + ->getAsCXXRecordDecl()) + return isEmptyCudaDestructor(Loc, RD->getDestructor()); + return true; + })) + return false; + + return true; + } + + namespace { + enum CUDAInitializerCheckKind { + CICK_DeviceOrConstant, // Check initializer for device/constant variable + CICK_Shared, // Check initializer for shared variable + }; + + bool IsDependentVar(VarDecl *VD) { + if (VD->getType()->isDependentType()) + return true; + if (const auto *Init = VD->getInit()) + return Init->isValueDependent(); + return false; + } + + // Check whether a variable has an allowed initializer for a CUDA device side + // variable with global storage. \p VD may be a host variable to be checked for + // potential promotion to device side variable. + // + // CUDA/HIP allows only empty constructors as initializers for global + // variables (see E.2.3.1, CUDA 7.5). The same restriction also applies to all + // __shared__ variables whether they are local or not (they all are implicitly + // static in CUDA). One exception is that CUDA allows constant initializers + // for __constant__ and __device__ variables. + bool HasAllowedCUDADeviceStaticInitializer(Sema &S, VarDecl *VD, + CUDAInitializerCheckKind CheckKind) { + assert(!VD->isInvalidDecl() && VD->hasGlobalStorage()); + assert(!IsDependentVar(VD) && "do not check dependent var"); + const Expr *Init = VD->getInit(); + auto IsEmptyInit = [&](const Expr *Init) { + if (!Init) + return true; + if (const auto *CE = dyn_cast(Init)) { + return S.isEmptyCudaConstructor(VD->getLocation(), CE->getConstructor()); + } + return false; + }; + auto IsConstantInit = [&](const Expr *Init) { + assert(Init); + ASTContext::CUDAConstantEvalContextRAII EvalCtx(S.Context, + /*NoWronSidedVars=*/true); + return Init->isConstantInitializer(S.Context, + VD->getType()->isReferenceType()); + }; + auto HasEmptyDtor = [&](VarDecl *VD) { + if (const auto *RD = VD->getType()->getAsCXXRecordDecl()) + return S.isEmptyCudaDestructor(VD->getLocation(), RD->getDestructor()); + return true; + }; + if (CheckKind == CICK_Shared) + return IsEmptyInit(Init) && HasEmptyDtor(VD); + return S.LangOpts.GPUAllowDeviceInit || + ((IsEmptyInit(Init) || IsConstantInit(Init)) && HasEmptyDtor(VD)); + } + } // namespace + + void Sema::checkAllowedCUDAInitializer(VarDecl *VD) { + // Do not check dependent variables since the ctor/dtor/initializer are not + // determined. Do it after instantiation. + if (VD->isInvalidDecl() || !VD->hasInit() || !VD->hasGlobalStorage() || + IsDependentVar(VD)) + return; + const Expr *Init = VD->getInit(); + bool IsSharedVar = VD->hasAttr(); + bool IsDeviceOrConstantVar = + !IsSharedVar && + (VD->hasAttr() || VD->hasAttr()); + if (IsDeviceOrConstantVar || IsSharedVar) { + if (HasAllowedCUDADeviceStaticInitializer( + *this, VD, IsSharedVar ? CICK_Shared : CICK_DeviceOrConstant)) + return; + Diag(VD->getLocation(), + IsSharedVar ? diag::err_shared_var_init : diag::err_dynamic_var_init) + << Init->getSourceRange(); + VD->setInvalidDecl(); + } else { + // This is a host-side global variable. Check that the initializer is + // callable from the host side. + const FunctionDecl *InitFn = nullptr; + if (const CXXConstructExpr *CE = dyn_cast(Init)) { + InitFn = CE->getConstructor(); + } else if (const CallExpr *CE = dyn_cast(Init)) { + InitFn = CE->getDirectCallee(); + } + if (InitFn) { + CUDAFunctionTarget InitFnTarget = IdentifyCUDATarget(InitFn); + if (InitFnTarget != CFT_Host && InitFnTarget != CFT_HostDevice) { + Diag(VD->getLocation(), diag::err_ref_bad_target_global_initializer) + << InitFnTarget << InitFn; + Diag(InitFn->getLocation(), diag::note_previous_decl) << InitFn; + VD->setInvalidDecl(); + } + } + } + } + + // With -fcuda-host-device-constexpr, an unattributed constexpr function is + // treated as implicitly __host__ __device__, unless: + // * it is a variadic function (device-side variadic functions are not + // allowed), or + // * a __device__ function with this signature was already declared, in which + // case in which case we output an error, unless the __device__ decl is in a + // system header, in which case we leave the constexpr function unattributed. + // + // In addition, all function decls are treated as __host__ __device__ when + // ForceCUDAHostDeviceDepth > 0 (corresponding to code within a + // #pragma clang force_cuda_host_device_begin/end + // pair). + void Sema::maybeAddCUDAHostDeviceAttrs(FunctionDecl *NewD, + const LookupResult &Previous) { + assert(getLangOpts().CUDA && "Should only be called during CUDA compilation"); + + if (ForceCUDAHostDeviceDepth > 0) { + if (!NewD->hasAttr()) + NewD->addAttr(CUDAHostAttr::CreateImplicit(Context)); + if (!NewD->hasAttr()) + NewD->addAttr(CUDADeviceAttr::CreateImplicit(Context)); + return; + } + + if (!getLangOpts().CUDAHostDeviceConstexpr || !NewD->isConstexpr() || + NewD->isVariadic() || NewD->hasAttr() || + NewD->hasAttr() || NewD->hasAttr()) + return; + + // Is D a __device__ function with the same signature as NewD, ignoring CUDA + // attributes? + auto IsMatchingDeviceFn = [&](NamedDecl *D) { + if (UsingShadowDecl *Using = dyn_cast(D)) + D = Using->getTargetDecl(); + FunctionDecl *OldD = D->getAsFunction(); + return OldD && OldD->hasAttr() && + !OldD->hasAttr() && + !IsOverload(NewD, OldD, /* UseMemberUsingDeclRules = */ false, + /* ConsiderCudaAttrs = */ false); + }; + auto It = llvm::find_if(Previous, IsMatchingDeviceFn); + if (It != Previous.end()) { + // We found a __device__ function with the same name and signature as NewD + // (ignoring CUDA attrs). This is an error unless that function is defined + // in a system header, in which case we simply return without making NewD + // host+device. + NamedDecl *Match = *It; + if (!getSourceManager().isInSystemHeader(Match->getLocation())) { + Diag(NewD->getLocation(), + diag::err_cuda_unattributed_constexpr_cannot_overload_device) + << NewD; + Diag(Match->getLocation(), + diag::note_cuda_conflicting_device_function_declared_here); + } + return; + } + + NewD->addAttr(CUDAHostAttr::CreateImplicit(Context)); + NewD->addAttr(CUDADeviceAttr::CreateImplicit(Context)); + } + + // TODO: `__constant__` memory may be a limited resource for certain targets. + // A safeguard may be needed at the end of compilation pipeline if + // `__constant__` memory usage goes beyond limit. + void Sema::MaybeAddCUDAConstantAttr(VarDecl *VD) { + // Do not promote dependent variables since the cotr/dtor/initializer are + // not determined. Do it after instantiation. + if (getLangOpts().CUDAIsDevice && !VD->hasAttr() && + !VD->hasAttr() && + (VD->isFileVarDecl() || VD->isStaticDataMember()) && + !IsDependentVar(VD) && + ((VD->isConstexpr() || VD->getType().isConstQualified()) && + HasAllowedCUDADeviceStaticInitializer(*this, VD, + CICK_DeviceOrConstant))) { + VD->addAttr(CUDAConstantAttr::CreateImplicit(getASTContext())); + } + } + + Sema::SemaDiagnosticBuilder Sema::CUDADiagIfDeviceCode(SourceLocation Loc, + unsigned DiagID) { + assert(getLangOpts().CUDA && "Should only be called during CUDA compilation"); + FunctionDecl *CurFunContext = getCurFunctionDecl(/*AllowLambda=*/true); + SemaDiagnosticBuilder::Kind DiagKind = [&] { + if (!CurFunContext) + return SemaDiagnosticBuilder::K_Nop; + switch (CurrentCUDATarget()) { + case CFT_Global: + case CFT_Device: + return SemaDiagnosticBuilder::K_Immediate; + case CFT_HostDevice: + // An HD function counts as host code if we're compiling for host, and + // device code if we're compiling for device. Defer any errors in device + // mode until the function is known-emitted. + if (!getLangOpts().CUDAIsDevice) + return SemaDiagnosticBuilder::K_Nop; + if (IsLastErrorImmediate && Diags.getDiagnosticIDs()->isBuiltinNote(DiagID)) + return SemaDiagnosticBuilder::K_Immediate; + return (getEmissionStatus(CurFunContext) == + FunctionEmissionStatus::Emitted) + ? SemaDiagnosticBuilder::K_ImmediateWithCallStack + : SemaDiagnosticBuilder::K_Deferred; + default: + return SemaDiagnosticBuilder::K_Nop; + } + }(); + return SemaDiagnosticBuilder(DiagKind, Loc, DiagID, CurFunContext, *this); + } + + Sema::SemaDiagnosticBuilder Sema::CUDADiagIfHostCode(SourceLocation Loc, + unsigned DiagID) { + assert(getLangOpts().CUDA && "Should only be called during CUDA compilation"); + FunctionDecl *CurFunContext = getCurFunctionDecl(/*AllowLambda=*/true); + SemaDiagnosticBuilder::Kind DiagKind = [&] { + if (!CurFunContext) + return SemaDiagnosticBuilder::K_Nop; + switch (CurrentCUDATarget()) { + case CFT_Host: + return SemaDiagnosticBuilder::K_Immediate; + case CFT_HostDevice: + // An HD function counts as host code if we're compiling for host, and + // device code if we're compiling for device. Defer any errors in device + // mode until the function is known-emitted. + if (getLangOpts().CUDAIsDevice) + return SemaDiagnosticBuilder::K_Nop; + if (IsLastErrorImmediate && Diags.getDiagnosticIDs()->isBuiltinNote(DiagID)) + return SemaDiagnosticBuilder::K_Immediate; + return (getEmissionStatus(CurFunContext) == + FunctionEmissionStatus::Emitted) + ? SemaDiagnosticBuilder::K_ImmediateWithCallStack + : SemaDiagnosticBuilder::K_Deferred; + default: + return SemaDiagnosticBuilder::K_Nop; + } + }(); + return SemaDiagnosticBuilder(DiagKind, Loc, DiagID, CurFunContext, *this); + } + + bool Sema::CheckCUDACall(SourceLocation Loc, FunctionDecl *Callee) { + assert(getLangOpts().CUDA && "Should only be called during CUDA compilation"); + assert(Callee && "Callee may not be null."); + + auto &ExprEvalCtx = ExprEvalContexts.back(); + if (ExprEvalCtx.isUnevaluated() || ExprEvalCtx.isConstantEvaluated()) + return true; + + // FIXME: Is bailing out early correct here? Should we instead assume that + // the caller is a global initializer? + FunctionDecl *Caller = getCurFunctionDecl(/*AllowLambda=*/true); + if (!Caller) + return true; + + // If the caller is known-emitted, mark the callee as known-emitted. + // Otherwise, mark the call in our call graph so we can traverse it later. + bool CallerKnownEmitted = + getEmissionStatus(Caller) == FunctionEmissionStatus::Emitted; + SemaDiagnosticBuilder::Kind DiagKind = [this, Caller, Callee, + CallerKnownEmitted] { + switch (IdentifyCUDAPreference(Caller, Callee)) { + case CFP_Never: + case CFP_WrongSide: + assert(Caller && "Never/wrongSide calls require a non-null caller"); + // If we know the caller will be emitted, we know this wrong-side call + // will be emitted, so it's an immediate error. Otherwise, defer the + // error until we know the caller is emitted. + return CallerKnownEmitted + ? SemaDiagnosticBuilder::K_ImmediateWithCallStack + : SemaDiagnosticBuilder::K_Deferred; + default: + return SemaDiagnosticBuilder::K_Nop; + } + }(); + + if (DiagKind == SemaDiagnosticBuilder::K_Nop) { + // For -fgpu-rdc, keep track of external kernels used by host functions. + if (LangOpts.CUDAIsDevice && LangOpts.GPURelocatableDeviceCode && + Callee->hasAttr() && !Callee->isDefined()) + getASTContext().CUDAExternalDeviceDeclODRUsedByHost.insert(Callee); + return true; + } + + // Avoid emitting this error twice for the same location. Using a hashtable + // like this is unfortunate, but because we must continue parsing as normal + // after encountering a deferred error, it's otherwise very tricky for us to + // ensure that we only emit this deferred error once. + if (!LocsWithCUDACallDiags.insert({Caller, Loc}).second) + return true; + + SemaDiagnosticBuilder(DiagKind, Loc, diag::err_ref_bad_target, Caller, *this) + << IdentifyCUDATarget(Callee) << /*function*/ 0 << Callee + << IdentifyCUDATarget(Caller); + if (!Callee->getBuiltinID()) + SemaDiagnosticBuilder(DiagKind, Callee->getLocation(), + diag::note_previous_decl, Caller, *this) + << Callee; + return DiagKind != SemaDiagnosticBuilder::K_Immediate && + DiagKind != SemaDiagnosticBuilder::K_ImmediateWithCallStack; + } + + // Check the wrong-sided reference capture of lambda for CUDA/HIP. + // A lambda function may capture a stack variable by reference when it is + // defined and uses the capture by reference when the lambda is called. When + // the capture and use happen on different sides, the capture is invalid and + // should be diagnosed. + void Sema::CUDACheckLambdaCapture(CXXMethodDecl *Callee, + const sema::Capture &Capture) { + // In host compilation we only need to check lambda functions emitted on host + // side. In such lambda functions, a reference capture is invalid only + // if the lambda structure is populated by a device function or kernel then + // is passed to and called by a host function. However that is impossible, + // since a device function or kernel can only call a device function, also a + // kernel cannot pass a lambda back to a host function since we cannot + // define a kernel argument type which can hold the lambda before the lambda + // itself is defined. + if (!LangOpts.CUDAIsDevice) + return; + + // File-scope lambda can only do init captures for global variables, which + // results in passing by value for these global variables. + FunctionDecl *Caller = getCurFunctionDecl(/*AllowLambda=*/true); + if (!Caller) + return; + + // In device compilation, we only need to check lambda functions which are + // emitted on device side. For such lambdas, a reference capture is invalid + // only if the lambda structure is populated by a host function then passed + // to and called in a device function or kernel. + bool CalleeIsDevice = Callee->hasAttr(); + bool CallerIsHost = + !Caller->hasAttr() && !Caller->hasAttr(); + bool ShouldCheck = CalleeIsDevice && CallerIsHost; + if (!ShouldCheck || !Capture.isReferenceCapture()) + return; + auto DiagKind = SemaDiagnosticBuilder::K_Deferred; +- if (Capture.isVariableCapture()) { ++ if (!getLangOpts().HIPStdPar && Capture.isVariableCapture()) { + SemaDiagnosticBuilder(DiagKind, Capture.getLocation(), + diag::err_capture_bad_target, Callee, *this) + << Capture.getVariable(); + } else if (Capture.isThisCapture()) { + // Capture of this pointer is allowed since this pointer may be pointing to + // managed memory which is accessible on both device and host sides. It only + // results in invalid memory access if this pointer points to memory not + // accessible on device side. + SemaDiagnosticBuilder(DiagKind, Capture.getLocation(), + diag::warn_maybe_capture_bad_target_this_ptr, Callee, + *this); + } + } + + void Sema::CUDASetLambdaAttrs(CXXMethodDecl *Method) { + assert(getLangOpts().CUDA && "Should only be called during CUDA compilation"); + if (Method->hasAttr() || Method->hasAttr()) + return; + Method->addAttr(CUDADeviceAttr::CreateImplicit(Context)); + Method->addAttr(CUDAHostAttr::CreateImplicit(Context)); + } + + void Sema::checkCUDATargetOverload(FunctionDecl *NewFD, + const LookupResult &Previous) { + assert(getLangOpts().CUDA && "Should only be called during CUDA compilation"); + CUDAFunctionTarget NewTarget = IdentifyCUDATarget(NewFD); + for (NamedDecl *OldND : Previous) { + FunctionDecl *OldFD = OldND->getAsFunction(); + if (!OldFD) + continue; + + CUDAFunctionTarget OldTarget = IdentifyCUDATarget(OldFD); + // Don't allow HD and global functions to overload other functions with the + // same signature. We allow overloading based on CUDA attributes so that + // functions can have different implementations on the host and device, but + // HD/global functions "exist" in some sense on both the host and device, so + // should have the same implementation on both sides. + if (NewTarget != OldTarget && + ((NewTarget == CFT_HostDevice) || (OldTarget == CFT_HostDevice) || + (NewTarget == CFT_Global) || (OldTarget == CFT_Global)) && + !IsOverload(NewFD, OldFD, /* UseMemberUsingDeclRules = */ false, + /* ConsiderCudaAttrs = */ false)) { + Diag(NewFD->getLocation(), diag::err_cuda_ovl_target) + << NewTarget << NewFD->getDeclName() << OldTarget << OldFD; + Diag(OldFD->getLocation(), diag::note_previous_declaration); + NewFD->setInvalidDecl(); + break; + } + } + } + + template + static void copyAttrIfPresent(Sema &S, FunctionDecl *FD, + const FunctionDecl &TemplateFD) { + if (AttrTy *Attribute = TemplateFD.getAttr()) { + AttrTy *Clone = Attribute->clone(S.Context); + Clone->setInherited(true); + FD->addAttr(Clone); + } + } + + void Sema::inheritCUDATargetAttrs(FunctionDecl *FD, + const FunctionTemplateDecl &TD) { + const FunctionDecl &TemplateFD = *TD.getTemplatedDecl(); + copyAttrIfPresent(*this, FD, TemplateFD); + copyAttrIfPresent(*this, FD, TemplateFD); + copyAttrIfPresent(*this, FD, TemplateFD); + } + + std::string Sema::getCudaConfigureFuncName() const { + if (getLangOpts().HIP) + return getLangOpts().HIPUseNewLaunchAPI ? "__hipPushCallConfiguration" + : "hipConfigureCall"; + + // New CUDA kernel launch sequence. + if (CudaFeatureEnabled(Context.getTargetInfo().getSDKVersion(), + CudaFeature::CUDA_USES_NEW_LAUNCH)) + return "__cudaPushCallConfiguration"; + + // Legacy CUDA kernel configuration call + return "cudaConfigureCall"; + } +diff --git a/clang/lib/Sema/SemaExpr.cpp b/clang/lib/Sema/SemaExpr.cpp +index 87e0939d56ce..f1a4c01f1970 100644 +--- a/clang/lib/Sema/SemaExpr.cpp ++++ b/clang/lib/Sema/SemaExpr.cpp +@@ -1,21754 +1,21754 @@ + //===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===// + // + // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. + // See https://llvm.org/LICENSE.txt for license information. + // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception + // + //===----------------------------------------------------------------------===// + // + // This file implements semantic analysis for expressions. + // + //===----------------------------------------------------------------------===// + + #include "TreeTransform.h" + #include "UsedDeclVisitor.h" + #include "clang/AST/ASTConsumer.h" + #include "clang/AST/ASTContext.h" + #include "clang/AST/ASTLambda.h" + #include "clang/AST/ASTMutationListener.h" + #include "clang/AST/CXXInheritance.h" + #include "clang/AST/DeclObjC.h" + #include "clang/AST/DeclTemplate.h" + #include "clang/AST/EvaluatedExprVisitor.h" + #include "clang/AST/Expr.h" + #include "clang/AST/ExprCXX.h" + #include "clang/AST/ExprObjC.h" + #include "clang/AST/ExprOpenMP.h" + #include "clang/AST/OperationKinds.h" + #include "clang/AST/ParentMapContext.h" + #include "clang/AST/RecursiveASTVisitor.h" + #include "clang/AST/Type.h" + #include "clang/AST/TypeLoc.h" + #include "clang/Basic/Builtins.h" + #include "clang/Basic/DiagnosticSema.h" + #include "clang/Basic/PartialDiagnostic.h" + #include "clang/Basic/SourceManager.h" + #include "clang/Basic/Specifiers.h" + #include "clang/Basic/TargetInfo.h" + #include "clang/Lex/LiteralSupport.h" + #include "clang/Lex/Preprocessor.h" + #include "clang/Sema/AnalysisBasedWarnings.h" + #include "clang/Sema/DeclSpec.h" + #include "clang/Sema/DelayedDiagnostic.h" + #include "clang/Sema/Designator.h" + #include "clang/Sema/EnterExpressionEvaluationContext.h" + #include "clang/Sema/Initialization.h" + #include "clang/Sema/Lookup.h" + #include "clang/Sema/Overload.h" + #include "clang/Sema/ParsedTemplate.h" + #include "clang/Sema/Scope.h" + #include "clang/Sema/ScopeInfo.h" + #include "clang/Sema/SemaFixItUtils.h" + #include "clang/Sema/SemaInternal.h" + #include "clang/Sema/Template.h" + #include "llvm/ADT/STLExtras.h" + #include "llvm/ADT/StringExtras.h" + #include "llvm/Support/Casting.h" + #include "llvm/Support/ConvertUTF.h" + #include "llvm/Support/SaveAndRestore.h" + #include "llvm/Support/TypeSize.h" + #include + + using namespace clang; + using namespace sema; + + /// Determine whether the use of this declaration is valid, without + /// emitting diagnostics. + bool Sema::CanUseDecl(NamedDecl *D, bool TreatUnavailableAsInvalid) { + // See if this is an auto-typed variable whose initializer we are parsing. + if (ParsingInitForAutoVars.count(D)) + return false; + + // See if this is a deleted function. + if (FunctionDecl *FD = dyn_cast(D)) { + if (FD->isDeleted()) + return false; + + // If the function has a deduced return type, and we can't deduce it, + // then we can't use it either. + if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() && + DeduceReturnType(FD, SourceLocation(), /*Diagnose*/ false)) + return false; + + // See if this is an aligned allocation/deallocation function that is + // unavailable. + if (TreatUnavailableAsInvalid && + isUnavailableAlignedAllocationFunction(*FD)) + return false; + } + + // See if this function is unavailable. + if (TreatUnavailableAsInvalid && D->getAvailability() == AR_Unavailable && + cast(CurContext)->getAvailability() != AR_Unavailable) + return false; + + if (isa(D)) + return false; + + return true; + } + + static void DiagnoseUnusedOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc) { + // Warn if this is used but marked unused. + if (const auto *A = D->getAttr()) { + // [[maybe_unused]] should not diagnose uses, but __attribute__((unused)) + // should diagnose them. + if (A->getSemanticSpelling() != UnusedAttr::CXX11_maybe_unused && + A->getSemanticSpelling() != UnusedAttr::C2x_maybe_unused) { + const Decl *DC = cast_or_null(S.getCurObjCLexicalContext()); + if (DC && !DC->hasAttr()) + S.Diag(Loc, diag::warn_used_but_marked_unused) << D; + } + } + } + + /// Emit a note explaining that this function is deleted. + void Sema::NoteDeletedFunction(FunctionDecl *Decl) { + assert(Decl && Decl->isDeleted()); + + if (Decl->isDefaulted()) { + // If the method was explicitly defaulted, point at that declaration. + if (!Decl->isImplicit()) + Diag(Decl->getLocation(), diag::note_implicitly_deleted); + + // Try to diagnose why this special member function was implicitly + // deleted. This might fail, if that reason no longer applies. + DiagnoseDeletedDefaultedFunction(Decl); + return; + } + + auto *Ctor = dyn_cast(Decl); + if (Ctor && Ctor->isInheritingConstructor()) + return NoteDeletedInheritingConstructor(Ctor); + + Diag(Decl->getLocation(), diag::note_availability_specified_here) + << Decl << 1; + } + + /// Determine whether a FunctionDecl was ever declared with an + /// explicit storage class. + static bool hasAnyExplicitStorageClass(const FunctionDecl *D) { + for (auto *I : D->redecls()) { + if (I->getStorageClass() != SC_None) + return true; + } + return false; + } + + /// Check whether we're in an extern inline function and referring to a + /// variable or function with internal linkage (C11 6.7.4p3). + /// + /// This is only a warning because we used to silently accept this code, but + /// in many cases it will not behave correctly. This is not enabled in C++ mode + /// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6) + /// and so while there may still be user mistakes, most of the time we can't + /// prove that there are errors. + static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S, + const NamedDecl *D, + SourceLocation Loc) { + // This is disabled under C++; there are too many ways for this to fire in + // contexts where the warning is a false positive, or where it is technically + // correct but benign. + if (S.getLangOpts().CPlusPlus) + return; + + // Check if this is an inlined function or method. + FunctionDecl *Current = S.getCurFunctionDecl(); + if (!Current) + return; + if (!Current->isInlined()) + return; + if (!Current->isExternallyVisible()) + return; + + // Check if the decl has internal linkage. + if (D->getFormalLinkage() != InternalLinkage) + return; + + // Downgrade from ExtWarn to Extension if + // (1) the supposedly external inline function is in the main file, + // and probably won't be included anywhere else. + // (2) the thing we're referencing is a pure function. + // (3) the thing we're referencing is another inline function. + // This last can give us false negatives, but it's better than warning on + // wrappers for simple C library functions. + const FunctionDecl *UsedFn = dyn_cast(D); + bool DowngradeWarning = S.getSourceManager().isInMainFile(Loc); + if (!DowngradeWarning && UsedFn) + DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr(); + + S.Diag(Loc, DowngradeWarning ? diag::ext_internal_in_extern_inline_quiet + : diag::ext_internal_in_extern_inline) + << /*IsVar=*/!UsedFn << D; + + S.MaybeSuggestAddingStaticToDecl(Current); + + S.Diag(D->getCanonicalDecl()->getLocation(), diag::note_entity_declared_at) + << D; + } + + void Sema::MaybeSuggestAddingStaticToDecl(const FunctionDecl *Cur) { + const FunctionDecl *First = Cur->getFirstDecl(); + + // Suggest "static" on the function, if possible. + if (!hasAnyExplicitStorageClass(First)) { + SourceLocation DeclBegin = First->getSourceRange().getBegin(); + Diag(DeclBegin, diag::note_convert_inline_to_static) + << Cur << FixItHint::CreateInsertion(DeclBegin, "static "); + } + } + + /// Determine whether the use of this declaration is valid, and + /// emit any corresponding diagnostics. + /// + /// This routine diagnoses various problems with referencing + /// declarations that can occur when using a declaration. For example, + /// it might warn if a deprecated or unavailable declaration is being + /// used, or produce an error (and return true) if a C++0x deleted + /// function is being used. + /// + /// \returns true if there was an error (this declaration cannot be + /// referenced), false otherwise. + /// + bool Sema::DiagnoseUseOfDecl(NamedDecl *D, ArrayRef Locs, + const ObjCInterfaceDecl *UnknownObjCClass, + bool ObjCPropertyAccess, + bool AvoidPartialAvailabilityChecks, + ObjCInterfaceDecl *ClassReceiver, + bool SkipTrailingRequiresClause) { + SourceLocation Loc = Locs.front(); + if (getLangOpts().CPlusPlus && isa(D)) { + // If there were any diagnostics suppressed by template argument deduction, + // emit them now. + auto Pos = SuppressedDiagnostics.find(D->getCanonicalDecl()); + if (Pos != SuppressedDiagnostics.end()) { + for (const PartialDiagnosticAt &Suppressed : Pos->second) + Diag(Suppressed.first, Suppressed.second); + + // Clear out the list of suppressed diagnostics, so that we don't emit + // them again for this specialization. However, we don't obsolete this + // entry from the table, because we want to avoid ever emitting these + // diagnostics again. + Pos->second.clear(); + } + + // C++ [basic.start.main]p3: + // The function 'main' shall not be used within a program. + if (cast(D)->isMain()) + Diag(Loc, diag::ext_main_used); + + diagnoseUnavailableAlignedAllocation(*cast(D), Loc); + } + + // See if this is an auto-typed variable whose initializer we are parsing. + if (ParsingInitForAutoVars.count(D)) { + if (isa(D)) { + Diag(Loc, diag::err_binding_cannot_appear_in_own_initializer) + << D->getDeclName(); + } else { + Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer) + << D->getDeclName() << cast(D)->getType(); + } + return true; + } + + if (FunctionDecl *FD = dyn_cast(D)) { + // See if this is a deleted function. + if (FD->isDeleted()) { + auto *Ctor = dyn_cast(FD); + if (Ctor && Ctor->isInheritingConstructor()) + Diag(Loc, diag::err_deleted_inherited_ctor_use) + << Ctor->getParent() + << Ctor->getInheritedConstructor().getConstructor()->getParent(); + else + Diag(Loc, diag::err_deleted_function_use); + NoteDeletedFunction(FD); + return true; + } + + // [expr.prim.id]p4 + // A program that refers explicitly or implicitly to a function with a + // trailing requires-clause whose constraint-expression is not satisfied, + // other than to declare it, is ill-formed. [...] + // + // See if this is a function with constraints that need to be satisfied. + // Check this before deducing the return type, as it might instantiate the + // definition. + if (!SkipTrailingRequiresClause && FD->getTrailingRequiresClause()) { + ConstraintSatisfaction Satisfaction; + if (CheckFunctionConstraints(FD, Satisfaction, Loc, + /*ForOverloadResolution*/ true)) + // A diagnostic will have already been generated (non-constant + // constraint expression, for example) + return true; + if (!Satisfaction.IsSatisfied) { + Diag(Loc, + diag::err_reference_to_function_with_unsatisfied_constraints) + << D; + DiagnoseUnsatisfiedConstraint(Satisfaction); + return true; + } + } + + // If the function has a deduced return type, and we can't deduce it, + // then we can't use it either. + if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() && + DeduceReturnType(FD, Loc)) + return true; + + if (getLangOpts().CUDA && !CheckCUDACall(Loc, FD)) + return true; + + } + + if (auto *MD = dyn_cast(D)) { + // Lambdas are only default-constructible or assignable in C++2a onwards. + if (MD->getParent()->isLambda() && + ((isa(MD) && + cast(MD)->isDefaultConstructor()) || + MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator())) { + Diag(Loc, diag::warn_cxx17_compat_lambda_def_ctor_assign) + << !isa(MD); + } + } + + auto getReferencedObjCProp = [](const NamedDecl *D) -> + const ObjCPropertyDecl * { + if (const auto *MD = dyn_cast(D)) + return MD->findPropertyDecl(); + return nullptr; + }; + if (const ObjCPropertyDecl *ObjCPDecl = getReferencedObjCProp(D)) { + if (diagnoseArgIndependentDiagnoseIfAttrs(ObjCPDecl, Loc)) + return true; + } else if (diagnoseArgIndependentDiagnoseIfAttrs(D, Loc)) { + return true; + } + + // [OpenMP 4.0], 2.15 declare reduction Directive, Restrictions + // Only the variables omp_in and omp_out are allowed in the combiner. + // Only the variables omp_priv and omp_orig are allowed in the + // initializer-clause. + auto *DRD = dyn_cast(CurContext); + if (LangOpts.OpenMP && DRD && !CurContext->containsDecl(D) && + isa(D)) { + Diag(Loc, diag::err_omp_wrong_var_in_declare_reduction) + << getCurFunction()->HasOMPDeclareReductionCombiner; + Diag(D->getLocation(), diag::note_entity_declared_at) << D; + return true; + } + + // [OpenMP 5.0], 2.19.7.3. declare mapper Directive, Restrictions + // List-items in map clauses on this construct may only refer to the declared + // variable var and entities that could be referenced by a procedure defined + // at the same location. + // [OpenMP 5.2] Also allow iterator declared variables. + if (LangOpts.OpenMP && isa(D) && + !isOpenMPDeclareMapperVarDeclAllowed(cast(D))) { + Diag(Loc, diag::err_omp_declare_mapper_wrong_var) + << getOpenMPDeclareMapperVarName(); + Diag(D->getLocation(), diag::note_entity_declared_at) << D; + return true; + } + + if (const auto *EmptyD = dyn_cast(D)) { + Diag(Loc, diag::err_use_of_empty_using_if_exists); + Diag(EmptyD->getLocation(), diag::note_empty_using_if_exists_here); + return true; + } + + DiagnoseAvailabilityOfDecl(D, Locs, UnknownObjCClass, ObjCPropertyAccess, + AvoidPartialAvailabilityChecks, ClassReceiver); + + DiagnoseUnusedOfDecl(*this, D, Loc); + + diagnoseUseOfInternalDeclInInlineFunction(*this, D, Loc); + + if (D->hasAttr()) { + if (getLangOpts().getFPEvalMethod() != + LangOptions::FPEvalMethodKind::FEM_UnsetOnCommandLine && + PP.getLastFPEvalPragmaLocation().isValid() && + PP.getCurrentFPEvalMethod() != getLangOpts().getFPEvalMethod()) + Diag(D->getLocation(), + diag::err_type_available_only_in_default_eval_method) + << D->getName(); + } + + if (auto *VD = dyn_cast(D)) + checkTypeSupport(VD->getType(), Loc, VD); + + if (LangOpts.SYCLIsDevice || + (LangOpts.OpenMP && LangOpts.OpenMPIsTargetDevice)) { + if (!Context.getTargetInfo().isTLSSupported()) + if (const auto *VD = dyn_cast(D)) + if (VD->getTLSKind() != VarDecl::TLS_None) + targetDiag(*Locs.begin(), diag::err_thread_unsupported); + } + + if (isa(D) && isa(D->getDeclContext()) && + !isUnevaluatedContext()) { + // C++ [expr.prim.req.nested] p3 + // A local parameter shall only appear as an unevaluated operand + // (Clause 8) within the constraint-expression. + Diag(Loc, diag::err_requires_expr_parameter_referenced_in_evaluated_context) + << D; + Diag(D->getLocation(), diag::note_entity_declared_at) << D; + return true; + } + + return false; + } + + /// DiagnoseSentinelCalls - This routine checks whether a call or + /// message-send is to a declaration with the sentinel attribute, and + /// if so, it checks that the requirements of the sentinel are + /// satisfied. + void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc, + ArrayRef Args) { + const SentinelAttr *attr = D->getAttr(); + if (!attr) + return; + + // The number of formal parameters of the declaration. + unsigned numFormalParams; + + // The kind of declaration. This is also an index into a %select in + // the diagnostic. + enum CalleeType { CT_Function, CT_Method, CT_Block } calleeType; + + if (ObjCMethodDecl *MD = dyn_cast(D)) { + numFormalParams = MD->param_size(); + calleeType = CT_Method; + } else if (FunctionDecl *FD = dyn_cast(D)) { + numFormalParams = FD->param_size(); + calleeType = CT_Function; + } else if (isa(D)) { + QualType type = cast(D)->getType(); + const FunctionType *fn = nullptr; + if (const PointerType *ptr = type->getAs()) { + fn = ptr->getPointeeType()->getAs(); + if (!fn) return; + calleeType = CT_Function; + } else if (const BlockPointerType *ptr = type->getAs()) { + fn = ptr->getPointeeType()->castAs(); + calleeType = CT_Block; + } else { + return; + } + + if (const FunctionProtoType *proto = dyn_cast(fn)) { + numFormalParams = proto->getNumParams(); + } else { + numFormalParams = 0; + } + } else { + return; + } + + // "nullPos" is the number of formal parameters at the end which + // effectively count as part of the variadic arguments. This is + // useful if you would prefer to not have *any* formal parameters, + // but the language forces you to have at least one. + unsigned nullPos = attr->getNullPos(); + assert((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel"); + numFormalParams = (nullPos > numFormalParams ? 0 : numFormalParams - nullPos); + + // The number of arguments which should follow the sentinel. + unsigned numArgsAfterSentinel = attr->getSentinel(); + + // If there aren't enough arguments for all the formal parameters, + // the sentinel, and the args after the sentinel, complain. + if (Args.size() < numFormalParams + numArgsAfterSentinel + 1) { + Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName(); + Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType); + return; + } + + // Otherwise, find the sentinel expression. + Expr *sentinelExpr = Args[Args.size() - numArgsAfterSentinel - 1]; + if (!sentinelExpr) return; + if (sentinelExpr->isValueDependent()) return; + if (Context.isSentinelNullExpr(sentinelExpr)) return; + + // Pick a reasonable string to insert. Optimistically use 'nil', 'nullptr', + // or 'NULL' if those are actually defined in the context. Only use + // 'nil' for ObjC methods, where it's much more likely that the + // variadic arguments form a list of object pointers. + SourceLocation MissingNilLoc = getLocForEndOfToken(sentinelExpr->getEndLoc()); + std::string NullValue; + if (calleeType == CT_Method && PP.isMacroDefined("nil")) + NullValue = "nil"; + else if (getLangOpts().CPlusPlus11) + NullValue = "nullptr"; + else if (PP.isMacroDefined("NULL")) + NullValue = "NULL"; + else + NullValue = "(void*) 0"; + + if (MissingNilLoc.isInvalid()) + Diag(Loc, diag::warn_missing_sentinel) << int(calleeType); + else + Diag(MissingNilLoc, diag::warn_missing_sentinel) + << int(calleeType) + << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue); + Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType); + } + + SourceRange Sema::getExprRange(Expr *E) const { + return E ? E->getSourceRange() : SourceRange(); + } + + //===----------------------------------------------------------------------===// + // Standard Promotions and Conversions + //===----------------------------------------------------------------------===// + + /// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4). + ExprResult Sema::DefaultFunctionArrayConversion(Expr *E, bool Diagnose) { + // Handle any placeholder expressions which made it here. + if (E->hasPlaceholderType()) { + ExprResult result = CheckPlaceholderExpr(E); + if (result.isInvalid()) return ExprError(); + E = result.get(); + } + + QualType Ty = E->getType(); + assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type"); + + if (Ty->isFunctionType()) { + if (auto *DRE = dyn_cast(E->IgnoreParenCasts())) + if (auto *FD = dyn_cast(DRE->getDecl())) + if (!checkAddressOfFunctionIsAvailable(FD, Diagnose, E->getExprLoc())) + return ExprError(); + + E = ImpCastExprToType(E, Context.getPointerType(Ty), + CK_FunctionToPointerDecay).get(); + } else if (Ty->isArrayType()) { + // In C90 mode, arrays only promote to pointers if the array expression is + // an lvalue. The relevant legalese is C90 6.2.2.1p3: "an lvalue that has + // type 'array of type' is converted to an expression that has type 'pointer + // to type'...". In C99 this was changed to: C99 6.3.2.1p3: "an expression + // that has type 'array of type' ...". The relevant change is "an lvalue" + // (C90) to "an expression" (C99). + // + // C++ 4.2p1: + // An lvalue or rvalue of type "array of N T" or "array of unknown bound of + // T" can be converted to an rvalue of type "pointer to T". + // + if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue()) { + ExprResult Res = ImpCastExprToType(E, Context.getArrayDecayedType(Ty), + CK_ArrayToPointerDecay); + if (Res.isInvalid()) + return ExprError(); + E = Res.get(); + } + } + return E; + } + + static void CheckForNullPointerDereference(Sema &S, Expr *E) { + // Check to see if we are dereferencing a null pointer. If so, + // and if not volatile-qualified, this is undefined behavior that the + // optimizer will delete, so warn about it. People sometimes try to use this + // to get a deterministic trap and are surprised by clang's behavior. This + // only handles the pattern "*null", which is a very syntactic check. + const auto *UO = dyn_cast(E->IgnoreParenCasts()); + if (UO && UO->getOpcode() == UO_Deref && + UO->getSubExpr()->getType()->isPointerType()) { + const LangAS AS = + UO->getSubExpr()->getType()->getPointeeType().getAddressSpace(); + if ((!isTargetAddressSpace(AS) || + (isTargetAddressSpace(AS) && toTargetAddressSpace(AS) == 0)) && + UO->getSubExpr()->IgnoreParenCasts()->isNullPointerConstant( + S.Context, Expr::NPC_ValueDependentIsNotNull) && + !UO->getType().isVolatileQualified()) { + S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO, + S.PDiag(diag::warn_indirection_through_null) + << UO->getSubExpr()->getSourceRange()); + S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO, + S.PDiag(diag::note_indirection_through_null)); + } + } + } + + static void DiagnoseDirectIsaAccess(Sema &S, const ObjCIvarRefExpr *OIRE, + SourceLocation AssignLoc, + const Expr* RHS) { + const ObjCIvarDecl *IV = OIRE->getDecl(); + if (!IV) + return; + + DeclarationName MemberName = IV->getDeclName(); + IdentifierInfo *Member = MemberName.getAsIdentifierInfo(); + if (!Member || !Member->isStr("isa")) + return; + + const Expr *Base = OIRE->getBase(); + QualType BaseType = Base->getType(); + if (OIRE->isArrow()) + BaseType = BaseType->getPointeeType(); + if (const ObjCObjectType *OTy = BaseType->getAs()) + if (ObjCInterfaceDecl *IDecl = OTy->getInterface()) { + ObjCInterfaceDecl *ClassDeclared = nullptr; + ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared); + if (!ClassDeclared->getSuperClass() + && (*ClassDeclared->ivar_begin()) == IV) { + if (RHS) { + NamedDecl *ObjectSetClass = + S.LookupSingleName(S.TUScope, + &S.Context.Idents.get("object_setClass"), + SourceLocation(), S.LookupOrdinaryName); + if (ObjectSetClass) { + SourceLocation RHSLocEnd = S.getLocForEndOfToken(RHS->getEndLoc()); + S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_assign) + << FixItHint::CreateInsertion(OIRE->getBeginLoc(), + "object_setClass(") + << FixItHint::CreateReplacement( + SourceRange(OIRE->getOpLoc(), AssignLoc), ",") + << FixItHint::CreateInsertion(RHSLocEnd, ")"); + } + else + S.Diag(OIRE->getLocation(), diag::warn_objc_isa_assign); + } else { + NamedDecl *ObjectGetClass = + S.LookupSingleName(S.TUScope, + &S.Context.Idents.get("object_getClass"), + SourceLocation(), S.LookupOrdinaryName); + if (ObjectGetClass) + S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_use) + << FixItHint::CreateInsertion(OIRE->getBeginLoc(), + "object_getClass(") + << FixItHint::CreateReplacement( + SourceRange(OIRE->getOpLoc(), OIRE->getEndLoc()), ")"); + else + S.Diag(OIRE->getLocation(), diag::warn_objc_isa_use); + } + S.Diag(IV->getLocation(), diag::note_ivar_decl); + } + } + } + + ExprResult Sema::DefaultLvalueConversion(Expr *E) { + // Handle any placeholder expressions which made it here. + if (E->hasPlaceholderType()) { + ExprResult result = CheckPlaceholderExpr(E); + if (result.isInvalid()) return ExprError(); + E = result.get(); + } + + // C++ [conv.lval]p1: + // A glvalue of a non-function, non-array type T can be + // converted to a prvalue. + if (!E->isGLValue()) return E; + + QualType T = E->getType(); + assert(!T.isNull() && "r-value conversion on typeless expression?"); + + // lvalue-to-rvalue conversion cannot be applied to function or array types. + if (T->isFunctionType() || T->isArrayType()) + return E; + + // We don't want to throw lvalue-to-rvalue casts on top of + // expressions of certain types in C++. + if (getLangOpts().CPlusPlus && + (E->getType() == Context.OverloadTy || + T->isDependentType() || + T->isRecordType())) + return E; + + // The C standard is actually really unclear on this point, and + // DR106 tells us what the result should be but not why. It's + // generally best to say that void types just doesn't undergo + // lvalue-to-rvalue at all. Note that expressions of unqualified + // 'void' type are never l-values, but qualified void can be. + if (T->isVoidType()) + return E; + + // OpenCL usually rejects direct accesses to values of 'half' type. + if (getLangOpts().OpenCL && + !getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()) && + T->isHalfType()) { + Diag(E->getExprLoc(), diag::err_opencl_half_load_store) + << 0 << T; + return ExprError(); + } + + CheckForNullPointerDereference(*this, E); + if (const ObjCIsaExpr *OISA = dyn_cast(E->IgnoreParenCasts())) { + NamedDecl *ObjectGetClass = LookupSingleName(TUScope, + &Context.Idents.get("object_getClass"), + SourceLocation(), LookupOrdinaryName); + if (ObjectGetClass) + Diag(E->getExprLoc(), diag::warn_objc_isa_use) + << FixItHint::CreateInsertion(OISA->getBeginLoc(), "object_getClass(") + << FixItHint::CreateReplacement( + SourceRange(OISA->getOpLoc(), OISA->getIsaMemberLoc()), ")"); + else + Diag(E->getExprLoc(), diag::warn_objc_isa_use); + } + else if (const ObjCIvarRefExpr *OIRE = + dyn_cast(E->IgnoreParenCasts())) + DiagnoseDirectIsaAccess(*this, OIRE, SourceLocation(), /* Expr*/nullptr); + + // C++ [conv.lval]p1: + // [...] If T is a non-class type, the type of the prvalue is the + // cv-unqualified version of T. Otherwise, the type of the + // rvalue is T. + // + // C99 6.3.2.1p2: + // If the lvalue has qualified type, the value has the unqualified + // version of the type of the lvalue; otherwise, the value has the + // type of the lvalue. + if (T.hasQualifiers()) + T = T.getUnqualifiedType(); + + // Under the MS ABI, lock down the inheritance model now. + if (T->isMemberPointerType() && + Context.getTargetInfo().getCXXABI().isMicrosoft()) + (void)isCompleteType(E->getExprLoc(), T); + + ExprResult Res = CheckLValueToRValueConversionOperand(E); + if (Res.isInvalid()) + return Res; + E = Res.get(); + + // Loading a __weak object implicitly retains the value, so we need a cleanup to + // balance that. + if (E->getType().getObjCLifetime() == Qualifiers::OCL_Weak) + Cleanup.setExprNeedsCleanups(true); + + if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct) + Cleanup.setExprNeedsCleanups(true); + + // C++ [conv.lval]p3: + // If T is cv std::nullptr_t, the result is a null pointer constant. + CastKind CK = T->isNullPtrType() ? CK_NullToPointer : CK_LValueToRValue; + Res = ImplicitCastExpr::Create(Context, T, CK, E, nullptr, VK_PRValue, + CurFPFeatureOverrides()); + + // C11 6.3.2.1p2: + // ... if the lvalue has atomic type, the value has the non-atomic version + // of the type of the lvalue ... + if (const AtomicType *Atomic = T->getAs()) { + T = Atomic->getValueType().getUnqualifiedType(); + Res = ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic, Res.get(), + nullptr, VK_PRValue, FPOptionsOverride()); + } + + return Res; + } + + ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E, bool Diagnose) { + ExprResult Res = DefaultFunctionArrayConversion(E, Diagnose); + if (Res.isInvalid()) + return ExprError(); + Res = DefaultLvalueConversion(Res.get()); + if (Res.isInvalid()) + return ExprError(); + return Res; + } + + /// CallExprUnaryConversions - a special case of an unary conversion + /// performed on a function designator of a call expression. + ExprResult Sema::CallExprUnaryConversions(Expr *E) { + QualType Ty = E->getType(); + ExprResult Res = E; + // Only do implicit cast for a function type, but not for a pointer + // to function type. + if (Ty->isFunctionType()) { + Res = ImpCastExprToType(E, Context.getPointerType(Ty), + CK_FunctionToPointerDecay); + if (Res.isInvalid()) + return ExprError(); + } + Res = DefaultLvalueConversion(Res.get()); + if (Res.isInvalid()) + return ExprError(); + return Res.get(); + } + + /// UsualUnaryConversions - Performs various conversions that are common to most + /// operators (C99 6.3). The conversions of array and function types are + /// sometimes suppressed. For example, the array->pointer conversion doesn't + /// apply if the array is an argument to the sizeof or address (&) operators. + /// In these instances, this routine should *not* be called. + ExprResult Sema::UsualUnaryConversions(Expr *E) { + // First, convert to an r-value. + ExprResult Res = DefaultFunctionArrayLvalueConversion(E); + if (Res.isInvalid()) + return ExprError(); + E = Res.get(); + + QualType Ty = E->getType(); + assert(!Ty.isNull() && "UsualUnaryConversions - missing type"); + + LangOptions::FPEvalMethodKind EvalMethod = CurFPFeatures.getFPEvalMethod(); + if (EvalMethod != LangOptions::FEM_Source && Ty->isFloatingType() && + (getLangOpts().getFPEvalMethod() != + LangOptions::FPEvalMethodKind::FEM_UnsetOnCommandLine || + PP.getLastFPEvalPragmaLocation().isValid())) { + switch (EvalMethod) { + default: + llvm_unreachable("Unrecognized float evaluation method"); + break; + case LangOptions::FEM_UnsetOnCommandLine: + llvm_unreachable("Float evaluation method should be set by now"); + break; + case LangOptions::FEM_Double: + if (Context.getFloatingTypeOrder(Context.DoubleTy, Ty) > 0) + // Widen the expression to double. + return Ty->isComplexType() + ? ImpCastExprToType(E, + Context.getComplexType(Context.DoubleTy), + CK_FloatingComplexCast) + : ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast); + break; + case LangOptions::FEM_Extended: + if (Context.getFloatingTypeOrder(Context.LongDoubleTy, Ty) > 0) + // Widen the expression to long double. + return Ty->isComplexType() + ? ImpCastExprToType( + E, Context.getComplexType(Context.LongDoubleTy), + CK_FloatingComplexCast) + : ImpCastExprToType(E, Context.LongDoubleTy, + CK_FloatingCast); + break; + } + } + + // Half FP have to be promoted to float unless it is natively supported + if (Ty->isHalfType() && !getLangOpts().NativeHalfType) + return ImpCastExprToType(Res.get(), Context.FloatTy, CK_FloatingCast); + + // Try to perform integral promotions if the object has a theoretically + // promotable type. + if (Ty->isIntegralOrUnscopedEnumerationType()) { + // C99 6.3.1.1p2: + // + // The following may be used in an expression wherever an int or + // unsigned int may be used: + // - an object or expression with an integer type whose integer + // conversion rank is less than or equal to the rank of int + // and unsigned int. + // - A bit-field of type _Bool, int, signed int, or unsigned int. + // + // If an int can represent all values of the original type, the + // value is converted to an int; otherwise, it is converted to an + // unsigned int. These are called the integer promotions. All + // other types are unchanged by the integer promotions. + + QualType PTy = Context.isPromotableBitField(E); + if (!PTy.isNull()) { + E = ImpCastExprToType(E, PTy, CK_IntegralCast).get(); + return E; + } + if (Context.isPromotableIntegerType(Ty)) { + QualType PT = Context.getPromotedIntegerType(Ty); + E = ImpCastExprToType(E, PT, CK_IntegralCast).get(); + return E; + } + } + return E; + } + + /// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that + /// do not have a prototype. Arguments that have type float or __fp16 + /// are promoted to double. All other argument types are converted by + /// UsualUnaryConversions(). + ExprResult Sema::DefaultArgumentPromotion(Expr *E) { + QualType Ty = E->getType(); + assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type"); + + ExprResult Res = UsualUnaryConversions(E); + if (Res.isInvalid()) + return ExprError(); + E = Res.get(); + + // If this is a 'float' or '__fp16' (CVR qualified or typedef) + // promote to double. + // Note that default argument promotion applies only to float (and + // half/fp16); it does not apply to _Float16. + const BuiltinType *BTy = Ty->getAs(); + if (BTy && (BTy->getKind() == BuiltinType::Half || + BTy->getKind() == BuiltinType::Float)) { + if (getLangOpts().OpenCL && + !getOpenCLOptions().isAvailableOption("cl_khr_fp64", getLangOpts())) { + if (BTy->getKind() == BuiltinType::Half) { + E = ImpCastExprToType(E, Context.FloatTy, CK_FloatingCast).get(); + } + } else { + E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).get(); + } + } + if (BTy && + getLangOpts().getExtendIntArgs() == + LangOptions::ExtendArgsKind::ExtendTo64 && + Context.getTargetInfo().supportsExtendIntArgs() && Ty->isIntegerType() && + Context.getTypeSizeInChars(BTy) < + Context.getTypeSizeInChars(Context.LongLongTy)) { + E = (Ty->isUnsignedIntegerType()) + ? ImpCastExprToType(E, Context.UnsignedLongLongTy, CK_IntegralCast) + .get() + : ImpCastExprToType(E, Context.LongLongTy, CK_IntegralCast).get(); + assert(8 == Context.getTypeSizeInChars(Context.LongLongTy).getQuantity() && + "Unexpected typesize for LongLongTy"); + } + + // C++ performs lvalue-to-rvalue conversion as a default argument + // promotion, even on class types, but note: + // C++11 [conv.lval]p2: + // When an lvalue-to-rvalue conversion occurs in an unevaluated + // operand or a subexpression thereof the value contained in the + // referenced object is not accessed. Otherwise, if the glvalue + // has a class type, the conversion copy-initializes a temporary + // of type T from the glvalue and the result of the conversion + // is a prvalue for the temporary. + // FIXME: add some way to gate this entire thing for correctness in + // potentially potentially evaluated contexts. + if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) { + ExprResult Temp = PerformCopyInitialization( + InitializedEntity::InitializeTemporary(E->getType()), + E->getExprLoc(), E); + if (Temp.isInvalid()) + return ExprError(); + E = Temp.get(); + } + + return E; + } + + /// Determine the degree of POD-ness for an expression. + /// Incomplete types are considered POD, since this check can be performed + /// when we're in an unevaluated context. + Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) { + if (Ty->isIncompleteType()) { + // C++11 [expr.call]p7: + // After these conversions, if the argument does not have arithmetic, + // enumeration, pointer, pointer to member, or class type, the program + // is ill-formed. + // + // Since we've already performed array-to-pointer and function-to-pointer + // decay, the only such type in C++ is cv void. This also handles + // initializer lists as variadic arguments. + if (Ty->isVoidType()) + return VAK_Invalid; + + if (Ty->isObjCObjectType()) + return VAK_Invalid; + return VAK_Valid; + } + + if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct) + return VAK_Invalid; + + if (Context.getTargetInfo().getTriple().isWasm() && + Ty.isWebAssemblyReferenceType()) { + return VAK_Invalid; + } + + if (Ty.isCXX98PODType(Context)) + return VAK_Valid; + + // C++11 [expr.call]p7: + // Passing a potentially-evaluated argument of class type (Clause 9) + // having a non-trivial copy constructor, a non-trivial move constructor, + // or a non-trivial destructor, with no corresponding parameter, + // is conditionally-supported with implementation-defined semantics. + if (getLangOpts().CPlusPlus11 && !Ty->isDependentType()) + if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl()) + if (!Record->hasNonTrivialCopyConstructor() && + !Record->hasNonTrivialMoveConstructor() && + !Record->hasNonTrivialDestructor()) + return VAK_ValidInCXX11; + + if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType()) + return VAK_Valid; + + if (Ty->isObjCObjectType()) + return VAK_Invalid; + + if (getLangOpts().MSVCCompat) + return VAK_MSVCUndefined; + + // FIXME: In C++11, these cases are conditionally-supported, meaning we're + // permitted to reject them. We should consider doing so. + return VAK_Undefined; + } + + void Sema::checkVariadicArgument(const Expr *E, VariadicCallType CT) { + // Don't allow one to pass an Objective-C interface to a vararg. + const QualType &Ty = E->getType(); + VarArgKind VAK = isValidVarArgType(Ty); + + // Complain about passing non-POD types through varargs. + switch (VAK) { + case VAK_ValidInCXX11: + DiagRuntimeBehavior( + E->getBeginLoc(), nullptr, + PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg) << Ty << CT); + [[fallthrough]]; + case VAK_Valid: + if (Ty->isRecordType()) { + // This is unlikely to be what the user intended. If the class has a + // 'c_str' member function, the user probably meant to call that. + DiagRuntimeBehavior(E->getBeginLoc(), nullptr, + PDiag(diag::warn_pass_class_arg_to_vararg) + << Ty << CT << hasCStrMethod(E) << ".c_str()"); + } + break; + + case VAK_Undefined: + case VAK_MSVCUndefined: + DiagRuntimeBehavior(E->getBeginLoc(), nullptr, + PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg) + << getLangOpts().CPlusPlus11 << Ty << CT); + break; + + case VAK_Invalid: + if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct) + Diag(E->getBeginLoc(), + diag::err_cannot_pass_non_trivial_c_struct_to_vararg) + << Ty << CT; + else if (Ty->isObjCObjectType()) + DiagRuntimeBehavior(E->getBeginLoc(), nullptr, + PDiag(diag::err_cannot_pass_objc_interface_to_vararg) + << Ty << CT); + else + Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg) + << isa(E) << Ty << CT; + break; + } + } + + /// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but + /// will create a trap if the resulting type is not a POD type. + ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT, + FunctionDecl *FDecl) { + if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) { + // Strip the unbridged-cast placeholder expression off, if applicable. + if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast && + (CT == VariadicMethod || + (FDecl && FDecl->hasAttr()))) { + E = stripARCUnbridgedCast(E); + + // Otherwise, do normal placeholder checking. + } else { + ExprResult ExprRes = CheckPlaceholderExpr(E); + if (ExprRes.isInvalid()) + return ExprError(); + E = ExprRes.get(); + } + } + + ExprResult ExprRes = DefaultArgumentPromotion(E); + if (ExprRes.isInvalid()) + return ExprError(); + + // Copy blocks to the heap. + if (ExprRes.get()->getType()->isBlockPointerType()) + maybeExtendBlockObject(ExprRes); + + E = ExprRes.get(); + + // Diagnostics regarding non-POD argument types are + // emitted along with format string checking in Sema::CheckFunctionCall(). + if (isValidVarArgType(E->getType()) == VAK_Undefined) { + // Turn this into a trap. + CXXScopeSpec SS; + SourceLocation TemplateKWLoc; + UnqualifiedId Name; + Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"), + E->getBeginLoc()); + ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc, Name, + /*HasTrailingLParen=*/true, + /*IsAddressOfOperand=*/false); + if (TrapFn.isInvalid()) + return ExprError(); + + ExprResult Call = BuildCallExpr(TUScope, TrapFn.get(), E->getBeginLoc(), + std::nullopt, E->getEndLoc()); + if (Call.isInvalid()) + return ExprError(); + + ExprResult Comma = + ActOnBinOp(TUScope, E->getBeginLoc(), tok::comma, Call.get(), E); + if (Comma.isInvalid()) + return ExprError(); + return Comma.get(); + } + + if (!getLangOpts().CPlusPlus && + RequireCompleteType(E->getExprLoc(), E->getType(), + diag::err_call_incomplete_argument)) + return ExprError(); + + return E; + } + + /// Converts an integer to complex float type. Helper function of + /// UsualArithmeticConversions() + /// + /// \return false if the integer expression is an integer type and is + /// successfully converted to the complex type. + static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr, + ExprResult &ComplexExpr, + QualType IntTy, + QualType ComplexTy, + bool SkipCast) { + if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true; + if (SkipCast) return false; + if (IntTy->isIntegerType()) { + QualType fpTy = ComplexTy->castAs()->getElementType(); + IntExpr = S.ImpCastExprToType(IntExpr.get(), fpTy, CK_IntegralToFloating); + IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy, + CK_FloatingRealToComplex); + } else { + assert(IntTy->isComplexIntegerType()); + IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy, + CK_IntegralComplexToFloatingComplex); + } + return false; + } + + // This handles complex/complex, complex/float, or float/complex. + // When both operands are complex, the shorter operand is converted to the + // type of the longer, and that is the type of the result. This corresponds + // to what is done when combining two real floating-point operands. + // The fun begins when size promotion occur across type domains. + // From H&S 6.3.4: When one operand is complex and the other is a real + // floating-point type, the less precise type is converted, within it's + // real or complex domain, to the precision of the other type. For example, + // when combining a "long double" with a "double _Complex", the + // "double _Complex" is promoted to "long double _Complex". + static QualType handleComplexFloatConversion(Sema &S, ExprResult &Shorter, + QualType ShorterType, + QualType LongerType, + bool PromotePrecision) { + bool LongerIsComplex = isa(LongerType.getCanonicalType()); + QualType Result = + LongerIsComplex ? LongerType : S.Context.getComplexType(LongerType); + + if (PromotePrecision) { + if (isa(ShorterType.getCanonicalType())) { + Shorter = + S.ImpCastExprToType(Shorter.get(), Result, CK_FloatingComplexCast); + } else { + if (LongerIsComplex) + LongerType = LongerType->castAs()->getElementType(); + Shorter = S.ImpCastExprToType(Shorter.get(), LongerType, CK_FloatingCast); + } + } + return Result; + } + + /// Handle arithmetic conversion with complex types. Helper function of + /// UsualArithmeticConversions() + static QualType handleComplexConversion(Sema &S, ExprResult &LHS, + ExprResult &RHS, QualType LHSType, + QualType RHSType, bool IsCompAssign) { + // if we have an integer operand, the result is the complex type. + if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType, + /*SkipCast=*/false)) + return LHSType; + if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType, + /*SkipCast=*/IsCompAssign)) + return RHSType; + + // Compute the rank of the two types, regardless of whether they are complex. + int Order = S.Context.getFloatingTypeOrder(LHSType, RHSType); + if (Order < 0) + // Promote the precision of the LHS if not an assignment. + return handleComplexFloatConversion(S, LHS, LHSType, RHSType, + /*PromotePrecision=*/!IsCompAssign); + // Promote the precision of the RHS unless it is already the same as the LHS. + return handleComplexFloatConversion(S, RHS, RHSType, LHSType, + /*PromotePrecision=*/Order > 0); + } + + /// Handle arithmetic conversion from integer to float. Helper function + /// of UsualArithmeticConversions() + static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr, + ExprResult &IntExpr, + QualType FloatTy, QualType IntTy, + bool ConvertFloat, bool ConvertInt) { + if (IntTy->isIntegerType()) { + if (ConvertInt) + // Convert intExpr to the lhs floating point type. + IntExpr = S.ImpCastExprToType(IntExpr.get(), FloatTy, + CK_IntegralToFloating); + return FloatTy; + } + + // Convert both sides to the appropriate complex float. + assert(IntTy->isComplexIntegerType()); + QualType result = S.Context.getComplexType(FloatTy); + + // _Complex int -> _Complex float + if (ConvertInt) + IntExpr = S.ImpCastExprToType(IntExpr.get(), result, + CK_IntegralComplexToFloatingComplex); + + // float -> _Complex float + if (ConvertFloat) + FloatExpr = S.ImpCastExprToType(FloatExpr.get(), result, + CK_FloatingRealToComplex); + + return result; + } + + /// Handle arithmethic conversion with floating point types. Helper + /// function of UsualArithmeticConversions() + static QualType handleFloatConversion(Sema &S, ExprResult &LHS, + ExprResult &RHS, QualType LHSType, + QualType RHSType, bool IsCompAssign) { + bool LHSFloat = LHSType->isRealFloatingType(); + bool RHSFloat = RHSType->isRealFloatingType(); + + // N1169 4.1.4: If one of the operands has a floating type and the other + // operand has a fixed-point type, the fixed-point operand + // is converted to the floating type [...] + if (LHSType->isFixedPointType() || RHSType->isFixedPointType()) { + if (LHSFloat) + RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FixedPointToFloating); + else if (!IsCompAssign) + LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FixedPointToFloating); + return LHSFloat ? LHSType : RHSType; + } + + // If we have two real floating types, convert the smaller operand + // to the bigger result. + if (LHSFloat && RHSFloat) { + int order = S.Context.getFloatingTypeOrder(LHSType, RHSType); + if (order > 0) { + RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FloatingCast); + return LHSType; + } + + assert(order < 0 && "illegal float comparison"); + if (!IsCompAssign) + LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FloatingCast); + return RHSType; + } + + if (LHSFloat) { + // Half FP has to be promoted to float unless it is natively supported + if (LHSType->isHalfType() && !S.getLangOpts().NativeHalfType) + LHSType = S.Context.FloatTy; + + return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType, + /*ConvertFloat=*/!IsCompAssign, + /*ConvertInt=*/ true); + } + assert(RHSFloat); + return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType, + /*ConvertFloat=*/ true, + /*ConvertInt=*/!IsCompAssign); + } + + /// Diagnose attempts to convert between __float128, __ibm128 and + /// long double if there is no support for such conversion. + /// Helper function of UsualArithmeticConversions(). + static bool unsupportedTypeConversion(const Sema &S, QualType LHSType, + QualType RHSType) { + // No issue if either is not a floating point type. + if (!LHSType->isFloatingType() || !RHSType->isFloatingType()) + return false; + + // No issue if both have the same 128-bit float semantics. + auto *LHSComplex = LHSType->getAs(); + auto *RHSComplex = RHSType->getAs(); + + QualType LHSElem = LHSComplex ? LHSComplex->getElementType() : LHSType; + QualType RHSElem = RHSComplex ? RHSComplex->getElementType() : RHSType; + + const llvm::fltSemantics &LHSSem = S.Context.getFloatTypeSemantics(LHSElem); + const llvm::fltSemantics &RHSSem = S.Context.getFloatTypeSemantics(RHSElem); + + if ((&LHSSem != &llvm::APFloat::PPCDoubleDouble() || + &RHSSem != &llvm::APFloat::IEEEquad()) && + (&LHSSem != &llvm::APFloat::IEEEquad() || + &RHSSem != &llvm::APFloat::PPCDoubleDouble())) + return false; + + return true; + } + + typedef ExprResult PerformCastFn(Sema &S, Expr *operand, QualType toType); + + namespace { + /// These helper callbacks are placed in an anonymous namespace to + /// permit their use as function template parameters. + ExprResult doIntegralCast(Sema &S, Expr *op, QualType toType) { + return S.ImpCastExprToType(op, toType, CK_IntegralCast); + } + + ExprResult doComplexIntegralCast(Sema &S, Expr *op, QualType toType) { + return S.ImpCastExprToType(op, S.Context.getComplexType(toType), + CK_IntegralComplexCast); + } + } + + /// Handle integer arithmetic conversions. Helper function of + /// UsualArithmeticConversions() + template + static QualType handleIntegerConversion(Sema &S, ExprResult &LHS, + ExprResult &RHS, QualType LHSType, + QualType RHSType, bool IsCompAssign) { + // The rules for this case are in C99 6.3.1.8 + int order = S.Context.getIntegerTypeOrder(LHSType, RHSType); + bool LHSSigned = LHSType->hasSignedIntegerRepresentation(); + bool RHSSigned = RHSType->hasSignedIntegerRepresentation(); + if (LHSSigned == RHSSigned) { + // Same signedness; use the higher-ranked type + if (order >= 0) { + RHS = (*doRHSCast)(S, RHS.get(), LHSType); + return LHSType; + } else if (!IsCompAssign) + LHS = (*doLHSCast)(S, LHS.get(), RHSType); + return RHSType; + } else if (order != (LHSSigned ? 1 : -1)) { + // The unsigned type has greater than or equal rank to the + // signed type, so use the unsigned type + if (RHSSigned) { + RHS = (*doRHSCast)(S, RHS.get(), LHSType); + return LHSType; + } else if (!IsCompAssign) + LHS = (*doLHSCast)(S, LHS.get(), RHSType); + return RHSType; + } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) { + // The two types are different widths; if we are here, that + // means the signed type is larger than the unsigned type, so + // use the signed type. + if (LHSSigned) { + RHS = (*doRHSCast)(S, RHS.get(), LHSType); + return LHSType; + } else if (!IsCompAssign) + LHS = (*doLHSCast)(S, LHS.get(), RHSType); + return RHSType; + } else { + // The signed type is higher-ranked than the unsigned type, + // but isn't actually any bigger (like unsigned int and long + // on most 32-bit systems). Use the unsigned type corresponding + // to the signed type. + QualType result = + S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType); + RHS = (*doRHSCast)(S, RHS.get(), result); + if (!IsCompAssign) + LHS = (*doLHSCast)(S, LHS.get(), result); + return result; + } + } + + /// Handle conversions with GCC complex int extension. Helper function + /// of UsualArithmeticConversions() + static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS, + ExprResult &RHS, QualType LHSType, + QualType RHSType, + bool IsCompAssign) { + const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType(); + const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType(); + + if (LHSComplexInt && RHSComplexInt) { + QualType LHSEltType = LHSComplexInt->getElementType(); + QualType RHSEltType = RHSComplexInt->getElementType(); + QualType ScalarType = + handleIntegerConversion + (S, LHS, RHS, LHSEltType, RHSEltType, IsCompAssign); + + return S.Context.getComplexType(ScalarType); + } + + if (LHSComplexInt) { + QualType LHSEltType = LHSComplexInt->getElementType(); + QualType ScalarType = + handleIntegerConversion + (S, LHS, RHS, LHSEltType, RHSType, IsCompAssign); + QualType ComplexType = S.Context.getComplexType(ScalarType); + RHS = S.ImpCastExprToType(RHS.get(), ComplexType, + CK_IntegralRealToComplex); + + return ComplexType; + } + + assert(RHSComplexInt); + + QualType RHSEltType = RHSComplexInt->getElementType(); + QualType ScalarType = + handleIntegerConversion + (S, LHS, RHS, LHSType, RHSEltType, IsCompAssign); + QualType ComplexType = S.Context.getComplexType(ScalarType); + + if (!IsCompAssign) + LHS = S.ImpCastExprToType(LHS.get(), ComplexType, + CK_IntegralRealToComplex); + return ComplexType; + } + + /// Return the rank of a given fixed point or integer type. The value itself + /// doesn't matter, but the values must be increasing with proper increasing + /// rank as described in N1169 4.1.1. + static unsigned GetFixedPointRank(QualType Ty) { + const auto *BTy = Ty->getAs(); + assert(BTy && "Expected a builtin type."); + + switch (BTy->getKind()) { + case BuiltinType::ShortFract: + case BuiltinType::UShortFract: + case BuiltinType::SatShortFract: + case BuiltinType::SatUShortFract: + return 1; + case BuiltinType::Fract: + case BuiltinType::UFract: + case BuiltinType::SatFract: + case BuiltinType::SatUFract: + return 2; + case BuiltinType::LongFract: + case BuiltinType::ULongFract: + case BuiltinType::SatLongFract: + case BuiltinType::SatULongFract: + return 3; + case BuiltinType::ShortAccum: + case BuiltinType::UShortAccum: + case BuiltinType::SatShortAccum: + case BuiltinType::SatUShortAccum: + return 4; + case BuiltinType::Accum: + case BuiltinType::UAccum: + case BuiltinType::SatAccum: + case BuiltinType::SatUAccum: + return 5; + case BuiltinType::LongAccum: + case BuiltinType::ULongAccum: + case BuiltinType::SatLongAccum: + case BuiltinType::SatULongAccum: + return 6; + default: + if (BTy->isInteger()) + return 0; + llvm_unreachable("Unexpected fixed point or integer type"); + } + } + + /// handleFixedPointConversion - Fixed point operations between fixed + /// point types and integers or other fixed point types do not fall under + /// usual arithmetic conversion since these conversions could result in loss + /// of precsision (N1169 4.1.4). These operations should be calculated with + /// the full precision of their result type (N1169 4.1.6.2.1). + static QualType handleFixedPointConversion(Sema &S, QualType LHSTy, + QualType RHSTy) { + assert((LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) && + "Expected at least one of the operands to be a fixed point type"); + assert((LHSTy->isFixedPointOrIntegerType() || + RHSTy->isFixedPointOrIntegerType()) && + "Special fixed point arithmetic operation conversions are only " + "applied to ints or other fixed point types"); + + // If one operand has signed fixed-point type and the other operand has + // unsigned fixed-point type, then the unsigned fixed-point operand is + // converted to its corresponding signed fixed-point type and the resulting + // type is the type of the converted operand. + if (RHSTy->isSignedFixedPointType() && LHSTy->isUnsignedFixedPointType()) + LHSTy = S.Context.getCorrespondingSignedFixedPointType(LHSTy); + else if (RHSTy->isUnsignedFixedPointType() && LHSTy->isSignedFixedPointType()) + RHSTy = S.Context.getCorrespondingSignedFixedPointType(RHSTy); + + // The result type is the type with the highest rank, whereby a fixed-point + // conversion rank is always greater than an integer conversion rank; if the + // type of either of the operands is a saturating fixedpoint type, the result + // type shall be the saturating fixed-point type corresponding to the type + // with the highest rank; the resulting value is converted (taking into + // account rounding and overflow) to the precision of the resulting type. + // Same ranks between signed and unsigned types are resolved earlier, so both + // types are either signed or both unsigned at this point. + unsigned LHSTyRank = GetFixedPointRank(LHSTy); + unsigned RHSTyRank = GetFixedPointRank(RHSTy); + + QualType ResultTy = LHSTyRank > RHSTyRank ? LHSTy : RHSTy; + + if (LHSTy->isSaturatedFixedPointType() || RHSTy->isSaturatedFixedPointType()) + ResultTy = S.Context.getCorrespondingSaturatedType(ResultTy); + + return ResultTy; + } + + /// Check that the usual arithmetic conversions can be performed on this pair of + /// expressions that might be of enumeration type. + static void checkEnumArithmeticConversions(Sema &S, Expr *LHS, Expr *RHS, + SourceLocation Loc, + Sema::ArithConvKind ACK) { + // C++2a [expr.arith.conv]p1: + // If one operand is of enumeration type and the other operand is of a + // different enumeration type or a floating-point type, this behavior is + // deprecated ([depr.arith.conv.enum]). + // + // Warn on this in all language modes. Produce a deprecation warning in C++20. + // Eventually we will presumably reject these cases (in C++23 onwards?). + QualType L = LHS->getType(), R = RHS->getType(); + bool LEnum = L->isUnscopedEnumerationType(), + REnum = R->isUnscopedEnumerationType(); + bool IsCompAssign = ACK == Sema::ACK_CompAssign; + if ((!IsCompAssign && LEnum && R->isFloatingType()) || + (REnum && L->isFloatingType())) { + S.Diag(Loc, S.getLangOpts().CPlusPlus20 + ? diag::warn_arith_conv_enum_float_cxx20 + : diag::warn_arith_conv_enum_float) + << LHS->getSourceRange() << RHS->getSourceRange() + << (int)ACK << LEnum << L << R; + } else if (!IsCompAssign && LEnum && REnum && + !S.Context.hasSameUnqualifiedType(L, R)) { + unsigned DiagID; + if (!L->castAs()->getDecl()->hasNameForLinkage() || + !R->castAs()->getDecl()->hasNameForLinkage()) { + // If either enumeration type is unnamed, it's less likely that the + // user cares about this, but this situation is still deprecated in + // C++2a. Use a different warning group. + DiagID = S.getLangOpts().CPlusPlus20 + ? diag::warn_arith_conv_mixed_anon_enum_types_cxx20 + : diag::warn_arith_conv_mixed_anon_enum_types; + } else if (ACK == Sema::ACK_Conditional) { + // Conditional expressions are separated out because they have + // historically had a different warning flag. + DiagID = S.getLangOpts().CPlusPlus20 + ? diag::warn_conditional_mixed_enum_types_cxx20 + : diag::warn_conditional_mixed_enum_types; + } else if (ACK == Sema::ACK_Comparison) { + // Comparison expressions are separated out because they have + // historically had a different warning flag. + DiagID = S.getLangOpts().CPlusPlus20 + ? diag::warn_comparison_mixed_enum_types_cxx20 + : diag::warn_comparison_mixed_enum_types; + } else { + DiagID = S.getLangOpts().CPlusPlus20 + ? diag::warn_arith_conv_mixed_enum_types_cxx20 + : diag::warn_arith_conv_mixed_enum_types; + } + S.Diag(Loc, DiagID) << LHS->getSourceRange() << RHS->getSourceRange() + << (int)ACK << L << R; + } + } + + /// UsualArithmeticConversions - Performs various conversions that are common to + /// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this + /// routine returns the first non-arithmetic type found. The client is + /// responsible for emitting appropriate error diagnostics. + QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS, + SourceLocation Loc, + ArithConvKind ACK) { + checkEnumArithmeticConversions(*this, LHS.get(), RHS.get(), Loc, ACK); + + if (ACK != ACK_CompAssign) { + LHS = UsualUnaryConversions(LHS.get()); + if (LHS.isInvalid()) + return QualType(); + } + + RHS = UsualUnaryConversions(RHS.get()); + if (RHS.isInvalid()) + return QualType(); + + // For conversion purposes, we ignore any qualifiers. + // For example, "const float" and "float" are equivalent. + QualType LHSType = LHS.get()->getType().getUnqualifiedType(); + QualType RHSType = RHS.get()->getType().getUnqualifiedType(); + + // For conversion purposes, we ignore any atomic qualifier on the LHS. + if (const AtomicType *AtomicLHS = LHSType->getAs()) + LHSType = AtomicLHS->getValueType(); + + // If both types are identical, no conversion is needed. + if (Context.hasSameType(LHSType, RHSType)) + return Context.getCommonSugaredType(LHSType, RHSType); + + // If either side is a non-arithmetic type (e.g. a pointer), we are done. + // The caller can deal with this (e.g. pointer + int). + if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType()) + return QualType(); + + // Apply unary and bitfield promotions to the LHS's type. + QualType LHSUnpromotedType = LHSType; + if (Context.isPromotableIntegerType(LHSType)) + LHSType = Context.getPromotedIntegerType(LHSType); + QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get()); + if (!LHSBitfieldPromoteTy.isNull()) + LHSType = LHSBitfieldPromoteTy; + if (LHSType != LHSUnpromotedType && ACK != ACK_CompAssign) + LHS = ImpCastExprToType(LHS.get(), LHSType, CK_IntegralCast); + + // If both types are identical, no conversion is needed. + if (Context.hasSameType(LHSType, RHSType)) + return Context.getCommonSugaredType(LHSType, RHSType); + + // At this point, we have two different arithmetic types. + + // Diagnose attempts to convert between __ibm128, __float128 and long double + // where such conversions currently can't be handled. + if (unsupportedTypeConversion(*this, LHSType, RHSType)) + return QualType(); + + // Handle complex types first (C99 6.3.1.8p1). + if (LHSType->isComplexType() || RHSType->isComplexType()) + return handleComplexConversion(*this, LHS, RHS, LHSType, RHSType, + ACK == ACK_CompAssign); + + // Now handle "real" floating types (i.e. float, double, long double). + if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType()) + return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType, + ACK == ACK_CompAssign); + + // Handle GCC complex int extension. + if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType()) + return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType, + ACK == ACK_CompAssign); + + if (LHSType->isFixedPointType() || RHSType->isFixedPointType()) + return handleFixedPointConversion(*this, LHSType, RHSType); + + // Finally, we have two differing integer types. + return handleIntegerConversion + (*this, LHS, RHS, LHSType, RHSType, ACK == ACK_CompAssign); + } + + //===----------------------------------------------------------------------===// + // Semantic Analysis for various Expression Types + //===----------------------------------------------------------------------===// + + + ExprResult Sema::ActOnGenericSelectionExpr( + SourceLocation KeyLoc, SourceLocation DefaultLoc, SourceLocation RParenLoc, + bool PredicateIsExpr, void *ControllingExprOrType, + ArrayRef ArgTypes, ArrayRef ArgExprs) { + unsigned NumAssocs = ArgTypes.size(); + assert(NumAssocs == ArgExprs.size()); + + TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs]; + for (unsigned i = 0; i < NumAssocs; ++i) { + if (ArgTypes[i]) + (void) GetTypeFromParser(ArgTypes[i], &Types[i]); + else + Types[i] = nullptr; + } + + // If we have a controlling type, we need to convert it from a parsed type + // into a semantic type and then pass that along. + if (!PredicateIsExpr) { + TypeSourceInfo *ControllingType; + (void)GetTypeFromParser(ParsedType::getFromOpaquePtr(ControllingExprOrType), + &ControllingType); + assert(ControllingType && "couldn't get the type out of the parser"); + ControllingExprOrType = ControllingType; + } + + ExprResult ER = CreateGenericSelectionExpr( + KeyLoc, DefaultLoc, RParenLoc, PredicateIsExpr, ControllingExprOrType, + llvm::ArrayRef(Types, NumAssocs), ArgExprs); + delete [] Types; + return ER; + } + + ExprResult Sema::CreateGenericSelectionExpr( + SourceLocation KeyLoc, SourceLocation DefaultLoc, SourceLocation RParenLoc, + bool PredicateIsExpr, void *ControllingExprOrType, + ArrayRef Types, ArrayRef Exprs) { + unsigned NumAssocs = Types.size(); + assert(NumAssocs == Exprs.size()); + assert(ControllingExprOrType && + "Must have either a controlling expression or a controlling type"); + + Expr *ControllingExpr = nullptr; + TypeSourceInfo *ControllingType = nullptr; + if (PredicateIsExpr) { + // Decay and strip qualifiers for the controlling expression type, and + // handle placeholder type replacement. See committee discussion from WG14 + // DR423. + EnterExpressionEvaluationContext Unevaluated( + *this, Sema::ExpressionEvaluationContext::Unevaluated); + ExprResult R = DefaultFunctionArrayLvalueConversion( + reinterpret_cast(ControllingExprOrType)); + if (R.isInvalid()) + return ExprError(); + ControllingExpr = R.get(); + } else { + // The extension form uses the type directly rather than converting it. + ControllingType = reinterpret_cast(ControllingExprOrType); + if (!ControllingType) + return ExprError(); + } + + bool TypeErrorFound = false, + IsResultDependent = ControllingExpr + ? ControllingExpr->isTypeDependent() + : ControllingType->getType()->isDependentType(), + ContainsUnexpandedParameterPack = + ControllingExpr + ? ControllingExpr->containsUnexpandedParameterPack() + : ControllingType->getType()->containsUnexpandedParameterPack(); + + // The controlling expression is an unevaluated operand, so side effects are + // likely unintended. + if (!inTemplateInstantiation() && !IsResultDependent && ControllingExpr && + ControllingExpr->HasSideEffects(Context, false)) + Diag(ControllingExpr->getExprLoc(), + diag::warn_side_effects_unevaluated_context); + + for (unsigned i = 0; i < NumAssocs; ++i) { + if (Exprs[i]->containsUnexpandedParameterPack()) + ContainsUnexpandedParameterPack = true; + + if (Types[i]) { + if (Types[i]->getType()->containsUnexpandedParameterPack()) + ContainsUnexpandedParameterPack = true; + + if (Types[i]->getType()->isDependentType()) { + IsResultDependent = true; + } else { + // We relax the restriction on use of incomplete types and non-object + // types with the type-based extension of _Generic. Allowing incomplete + // objects means those can be used as "tags" for a type-safe way to map + // to a value. Similarly, matching on function types rather than + // function pointer types can be useful. However, the restriction on VM + // types makes sense to retain as there are open questions about how + // the selection can be made at compile time. + // + // C11 6.5.1.1p2 "The type name in a generic association shall specify a + // complete object type other than a variably modified type." + unsigned D = 0; + if (ControllingExpr && Types[i]->getType()->isIncompleteType()) + D = diag::err_assoc_type_incomplete; + else if (ControllingExpr && !Types[i]->getType()->isObjectType()) + D = diag::err_assoc_type_nonobject; + else if (Types[i]->getType()->isVariablyModifiedType()) + D = diag::err_assoc_type_variably_modified; + else if (ControllingExpr) { + // Because the controlling expression undergoes lvalue conversion, + // array conversion, and function conversion, an association which is + // of array type, function type, or is qualified can never be + // reached. We will warn about this so users are less surprised by + // the unreachable association. However, we don't have to handle + // function types; that's not an object type, so it's handled above. + // + // The logic is somewhat different for C++ because C++ has different + // lvalue to rvalue conversion rules than C. [conv.lvalue]p1 says, + // If T is a non-class type, the type of the prvalue is the cv- + // unqualified version of T. Otherwise, the type of the prvalue is T. + // The result of these rules is that all qualified types in an + // association in C are unreachable, and in C++, only qualified non- + // class types are unreachable. + // + // NB: this does not apply when the first operand is a type rather + // than an expression, because the type form does not undergo + // conversion. + unsigned Reason = 0; + QualType QT = Types[i]->getType(); + if (QT->isArrayType()) + Reason = 1; + else if (QT.hasQualifiers() && + (!LangOpts.CPlusPlus || !QT->isRecordType())) + Reason = 2; + + if (Reason) + Diag(Types[i]->getTypeLoc().getBeginLoc(), + diag::warn_unreachable_association) + << QT << (Reason - 1); + } + + if (D != 0) { + Diag(Types[i]->getTypeLoc().getBeginLoc(), D) + << Types[i]->getTypeLoc().getSourceRange() + << Types[i]->getType(); + TypeErrorFound = true; + } + + // C11 6.5.1.1p2 "No two generic associations in the same generic + // selection shall specify compatible types." + for (unsigned j = i+1; j < NumAssocs; ++j) + if (Types[j] && !Types[j]->getType()->isDependentType() && + Context.typesAreCompatible(Types[i]->getType(), + Types[j]->getType())) { + Diag(Types[j]->getTypeLoc().getBeginLoc(), + diag::err_assoc_compatible_types) + << Types[j]->getTypeLoc().getSourceRange() + << Types[j]->getType() + << Types[i]->getType(); + Diag(Types[i]->getTypeLoc().getBeginLoc(), + diag::note_compat_assoc) + << Types[i]->getTypeLoc().getSourceRange() + << Types[i]->getType(); + TypeErrorFound = true; + } + } + } + } + if (TypeErrorFound) + return ExprError(); + + // If we determined that the generic selection is result-dependent, don't + // try to compute the result expression. + if (IsResultDependent) { + if (ControllingExpr) + return GenericSelectionExpr::Create(Context, KeyLoc, ControllingExpr, + Types, Exprs, DefaultLoc, RParenLoc, + ContainsUnexpandedParameterPack); + return GenericSelectionExpr::Create(Context, KeyLoc, ControllingType, Types, + Exprs, DefaultLoc, RParenLoc, + ContainsUnexpandedParameterPack); + } + + SmallVector CompatIndices; + unsigned DefaultIndex = -1U; + // Look at the canonical type of the controlling expression in case it was a + // deduced type like __auto_type. However, when issuing diagnostics, use the + // type the user wrote in source rather than the canonical one. + for (unsigned i = 0; i < NumAssocs; ++i) { + if (!Types[i]) + DefaultIndex = i; + else if (ControllingExpr && + Context.typesAreCompatible( + ControllingExpr->getType().getCanonicalType(), + Types[i]->getType())) + CompatIndices.push_back(i); + else if (ControllingType && + Context.typesAreCompatible( + ControllingType->getType().getCanonicalType(), + Types[i]->getType())) + CompatIndices.push_back(i); + } + + auto GetControllingRangeAndType = [](Expr *ControllingExpr, + TypeSourceInfo *ControllingType) { + // We strip parens here because the controlling expression is typically + // parenthesized in macro definitions. + if (ControllingExpr) + ControllingExpr = ControllingExpr->IgnoreParens(); + + SourceRange SR = ControllingExpr + ? ControllingExpr->getSourceRange() + : ControllingType->getTypeLoc().getSourceRange(); + QualType QT = ControllingExpr ? ControllingExpr->getType() + : ControllingType->getType(); + + return std::make_pair(SR, QT); + }; + + // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have + // type compatible with at most one of the types named in its generic + // association list." + if (CompatIndices.size() > 1) { + auto P = GetControllingRangeAndType(ControllingExpr, ControllingType); + SourceRange SR = P.first; + Diag(SR.getBegin(), diag::err_generic_sel_multi_match) + << SR << P.second << (unsigned)CompatIndices.size(); + for (unsigned I : CompatIndices) { + Diag(Types[I]->getTypeLoc().getBeginLoc(), + diag::note_compat_assoc) + << Types[I]->getTypeLoc().getSourceRange() + << Types[I]->getType(); + } + return ExprError(); + } + + // C11 6.5.1.1p2 "If a generic selection has no default generic association, + // its controlling expression shall have type compatible with exactly one of + // the types named in its generic association list." + if (DefaultIndex == -1U && CompatIndices.size() == 0) { + auto P = GetControllingRangeAndType(ControllingExpr, ControllingType); + SourceRange SR = P.first; + Diag(SR.getBegin(), diag::err_generic_sel_no_match) << SR << P.second; + return ExprError(); + } + + // C11 6.5.1.1p3 "If a generic selection has a generic association with a + // type name that is compatible with the type of the controlling expression, + // then the result expression of the generic selection is the expression + // in that generic association. Otherwise, the result expression of the + // generic selection is the expression in the default generic association." + unsigned ResultIndex = + CompatIndices.size() ? CompatIndices[0] : DefaultIndex; + + if (ControllingExpr) { + return GenericSelectionExpr::Create( + Context, KeyLoc, ControllingExpr, Types, Exprs, DefaultLoc, RParenLoc, + ContainsUnexpandedParameterPack, ResultIndex); + } + return GenericSelectionExpr::Create( + Context, KeyLoc, ControllingType, Types, Exprs, DefaultLoc, RParenLoc, + ContainsUnexpandedParameterPack, ResultIndex); + } + + /// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the + /// location of the token and the offset of the ud-suffix within it. + static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc, + unsigned Offset) { + return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(), + S.getLangOpts()); + } + + /// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up + /// the corresponding cooked (non-raw) literal operator, and build a call to it. + static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope, + IdentifierInfo *UDSuffix, + SourceLocation UDSuffixLoc, + ArrayRef Args, + SourceLocation LitEndLoc) { + assert(Args.size() <= 2 && "too many arguments for literal operator"); + + QualType ArgTy[2]; + for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) { + ArgTy[ArgIdx] = Args[ArgIdx]->getType(); + if (ArgTy[ArgIdx]->isArrayType()) + ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]); + } + + DeclarationName OpName = + S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix); + DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc); + OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc); + + LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName); + if (S.LookupLiteralOperator(Scope, R, llvm::ArrayRef(ArgTy, Args.size()), + /*AllowRaw*/ false, /*AllowTemplate*/ false, + /*AllowStringTemplatePack*/ false, + /*DiagnoseMissing*/ true) == Sema::LOLR_Error) + return ExprError(); + + return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc); + } + + ExprResult Sema::ActOnUnevaluatedStringLiteral(ArrayRef StringToks) { + StringLiteralParser Literal(StringToks, PP, + StringLiteralEvalMethod::Unevaluated); + if (Literal.hadError) + return ExprError(); + + SmallVector StringTokLocs; + for (const Token &Tok : StringToks) + StringTokLocs.push_back(Tok.getLocation()); + + StringLiteral *Lit = StringLiteral::Create( + Context, Literal.GetString(), StringLiteral::Unevaluated, false, {}, + &StringTokLocs[0], StringTokLocs.size()); + + if (!Literal.getUDSuffix().empty()) { + SourceLocation UDSuffixLoc = + getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()], + Literal.getUDSuffixOffset()); + return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl)); + } + + return Lit; + } + + /// ActOnStringLiteral - The specified tokens were lexed as pasted string + /// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle string + /// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from + /// multiple tokens. However, the common case is that StringToks points to one + /// string. + /// + ExprResult + Sema::ActOnStringLiteral(ArrayRef StringToks, Scope *UDLScope) { + assert(!StringToks.empty() && "Must have at least one string!"); + + StringLiteralParser Literal(StringToks, PP); + if (Literal.hadError) + return ExprError(); + + SmallVector StringTokLocs; + for (const Token &Tok : StringToks) + StringTokLocs.push_back(Tok.getLocation()); + + QualType CharTy = Context.CharTy; + StringLiteral::StringKind Kind = StringLiteral::Ordinary; + if (Literal.isWide()) { + CharTy = Context.getWideCharType(); + Kind = StringLiteral::Wide; + } else if (Literal.isUTF8()) { + if (getLangOpts().Char8) + CharTy = Context.Char8Ty; + Kind = StringLiteral::UTF8; + } else if (Literal.isUTF16()) { + CharTy = Context.Char16Ty; + Kind = StringLiteral::UTF16; + } else if (Literal.isUTF32()) { + CharTy = Context.Char32Ty; + Kind = StringLiteral::UTF32; + } else if (Literal.isPascal()) { + CharTy = Context.UnsignedCharTy; + } + + // Warn on initializing an array of char from a u8 string literal; this + // becomes ill-formed in C++2a. + if (getLangOpts().CPlusPlus && !getLangOpts().CPlusPlus20 && + !getLangOpts().Char8 && Kind == StringLiteral::UTF8) { + Diag(StringTokLocs.front(), diag::warn_cxx20_compat_utf8_string); + + // Create removals for all 'u8' prefixes in the string literal(s). This + // ensures C++2a compatibility (but may change the program behavior when + // built by non-Clang compilers for which the execution character set is + // not always UTF-8). + auto RemovalDiag = PDiag(diag::note_cxx20_compat_utf8_string_remove_u8); + SourceLocation RemovalDiagLoc; + for (const Token &Tok : StringToks) { + if (Tok.getKind() == tok::utf8_string_literal) { + if (RemovalDiagLoc.isInvalid()) + RemovalDiagLoc = Tok.getLocation(); + RemovalDiag << FixItHint::CreateRemoval(CharSourceRange::getCharRange( + Tok.getLocation(), + Lexer::AdvanceToTokenCharacter(Tok.getLocation(), 2, + getSourceManager(), getLangOpts()))); + } + } + Diag(RemovalDiagLoc, RemovalDiag); + } + + QualType StrTy = + Context.getStringLiteralArrayType(CharTy, Literal.GetNumStringChars()); + + // Pass &StringTokLocs[0], StringTokLocs.size() to factory! + StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(), + Kind, Literal.Pascal, StrTy, + &StringTokLocs[0], + StringTokLocs.size()); + if (Literal.getUDSuffix().empty()) + return Lit; + + // We're building a user-defined literal. + IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix()); + SourceLocation UDSuffixLoc = + getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()], + Literal.getUDSuffixOffset()); + + // Make sure we're allowed user-defined literals here. + if (!UDLScope) + return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl)); + + // C++11 [lex.ext]p5: The literal L is treated as a call of the form + // operator "" X (str, len) + QualType SizeType = Context.getSizeType(); + + DeclarationName OpName = + Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix); + DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc); + OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc); + + QualType ArgTy[] = { + Context.getArrayDecayedType(StrTy), SizeType + }; + + LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName); + switch (LookupLiteralOperator(UDLScope, R, ArgTy, + /*AllowRaw*/ false, /*AllowTemplate*/ true, + /*AllowStringTemplatePack*/ true, + /*DiagnoseMissing*/ true, Lit)) { + + case LOLR_Cooked: { + llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars()); + IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType, + StringTokLocs[0]); + Expr *Args[] = { Lit, LenArg }; + + return BuildLiteralOperatorCall(R, OpNameInfo, Args, StringTokLocs.back()); + } + + case LOLR_Template: { + TemplateArgumentListInfo ExplicitArgs; + TemplateArgument Arg(Lit); + TemplateArgumentLocInfo ArgInfo(Lit); + ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo)); + return BuildLiteralOperatorCall(R, OpNameInfo, std::nullopt, + StringTokLocs.back(), &ExplicitArgs); + } + + case LOLR_StringTemplatePack: { + TemplateArgumentListInfo ExplicitArgs; + + unsigned CharBits = Context.getIntWidth(CharTy); + bool CharIsUnsigned = CharTy->isUnsignedIntegerType(); + llvm::APSInt Value(CharBits, CharIsUnsigned); + + TemplateArgument TypeArg(CharTy); + TemplateArgumentLocInfo TypeArgInfo(Context.getTrivialTypeSourceInfo(CharTy)); + ExplicitArgs.addArgument(TemplateArgumentLoc(TypeArg, TypeArgInfo)); + + for (unsigned I = 0, N = Lit->getLength(); I != N; ++I) { + Value = Lit->getCodeUnit(I); + TemplateArgument Arg(Context, Value, CharTy); + TemplateArgumentLocInfo ArgInfo; + ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo)); + } + return BuildLiteralOperatorCall(R, OpNameInfo, std::nullopt, + StringTokLocs.back(), &ExplicitArgs); + } + case LOLR_Raw: + case LOLR_ErrorNoDiagnostic: + llvm_unreachable("unexpected literal operator lookup result"); + case LOLR_Error: + return ExprError(); + } + llvm_unreachable("unexpected literal operator lookup result"); + } + + DeclRefExpr * + Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK, + SourceLocation Loc, + const CXXScopeSpec *SS) { + DeclarationNameInfo NameInfo(D->getDeclName(), Loc); + return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS); + } + + DeclRefExpr * + Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK, + const DeclarationNameInfo &NameInfo, + const CXXScopeSpec *SS, NamedDecl *FoundD, + SourceLocation TemplateKWLoc, + const TemplateArgumentListInfo *TemplateArgs) { + NestedNameSpecifierLoc NNS = + SS ? SS->getWithLocInContext(Context) : NestedNameSpecifierLoc(); + return BuildDeclRefExpr(D, Ty, VK, NameInfo, NNS, FoundD, TemplateKWLoc, + TemplateArgs); + } + + // CUDA/HIP: Check whether a captured reference variable is referencing a + // host variable in a device or host device lambda. + static bool isCapturingReferenceToHostVarInCUDADeviceLambda(const Sema &S, + VarDecl *VD) { + if (!S.getLangOpts().CUDA || !VD->hasInit()) + return false; + assert(VD->getType()->isReferenceType()); + + // Check whether the reference variable is referencing a host variable. + auto *DRE = dyn_cast(VD->getInit()); + if (!DRE) + return false; + auto *Referee = dyn_cast(DRE->getDecl()); + if (!Referee || !Referee->hasGlobalStorage() || + Referee->hasAttr()) + return false; + + // Check whether the current function is a device or host device lambda. + // Check whether the reference variable is a capture by getDeclContext() + // since refersToEnclosingVariableOrCapture() is not ready at this point. + auto *MD = dyn_cast_or_null(S.CurContext); + if (MD && MD->getParent()->isLambda() && + MD->getOverloadedOperator() == OO_Call && MD->hasAttr() && + VD->getDeclContext() != MD) + return true; + + return false; + } + + NonOdrUseReason Sema::getNonOdrUseReasonInCurrentContext(ValueDecl *D) { + // A declaration named in an unevaluated operand never constitutes an odr-use. + if (isUnevaluatedContext()) + return NOUR_Unevaluated; + + // C++2a [basic.def.odr]p4: + // A variable x whose name appears as a potentially-evaluated expression e + // is odr-used by e unless [...] x is a reference that is usable in + // constant expressions. + // CUDA/HIP: + // If a reference variable referencing a host variable is captured in a + // device or host device lambda, the value of the referee must be copied + // to the capture and the reference variable must be treated as odr-use + // since the value of the referee is not known at compile time and must + // be loaded from the captured. + if (VarDecl *VD = dyn_cast(D)) { + if (VD->getType()->isReferenceType() && + !(getLangOpts().OpenMP && isOpenMPCapturedDecl(D)) && + !isCapturingReferenceToHostVarInCUDADeviceLambda(*this, VD) && + VD->isUsableInConstantExpressions(Context)) + return NOUR_Constant; + } + + // All remaining non-variable cases constitute an odr-use. For variables, we + // need to wait and see how the expression is used. + return NOUR_None; + } + + /// BuildDeclRefExpr - Build an expression that references a + /// declaration that does not require a closure capture. + DeclRefExpr * + Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK, + const DeclarationNameInfo &NameInfo, + NestedNameSpecifierLoc NNS, NamedDecl *FoundD, + SourceLocation TemplateKWLoc, + const TemplateArgumentListInfo *TemplateArgs) { + bool RefersToCapturedVariable = isa(D) && + NeedToCaptureVariable(D, NameInfo.getLoc()); + + DeclRefExpr *E = DeclRefExpr::Create( + Context, NNS, TemplateKWLoc, D, RefersToCapturedVariable, NameInfo, Ty, + VK, FoundD, TemplateArgs, getNonOdrUseReasonInCurrentContext(D)); + MarkDeclRefReferenced(E); + + // C++ [except.spec]p17: + // An exception-specification is considered to be needed when: + // - in an expression, the function is the unique lookup result or + // the selected member of a set of overloaded functions. + // + // We delay doing this until after we've built the function reference and + // marked it as used so that: + // a) if the function is defaulted, we get errors from defining it before / + // instead of errors from computing its exception specification, and + // b) if the function is a defaulted comparison, we can use the body we + // build when defining it as input to the exception specification + // computation rather than computing a new body. + if (const auto *FPT = Ty->getAs()) { + if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) { + if (const auto *NewFPT = ResolveExceptionSpec(NameInfo.getLoc(), FPT)) + E->setType(Context.getQualifiedType(NewFPT, Ty.getQualifiers())); + } + } + + if (getLangOpts().ObjCWeak && isa(D) && + Ty.getObjCLifetime() == Qualifiers::OCL_Weak && !isUnevaluatedContext() && + !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, E->getBeginLoc())) + getCurFunction()->recordUseOfWeak(E); + + const auto *FD = dyn_cast(D); + if (const auto *IFD = dyn_cast(D)) + FD = IFD->getAnonField(); + if (FD) { + UnusedPrivateFields.remove(FD); + // Just in case we're building an illegal pointer-to-member. + if (FD->isBitField()) + E->setObjectKind(OK_BitField); + } + + // C++ [expr.prim]/8: The expression [...] is a bit-field if the identifier + // designates a bit-field. + if (const auto *BD = dyn_cast(D)) + if (const auto *BE = BD->getBinding()) + E->setObjectKind(BE->getObjectKind()); + + return E; + } + + /// Decomposes the given name into a DeclarationNameInfo, its location, and + /// possibly a list of template arguments. + /// + /// If this produces template arguments, it is permitted to call + /// DecomposeTemplateName. + /// + /// This actually loses a lot of source location information for + /// non-standard name kinds; we should consider preserving that in + /// some way. + void + Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id, + TemplateArgumentListInfo &Buffer, + DeclarationNameInfo &NameInfo, + const TemplateArgumentListInfo *&TemplateArgs) { + if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId) { + Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc); + Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc); + + ASTTemplateArgsPtr TemplateArgsPtr(Id.TemplateId->getTemplateArgs(), + Id.TemplateId->NumArgs); + translateTemplateArguments(TemplateArgsPtr, Buffer); + + TemplateName TName = Id.TemplateId->Template.get(); + SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc; + NameInfo = Context.getNameForTemplate(TName, TNameLoc); + TemplateArgs = &Buffer; + } else { + NameInfo = GetNameFromUnqualifiedId(Id); + TemplateArgs = nullptr; + } + } + + static void emitEmptyLookupTypoDiagnostic( + const TypoCorrection &TC, Sema &SemaRef, const CXXScopeSpec &SS, + DeclarationName Typo, SourceLocation TypoLoc, ArrayRef Args, + unsigned DiagnosticID, unsigned DiagnosticSuggestID) { + DeclContext *Ctx = + SS.isEmpty() ? nullptr : SemaRef.computeDeclContext(SS, false); + if (!TC) { + // Emit a special diagnostic for failed member lookups. + // FIXME: computing the declaration context might fail here (?) + if (Ctx) + SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << Ctx + << SS.getRange(); + else + SemaRef.Diag(TypoLoc, DiagnosticID) << Typo; + return; + } + + std::string CorrectedStr = TC.getAsString(SemaRef.getLangOpts()); + bool DroppedSpecifier = + TC.WillReplaceSpecifier() && Typo.getAsString() == CorrectedStr; + unsigned NoteID = TC.getCorrectionDeclAs() + ? diag::note_implicit_param_decl + : diag::note_previous_decl; + if (!Ctx) + SemaRef.diagnoseTypo(TC, SemaRef.PDiag(DiagnosticSuggestID) << Typo, + SemaRef.PDiag(NoteID)); + else + SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest) + << Typo << Ctx << DroppedSpecifier + << SS.getRange(), + SemaRef.PDiag(NoteID)); + } + + /// Diagnose a lookup that found results in an enclosing class during error + /// recovery. This usually indicates that the results were found in a dependent + /// base class that could not be searched as part of a template definition. + /// Always issues a diagnostic (though this may be only a warning in MS + /// compatibility mode). + /// + /// Return \c true if the error is unrecoverable, or \c false if the caller + /// should attempt to recover using these lookup results. + bool Sema::DiagnoseDependentMemberLookup(const LookupResult &R) { + // During a default argument instantiation the CurContext points + // to a CXXMethodDecl; but we can't apply a this-> fixit inside a + // function parameter list, hence add an explicit check. + bool isDefaultArgument = + !CodeSynthesisContexts.empty() && + CodeSynthesisContexts.back().Kind == + CodeSynthesisContext::DefaultFunctionArgumentInstantiation; + const auto *CurMethod = dyn_cast(CurContext); + bool isInstance = CurMethod && CurMethod->isInstance() && + R.getNamingClass() == CurMethod->getParent() && + !isDefaultArgument; + + // There are two ways we can find a class-scope declaration during template + // instantiation that we did not find in the template definition: if it is a + // member of a dependent base class, or if it is declared after the point of + // use in the same class. Distinguish these by comparing the class in which + // the member was found to the naming class of the lookup. + unsigned DiagID = diag::err_found_in_dependent_base; + unsigned NoteID = diag::note_member_declared_at; + if (R.getRepresentativeDecl()->getDeclContext()->Equals(R.getNamingClass())) { + DiagID = getLangOpts().MSVCCompat ? diag::ext_found_later_in_class + : diag::err_found_later_in_class; + } else if (getLangOpts().MSVCCompat) { + DiagID = diag::ext_found_in_dependent_base; + NoteID = diag::note_dependent_member_use; + } + + if (isInstance) { + // Give a code modification hint to insert 'this->'. + Diag(R.getNameLoc(), DiagID) + << R.getLookupName() + << FixItHint::CreateInsertion(R.getNameLoc(), "this->"); + CheckCXXThisCapture(R.getNameLoc()); + } else { + // FIXME: Add a FixItHint to insert 'Base::' or 'Derived::' (assuming + // they're not shadowed). + Diag(R.getNameLoc(), DiagID) << R.getLookupName(); + } + + for (const NamedDecl *D : R) + Diag(D->getLocation(), NoteID); + + // Return true if we are inside a default argument instantiation + // and the found name refers to an instance member function, otherwise + // the caller will try to create an implicit member call and this is wrong + // for default arguments. + // + // FIXME: Is this special case necessary? We could allow the caller to + // diagnose this. + if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) { + Diag(R.getNameLoc(), diag::err_member_call_without_object); + return true; + } + + // Tell the callee to try to recover. + return false; + } + + /// Diagnose an empty lookup. + /// + /// \return false if new lookup candidates were found + bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R, + CorrectionCandidateCallback &CCC, + TemplateArgumentListInfo *ExplicitTemplateArgs, + ArrayRef Args, TypoExpr **Out) { + DeclarationName Name = R.getLookupName(); + + unsigned diagnostic = diag::err_undeclared_var_use; + unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest; + if (Name.getNameKind() == DeclarationName::CXXOperatorName || + Name.getNameKind() == DeclarationName::CXXLiteralOperatorName || + Name.getNameKind() == DeclarationName::CXXConversionFunctionName) { + diagnostic = diag::err_undeclared_use; + diagnostic_suggest = diag::err_undeclared_use_suggest; + } + + // If the original lookup was an unqualified lookup, fake an + // unqualified lookup. This is useful when (for example) the + // original lookup would not have found something because it was a + // dependent name. + DeclContext *DC = SS.isEmpty() ? CurContext : nullptr; + while (DC) { + if (isa(DC)) { + LookupQualifiedName(R, DC); + + if (!R.empty()) { + // Don't give errors about ambiguities in this lookup. + R.suppressDiagnostics(); + + // If there's a best viable function among the results, only mention + // that one in the notes. + OverloadCandidateSet Candidates(R.getNameLoc(), + OverloadCandidateSet::CSK_Normal); + AddOverloadedCallCandidates(R, ExplicitTemplateArgs, Args, Candidates); + OverloadCandidateSet::iterator Best; + if (Candidates.BestViableFunction(*this, R.getNameLoc(), Best) == + OR_Success) { + R.clear(); + R.addDecl(Best->FoundDecl.getDecl(), Best->FoundDecl.getAccess()); + R.resolveKind(); + } + + return DiagnoseDependentMemberLookup(R); + } + + R.clear(); + } + + DC = DC->getLookupParent(); + } + + // We didn't find anything, so try to correct for a typo. + TypoCorrection Corrected; + if (S && Out) { + SourceLocation TypoLoc = R.getNameLoc(); + assert(!ExplicitTemplateArgs && + "Diagnosing an empty lookup with explicit template args!"); + *Out = CorrectTypoDelayed( + R.getLookupNameInfo(), R.getLookupKind(), S, &SS, CCC, + [=](const TypoCorrection &TC) { + emitEmptyLookupTypoDiagnostic(TC, *this, SS, Name, TypoLoc, Args, + diagnostic, diagnostic_suggest); + }, + nullptr, CTK_ErrorRecovery); + if (*Out) + return true; + } else if (S && + (Corrected = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), + S, &SS, CCC, CTK_ErrorRecovery))) { + std::string CorrectedStr(Corrected.getAsString(getLangOpts())); + bool DroppedSpecifier = + Corrected.WillReplaceSpecifier() && Name.getAsString() == CorrectedStr; + R.setLookupName(Corrected.getCorrection()); + + bool AcceptableWithRecovery = false; + bool AcceptableWithoutRecovery = false; + NamedDecl *ND = Corrected.getFoundDecl(); + if (ND) { + if (Corrected.isOverloaded()) { + OverloadCandidateSet OCS(R.getNameLoc(), + OverloadCandidateSet::CSK_Normal); + OverloadCandidateSet::iterator Best; + for (NamedDecl *CD : Corrected) { + if (FunctionTemplateDecl *FTD = + dyn_cast(CD)) + AddTemplateOverloadCandidate( + FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs, + Args, OCS); + else if (FunctionDecl *FD = dyn_cast(CD)) + if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0) + AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none), + Args, OCS); + } + switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) { + case OR_Success: + ND = Best->FoundDecl; + Corrected.setCorrectionDecl(ND); + break; + default: + // FIXME: Arbitrarily pick the first declaration for the note. + Corrected.setCorrectionDecl(ND); + break; + } + } + R.addDecl(ND); + if (getLangOpts().CPlusPlus && ND->isCXXClassMember()) { + CXXRecordDecl *Record = nullptr; + if (Corrected.getCorrectionSpecifier()) { + const Type *Ty = Corrected.getCorrectionSpecifier()->getAsType(); + Record = Ty->getAsCXXRecordDecl(); + } + if (!Record) + Record = cast( + ND->getDeclContext()->getRedeclContext()); + R.setNamingClass(Record); + } + + auto *UnderlyingND = ND->getUnderlyingDecl(); + AcceptableWithRecovery = isa(UnderlyingND) || + isa(UnderlyingND); + // FIXME: If we ended up with a typo for a type name or + // Objective-C class name, we're in trouble because the parser + // is in the wrong place to recover. Suggest the typo + // correction, but don't make it a fix-it since we're not going + // to recover well anyway. + AcceptableWithoutRecovery = isa(UnderlyingND) || + getAsTypeTemplateDecl(UnderlyingND) || + isa(UnderlyingND); + } else { + // FIXME: We found a keyword. Suggest it, but don't provide a fix-it + // because we aren't able to recover. + AcceptableWithoutRecovery = true; + } + + if (AcceptableWithRecovery || AcceptableWithoutRecovery) { + unsigned NoteID = Corrected.getCorrectionDeclAs() + ? diag::note_implicit_param_decl + : diag::note_previous_decl; + if (SS.isEmpty()) + diagnoseTypo(Corrected, PDiag(diagnostic_suggest) << Name, + PDiag(NoteID), AcceptableWithRecovery); + else + diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest) + << Name << computeDeclContext(SS, false) + << DroppedSpecifier << SS.getRange(), + PDiag(NoteID), AcceptableWithRecovery); + + // Tell the callee whether to try to recover. + return !AcceptableWithRecovery; + } + } + R.clear(); + + // Emit a special diagnostic for failed member lookups. + // FIXME: computing the declaration context might fail here (?) + if (!SS.isEmpty()) { + Diag(R.getNameLoc(), diag::err_no_member) + << Name << computeDeclContext(SS, false) + << SS.getRange(); + return true; + } + + // Give up, we can't recover. + Diag(R.getNameLoc(), diagnostic) << Name; + return true; + } + + /// In Microsoft mode, if we are inside a template class whose parent class has + /// dependent base classes, and we can't resolve an unqualified identifier, then + /// assume the identifier is a member of a dependent base class. We can only + /// recover successfully in static methods, instance methods, and other contexts + /// where 'this' is available. This doesn't precisely match MSVC's + /// instantiation model, but it's close enough. + static Expr * + recoverFromMSUnqualifiedLookup(Sema &S, ASTContext &Context, + DeclarationNameInfo &NameInfo, + SourceLocation TemplateKWLoc, + const TemplateArgumentListInfo *TemplateArgs) { + // Only try to recover from lookup into dependent bases in static methods or + // contexts where 'this' is available. + QualType ThisType = S.getCurrentThisType(); + const CXXRecordDecl *RD = nullptr; + if (!ThisType.isNull()) + RD = ThisType->getPointeeType()->getAsCXXRecordDecl(); + else if (auto *MD = dyn_cast(S.CurContext)) + RD = MD->getParent(); + if (!RD || !RD->hasAnyDependentBases()) + return nullptr; + + // Diagnose this as unqualified lookup into a dependent base class. If 'this' + // is available, suggest inserting 'this->' as a fixit. + SourceLocation Loc = NameInfo.getLoc(); + auto DB = S.Diag(Loc, diag::ext_undeclared_unqual_id_with_dependent_base); + DB << NameInfo.getName() << RD; + + if (!ThisType.isNull()) { + DB << FixItHint::CreateInsertion(Loc, "this->"); + return CXXDependentScopeMemberExpr::Create( + Context, /*This=*/nullptr, ThisType, /*IsArrow=*/true, + /*Op=*/SourceLocation(), NestedNameSpecifierLoc(), TemplateKWLoc, + /*FirstQualifierFoundInScope=*/nullptr, NameInfo, TemplateArgs); + } + + // Synthesize a fake NNS that points to the derived class. This will + // perform name lookup during template instantiation. + CXXScopeSpec SS; + auto *NNS = + NestedNameSpecifier::Create(Context, nullptr, true, RD->getTypeForDecl()); + SS.MakeTrivial(Context, NNS, SourceRange(Loc, Loc)); + return DependentScopeDeclRefExpr::Create( + Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo, + TemplateArgs); + } + + ExprResult + Sema::ActOnIdExpression(Scope *S, CXXScopeSpec &SS, + SourceLocation TemplateKWLoc, UnqualifiedId &Id, + bool HasTrailingLParen, bool IsAddressOfOperand, + CorrectionCandidateCallback *CCC, + bool IsInlineAsmIdentifier, Token *KeywordReplacement) { + assert(!(IsAddressOfOperand && HasTrailingLParen) && + "cannot be direct & operand and have a trailing lparen"); + if (SS.isInvalid()) + return ExprError(); + + TemplateArgumentListInfo TemplateArgsBuffer; + + // Decompose the UnqualifiedId into the following data. + DeclarationNameInfo NameInfo; + const TemplateArgumentListInfo *TemplateArgs; + DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs); + + DeclarationName Name = NameInfo.getName(); + IdentifierInfo *II = Name.getAsIdentifierInfo(); + SourceLocation NameLoc = NameInfo.getLoc(); + + if (II && II->isEditorPlaceholder()) { + // FIXME: When typed placeholders are supported we can create a typed + // placeholder expression node. + return ExprError(); + } + + // C++ [temp.dep.expr]p3: + // An id-expression is type-dependent if it contains: + // -- an identifier that was declared with a dependent type, + // (note: handled after lookup) + // -- a template-id that is dependent, + // (note: handled in BuildTemplateIdExpr) + // -- a conversion-function-id that specifies a dependent type, + // -- a nested-name-specifier that contains a class-name that + // names a dependent type. + // Determine whether this is a member of an unknown specialization; + // we need to handle these differently. + bool DependentID = false; + if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName && + Name.getCXXNameType()->isDependentType()) { + DependentID = true; + } else if (SS.isSet()) { + if (DeclContext *DC = computeDeclContext(SS, false)) { + if (RequireCompleteDeclContext(SS, DC)) + return ExprError(); + } else { + DependentID = true; + } + } + + if (DependentID) + return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo, + IsAddressOfOperand, TemplateArgs); + + // Perform the required lookup. + LookupResult R(*this, NameInfo, + (Id.getKind() == UnqualifiedIdKind::IK_ImplicitSelfParam) + ? LookupObjCImplicitSelfParam + : LookupOrdinaryName); + if (TemplateKWLoc.isValid() || TemplateArgs) { + // Lookup the template name again to correctly establish the context in + // which it was found. This is really unfortunate as we already did the + // lookup to determine that it was a template name in the first place. If + // this becomes a performance hit, we can work harder to preserve those + // results until we get here but it's likely not worth it. + bool MemberOfUnknownSpecialization; + AssumedTemplateKind AssumedTemplate; + if (LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false, + MemberOfUnknownSpecialization, TemplateKWLoc, + &AssumedTemplate)) + return ExprError(); + + if (MemberOfUnknownSpecialization || + (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)) + return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo, + IsAddressOfOperand, TemplateArgs); + } else { + bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl(); + LookupParsedName(R, S, &SS, !IvarLookupFollowUp); + + // If the result might be in a dependent base class, this is a dependent + // id-expression. + if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation) + return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo, + IsAddressOfOperand, TemplateArgs); + + // If this reference is in an Objective-C method, then we need to do + // some special Objective-C lookup, too. + if (IvarLookupFollowUp) { + ExprResult E(LookupInObjCMethod(R, S, II, true)); + if (E.isInvalid()) + return ExprError(); + + if (Expr *Ex = E.getAs()) + return Ex; + } + } + + if (R.isAmbiguous()) + return ExprError(); + + // This could be an implicitly declared function reference if the language + // mode allows it as a feature. + if (R.empty() && HasTrailingLParen && II && + getLangOpts().implicitFunctionsAllowed()) { + NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S); + if (D) R.addDecl(D); + } + + // Determine whether this name might be a candidate for + // argument-dependent lookup. + bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen); + + if (R.empty() && !ADL) { + if (SS.isEmpty() && getLangOpts().MSVCCompat) { + if (Expr *E = recoverFromMSUnqualifiedLookup(*this, Context, NameInfo, + TemplateKWLoc, TemplateArgs)) + return E; + } + + // Don't diagnose an empty lookup for inline assembly. + if (IsInlineAsmIdentifier) + return ExprError(); + + // If this name wasn't predeclared and if this is not a function + // call, diagnose the problem. + TypoExpr *TE = nullptr; + DefaultFilterCCC DefaultValidator(II, SS.isValid() ? SS.getScopeRep() + : nullptr); + DefaultValidator.IsAddressOfOperand = IsAddressOfOperand; + assert((!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) && + "Typo correction callback misconfigured"); + if (CCC) { + // Make sure the callback knows what the typo being diagnosed is. + CCC->setTypoName(II); + if (SS.isValid()) + CCC->setTypoNNS(SS.getScopeRep()); + } + // FIXME: DiagnoseEmptyLookup produces bad diagnostics if we're looking for + // a template name, but we happen to have always already looked up the name + // before we get here if it must be a template name. + if (DiagnoseEmptyLookup(S, SS, R, CCC ? *CCC : DefaultValidator, nullptr, + std::nullopt, &TE)) { + if (TE && KeywordReplacement) { + auto &State = getTypoExprState(TE); + auto BestTC = State.Consumer->getNextCorrection(); + if (BestTC.isKeyword()) { + auto *II = BestTC.getCorrectionAsIdentifierInfo(); + if (State.DiagHandler) + State.DiagHandler(BestTC); + KeywordReplacement->startToken(); + KeywordReplacement->setKind(II->getTokenID()); + KeywordReplacement->setIdentifierInfo(II); + KeywordReplacement->setLocation(BestTC.getCorrectionRange().getBegin()); + // Clean up the state associated with the TypoExpr, since it has + // now been diagnosed (without a call to CorrectDelayedTyposInExpr). + clearDelayedTypo(TE); + // Signal that a correction to a keyword was performed by returning a + // valid-but-null ExprResult. + return (Expr*)nullptr; + } + State.Consumer->resetCorrectionStream(); + } + return TE ? TE : ExprError(); + } + + assert(!R.empty() && + "DiagnoseEmptyLookup returned false but added no results"); + + // If we found an Objective-C instance variable, let + // LookupInObjCMethod build the appropriate expression to + // reference the ivar. + if (ObjCIvarDecl *Ivar = R.getAsSingle()) { + R.clear(); + ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier())); + // In a hopelessly buggy code, Objective-C instance variable + // lookup fails and no expression will be built to reference it. + if (!E.isInvalid() && !E.get()) + return ExprError(); + return E; + } + } + + // This is guaranteed from this point on. + assert(!R.empty() || ADL); + + // Check whether this might be a C++ implicit instance member access. + // C++ [class.mfct.non-static]p3: + // When an id-expression that is not part of a class member access + // syntax and not used to form a pointer to member is used in the + // body of a non-static member function of class X, if name lookup + // resolves the name in the id-expression to a non-static non-type + // member of some class C, the id-expression is transformed into a + // class member access expression using (*this) as the + // postfix-expression to the left of the . operator. + // + // But we don't actually need to do this for '&' operands if R + // resolved to a function or overloaded function set, because the + // expression is ill-formed if it actually works out to be a + // non-static member function: + // + // C++ [expr.ref]p4: + // Otherwise, if E1.E2 refers to a non-static member function. . . + // [t]he expression can be used only as the left-hand operand of a + // member function call. + // + // There are other safeguards against such uses, but it's important + // to get this right here so that we don't end up making a + // spuriously dependent expression if we're inside a dependent + // instance method. + if (!R.empty() && (*R.begin())->isCXXClassMember()) { + bool MightBeImplicitMember; + if (!IsAddressOfOperand) + MightBeImplicitMember = true; + else if (!SS.isEmpty()) + MightBeImplicitMember = false; + else if (R.isOverloadedResult()) + MightBeImplicitMember = false; + else if (R.isUnresolvableResult()) + MightBeImplicitMember = true; + else + MightBeImplicitMember = isa(R.getFoundDecl()) || + isa(R.getFoundDecl()) || + isa(R.getFoundDecl()); + + if (MightBeImplicitMember) + return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc, + R, TemplateArgs, S); + } + + if (TemplateArgs || TemplateKWLoc.isValid()) { + + // In C++1y, if this is a variable template id, then check it + // in BuildTemplateIdExpr(). + // The single lookup result must be a variable template declaration. + if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId && Id.TemplateId && + Id.TemplateId->Kind == TNK_Var_template) { + assert(R.getAsSingle() && + "There should only be one declaration found."); + } + + return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs); + } + + return BuildDeclarationNameExpr(SS, R, ADL); + } + + /// BuildQualifiedDeclarationNameExpr - Build a C++ qualified + /// declaration name, generally during template instantiation. + /// There's a large number of things which don't need to be done along + /// this path. + ExprResult Sema::BuildQualifiedDeclarationNameExpr( + CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, + bool IsAddressOfOperand, const Scope *S, TypeSourceInfo **RecoveryTSI) { + if (NameInfo.getName().isDependentName()) + return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(), + NameInfo, /*TemplateArgs=*/nullptr); + + DeclContext *DC = computeDeclContext(SS, false); + if (!DC) + return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(), + NameInfo, /*TemplateArgs=*/nullptr); + + if (RequireCompleteDeclContext(SS, DC)) + return ExprError(); + + LookupResult R(*this, NameInfo, LookupOrdinaryName); + LookupQualifiedName(R, DC); + + if (R.isAmbiguous()) + return ExprError(); + + if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation) + return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(), + NameInfo, /*TemplateArgs=*/nullptr); + + if (R.empty()) { + // Don't diagnose problems with invalid record decl, the secondary no_member + // diagnostic during template instantiation is likely bogus, e.g. if a class + // is invalid because it's derived from an invalid base class, then missing + // members were likely supposed to be inherited. + if (const auto *CD = dyn_cast(DC)) + if (CD->isInvalidDecl()) + return ExprError(); + Diag(NameInfo.getLoc(), diag::err_no_member) + << NameInfo.getName() << DC << SS.getRange(); + return ExprError(); + } + + if (const TypeDecl *TD = R.getAsSingle()) { + // Diagnose a missing typename if this resolved unambiguously to a type in + // a dependent context. If we can recover with a type, downgrade this to + // a warning in Microsoft compatibility mode. + unsigned DiagID = diag::err_typename_missing; + if (RecoveryTSI && getLangOpts().MSVCCompat) + DiagID = diag::ext_typename_missing; + SourceLocation Loc = SS.getBeginLoc(); + auto D = Diag(Loc, DiagID); + D << SS.getScopeRep() << NameInfo.getName().getAsString() + << SourceRange(Loc, NameInfo.getEndLoc()); + + // Don't recover if the caller isn't expecting us to or if we're in a SFINAE + // context. + if (!RecoveryTSI) + return ExprError(); + + // Only issue the fixit if we're prepared to recover. + D << FixItHint::CreateInsertion(Loc, "typename "); + + // Recover by pretending this was an elaborated type. + QualType Ty = Context.getTypeDeclType(TD); + TypeLocBuilder TLB; + TLB.pushTypeSpec(Ty).setNameLoc(NameInfo.getLoc()); + + QualType ET = getElaboratedType(ETK_None, SS, Ty); + ElaboratedTypeLoc QTL = TLB.push(ET); + QTL.setElaboratedKeywordLoc(SourceLocation()); + QTL.setQualifierLoc(SS.getWithLocInContext(Context)); + + *RecoveryTSI = TLB.getTypeSourceInfo(Context, ET); + + return ExprEmpty(); + } + + // Defend against this resolving to an implicit member access. We usually + // won't get here if this might be a legitimate a class member (we end up in + // BuildMemberReferenceExpr instead), but this can be valid if we're forming + // a pointer-to-member or in an unevaluated context in C++11. + if (!R.empty() && (*R.begin())->isCXXClassMember() && !IsAddressOfOperand) + return BuildPossibleImplicitMemberExpr(SS, + /*TemplateKWLoc=*/SourceLocation(), + R, /*TemplateArgs=*/nullptr, S); + + return BuildDeclarationNameExpr(SS, R, /* ADL */ false); + } + + /// The parser has read a name in, and Sema has detected that we're currently + /// inside an ObjC method. Perform some additional checks and determine if we + /// should form a reference to an ivar. + /// + /// Ideally, most of this would be done by lookup, but there's + /// actually quite a lot of extra work involved. + DeclResult Sema::LookupIvarInObjCMethod(LookupResult &Lookup, Scope *S, + IdentifierInfo *II) { + SourceLocation Loc = Lookup.getNameLoc(); + ObjCMethodDecl *CurMethod = getCurMethodDecl(); + + // Check for error condition which is already reported. + if (!CurMethod) + return DeclResult(true); + + // There are two cases to handle here. 1) scoped lookup could have failed, + // in which case we should look for an ivar. 2) scoped lookup could have + // found a decl, but that decl is outside the current instance method (i.e. + // a global variable). In these two cases, we do a lookup for an ivar with + // this name, if the lookup sucedes, we replace it our current decl. + + // If we're in a class method, we don't normally want to look for + // ivars. But if we don't find anything else, and there's an + // ivar, that's an error. + bool IsClassMethod = CurMethod->isClassMethod(); + + bool LookForIvars; + if (Lookup.empty()) + LookForIvars = true; + else if (IsClassMethod) + LookForIvars = false; + else + LookForIvars = (Lookup.isSingleResult() && + Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()); + ObjCInterfaceDecl *IFace = nullptr; + if (LookForIvars) { + IFace = CurMethod->getClassInterface(); + ObjCInterfaceDecl *ClassDeclared; + ObjCIvarDecl *IV = nullptr; + if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) { + // Diagnose using an ivar in a class method. + if (IsClassMethod) { + Diag(Loc, diag::err_ivar_use_in_class_method) << IV->getDeclName(); + return DeclResult(true); + } + + // Diagnose the use of an ivar outside of the declaring class. + if (IV->getAccessControl() == ObjCIvarDecl::Private && + !declaresSameEntity(ClassDeclared, IFace) && + !getLangOpts().DebuggerSupport) + Diag(Loc, diag::err_private_ivar_access) << IV->getDeclName(); + + // Success. + return IV; + } + } else if (CurMethod->isInstanceMethod()) { + // We should warn if a local variable hides an ivar. + if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) { + ObjCInterfaceDecl *ClassDeclared; + if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) { + if (IV->getAccessControl() != ObjCIvarDecl::Private || + declaresSameEntity(IFace, ClassDeclared)) + Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName(); + } + } + } else if (Lookup.isSingleResult() && + Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) { + // If accessing a stand-alone ivar in a class method, this is an error. + if (const ObjCIvarDecl *IV = + dyn_cast(Lookup.getFoundDecl())) { + Diag(Loc, diag::err_ivar_use_in_class_method) << IV->getDeclName(); + return DeclResult(true); + } + } + + // Didn't encounter an error, didn't find an ivar. + return DeclResult(false); + } + + ExprResult Sema::BuildIvarRefExpr(Scope *S, SourceLocation Loc, + ObjCIvarDecl *IV) { + ObjCMethodDecl *CurMethod = getCurMethodDecl(); + assert(CurMethod && CurMethod->isInstanceMethod() && + "should not reference ivar from this context"); + + ObjCInterfaceDecl *IFace = CurMethod->getClassInterface(); + assert(IFace && "should not reference ivar from this context"); + + // If we're referencing an invalid decl, just return this as a silent + // error node. The error diagnostic was already emitted on the decl. + if (IV->isInvalidDecl()) + return ExprError(); + + // Check if referencing a field with __attribute__((deprecated)). + if (DiagnoseUseOfDecl(IV, Loc)) + return ExprError(); + + // FIXME: This should use a new expr for a direct reference, don't + // turn this into Self->ivar, just return a BareIVarExpr or something. + IdentifierInfo &II = Context.Idents.get("self"); + UnqualifiedId SelfName; + SelfName.setImplicitSelfParam(&II); + CXXScopeSpec SelfScopeSpec; + SourceLocation TemplateKWLoc; + ExprResult SelfExpr = + ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc, SelfName, + /*HasTrailingLParen=*/false, + /*IsAddressOfOperand=*/false); + if (SelfExpr.isInvalid()) + return ExprError(); + + SelfExpr = DefaultLvalueConversion(SelfExpr.get()); + if (SelfExpr.isInvalid()) + return ExprError(); + + MarkAnyDeclReferenced(Loc, IV, true); + + ObjCMethodFamily MF = CurMethod->getMethodFamily(); + if (MF != OMF_init && MF != OMF_dealloc && MF != OMF_finalize && + !IvarBacksCurrentMethodAccessor(IFace, CurMethod, IV)) + Diag(Loc, diag::warn_direct_ivar_access) << IV->getDeclName(); + + ObjCIvarRefExpr *Result = new (Context) + ObjCIvarRefExpr(IV, IV->getUsageType(SelfExpr.get()->getType()), Loc, + IV->getLocation(), SelfExpr.get(), true, true); + + if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) { + if (!isUnevaluatedContext() && + !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc)) + getCurFunction()->recordUseOfWeak(Result); + } + if (getLangOpts().ObjCAutoRefCount && !isUnevaluatedContext()) + if (const BlockDecl *BD = CurContext->getInnermostBlockDecl()) + ImplicitlyRetainedSelfLocs.push_back({Loc, BD}); + + return Result; + } + + /// The parser has read a name in, and Sema has detected that we're currently + /// inside an ObjC method. Perform some additional checks and determine if we + /// should form a reference to an ivar. If so, build an expression referencing + /// that ivar. + ExprResult + Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S, + IdentifierInfo *II, bool AllowBuiltinCreation) { + // FIXME: Integrate this lookup step into LookupParsedName. + DeclResult Ivar = LookupIvarInObjCMethod(Lookup, S, II); + if (Ivar.isInvalid()) + return ExprError(); + if (Ivar.isUsable()) + return BuildIvarRefExpr(S, Lookup.getNameLoc(), + cast(Ivar.get())); + + if (Lookup.empty() && II && AllowBuiltinCreation) + LookupBuiltin(Lookup); + + // Sentinel value saying that we didn't do anything special. + return ExprResult(false); + } + + /// Cast a base object to a member's actual type. + /// + /// There are two relevant checks: + /// + /// C++ [class.access.base]p7: + /// + /// If a class member access operator [...] is used to access a non-static + /// data member or non-static member function, the reference is ill-formed if + /// the left operand [...] cannot be implicitly converted to a pointer to the + /// naming class of the right operand. + /// + /// C++ [expr.ref]p7: + /// + /// If E2 is a non-static data member or a non-static member function, the + /// program is ill-formed if the class of which E2 is directly a member is an + /// ambiguous base (11.8) of the naming class (11.9.3) of E2. + /// + /// Note that the latter check does not consider access; the access of the + /// "real" base class is checked as appropriate when checking the access of the + /// member name. + ExprResult + Sema::PerformObjectMemberConversion(Expr *From, + NestedNameSpecifier *Qualifier, + NamedDecl *FoundDecl, + NamedDecl *Member) { + const auto *RD = dyn_cast(Member->getDeclContext()); + if (!RD) + return From; + + QualType DestRecordType; + QualType DestType; + QualType FromRecordType; + QualType FromType = From->getType(); + bool PointerConversions = false; + if (isa(Member)) { + DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD)); + auto FromPtrType = FromType->getAs(); + DestRecordType = Context.getAddrSpaceQualType( + DestRecordType, FromPtrType + ? FromType->getPointeeType().getAddressSpace() + : FromType.getAddressSpace()); + + if (FromPtrType) { + DestType = Context.getPointerType(DestRecordType); + FromRecordType = FromPtrType->getPointeeType(); + PointerConversions = true; + } else { + DestType = DestRecordType; + FromRecordType = FromType; + } + } else if (const auto *Method = dyn_cast(Member)) { + if (Method->isStatic()) + return From; + + DestType = Method->getThisType(); + DestRecordType = DestType->getPointeeType(); + + if (FromType->getAs()) { + FromRecordType = FromType->getPointeeType(); + PointerConversions = true; + } else { + FromRecordType = FromType; + DestType = DestRecordType; + } + + LangAS FromAS = FromRecordType.getAddressSpace(); + LangAS DestAS = DestRecordType.getAddressSpace(); + if (FromAS != DestAS) { + QualType FromRecordTypeWithoutAS = + Context.removeAddrSpaceQualType(FromRecordType); + QualType FromTypeWithDestAS = + Context.getAddrSpaceQualType(FromRecordTypeWithoutAS, DestAS); + if (PointerConversions) + FromTypeWithDestAS = Context.getPointerType(FromTypeWithDestAS); + From = ImpCastExprToType(From, FromTypeWithDestAS, + CK_AddressSpaceConversion, From->getValueKind()) + .get(); + } + } else { + // No conversion necessary. + return From; + } + + if (DestType->isDependentType() || FromType->isDependentType()) + return From; + + // If the unqualified types are the same, no conversion is necessary. + if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType)) + return From; + + SourceRange FromRange = From->getSourceRange(); + SourceLocation FromLoc = FromRange.getBegin(); + + ExprValueKind VK = From->getValueKind(); + + // C++ [class.member.lookup]p8: + // [...] Ambiguities can often be resolved by qualifying a name with its + // class name. + // + // If the member was a qualified name and the qualified referred to a + // specific base subobject type, we'll cast to that intermediate type + // first and then to the object in which the member is declared. That allows + // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as: + // + // class Base { public: int x; }; + // class Derived1 : public Base { }; + // class Derived2 : public Base { }; + // class VeryDerived : public Derived1, public Derived2 { void f(); }; + // + // void VeryDerived::f() { + // x = 17; // error: ambiguous base subobjects + // Derived1::x = 17; // okay, pick the Base subobject of Derived1 + // } + if (Qualifier && Qualifier->getAsType()) { + QualType QType = QualType(Qualifier->getAsType(), 0); + assert(QType->isRecordType() && "lookup done with non-record type"); + + QualType QRecordType = QualType(QType->castAs(), 0); + + // In C++98, the qualifier type doesn't actually have to be a base + // type of the object type, in which case we just ignore it. + // Otherwise build the appropriate casts. + if (IsDerivedFrom(FromLoc, FromRecordType, QRecordType)) { + CXXCastPath BasePath; + if (CheckDerivedToBaseConversion(FromRecordType, QRecordType, + FromLoc, FromRange, &BasePath)) + return ExprError(); + + if (PointerConversions) + QType = Context.getPointerType(QType); + From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase, + VK, &BasePath).get(); + + FromType = QType; + FromRecordType = QRecordType; + + // If the qualifier type was the same as the destination type, + // we're done. + if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType)) + return From; + } + } + + CXXCastPath BasePath; + if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType, + FromLoc, FromRange, &BasePath, + /*IgnoreAccess=*/true)) + return ExprError(); + + return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase, + VK, &BasePath); + } + + bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS, + const LookupResult &R, + bool HasTrailingLParen) { + // Only when used directly as the postfix-expression of a call. + if (!HasTrailingLParen) + return false; + + // Never if a scope specifier was provided. + if (SS.isSet()) + return false; + + // Only in C++ or ObjC++. + if (!getLangOpts().CPlusPlus) + return false; + + // Turn off ADL when we find certain kinds of declarations during + // normal lookup: + for (const NamedDecl *D : R) { + // C++0x [basic.lookup.argdep]p3: + // -- a declaration of a class member + // Since using decls preserve this property, we check this on the + // original decl. + if (D->isCXXClassMember()) + return false; + + // C++0x [basic.lookup.argdep]p3: + // -- a block-scope function declaration that is not a + // using-declaration + // NOTE: we also trigger this for function templates (in fact, we + // don't check the decl type at all, since all other decl types + // turn off ADL anyway). + if (isa(D)) + D = cast(D)->getTargetDecl(); + else if (D->getLexicalDeclContext()->isFunctionOrMethod()) + return false; + + // C++0x [basic.lookup.argdep]p3: + // -- a declaration that is neither a function or a function + // template + // And also for builtin functions. + if (const auto *FDecl = dyn_cast(D)) { + // But also builtin functions. + if (FDecl->getBuiltinID() && FDecl->isImplicit()) + return false; + } else if (!isa(D)) + return false; + } + + return true; + } + + + /// Diagnoses obvious problems with the use of the given declaration + /// as an expression. This is only actually called for lookups that + /// were not overloaded, and it doesn't promise that the declaration + /// will in fact be used. + static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D, + bool AcceptInvalid) { + if (D->isInvalidDecl() && !AcceptInvalid) + return true; + + if (isa(D)) { + S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName(); + return true; + } + + if (isa(D)) { + S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName(); + return true; + } + + if (isa(D)) { + S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName(); + return true; + } + + return false; + } + + // Certain multiversion types should be treated as overloaded even when there is + // only one result. + static bool ShouldLookupResultBeMultiVersionOverload(const LookupResult &R) { + assert(R.isSingleResult() && "Expected only a single result"); + const auto *FD = dyn_cast(R.getFoundDecl()); + return FD && + (FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion()); + } + + ExprResult Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS, + LookupResult &R, bool NeedsADL, + bool AcceptInvalidDecl) { + // If this is a single, fully-resolved result and we don't need ADL, + // just build an ordinary singleton decl ref. + if (!NeedsADL && R.isSingleResult() && + !R.getAsSingle() && + !ShouldLookupResultBeMultiVersionOverload(R)) + return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), R.getFoundDecl(), + R.getRepresentativeDecl(), nullptr, + AcceptInvalidDecl); + + // We only need to check the declaration if there's exactly one + // result, because in the overloaded case the results can only be + // functions and function templates. + if (R.isSingleResult() && !ShouldLookupResultBeMultiVersionOverload(R) && + CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl(), + AcceptInvalidDecl)) + return ExprError(); + + // Otherwise, just build an unresolved lookup expression. Suppress + // any lookup-related diagnostics; we'll hash these out later, when + // we've picked a target. + R.suppressDiagnostics(); + + UnresolvedLookupExpr *ULE + = UnresolvedLookupExpr::Create(Context, R.getNamingClass(), + SS.getWithLocInContext(Context), + R.getLookupNameInfo(), + NeedsADL, R.isOverloadedResult(), + R.begin(), R.end()); + + return ULE; + } + + static void diagnoseUncapturableValueReferenceOrBinding(Sema &S, + SourceLocation loc, + ValueDecl *var); + + /// Complete semantic analysis for a reference to the given declaration. + ExprResult Sema::BuildDeclarationNameExpr( + const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D, + NamedDecl *FoundD, const TemplateArgumentListInfo *TemplateArgs, + bool AcceptInvalidDecl) { + assert(D && "Cannot refer to a NULL declaration"); + assert(!isa(D) && + "Cannot refer unambiguously to a function template"); + + SourceLocation Loc = NameInfo.getLoc(); + if (CheckDeclInExpr(*this, Loc, D, AcceptInvalidDecl)) { + // Recovery from invalid cases (e.g. D is an invalid Decl). + // We use the dependent type for the RecoveryExpr to prevent bogus follow-up + // diagnostics, as invalid decls use int as a fallback type. + return CreateRecoveryExpr(NameInfo.getBeginLoc(), NameInfo.getEndLoc(), {}); + } + + if (TemplateDecl *Template = dyn_cast(D)) { + // Specifically diagnose references to class templates that are missing + // a template argument list. + diagnoseMissingTemplateArguments(TemplateName(Template), Loc); + return ExprError(); + } + + // Make sure that we're referring to a value. + if (!isa(D)) { + Diag(Loc, diag::err_ref_non_value) << D << SS.getRange(); + Diag(D->getLocation(), diag::note_declared_at); + return ExprError(); + } + + // Check whether this declaration can be used. Note that we suppress + // this check when we're going to perform argument-dependent lookup + // on this function name, because this might not be the function + // that overload resolution actually selects. + if (DiagnoseUseOfDecl(D, Loc)) + return ExprError(); + + auto *VD = cast(D); + + // Only create DeclRefExpr's for valid Decl's. + if (VD->isInvalidDecl() && !AcceptInvalidDecl) + return ExprError(); + + // Handle members of anonymous structs and unions. If we got here, + // and the reference is to a class member indirect field, then this + // must be the subject of a pointer-to-member expression. + if (auto *IndirectField = dyn_cast(VD); + IndirectField && !IndirectField->isCXXClassMember()) + return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(), + IndirectField); + + QualType type = VD->getType(); + if (type.isNull()) + return ExprError(); + ExprValueKind valueKind = VK_PRValue; + + // In 'T ...V;', the type of the declaration 'V' is 'T...', but the type of + // a reference to 'V' is simply (unexpanded) 'T'. The type, like the value, + // is expanded by some outer '...' in the context of the use. + type = type.getNonPackExpansionType(); + + switch (D->getKind()) { + // Ignore all the non-ValueDecl kinds. + #define ABSTRACT_DECL(kind) + #define VALUE(type, base) + #define DECL(type, base) case Decl::type: + #include "clang/AST/DeclNodes.inc" + llvm_unreachable("invalid value decl kind"); + + // These shouldn't make it here. + case Decl::ObjCAtDefsField: + llvm_unreachable("forming non-member reference to ivar?"); + + // Enum constants are always r-values and never references. + // Unresolved using declarations are dependent. + case Decl::EnumConstant: + case Decl::UnresolvedUsingValue: + case Decl::OMPDeclareReduction: + case Decl::OMPDeclareMapper: + valueKind = VK_PRValue; + break; + + // Fields and indirect fields that got here must be for + // pointer-to-member expressions; we just call them l-values for + // internal consistency, because this subexpression doesn't really + // exist in the high-level semantics. + case Decl::Field: + case Decl::IndirectField: + case Decl::ObjCIvar: + assert(getLangOpts().CPlusPlus && "building reference to field in C?"); + + // These can't have reference type in well-formed programs, but + // for internal consistency we do this anyway. + type = type.getNonReferenceType(); + valueKind = VK_LValue; + break; + + // Non-type template parameters are either l-values or r-values + // depending on the type. + case Decl::NonTypeTemplateParm: { + if (const ReferenceType *reftype = type->getAs()) { + type = reftype->getPointeeType(); + valueKind = VK_LValue; // even if the parameter is an r-value reference + break; + } + + // [expr.prim.id.unqual]p2: + // If the entity is a template parameter object for a template + // parameter of type T, the type of the expression is const T. + // [...] The expression is an lvalue if the entity is a [...] template + // parameter object. + if (type->isRecordType()) { + type = type.getUnqualifiedType().withConst(); + valueKind = VK_LValue; + break; + } + + // For non-references, we need to strip qualifiers just in case + // the template parameter was declared as 'const int' or whatever. + valueKind = VK_PRValue; + type = type.getUnqualifiedType(); + break; + } + + case Decl::Var: + case Decl::VarTemplateSpecialization: + case Decl::VarTemplatePartialSpecialization: + case Decl::Decomposition: + case Decl::OMPCapturedExpr: + // In C, "extern void blah;" is valid and is an r-value. + if (!getLangOpts().CPlusPlus && !type.hasQualifiers() && + type->isVoidType()) { + valueKind = VK_PRValue; + break; + } + [[fallthrough]]; + + case Decl::ImplicitParam: + case Decl::ParmVar: { + // These are always l-values. + valueKind = VK_LValue; + type = type.getNonReferenceType(); + + // FIXME: Does the addition of const really only apply in + // potentially-evaluated contexts? Since the variable isn't actually + // captured in an unevaluated context, it seems that the answer is no. + if (!isUnevaluatedContext()) { + QualType CapturedType = getCapturedDeclRefType(cast(VD), Loc); + if (!CapturedType.isNull()) + type = CapturedType; + } + + break; + } + + case Decl::Binding: + // These are always lvalues. + valueKind = VK_LValue; + type = type.getNonReferenceType(); + break; + + case Decl::Function: { + if (unsigned BID = cast(VD)->getBuiltinID()) { + if (!Context.BuiltinInfo.isDirectlyAddressable(BID)) { + type = Context.BuiltinFnTy; + valueKind = VK_PRValue; + break; + } + } + + const FunctionType *fty = type->castAs(); + + // If we're referring to a function with an __unknown_anytype + // result type, make the entire expression __unknown_anytype. + if (fty->getReturnType() == Context.UnknownAnyTy) { + type = Context.UnknownAnyTy; + valueKind = VK_PRValue; + break; + } + + // Functions are l-values in C++. + if (getLangOpts().CPlusPlus) { + valueKind = VK_LValue; + break; + } + + // C99 DR 316 says that, if a function type comes from a + // function definition (without a prototype), that type is only + // used for checking compatibility. Therefore, when referencing + // the function, we pretend that we don't have the full function + // type. + if (!cast(VD)->hasPrototype() && isa(fty)) + type = Context.getFunctionNoProtoType(fty->getReturnType(), + fty->getExtInfo()); + + // Functions are r-values in C. + valueKind = VK_PRValue; + break; + } + + case Decl::CXXDeductionGuide: + llvm_unreachable("building reference to deduction guide"); + + case Decl::MSProperty: + case Decl::MSGuid: + case Decl::TemplateParamObject: + // FIXME: Should MSGuidDecl and template parameter objects be subject to + // capture in OpenMP, or duplicated between host and device? + valueKind = VK_LValue; + break; + + case Decl::UnnamedGlobalConstant: + valueKind = VK_LValue; + break; + + case Decl::CXXMethod: + // If we're referring to a method with an __unknown_anytype + // result type, make the entire expression __unknown_anytype. + // This should only be possible with a type written directly. + if (const FunctionProtoType *proto = + dyn_cast(VD->getType())) + if (proto->getReturnType() == Context.UnknownAnyTy) { + type = Context.UnknownAnyTy; + valueKind = VK_PRValue; + break; + } + + // C++ methods are l-values if static, r-values if non-static. + if (cast(VD)->isStatic()) { + valueKind = VK_LValue; + break; + } + [[fallthrough]]; + + case Decl::CXXConversion: + case Decl::CXXDestructor: + case Decl::CXXConstructor: + valueKind = VK_PRValue; + break; + } + + auto *E = + BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS, FoundD, + /*FIXME: TemplateKWLoc*/ SourceLocation(), TemplateArgs); + // Clang AST consumers assume a DeclRefExpr refers to a valid decl. We + // wrap a DeclRefExpr referring to an invalid decl with a dependent-type + // RecoveryExpr to avoid follow-up semantic analysis (thus prevent bogus + // diagnostics). + if (VD->isInvalidDecl() && E) + return CreateRecoveryExpr(E->getBeginLoc(), E->getEndLoc(), {E}); + return E; + } + + static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source, + SmallString<32> &Target) { + Target.resize(CharByteWidth * (Source.size() + 1)); + char *ResultPtr = &Target[0]; + const llvm::UTF8 *ErrorPtr; + bool success = + llvm::ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr); + (void)success; + assert(success); + Target.resize(ResultPtr - &Target[0]); + } + + ExprResult Sema::BuildPredefinedExpr(SourceLocation Loc, + PredefinedExpr::IdentKind IK) { + // Pick the current block, lambda, captured statement or function. + Decl *currentDecl = nullptr; + if (const BlockScopeInfo *BSI = getCurBlock()) + currentDecl = BSI->TheDecl; + else if (const LambdaScopeInfo *LSI = getCurLambda()) + currentDecl = LSI->CallOperator; + else if (const CapturedRegionScopeInfo *CSI = getCurCapturedRegion()) + currentDecl = CSI->TheCapturedDecl; + else + currentDecl = getCurFunctionOrMethodDecl(); + + if (!currentDecl) { + Diag(Loc, diag::ext_predef_outside_function); + currentDecl = Context.getTranslationUnitDecl(); + } + + QualType ResTy; + StringLiteral *SL = nullptr; + if (cast(currentDecl)->isDependentContext()) + ResTy = Context.DependentTy; + else { + // Pre-defined identifiers are of type char[x], where x is the length of + // the string. + auto Str = PredefinedExpr::ComputeName(IK, currentDecl); + unsigned Length = Str.length(); + + llvm::APInt LengthI(32, Length + 1); + if (IK == PredefinedExpr::LFunction || IK == PredefinedExpr::LFuncSig) { + ResTy = + Context.adjustStringLiteralBaseType(Context.WideCharTy.withConst()); + SmallString<32> RawChars; + ConvertUTF8ToWideString(Context.getTypeSizeInChars(ResTy).getQuantity(), + Str, RawChars); + ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr, + ArrayType::Normal, + /*IndexTypeQuals*/ 0); + SL = StringLiteral::Create(Context, RawChars, StringLiteral::Wide, + /*Pascal*/ false, ResTy, Loc); + } else { + ResTy = Context.adjustStringLiteralBaseType(Context.CharTy.withConst()); + ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr, + ArrayType::Normal, + /*IndexTypeQuals*/ 0); + SL = StringLiteral::Create(Context, Str, StringLiteral::Ordinary, + /*Pascal*/ false, ResTy, Loc); + } + } + + return PredefinedExpr::Create(Context, Loc, ResTy, IK, LangOpts.MicrosoftExt, + SL); + } + + ExprResult Sema::BuildSYCLUniqueStableNameExpr(SourceLocation OpLoc, + SourceLocation LParen, + SourceLocation RParen, + TypeSourceInfo *TSI) { + return SYCLUniqueStableNameExpr::Create(Context, OpLoc, LParen, RParen, TSI); + } + + ExprResult Sema::ActOnSYCLUniqueStableNameExpr(SourceLocation OpLoc, + SourceLocation LParen, + SourceLocation RParen, + ParsedType ParsedTy) { + TypeSourceInfo *TSI = nullptr; + QualType Ty = GetTypeFromParser(ParsedTy, &TSI); + + if (Ty.isNull()) + return ExprError(); + if (!TSI) + TSI = Context.getTrivialTypeSourceInfo(Ty, LParen); + + return BuildSYCLUniqueStableNameExpr(OpLoc, LParen, RParen, TSI); + } + + ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) { + PredefinedExpr::IdentKind IK; + + switch (Kind) { + default: llvm_unreachable("Unknown simple primary expr!"); + case tok::kw___func__: IK = PredefinedExpr::Func; break; // [C99 6.4.2.2] + case tok::kw___FUNCTION__: IK = PredefinedExpr::Function; break; + case tok::kw___FUNCDNAME__: IK = PredefinedExpr::FuncDName; break; // [MS] + case tok::kw___FUNCSIG__: IK = PredefinedExpr::FuncSig; break; // [MS] + case tok::kw_L__FUNCTION__: IK = PredefinedExpr::LFunction; break; // [MS] + case tok::kw_L__FUNCSIG__: IK = PredefinedExpr::LFuncSig; break; // [MS] + case tok::kw___PRETTY_FUNCTION__: IK = PredefinedExpr::PrettyFunction; break; + } + + return BuildPredefinedExpr(Loc, IK); + } + + ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) { + SmallString<16> CharBuffer; + bool Invalid = false; + StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid); + if (Invalid) + return ExprError(); + + CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(), + PP, Tok.getKind()); + if (Literal.hadError()) + return ExprError(); + + QualType Ty; + if (Literal.isWide()) + Ty = Context.WideCharTy; // L'x' -> wchar_t in C and C++. + else if (Literal.isUTF8() && getLangOpts().C2x) + Ty = Context.UnsignedCharTy; // u8'x' -> unsigned char in C2x + else if (Literal.isUTF8() && getLangOpts().Char8) + Ty = Context.Char8Ty; // u8'x' -> char8_t when it exists. + else if (Literal.isUTF16()) + Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11. + else if (Literal.isUTF32()) + Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11. + else if (!getLangOpts().CPlusPlus || Literal.isMultiChar()) + Ty = Context.IntTy; // 'x' -> int in C, 'wxyz' -> int in C++. + else + Ty = Context.CharTy; // 'x' -> char in C++; + // u8'x' -> char in C11-C17 and in C++ without char8_t. + + CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii; + if (Literal.isWide()) + Kind = CharacterLiteral::Wide; + else if (Literal.isUTF16()) + Kind = CharacterLiteral::UTF16; + else if (Literal.isUTF32()) + Kind = CharacterLiteral::UTF32; + else if (Literal.isUTF8()) + Kind = CharacterLiteral::UTF8; + + Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty, + Tok.getLocation()); + + if (Literal.getUDSuffix().empty()) + return Lit; + + // We're building a user-defined literal. + IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix()); + SourceLocation UDSuffixLoc = + getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset()); + + // Make sure we're allowed user-defined literals here. + if (!UDLScope) + return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl)); + + // C++11 [lex.ext]p6: The literal L is treated as a call of the form + // operator "" X (ch) + return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc, + Lit, Tok.getLocation()); + } + + ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) { + unsigned IntSize = Context.getTargetInfo().getIntWidth(); + return IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val), + Context.IntTy, Loc); + } + + static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal, + QualType Ty, SourceLocation Loc) { + const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty); + + using llvm::APFloat; + APFloat Val(Format); + + APFloat::opStatus result = Literal.GetFloatValue(Val); + + // Overflow is always an error, but underflow is only an error if + // we underflowed to zero (APFloat reports denormals as underflow). + if ((result & APFloat::opOverflow) || + ((result & APFloat::opUnderflow) && Val.isZero())) { + unsigned diagnostic; + SmallString<20> buffer; + if (result & APFloat::opOverflow) { + diagnostic = diag::warn_float_overflow; + APFloat::getLargest(Format).toString(buffer); + } else { + diagnostic = diag::warn_float_underflow; + APFloat::getSmallest(Format).toString(buffer); + } + + S.Diag(Loc, diagnostic) + << Ty + << StringRef(buffer.data(), buffer.size()); + } + + bool isExact = (result == APFloat::opOK); + return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc); + } + + bool Sema::CheckLoopHintExpr(Expr *E, SourceLocation Loc) { + assert(E && "Invalid expression"); + + if (E->isValueDependent()) + return false; + + QualType QT = E->getType(); + if (!QT->isIntegerType() || QT->isBooleanType() || QT->isCharType()) { + Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_type) << QT; + return true; + } + + llvm::APSInt ValueAPS; + ExprResult R = VerifyIntegerConstantExpression(E, &ValueAPS); + + if (R.isInvalid()) + return true; + + bool ValueIsPositive = ValueAPS.isStrictlyPositive(); + if (!ValueIsPositive || ValueAPS.getActiveBits() > 31) { + Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_value) + << toString(ValueAPS, 10) << ValueIsPositive; + return true; + } + + return false; + } + + ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) { + // Fast path for a single digit (which is quite common). A single digit + // cannot have a trigraph, escaped newline, radix prefix, or suffix. + if (Tok.getLength() == 1) { + const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok); + return ActOnIntegerConstant(Tok.getLocation(), Val-'0'); + } + + SmallString<128> SpellingBuffer; + // NumericLiteralParser wants to overread by one character. Add padding to + // the buffer in case the token is copied to the buffer. If getSpelling() + // returns a StringRef to the memory buffer, it should have a null char at + // the EOF, so it is also safe. + SpellingBuffer.resize(Tok.getLength() + 1); + + // Get the spelling of the token, which eliminates trigraphs, etc. + bool Invalid = false; + StringRef TokSpelling = PP.getSpelling(Tok, SpellingBuffer, &Invalid); + if (Invalid) + return ExprError(); + + NumericLiteralParser Literal(TokSpelling, Tok.getLocation(), + PP.getSourceManager(), PP.getLangOpts(), + PP.getTargetInfo(), PP.getDiagnostics()); + if (Literal.hadError) + return ExprError(); + + if (Literal.hasUDSuffix()) { + // We're building a user-defined literal. + const IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix()); + SourceLocation UDSuffixLoc = + getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset()); + + // Make sure we're allowed user-defined literals here. + if (!UDLScope) + return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl)); + + QualType CookedTy; + if (Literal.isFloatingLiteral()) { + // C++11 [lex.ext]p4: If S contains a literal operator with parameter type + // long double, the literal is treated as a call of the form + // operator "" X (f L) + CookedTy = Context.LongDoubleTy; + } else { + // C++11 [lex.ext]p3: If S contains a literal operator with parameter type + // unsigned long long, the literal is treated as a call of the form + // operator "" X (n ULL) + CookedTy = Context.UnsignedLongLongTy; + } + + DeclarationName OpName = + Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix); + DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc); + OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc); + + SourceLocation TokLoc = Tok.getLocation(); + + // Perform literal operator lookup to determine if we're building a raw + // literal or a cooked one. + LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName); + switch (LookupLiteralOperator(UDLScope, R, CookedTy, + /*AllowRaw*/ true, /*AllowTemplate*/ true, + /*AllowStringTemplatePack*/ false, + /*DiagnoseMissing*/ !Literal.isImaginary)) { + case LOLR_ErrorNoDiagnostic: + // Lookup failure for imaginary constants isn't fatal, there's still the + // GNU extension producing _Complex types. + break; + case LOLR_Error: + return ExprError(); + case LOLR_Cooked: { + Expr *Lit; + if (Literal.isFloatingLiteral()) { + Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation()); + } else { + llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0); + if (Literal.GetIntegerValue(ResultVal)) + Diag(Tok.getLocation(), diag::err_integer_literal_too_large) + << /* Unsigned */ 1; + Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy, + Tok.getLocation()); + } + return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc); + } + + case LOLR_Raw: { + // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the + // literal is treated as a call of the form + // operator "" X ("n") + unsigned Length = Literal.getUDSuffixOffset(); + QualType StrTy = Context.getConstantArrayType( + Context.adjustStringLiteralBaseType(Context.CharTy.withConst()), + llvm::APInt(32, Length + 1), nullptr, ArrayType::Normal, 0); + Expr *Lit = + StringLiteral::Create(Context, StringRef(TokSpelling.data(), Length), + StringLiteral::Ordinary, + /*Pascal*/ false, StrTy, &TokLoc, 1); + return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc); + } + + case LOLR_Template: { + // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator + // template), L is treated as a call fo the form + // operator "" X <'c1', 'c2', ... 'ck'>() + // where n is the source character sequence c1 c2 ... ck. + TemplateArgumentListInfo ExplicitArgs; + unsigned CharBits = Context.getIntWidth(Context.CharTy); + bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType(); + llvm::APSInt Value(CharBits, CharIsUnsigned); + for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) { + Value = TokSpelling[I]; + TemplateArgument Arg(Context, Value, Context.CharTy); + TemplateArgumentLocInfo ArgInfo; + ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo)); + } + return BuildLiteralOperatorCall(R, OpNameInfo, std::nullopt, TokLoc, + &ExplicitArgs); + } + case LOLR_StringTemplatePack: + llvm_unreachable("unexpected literal operator lookup result"); + } + } + + Expr *Res; + + if (Literal.isFixedPointLiteral()) { + QualType Ty; + + if (Literal.isAccum) { + if (Literal.isHalf) { + Ty = Context.ShortAccumTy; + } else if (Literal.isLong) { + Ty = Context.LongAccumTy; + } else { + Ty = Context.AccumTy; + } + } else if (Literal.isFract) { + if (Literal.isHalf) { + Ty = Context.ShortFractTy; + } else if (Literal.isLong) { + Ty = Context.LongFractTy; + } else { + Ty = Context.FractTy; + } + } + + if (Literal.isUnsigned) Ty = Context.getCorrespondingUnsignedType(Ty); + + bool isSigned = !Literal.isUnsigned; + unsigned scale = Context.getFixedPointScale(Ty); + unsigned bit_width = Context.getTypeInfo(Ty).Width; + + llvm::APInt Val(bit_width, 0, isSigned); + bool Overflowed = Literal.GetFixedPointValue(Val, scale); + bool ValIsZero = Val.isZero() && !Overflowed; + + auto MaxVal = Context.getFixedPointMax(Ty).getValue(); + if (Literal.isFract && Val == MaxVal + 1 && !ValIsZero) + // Clause 6.4.4 - The value of a constant shall be in the range of + // representable values for its type, with exception for constants of a + // fract type with a value of exactly 1; such a constant shall denote + // the maximal value for the type. + --Val; + else if (Val.ugt(MaxVal) || Overflowed) + Diag(Tok.getLocation(), diag::err_too_large_for_fixed_point); + + Res = FixedPointLiteral::CreateFromRawInt(Context, Val, Ty, + Tok.getLocation(), scale); + } else if (Literal.isFloatingLiteral()) { + QualType Ty; + if (Literal.isHalf){ + if (getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts())) + Ty = Context.HalfTy; + else { + Diag(Tok.getLocation(), diag::err_half_const_requires_fp16); + return ExprError(); + } + } else if (Literal.isFloat) + Ty = Context.FloatTy; + else if (Literal.isLong) + Ty = Context.LongDoubleTy; + else if (Literal.isFloat16) + Ty = Context.Float16Ty; + else if (Literal.isFloat128) + Ty = Context.Float128Ty; + else + Ty = Context.DoubleTy; + + Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation()); + + if (Ty == Context.DoubleTy) { + if (getLangOpts().SinglePrecisionConstants) { + if (Ty->castAs()->getKind() != BuiltinType::Float) { + Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get(); + } + } else if (getLangOpts().OpenCL && !getOpenCLOptions().isAvailableOption( + "cl_khr_fp64", getLangOpts())) { + // Impose single-precision float type when cl_khr_fp64 is not enabled. + Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64) + << (getLangOpts().getOpenCLCompatibleVersion() >= 300); + Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get(); + } + } + } else if (!Literal.isIntegerLiteral()) { + return ExprError(); + } else { + QualType Ty; + + // 'z/uz' literals are a C++23 feature. + if (Literal.isSizeT) + Diag(Tok.getLocation(), getLangOpts().CPlusPlus + ? getLangOpts().CPlusPlus23 + ? diag::warn_cxx20_compat_size_t_suffix + : diag::ext_cxx23_size_t_suffix + : diag::err_cxx23_size_t_suffix); + + // 'wb/uwb' literals are a C2x feature. We support _BitInt as a type in C++, + // but we do not currently support the suffix in C++ mode because it's not + // entirely clear whether WG21 will prefer this suffix to return a library + // type such as std::bit_int instead of returning a _BitInt. + if (Literal.isBitInt && !getLangOpts().CPlusPlus) + PP.Diag(Tok.getLocation(), getLangOpts().C2x + ? diag::warn_c2x_compat_bitint_suffix + : diag::ext_c2x_bitint_suffix); + + // Get the value in the widest-possible width. What is "widest" depends on + // whether the literal is a bit-precise integer or not. For a bit-precise + // integer type, try to scan the source to determine how many bits are + // needed to represent the value. This may seem a bit expensive, but trying + // to get the integer value from an overly-wide APInt is *extremely* + // expensive, so the naive approach of assuming + // llvm::IntegerType::MAX_INT_BITS is a big performance hit. + unsigned BitsNeeded = + Literal.isBitInt ? llvm::APInt::getSufficientBitsNeeded( + Literal.getLiteralDigits(), Literal.getRadix()) + : Context.getTargetInfo().getIntMaxTWidth(); + llvm::APInt ResultVal(BitsNeeded, 0); + + if (Literal.GetIntegerValue(ResultVal)) { + // If this value didn't fit into uintmax_t, error and force to ull. + Diag(Tok.getLocation(), diag::err_integer_literal_too_large) + << /* Unsigned */ 1; + Ty = Context.UnsignedLongLongTy; + assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() && + "long long is not intmax_t?"); + } else { + // If this value fits into a ULL, try to figure out what else it fits into + // according to the rules of C99 6.4.4.1p5. + + // Octal, Hexadecimal, and integers with a U suffix are allowed to + // be an unsigned int. + bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10; + + // Check from smallest to largest, picking the smallest type we can. + unsigned Width = 0; + + // Microsoft specific integer suffixes are explicitly sized. + if (Literal.MicrosoftInteger) { + if (Literal.MicrosoftInteger == 8 && !Literal.isUnsigned) { + Width = 8; + Ty = Context.CharTy; + } else { + Width = Literal.MicrosoftInteger; + Ty = Context.getIntTypeForBitwidth(Width, + /*Signed=*/!Literal.isUnsigned); + } + } + + // Bit-precise integer literals are automagically-sized based on the + // width required by the literal. + if (Literal.isBitInt) { + // The signed version has one more bit for the sign value. There are no + // zero-width bit-precise integers, even if the literal value is 0. + Width = std::max(ResultVal.getActiveBits(), 1u) + + (Literal.isUnsigned ? 0u : 1u); + + // Diagnose if the width of the constant is larger than BITINT_MAXWIDTH, + // and reset the type to the largest supported width. + unsigned int MaxBitIntWidth = + Context.getTargetInfo().getMaxBitIntWidth(); + if (Width > MaxBitIntWidth) { + Diag(Tok.getLocation(), diag::err_integer_literal_too_large) + << Literal.isUnsigned; + Width = MaxBitIntWidth; + } + + // Reset the result value to the smaller APInt and select the correct + // type to be used. Note, we zext even for signed values because the + // literal itself is always an unsigned value (a preceeding - is a + // unary operator, not part of the literal). + ResultVal = ResultVal.zextOrTrunc(Width); + Ty = Context.getBitIntType(Literal.isUnsigned, Width); + } + + // Check C++23 size_t literals. + if (Literal.isSizeT) { + assert(!Literal.MicrosoftInteger && + "size_t literals can't be Microsoft literals"); + unsigned SizeTSize = Context.getTargetInfo().getTypeWidth( + Context.getTargetInfo().getSizeType()); + + // Does it fit in size_t? + if (ResultVal.isIntN(SizeTSize)) { + // Does it fit in ssize_t? + if (!Literal.isUnsigned && ResultVal[SizeTSize - 1] == 0) + Ty = Context.getSignedSizeType(); + else if (AllowUnsigned) + Ty = Context.getSizeType(); + Width = SizeTSize; + } + } + + if (Ty.isNull() && !Literal.isLong && !Literal.isLongLong && + !Literal.isSizeT) { + // Are int/unsigned possibilities? + unsigned IntSize = Context.getTargetInfo().getIntWidth(); + + // Does it fit in a unsigned int? + if (ResultVal.isIntN(IntSize)) { + // Does it fit in a signed int? + if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0) + Ty = Context.IntTy; + else if (AllowUnsigned) + Ty = Context.UnsignedIntTy; + Width = IntSize; + } + } + + // Are long/unsigned long possibilities? + if (Ty.isNull() && !Literal.isLongLong && !Literal.isSizeT) { + unsigned LongSize = Context.getTargetInfo().getLongWidth(); + + // Does it fit in a unsigned long? + if (ResultVal.isIntN(LongSize)) { + // Does it fit in a signed long? + if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0) + Ty = Context.LongTy; + else if (AllowUnsigned) + Ty = Context.UnsignedLongTy; + // Check according to the rules of C90 6.1.3.2p5. C++03 [lex.icon]p2 + // is compatible. + else if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11) { + const unsigned LongLongSize = + Context.getTargetInfo().getLongLongWidth(); + Diag(Tok.getLocation(), + getLangOpts().CPlusPlus + ? Literal.isLong + ? diag::warn_old_implicitly_unsigned_long_cxx + : /*C++98 UB*/ diag:: + ext_old_implicitly_unsigned_long_cxx + : diag::warn_old_implicitly_unsigned_long) + << (LongLongSize > LongSize ? /*will have type 'long long'*/ 0 + : /*will be ill-formed*/ 1); + Ty = Context.UnsignedLongTy; + } + Width = LongSize; + } + } + + // Check long long if needed. + if (Ty.isNull() && !Literal.isSizeT) { + unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth(); + + // Does it fit in a unsigned long long? + if (ResultVal.isIntN(LongLongSize)) { + // Does it fit in a signed long long? + // To be compatible with MSVC, hex integer literals ending with the + // LL or i64 suffix are always signed in Microsoft mode. + if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 || + (getLangOpts().MSVCCompat && Literal.isLongLong))) + Ty = Context.LongLongTy; + else if (AllowUnsigned) + Ty = Context.UnsignedLongLongTy; + Width = LongLongSize; + + // 'long long' is a C99 or C++11 feature, whether the literal + // explicitly specified 'long long' or we needed the extra width. + if (getLangOpts().CPlusPlus) + Diag(Tok.getLocation(), getLangOpts().CPlusPlus11 + ? diag::warn_cxx98_compat_longlong + : diag::ext_cxx11_longlong); + else if (!getLangOpts().C99) + Diag(Tok.getLocation(), diag::ext_c99_longlong); + } + } + + // If we still couldn't decide a type, we either have 'size_t' literal + // that is out of range, or a decimal literal that does not fit in a + // signed long long and has no U suffix. + if (Ty.isNull()) { + if (Literal.isSizeT) + Diag(Tok.getLocation(), diag::err_size_t_literal_too_large) + << Literal.isUnsigned; + else + Diag(Tok.getLocation(), + diag::ext_integer_literal_too_large_for_signed); + Ty = Context.UnsignedLongLongTy; + Width = Context.getTargetInfo().getLongLongWidth(); + } + + if (ResultVal.getBitWidth() != Width) + ResultVal = ResultVal.trunc(Width); + } + Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation()); + } + + // If this is an imaginary literal, create the ImaginaryLiteral wrapper. + if (Literal.isImaginary) { + Res = new (Context) ImaginaryLiteral(Res, + Context.getComplexType(Res->getType())); + + Diag(Tok.getLocation(), diag::ext_imaginary_constant); + } + return Res; + } + + ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) { + assert(E && "ActOnParenExpr() missing expr"); + QualType ExprTy = E->getType(); + if (getLangOpts().ProtectParens && CurFPFeatures.getAllowFPReassociate() && + !E->isLValue() && ExprTy->hasFloatingRepresentation()) + return BuildBuiltinCallExpr(R, Builtin::BI__arithmetic_fence, E); + return new (Context) ParenExpr(L, R, E); + } + + static bool CheckVecStepTraitOperandType(Sema &S, QualType T, + SourceLocation Loc, + SourceRange ArgRange) { + // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in + // scalar or vector data type argument..." + // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic + // type (C99 6.2.5p18) or void. + if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) { + S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type) + << T << ArgRange; + return true; + } + + assert((T->isVoidType() || !T->isIncompleteType()) && + "Scalar types should always be complete"); + return false; + } + + static bool CheckExtensionTraitOperandType(Sema &S, QualType T, + SourceLocation Loc, + SourceRange ArgRange, + UnaryExprOrTypeTrait TraitKind) { + // Invalid types must be hard errors for SFINAE in C++. + if (S.LangOpts.CPlusPlus) + return true; + + // C99 6.5.3.4p1: + if (T->isFunctionType() && + (TraitKind == UETT_SizeOf || TraitKind == UETT_AlignOf || + TraitKind == UETT_PreferredAlignOf)) { + // sizeof(function)/alignof(function) is allowed as an extension. + S.Diag(Loc, diag::ext_sizeof_alignof_function_type) + << getTraitSpelling(TraitKind) << ArgRange; + return false; + } + + // Allow sizeof(void)/alignof(void) as an extension, unless in OpenCL where + // this is an error (OpenCL v1.1 s6.3.k) + if (T->isVoidType()) { + unsigned DiagID = S.LangOpts.OpenCL ? diag::err_opencl_sizeof_alignof_type + : diag::ext_sizeof_alignof_void_type; + S.Diag(Loc, DiagID) << getTraitSpelling(TraitKind) << ArgRange; + return false; + } + + return true; + } + + static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T, + SourceLocation Loc, + SourceRange ArgRange, + UnaryExprOrTypeTrait TraitKind) { + // Reject sizeof(interface) and sizeof(interface) if the + // runtime doesn't allow it. + if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) { + S.Diag(Loc, diag::err_sizeof_nonfragile_interface) + << T << (TraitKind == UETT_SizeOf) + << ArgRange; + return true; + } + + return false; + } + + /// Check whether E is a pointer from a decayed array type (the decayed + /// pointer type is equal to T) and emit a warning if it is. + static void warnOnSizeofOnArrayDecay(Sema &S, SourceLocation Loc, QualType T, + const Expr *E) { + // Don't warn if the operation changed the type. + if (T != E->getType()) + return; + + // Now look for array decays. + const auto *ICE = dyn_cast(E); + if (!ICE || ICE->getCastKind() != CK_ArrayToPointerDecay) + return; + + S.Diag(Loc, diag::warn_sizeof_array_decay) << ICE->getSourceRange() + << ICE->getType() + << ICE->getSubExpr()->getType(); + } + + /// Check the constraints on expression operands to unary type expression + /// and type traits. + /// + /// Completes any types necessary and validates the constraints on the operand + /// expression. The logic mostly mirrors the type-based overload, but may modify + /// the expression as it completes the type for that expression through template + /// instantiation, etc. + bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E, + UnaryExprOrTypeTrait ExprKind) { + QualType ExprTy = E->getType(); + assert(!ExprTy->isReferenceType()); + + bool IsUnevaluatedOperand = + (ExprKind == UETT_SizeOf || ExprKind == UETT_AlignOf || + ExprKind == UETT_PreferredAlignOf || ExprKind == UETT_VecStep); + if (IsUnevaluatedOperand) { + ExprResult Result = CheckUnevaluatedOperand(E); + if (Result.isInvalid()) + return true; + E = Result.get(); + } + + // The operand for sizeof and alignof is in an unevaluated expression context, + // so side effects could result in unintended consequences. + // Exclude instantiation-dependent expressions, because 'sizeof' is sometimes + // used to build SFINAE gadgets. + // FIXME: Should we consider instantiation-dependent operands to 'alignof'? + if (IsUnevaluatedOperand && !inTemplateInstantiation() && + !E->isInstantiationDependent() && + !E->getType()->isVariableArrayType() && + E->HasSideEffects(Context, false)) + Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context); + + if (ExprKind == UETT_VecStep) + return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(), + E->getSourceRange()); + + // Explicitly list some types as extensions. + if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(), + E->getSourceRange(), ExprKind)) + return false; + + // WebAssembly tables are always illegal operands to unary expressions and + // type traits. + if (Context.getTargetInfo().getTriple().isWasm() && + E->getType()->isWebAssemblyTableType()) { + Diag(E->getExprLoc(), diag::err_wasm_table_invalid_uett_operand) + << getTraitSpelling(ExprKind); + return true; + } + + // 'alignof' applied to an expression only requires the base element type of + // the expression to be complete. 'sizeof' requires the expression's type to + // be complete (and will attempt to complete it if it's an array of unknown + // bound). + if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) { + if (RequireCompleteSizedType( + E->getExprLoc(), Context.getBaseElementType(E->getType()), + diag::err_sizeof_alignof_incomplete_or_sizeless_type, + getTraitSpelling(ExprKind), E->getSourceRange())) + return true; + } else { + if (RequireCompleteSizedExprType( + E, diag::err_sizeof_alignof_incomplete_or_sizeless_type, + getTraitSpelling(ExprKind), E->getSourceRange())) + return true; + } + + // Completing the expression's type may have changed it. + ExprTy = E->getType(); + assert(!ExprTy->isReferenceType()); + + if (ExprTy->isFunctionType()) { + Diag(E->getExprLoc(), diag::err_sizeof_alignof_function_type) + << getTraitSpelling(ExprKind) << E->getSourceRange(); + return true; + } + + if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(), + E->getSourceRange(), ExprKind)) + return true; + + if (ExprKind == UETT_SizeOf) { + if (const auto *DeclRef = dyn_cast(E->IgnoreParens())) { + if (const auto *PVD = dyn_cast(DeclRef->getFoundDecl())) { + QualType OType = PVD->getOriginalType(); + QualType Type = PVD->getType(); + if (Type->isPointerType() && OType->isArrayType()) { + Diag(E->getExprLoc(), diag::warn_sizeof_array_param) + << Type << OType; + Diag(PVD->getLocation(), diag::note_declared_at); + } + } + } + + // Warn on "sizeof(array op x)" and "sizeof(x op array)", where the array + // decays into a pointer and returns an unintended result. This is most + // likely a typo for "sizeof(array) op x". + if (const auto *BO = dyn_cast(E->IgnoreParens())) { + warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(), + BO->getLHS()); + warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(), + BO->getRHS()); + } + } + + return false; + } + + static bool CheckAlignOfExpr(Sema &S, Expr *E, UnaryExprOrTypeTrait ExprKind) { + // Cannot know anything else if the expression is dependent. + if (E->isTypeDependent()) + return false; + + if (E->getObjectKind() == OK_BitField) { + S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) + << 1 << E->getSourceRange(); + return true; + } + + ValueDecl *D = nullptr; + Expr *Inner = E->IgnoreParens(); + if (DeclRefExpr *DRE = dyn_cast(Inner)) { + D = DRE->getDecl(); + } else if (MemberExpr *ME = dyn_cast(Inner)) { + D = ME->getMemberDecl(); + } + + // If it's a field, require the containing struct to have a + // complete definition so that we can compute the layout. + // + // This can happen in C++11 onwards, either by naming the member + // in a way that is not transformed into a member access expression + // (in an unevaluated operand, for instance), or by naming the member + // in a trailing-return-type. + // + // For the record, since __alignof__ on expressions is a GCC + // extension, GCC seems to permit this but always gives the + // nonsensical answer 0. + // + // We don't really need the layout here --- we could instead just + // directly check for all the appropriate alignment-lowing + // attributes --- but that would require duplicating a lot of + // logic that just isn't worth duplicating for such a marginal + // use-case. + if (FieldDecl *FD = dyn_cast_or_null(D)) { + // Fast path this check, since we at least know the record has a + // definition if we can find a member of it. + if (!FD->getParent()->isCompleteDefinition()) { + S.Diag(E->getExprLoc(), diag::err_alignof_member_of_incomplete_type) + << E->getSourceRange(); + return true; + } + + // Otherwise, if it's a field, and the field doesn't have + // reference type, then it must have a complete type (or be a + // flexible array member, which we explicitly want to + // white-list anyway), which makes the following checks trivial. + if (!FD->getType()->isReferenceType()) + return false; + } + + return S.CheckUnaryExprOrTypeTraitOperand(E, ExprKind); + } + + bool Sema::CheckVecStepExpr(Expr *E) { + E = E->IgnoreParens(); + + // Cannot know anything else if the expression is dependent. + if (E->isTypeDependent()) + return false; + + return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep); + } + + static void captureVariablyModifiedType(ASTContext &Context, QualType T, + CapturingScopeInfo *CSI) { + assert(T->isVariablyModifiedType()); + assert(CSI != nullptr); + + // We're going to walk down into the type and look for VLA expressions. + do { + const Type *Ty = T.getTypePtr(); + switch (Ty->getTypeClass()) { + #define TYPE(Class, Base) + #define ABSTRACT_TYPE(Class, Base) + #define NON_CANONICAL_TYPE(Class, Base) + #define DEPENDENT_TYPE(Class, Base) case Type::Class: + #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) + #include "clang/AST/TypeNodes.inc" + T = QualType(); + break; + // These types are never variably-modified. + case Type::Builtin: + case Type::Complex: + case Type::Vector: + case Type::ExtVector: + case Type::ConstantMatrix: + case Type::Record: + case Type::Enum: + case Type::TemplateSpecialization: + case Type::ObjCObject: + case Type::ObjCInterface: + case Type::ObjCObjectPointer: + case Type::ObjCTypeParam: + case Type::Pipe: + case Type::BitInt: + llvm_unreachable("type class is never variably-modified!"); + case Type::Elaborated: + T = cast(Ty)->getNamedType(); + break; + case Type::Adjusted: + T = cast(Ty)->getOriginalType(); + break; + case Type::Decayed: + T = cast(Ty)->getPointeeType(); + break; + case Type::Pointer: + T = cast(Ty)->getPointeeType(); + break; + case Type::BlockPointer: + T = cast(Ty)->getPointeeType(); + break; + case Type::LValueReference: + case Type::RValueReference: + T = cast(Ty)->getPointeeType(); + break; + case Type::MemberPointer: + T = cast(Ty)->getPointeeType(); + break; + case Type::ConstantArray: + case Type::IncompleteArray: + // Losing element qualification here is fine. + T = cast(Ty)->getElementType(); + break; + case Type::VariableArray: { + // Losing element qualification here is fine. + const VariableArrayType *VAT = cast(Ty); + + // Unknown size indication requires no size computation. + // Otherwise, evaluate and record it. + auto Size = VAT->getSizeExpr(); + if (Size && !CSI->isVLATypeCaptured(VAT) && + (isa(CSI) || isa(CSI))) + CSI->addVLATypeCapture(Size->getExprLoc(), VAT, Context.getSizeType()); + + T = VAT->getElementType(); + break; + } + case Type::FunctionProto: + case Type::FunctionNoProto: + T = cast(Ty)->getReturnType(); + break; + case Type::Paren: + case Type::TypeOf: + case Type::UnaryTransform: + case Type::Attributed: + case Type::BTFTagAttributed: + case Type::SubstTemplateTypeParm: + case Type::MacroQualified: + // Keep walking after single level desugaring. + T = T.getSingleStepDesugaredType(Context); + break; + case Type::Typedef: + T = cast(Ty)->desugar(); + break; + case Type::Decltype: + T = cast(Ty)->desugar(); + break; + case Type::Using: + T = cast(Ty)->desugar(); + break; + case Type::Auto: + case Type::DeducedTemplateSpecialization: + T = cast(Ty)->getDeducedType(); + break; + case Type::TypeOfExpr: + T = cast(Ty)->getUnderlyingExpr()->getType(); + break; + case Type::Atomic: + T = cast(Ty)->getValueType(); + break; + } + } while (!T.isNull() && T->isVariablyModifiedType()); + } + + /// Check the constraints on operands to unary expression and type + /// traits. + /// + /// This will complete any types necessary, and validate the various constraints + /// on those operands. + /// + /// The UsualUnaryConversions() function is *not* called by this routine. + /// C99 6.3.2.1p[2-4] all state: + /// Except when it is the operand of the sizeof operator ... + /// + /// C++ [expr.sizeof]p4 + /// The lvalue-to-rvalue, array-to-pointer, and function-to-pointer + /// standard conversions are not applied to the operand of sizeof. + /// + /// This policy is followed for all of the unary trait expressions. + bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType, + SourceLocation OpLoc, + SourceRange ExprRange, + UnaryExprOrTypeTrait ExprKind, + StringRef KWName) { + if (ExprType->isDependentType()) + return false; + + // C++ [expr.sizeof]p2: + // When applied to a reference or a reference type, the result + // is the size of the referenced type. + // C++11 [expr.alignof]p3: + // When alignof is applied to a reference type, the result + // shall be the alignment of the referenced type. + if (const ReferenceType *Ref = ExprType->getAs()) + ExprType = Ref->getPointeeType(); + + // C11 6.5.3.4/3, C++11 [expr.alignof]p3: + // When alignof or _Alignof is applied to an array type, the result + // is the alignment of the element type. + if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf || + ExprKind == UETT_OpenMPRequiredSimdAlign) + ExprType = Context.getBaseElementType(ExprType); + + if (ExprKind == UETT_VecStep) + return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange); + + // Explicitly list some types as extensions. + if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange, + ExprKind)) + return false; + + if (RequireCompleteSizedType( + OpLoc, ExprType, diag::err_sizeof_alignof_incomplete_or_sizeless_type, + KWName, ExprRange)) + return true; + + if (ExprType->isFunctionType()) { + Diag(OpLoc, diag::err_sizeof_alignof_function_type) << KWName << ExprRange; + return true; + } + + // WebAssembly tables are always illegal operands to unary expressions and + // type traits. + if (Context.getTargetInfo().getTriple().isWasm() && + ExprType->isWebAssemblyTableType()) { + Diag(OpLoc, diag::err_wasm_table_invalid_uett_operand) + << getTraitSpelling(ExprKind); + return true; + } + + if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange, + ExprKind)) + return true; + + if (ExprType->isVariablyModifiedType() && FunctionScopes.size() > 1) { + if (auto *TT = ExprType->getAs()) { + for (auto I = FunctionScopes.rbegin(), + E = std::prev(FunctionScopes.rend()); + I != E; ++I) { + auto *CSI = dyn_cast(*I); + if (CSI == nullptr) + break; + DeclContext *DC = nullptr; + if (auto *LSI = dyn_cast(CSI)) + DC = LSI->CallOperator; + else if (auto *CRSI = dyn_cast(CSI)) + DC = CRSI->TheCapturedDecl; + else if (auto *BSI = dyn_cast(CSI)) + DC = BSI->TheDecl; + if (DC) { + if (DC->containsDecl(TT->getDecl())) + break; + captureVariablyModifiedType(Context, ExprType, CSI); + } + } + } + } + + return false; + } + + /// Build a sizeof or alignof expression given a type operand. + ExprResult Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo, + SourceLocation OpLoc, + UnaryExprOrTypeTrait ExprKind, + SourceRange R) { + if (!TInfo) + return ExprError(); + + QualType T = TInfo->getType(); + + if (!T->isDependentType() && + CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind, + getTraitSpelling(ExprKind))) + return ExprError(); + + // Adds overload of TransformToPotentiallyEvaluated for TypeSourceInfo to + // properly deal with VLAs in nested calls of sizeof and typeof. + if (isUnevaluatedContext() && ExprKind == UETT_SizeOf && + TInfo->getType()->isVariablyModifiedType()) + TInfo = TransformToPotentiallyEvaluated(TInfo); + + // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t. + return new (Context) UnaryExprOrTypeTraitExpr( + ExprKind, TInfo, Context.getSizeType(), OpLoc, R.getEnd()); + } + + /// Build a sizeof or alignof expression given an expression + /// operand. + ExprResult + Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc, + UnaryExprOrTypeTrait ExprKind) { + ExprResult PE = CheckPlaceholderExpr(E); + if (PE.isInvalid()) + return ExprError(); + + E = PE.get(); + + // Verify that the operand is valid. + bool isInvalid = false; + if (E->isTypeDependent()) { + // Delay type-checking for type-dependent expressions. + } else if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) { + isInvalid = CheckAlignOfExpr(*this, E, ExprKind); + } else if (ExprKind == UETT_VecStep) { + isInvalid = CheckVecStepExpr(E); + } else if (ExprKind == UETT_OpenMPRequiredSimdAlign) { + Diag(E->getExprLoc(), diag::err_openmp_default_simd_align_expr); + isInvalid = true; + } else if (E->refersToBitField()) { // C99 6.5.3.4p1. + Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 0; + isInvalid = true; + } else { + isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf); + } + + if (isInvalid) + return ExprError(); + + if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) { + PE = TransformToPotentiallyEvaluated(E); + if (PE.isInvalid()) return ExprError(); + E = PE.get(); + } + + // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t. + return new (Context) UnaryExprOrTypeTraitExpr( + ExprKind, E, Context.getSizeType(), OpLoc, E->getSourceRange().getEnd()); + } + + /// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c + /// expr and the same for @c alignof and @c __alignof + /// Note that the ArgRange is invalid if isType is false. + ExprResult + Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc, + UnaryExprOrTypeTrait ExprKind, bool IsType, + void *TyOrEx, SourceRange ArgRange) { + // If error parsing type, ignore. + if (!TyOrEx) return ExprError(); + + if (IsType) { + TypeSourceInfo *TInfo; + (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo); + return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange); + } + + Expr *ArgEx = (Expr *)TyOrEx; + ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind); + return Result; + } + + bool Sema::CheckAlignasTypeArgument(StringRef KWName, TypeSourceInfo *TInfo, + SourceLocation OpLoc, SourceRange R) { + if (!TInfo) + return true; + return CheckUnaryExprOrTypeTraitOperand(TInfo->getType(), OpLoc, R, + UETT_AlignOf, KWName); + } + + /// ActOnAlignasTypeArgument - Handle @c alignas(type-id) and @c + /// _Alignas(type-name) . + /// [dcl.align] An alignment-specifier of the form + /// alignas(type-id) has the same effect as alignas(alignof(type-id)). + /// + /// [N1570 6.7.5] _Alignas(type-name) is equivalent to + /// _Alignas(_Alignof(type-name)). + bool Sema::ActOnAlignasTypeArgument(StringRef KWName, ParsedType Ty, + SourceLocation OpLoc, SourceRange R) { + TypeSourceInfo *TInfo; + (void)GetTypeFromParser(ParsedType::getFromOpaquePtr(Ty.getAsOpaquePtr()), + &TInfo); + return CheckAlignasTypeArgument(KWName, TInfo, OpLoc, R); + } + + static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc, + bool IsReal) { + if (V.get()->isTypeDependent()) + return S.Context.DependentTy; + + // _Real and _Imag are only l-values for normal l-values. + if (V.get()->getObjectKind() != OK_Ordinary) { + V = S.DefaultLvalueConversion(V.get()); + if (V.isInvalid()) + return QualType(); + } + + // These operators return the element type of a complex type. + if (const ComplexType *CT = V.get()->getType()->getAs()) + return CT->getElementType(); + + // Otherwise they pass through real integer and floating point types here. + if (V.get()->getType()->isArithmeticType()) + return V.get()->getType(); + + // Test for placeholders. + ExprResult PR = S.CheckPlaceholderExpr(V.get()); + if (PR.isInvalid()) return QualType(); + if (PR.get() != V.get()) { + V = PR; + return CheckRealImagOperand(S, V, Loc, IsReal); + } + + // Reject anything else. + S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType() + << (IsReal ? "__real" : "__imag"); + return QualType(); + } + + + + ExprResult + Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc, + tok::TokenKind Kind, Expr *Input) { + UnaryOperatorKind Opc; + switch (Kind) { + default: llvm_unreachable("Unknown unary op!"); + case tok::plusplus: Opc = UO_PostInc; break; + case tok::minusminus: Opc = UO_PostDec; break; + } + + // Since this might is a postfix expression, get rid of ParenListExprs. + ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input); + if (Result.isInvalid()) return ExprError(); + Input = Result.get(); + + return BuildUnaryOp(S, OpLoc, Opc, Input); + } + + /// Diagnose if arithmetic on the given ObjC pointer is illegal. + /// + /// \return true on error + static bool checkArithmeticOnObjCPointer(Sema &S, + SourceLocation opLoc, + Expr *op) { + assert(op->getType()->isObjCObjectPointerType()); + if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic() && + !S.LangOpts.ObjCSubscriptingLegacyRuntime) + return false; + + S.Diag(opLoc, diag::err_arithmetic_nonfragile_interface) + << op->getType()->castAs()->getPointeeType() + << op->getSourceRange(); + return true; + } + + static bool isMSPropertySubscriptExpr(Sema &S, Expr *Base) { + auto *BaseNoParens = Base->IgnoreParens(); + if (auto *MSProp = dyn_cast(BaseNoParens)) + return MSProp->getPropertyDecl()->getType()->isArrayType(); + return isa(BaseNoParens); + } + + // Returns the type used for LHS[RHS], given one of LHS, RHS is type-dependent. + // Typically this is DependentTy, but can sometimes be more precise. + // + // There are cases when we could determine a non-dependent type: + // - LHS and RHS may have non-dependent types despite being type-dependent + // (e.g. unbounded array static members of the current instantiation) + // - one may be a dependent-sized array with known element type + // - one may be a dependent-typed valid index (enum in current instantiation) + // + // We *always* return a dependent type, in such cases it is DependentTy. + // This avoids creating type-dependent expressions with non-dependent types. + // FIXME: is this important to avoid? See https://reviews.llvm.org/D107275 + static QualType getDependentArraySubscriptType(Expr *LHS, Expr *RHS, + const ASTContext &Ctx) { + assert(LHS->isTypeDependent() || RHS->isTypeDependent()); + QualType LTy = LHS->getType(), RTy = RHS->getType(); + QualType Result = Ctx.DependentTy; + if (RTy->isIntegralOrUnscopedEnumerationType()) { + if (const PointerType *PT = LTy->getAs()) + Result = PT->getPointeeType(); + else if (const ArrayType *AT = LTy->getAsArrayTypeUnsafe()) + Result = AT->getElementType(); + } else if (LTy->isIntegralOrUnscopedEnumerationType()) { + if (const PointerType *PT = RTy->getAs()) + Result = PT->getPointeeType(); + else if (const ArrayType *AT = RTy->getAsArrayTypeUnsafe()) + Result = AT->getElementType(); + } + // Ensure we return a dependent type. + return Result->isDependentType() ? Result : Ctx.DependentTy; + } + + static bool checkArgsForPlaceholders(Sema &S, MultiExprArg args); + + ExprResult Sema::ActOnArraySubscriptExpr(Scope *S, Expr *base, + SourceLocation lbLoc, + MultiExprArg ArgExprs, + SourceLocation rbLoc) { + + if (base && !base->getType().isNull() && + base->hasPlaceholderType(BuiltinType::OMPArraySection)) + return ActOnOMPArraySectionExpr(base, lbLoc, ArgExprs.front(), SourceLocation(), + SourceLocation(), /*Length*/ nullptr, + /*Stride=*/nullptr, rbLoc); + + // Since this might be a postfix expression, get rid of ParenListExprs. + if (isa(base)) { + ExprResult result = MaybeConvertParenListExprToParenExpr(S, base); + if (result.isInvalid()) + return ExprError(); + base = result.get(); + } + + // Check if base and idx form a MatrixSubscriptExpr. + // + // Helper to check for comma expressions, which are not allowed as indices for + // matrix subscript expressions. + auto CheckAndReportCommaError = [this, base, rbLoc](Expr *E) { + if (isa(E) && cast(E)->isCommaOp()) { + Diag(E->getExprLoc(), diag::err_matrix_subscript_comma) + << SourceRange(base->getBeginLoc(), rbLoc); + return true; + } + return false; + }; + // The matrix subscript operator ([][])is considered a single operator. + // Separating the index expressions by parenthesis is not allowed. + if (base && !base->getType().isNull() && + base->hasPlaceholderType(BuiltinType::IncompleteMatrixIdx) && + !isa(base)) { + Diag(base->getExprLoc(), diag::err_matrix_separate_incomplete_index) + << SourceRange(base->getBeginLoc(), rbLoc); + return ExprError(); + } + // If the base is a MatrixSubscriptExpr, try to create a new + // MatrixSubscriptExpr. + auto *matSubscriptE = dyn_cast(base); + if (matSubscriptE) { + assert(ArgExprs.size() == 1); + if (CheckAndReportCommaError(ArgExprs.front())) + return ExprError(); + + assert(matSubscriptE->isIncomplete() && + "base has to be an incomplete matrix subscript"); + return CreateBuiltinMatrixSubscriptExpr(matSubscriptE->getBase(), + matSubscriptE->getRowIdx(), + ArgExprs.front(), rbLoc); + } + if (base->getType()->isWebAssemblyTableType()) { + Diag(base->getExprLoc(), diag::err_wasm_table_art) + << SourceRange(base->getBeginLoc(), rbLoc) << 3; + return ExprError(); + } + + // Handle any non-overload placeholder types in the base and index + // expressions. We can't handle overloads here because the other + // operand might be an overloadable type, in which case the overload + // resolution for the operator overload should get the first crack + // at the overload. + bool IsMSPropertySubscript = false; + if (base->getType()->isNonOverloadPlaceholderType()) { + IsMSPropertySubscript = isMSPropertySubscriptExpr(*this, base); + if (!IsMSPropertySubscript) { + ExprResult result = CheckPlaceholderExpr(base); + if (result.isInvalid()) + return ExprError(); + base = result.get(); + } + } + + // If the base is a matrix type, try to create a new MatrixSubscriptExpr. + if (base->getType()->isMatrixType()) { + assert(ArgExprs.size() == 1); + if (CheckAndReportCommaError(ArgExprs.front())) + return ExprError(); + + return CreateBuiltinMatrixSubscriptExpr(base, ArgExprs.front(), nullptr, + rbLoc); + } + + if (ArgExprs.size() == 1 && getLangOpts().CPlusPlus20) { + Expr *idx = ArgExprs[0]; + if ((isa(idx) && cast(idx)->isCommaOp()) || + (isa(idx) && + cast(idx)->getOperator() == OO_Comma)) { + Diag(idx->getExprLoc(), diag::warn_deprecated_comma_subscript) + << SourceRange(base->getBeginLoc(), rbLoc); + } + } + + if (ArgExprs.size() == 1 && + ArgExprs[0]->getType()->isNonOverloadPlaceholderType()) { + ExprResult result = CheckPlaceholderExpr(ArgExprs[0]); + if (result.isInvalid()) + return ExprError(); + ArgExprs[0] = result.get(); + } else { + if (checkArgsForPlaceholders(*this, ArgExprs)) + return ExprError(); + } + + // Build an unanalyzed expression if either operand is type-dependent. + if (getLangOpts().CPlusPlus && ArgExprs.size() == 1 && + (base->isTypeDependent() || + Expr::hasAnyTypeDependentArguments(ArgExprs)) && + !isa(ArgExprs[0])) { + return new (Context) ArraySubscriptExpr( + base, ArgExprs.front(), + getDependentArraySubscriptType(base, ArgExprs.front(), getASTContext()), + VK_LValue, OK_Ordinary, rbLoc); + } + + // MSDN, property (C++) + // https://msdn.microsoft.com/en-us/library/yhfk0thd(v=vs.120).aspx + // This attribute can also be used in the declaration of an empty array in a + // class or structure definition. For example: + // __declspec(property(get=GetX, put=PutX)) int x[]; + // The above statement indicates that x[] can be used with one or more array + // indices. In this case, i=p->x[a][b] will be turned into i=p->GetX(a, b), + // and p->x[a][b] = i will be turned into p->PutX(a, b, i); + if (IsMSPropertySubscript) { + assert(ArgExprs.size() == 1); + // Build MS property subscript expression if base is MS property reference + // or MS property subscript. + return new (Context) + MSPropertySubscriptExpr(base, ArgExprs.front(), Context.PseudoObjectTy, + VK_LValue, OK_Ordinary, rbLoc); + } + + // Use C++ overloaded-operator rules if either operand has record + // type. The spec says to do this if either type is *overloadable*, + // but enum types can't declare subscript operators or conversion + // operators, so there's nothing interesting for overload resolution + // to do if there aren't any record types involved. + // + // ObjC pointers have their own subscripting logic that is not tied + // to overload resolution and so should not take this path. + if (getLangOpts().CPlusPlus && !base->getType()->isObjCObjectPointerType() && + ((base->getType()->isRecordType() || + (ArgExprs.size() != 1 || isa(ArgExprs[0]) || + ArgExprs[0]->getType()->isRecordType())))) { + return CreateOverloadedArraySubscriptExpr(lbLoc, rbLoc, base, ArgExprs); + } + + ExprResult Res = + CreateBuiltinArraySubscriptExpr(base, lbLoc, ArgExprs.front(), rbLoc); + + if (!Res.isInvalid() && isa(Res.get())) + CheckSubscriptAccessOfNoDeref(cast(Res.get())); + + return Res; + } + + ExprResult Sema::tryConvertExprToType(Expr *E, QualType Ty) { + InitializedEntity Entity = InitializedEntity::InitializeTemporary(Ty); + InitializationKind Kind = + InitializationKind::CreateCopy(E->getBeginLoc(), SourceLocation()); + InitializationSequence InitSeq(*this, Entity, Kind, E); + return InitSeq.Perform(*this, Entity, Kind, E); + } + + ExprResult Sema::CreateBuiltinMatrixSubscriptExpr(Expr *Base, Expr *RowIdx, + Expr *ColumnIdx, + SourceLocation RBLoc) { + ExprResult BaseR = CheckPlaceholderExpr(Base); + if (BaseR.isInvalid()) + return BaseR; + Base = BaseR.get(); + + ExprResult RowR = CheckPlaceholderExpr(RowIdx); + if (RowR.isInvalid()) + return RowR; + RowIdx = RowR.get(); + + if (!ColumnIdx) + return new (Context) MatrixSubscriptExpr( + Base, RowIdx, ColumnIdx, Context.IncompleteMatrixIdxTy, RBLoc); + + // Build an unanalyzed expression if any of the operands is type-dependent. + if (Base->isTypeDependent() || RowIdx->isTypeDependent() || + ColumnIdx->isTypeDependent()) + return new (Context) MatrixSubscriptExpr(Base, RowIdx, ColumnIdx, + Context.DependentTy, RBLoc); + + ExprResult ColumnR = CheckPlaceholderExpr(ColumnIdx); + if (ColumnR.isInvalid()) + return ColumnR; + ColumnIdx = ColumnR.get(); + + // Check that IndexExpr is an integer expression. If it is a constant + // expression, check that it is less than Dim (= the number of elements in the + // corresponding dimension). + auto IsIndexValid = [&](Expr *IndexExpr, unsigned Dim, + bool IsColumnIdx) -> Expr * { + if (!IndexExpr->getType()->isIntegerType() && + !IndexExpr->isTypeDependent()) { + Diag(IndexExpr->getBeginLoc(), diag::err_matrix_index_not_integer) + << IsColumnIdx; + return nullptr; + } + + if (std::optional Idx = + IndexExpr->getIntegerConstantExpr(Context)) { + if ((*Idx < 0 || *Idx >= Dim)) { + Diag(IndexExpr->getBeginLoc(), diag::err_matrix_index_outside_range) + << IsColumnIdx << Dim; + return nullptr; + } + } + + ExprResult ConvExpr = + tryConvertExprToType(IndexExpr, Context.getSizeType()); + assert(!ConvExpr.isInvalid() && + "should be able to convert any integer type to size type"); + return ConvExpr.get(); + }; + + auto *MTy = Base->getType()->getAs(); + RowIdx = IsIndexValid(RowIdx, MTy->getNumRows(), false); + ColumnIdx = IsIndexValid(ColumnIdx, MTy->getNumColumns(), true); + if (!RowIdx || !ColumnIdx) + return ExprError(); + + return new (Context) MatrixSubscriptExpr(Base, RowIdx, ColumnIdx, + MTy->getElementType(), RBLoc); + } + + void Sema::CheckAddressOfNoDeref(const Expr *E) { + ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back(); + const Expr *StrippedExpr = E->IgnoreParenImpCasts(); + + // For expressions like `&(*s).b`, the base is recorded and what should be + // checked. + const MemberExpr *Member = nullptr; + while ((Member = dyn_cast(StrippedExpr)) && !Member->isArrow()) + StrippedExpr = Member->getBase()->IgnoreParenImpCasts(); + + LastRecord.PossibleDerefs.erase(StrippedExpr); + } + + void Sema::CheckSubscriptAccessOfNoDeref(const ArraySubscriptExpr *E) { + if (isUnevaluatedContext()) + return; + + QualType ResultTy = E->getType(); + ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back(); + + // Bail if the element is an array since it is not memory access. + if (isa(ResultTy)) + return; + + if (ResultTy->hasAttr(attr::NoDeref)) { + LastRecord.PossibleDerefs.insert(E); + return; + } + + // Check if the base type is a pointer to a member access of a struct + // marked with noderef. + const Expr *Base = E->getBase(); + QualType BaseTy = Base->getType(); + if (!(isa(BaseTy) || isa(BaseTy))) + // Not a pointer access + return; + + const MemberExpr *Member = nullptr; + while ((Member = dyn_cast(Base->IgnoreParenCasts())) && + Member->isArrow()) + Base = Member->getBase(); + + if (const auto *Ptr = dyn_cast(Base->getType())) { + if (Ptr->getPointeeType()->hasAttr(attr::NoDeref)) + LastRecord.PossibleDerefs.insert(E); + } + } + + ExprResult Sema::ActOnOMPArraySectionExpr(Expr *Base, SourceLocation LBLoc, + Expr *LowerBound, + SourceLocation ColonLocFirst, + SourceLocation ColonLocSecond, + Expr *Length, Expr *Stride, + SourceLocation RBLoc) { + if (Base->hasPlaceholderType() && + !Base->hasPlaceholderType(BuiltinType::OMPArraySection)) { + ExprResult Result = CheckPlaceholderExpr(Base); + if (Result.isInvalid()) + return ExprError(); + Base = Result.get(); + } + if (LowerBound && LowerBound->getType()->isNonOverloadPlaceholderType()) { + ExprResult Result = CheckPlaceholderExpr(LowerBound); + if (Result.isInvalid()) + return ExprError(); + Result = DefaultLvalueConversion(Result.get()); + if (Result.isInvalid()) + return ExprError(); + LowerBound = Result.get(); + } + if (Length && Length->getType()->isNonOverloadPlaceholderType()) { + ExprResult Result = CheckPlaceholderExpr(Length); + if (Result.isInvalid()) + return ExprError(); + Result = DefaultLvalueConversion(Result.get()); + if (Result.isInvalid()) + return ExprError(); + Length = Result.get(); + } + if (Stride && Stride->getType()->isNonOverloadPlaceholderType()) { + ExprResult Result = CheckPlaceholderExpr(Stride); + if (Result.isInvalid()) + return ExprError(); + Result = DefaultLvalueConversion(Result.get()); + if (Result.isInvalid()) + return ExprError(); + Stride = Result.get(); + } + + // Build an unanalyzed expression if either operand is type-dependent. + if (Base->isTypeDependent() || + (LowerBound && + (LowerBound->isTypeDependent() || LowerBound->isValueDependent())) || + (Length && (Length->isTypeDependent() || Length->isValueDependent())) || + (Stride && (Stride->isTypeDependent() || Stride->isValueDependent()))) { + return new (Context) OMPArraySectionExpr( + Base, LowerBound, Length, Stride, Context.DependentTy, VK_LValue, + OK_Ordinary, ColonLocFirst, ColonLocSecond, RBLoc); + } + + // Perform default conversions. + QualType OriginalTy = OMPArraySectionExpr::getBaseOriginalType(Base); + QualType ResultTy; + if (OriginalTy->isAnyPointerType()) { + ResultTy = OriginalTy->getPointeeType(); + } else if (OriginalTy->isArrayType()) { + ResultTy = OriginalTy->getAsArrayTypeUnsafe()->getElementType(); + } else { + return ExprError( + Diag(Base->getExprLoc(), diag::err_omp_typecheck_section_value) + << Base->getSourceRange()); + } + // C99 6.5.2.1p1 + if (LowerBound) { + auto Res = PerformOpenMPImplicitIntegerConversion(LowerBound->getExprLoc(), + LowerBound); + if (Res.isInvalid()) + return ExprError(Diag(LowerBound->getExprLoc(), + diag::err_omp_typecheck_section_not_integer) + << 0 << LowerBound->getSourceRange()); + LowerBound = Res.get(); + + if (LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_S) || + LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_U)) + Diag(LowerBound->getExprLoc(), diag::warn_omp_section_is_char) + << 0 << LowerBound->getSourceRange(); + } + if (Length) { + auto Res = + PerformOpenMPImplicitIntegerConversion(Length->getExprLoc(), Length); + if (Res.isInvalid()) + return ExprError(Diag(Length->getExprLoc(), + diag::err_omp_typecheck_section_not_integer) + << 1 << Length->getSourceRange()); + Length = Res.get(); + + if (Length->getType()->isSpecificBuiltinType(BuiltinType::Char_S) || + Length->getType()->isSpecificBuiltinType(BuiltinType::Char_U)) + Diag(Length->getExprLoc(), diag::warn_omp_section_is_char) + << 1 << Length->getSourceRange(); + } + if (Stride) { + ExprResult Res = + PerformOpenMPImplicitIntegerConversion(Stride->getExprLoc(), Stride); + if (Res.isInvalid()) + return ExprError(Diag(Stride->getExprLoc(), + diag::err_omp_typecheck_section_not_integer) + << 1 << Stride->getSourceRange()); + Stride = Res.get(); + + if (Stride->getType()->isSpecificBuiltinType(BuiltinType::Char_S) || + Stride->getType()->isSpecificBuiltinType(BuiltinType::Char_U)) + Diag(Stride->getExprLoc(), diag::warn_omp_section_is_char) + << 1 << Stride->getSourceRange(); + } + + // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly, + // C++ [expr.sub]p1: The type "T" shall be a completely-defined object + // type. Note that functions are not objects, and that (in C99 parlance) + // incomplete types are not object types. + if (ResultTy->isFunctionType()) { + Diag(Base->getExprLoc(), diag::err_omp_section_function_type) + << ResultTy << Base->getSourceRange(); + return ExprError(); + } + + if (RequireCompleteType(Base->getExprLoc(), ResultTy, + diag::err_omp_section_incomplete_type, Base)) + return ExprError(); + + if (LowerBound && !OriginalTy->isAnyPointerType()) { + Expr::EvalResult Result; + if (LowerBound->EvaluateAsInt(Result, Context)) { + // OpenMP 5.0, [2.1.5 Array Sections] + // The array section must be a subset of the original array. + llvm::APSInt LowerBoundValue = Result.Val.getInt(); + if (LowerBoundValue.isNegative()) { + Diag(LowerBound->getExprLoc(), diag::err_omp_section_not_subset_of_array) + << LowerBound->getSourceRange(); + return ExprError(); + } + } + } + + if (Length) { + Expr::EvalResult Result; + if (Length->EvaluateAsInt(Result, Context)) { + // OpenMP 5.0, [2.1.5 Array Sections] + // The length must evaluate to non-negative integers. + llvm::APSInt LengthValue = Result.Val.getInt(); + if (LengthValue.isNegative()) { + Diag(Length->getExprLoc(), diag::err_omp_section_length_negative) + << toString(LengthValue, /*Radix=*/10, /*Signed=*/true) + << Length->getSourceRange(); + return ExprError(); + } + } + } else if (ColonLocFirst.isValid() && + (OriginalTy.isNull() || (!OriginalTy->isConstantArrayType() && + !OriginalTy->isVariableArrayType()))) { + // OpenMP 5.0, [2.1.5 Array Sections] + // When the size of the array dimension is not known, the length must be + // specified explicitly. + Diag(ColonLocFirst, diag::err_omp_section_length_undefined) + << (!OriginalTy.isNull() && OriginalTy->isArrayType()); + return ExprError(); + } + + if (Stride) { + Expr::EvalResult Result; + if (Stride->EvaluateAsInt(Result, Context)) { + // OpenMP 5.0, [2.1.5 Array Sections] + // The stride must evaluate to a positive integer. + llvm::APSInt StrideValue = Result.Val.getInt(); + if (!StrideValue.isStrictlyPositive()) { + Diag(Stride->getExprLoc(), diag::err_omp_section_stride_non_positive) + << toString(StrideValue, /*Radix=*/10, /*Signed=*/true) + << Stride->getSourceRange(); + return ExprError(); + } + } + } + + if (!Base->hasPlaceholderType(BuiltinType::OMPArraySection)) { + ExprResult Result = DefaultFunctionArrayLvalueConversion(Base); + if (Result.isInvalid()) + return ExprError(); + Base = Result.get(); + } + return new (Context) OMPArraySectionExpr( + Base, LowerBound, Length, Stride, Context.OMPArraySectionTy, VK_LValue, + OK_Ordinary, ColonLocFirst, ColonLocSecond, RBLoc); + } + + ExprResult Sema::ActOnOMPArrayShapingExpr(Expr *Base, SourceLocation LParenLoc, + SourceLocation RParenLoc, + ArrayRef Dims, + ArrayRef Brackets) { + if (Base->hasPlaceholderType()) { + ExprResult Result = CheckPlaceholderExpr(Base); + if (Result.isInvalid()) + return ExprError(); + Result = DefaultLvalueConversion(Result.get()); + if (Result.isInvalid()) + return ExprError(); + Base = Result.get(); + } + QualType BaseTy = Base->getType(); + // Delay analysis of the types/expressions if instantiation/specialization is + // required. + if (!BaseTy->isPointerType() && Base->isTypeDependent()) + return OMPArrayShapingExpr::Create(Context, Context.DependentTy, Base, + LParenLoc, RParenLoc, Dims, Brackets); + if (!BaseTy->isPointerType() || + (!Base->isTypeDependent() && + BaseTy->getPointeeType()->isIncompleteType())) + return ExprError(Diag(Base->getExprLoc(), + diag::err_omp_non_pointer_type_array_shaping_base) + << Base->getSourceRange()); + + SmallVector NewDims; + bool ErrorFound = false; + for (Expr *Dim : Dims) { + if (Dim->hasPlaceholderType()) { + ExprResult Result = CheckPlaceholderExpr(Dim); + if (Result.isInvalid()) { + ErrorFound = true; + continue; + } + Result = DefaultLvalueConversion(Result.get()); + if (Result.isInvalid()) { + ErrorFound = true; + continue; + } + Dim = Result.get(); + } + if (!Dim->isTypeDependent()) { + ExprResult Result = + PerformOpenMPImplicitIntegerConversion(Dim->getExprLoc(), Dim); + if (Result.isInvalid()) { + ErrorFound = true; + Diag(Dim->getExprLoc(), diag::err_omp_typecheck_shaping_not_integer) + << Dim->getSourceRange(); + continue; + } + Dim = Result.get(); + Expr::EvalResult EvResult; + if (!Dim->isValueDependent() && Dim->EvaluateAsInt(EvResult, Context)) { + // OpenMP 5.0, [2.1.4 Array Shaping] + // Each si is an integral type expression that must evaluate to a + // positive integer. + llvm::APSInt Value = EvResult.Val.getInt(); + if (!Value.isStrictlyPositive()) { + Diag(Dim->getExprLoc(), diag::err_omp_shaping_dimension_not_positive) + << toString(Value, /*Radix=*/10, /*Signed=*/true) + << Dim->getSourceRange(); + ErrorFound = true; + continue; + } + } + } + NewDims.push_back(Dim); + } + if (ErrorFound) + return ExprError(); + return OMPArrayShapingExpr::Create(Context, Context.OMPArrayShapingTy, Base, + LParenLoc, RParenLoc, NewDims, Brackets); + } + + ExprResult Sema::ActOnOMPIteratorExpr(Scope *S, SourceLocation IteratorKwLoc, + SourceLocation LLoc, SourceLocation RLoc, + ArrayRef Data) { + SmallVector ID; + bool IsCorrect = true; + for (const OMPIteratorData &D : Data) { + TypeSourceInfo *TInfo = nullptr; + SourceLocation StartLoc; + QualType DeclTy; + if (!D.Type.getAsOpaquePtr()) { + // OpenMP 5.0, 2.1.6 Iterators + // In an iterator-specifier, if the iterator-type is not specified then + // the type of that iterator is of int type. + DeclTy = Context.IntTy; + StartLoc = D.DeclIdentLoc; + } else { + DeclTy = GetTypeFromParser(D.Type, &TInfo); + StartLoc = TInfo->getTypeLoc().getBeginLoc(); + } + + bool IsDeclTyDependent = DeclTy->isDependentType() || + DeclTy->containsUnexpandedParameterPack() || + DeclTy->isInstantiationDependentType(); + if (!IsDeclTyDependent) { + if (!DeclTy->isIntegralType(Context) && !DeclTy->isAnyPointerType()) { + // OpenMP 5.0, 2.1.6 Iterators, Restrictions, C/C++ + // The iterator-type must be an integral or pointer type. + Diag(StartLoc, diag::err_omp_iterator_not_integral_or_pointer) + << DeclTy; + IsCorrect = false; + continue; + } + if (DeclTy.isConstant(Context)) { + // OpenMP 5.0, 2.1.6 Iterators, Restrictions, C/C++ + // The iterator-type must not be const qualified. + Diag(StartLoc, diag::err_omp_iterator_not_integral_or_pointer) + << DeclTy; + IsCorrect = false; + continue; + } + } + + // Iterator declaration. + assert(D.DeclIdent && "Identifier expected."); + // Always try to create iterator declarator to avoid extra error messages + // about unknown declarations use. + auto *VD = VarDecl::Create(Context, CurContext, StartLoc, D.DeclIdentLoc, + D.DeclIdent, DeclTy, TInfo, SC_None); + VD->setImplicit(); + if (S) { + // Check for conflicting previous declaration. + DeclarationNameInfo NameInfo(VD->getDeclName(), D.DeclIdentLoc); + LookupResult Previous(*this, NameInfo, LookupOrdinaryName, + ForVisibleRedeclaration); + Previous.suppressDiagnostics(); + LookupName(Previous, S); + + FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage=*/false, + /*AllowInlineNamespace=*/false); + if (!Previous.empty()) { + NamedDecl *Old = Previous.getRepresentativeDecl(); + Diag(D.DeclIdentLoc, diag::err_redefinition) << VD->getDeclName(); + Diag(Old->getLocation(), diag::note_previous_definition); + } else { + PushOnScopeChains(VD, S); + } + } else { + CurContext->addDecl(VD); + } + + /// Act on the iterator variable declaration. + ActOnOpenMPIteratorVarDecl(VD); + + Expr *Begin = D.Range.Begin; + if (!IsDeclTyDependent && Begin && !Begin->isTypeDependent()) { + ExprResult BeginRes = + PerformImplicitConversion(Begin, DeclTy, AA_Converting); + Begin = BeginRes.get(); + } + Expr *End = D.Range.End; + if (!IsDeclTyDependent && End && !End->isTypeDependent()) { + ExprResult EndRes = PerformImplicitConversion(End, DeclTy, AA_Converting); + End = EndRes.get(); + } + Expr *Step = D.Range.Step; + if (!IsDeclTyDependent && Step && !Step->isTypeDependent()) { + if (!Step->getType()->isIntegralType(Context)) { + Diag(Step->getExprLoc(), diag::err_omp_iterator_step_not_integral) + << Step << Step->getSourceRange(); + IsCorrect = false; + continue; + } + std::optional Result = + Step->getIntegerConstantExpr(Context); + // OpenMP 5.0, 2.1.6 Iterators, Restrictions + // If the step expression of a range-specification equals zero, the + // behavior is unspecified. + if (Result && Result->isZero()) { + Diag(Step->getExprLoc(), diag::err_omp_iterator_step_constant_zero) + << Step << Step->getSourceRange(); + IsCorrect = false; + continue; + } + } + if (!Begin || !End || !IsCorrect) { + IsCorrect = false; + continue; + } + OMPIteratorExpr::IteratorDefinition &IDElem = ID.emplace_back(); + IDElem.IteratorDecl = VD; + IDElem.AssignmentLoc = D.AssignLoc; + IDElem.Range.Begin = Begin; + IDElem.Range.End = End; + IDElem.Range.Step = Step; + IDElem.ColonLoc = D.ColonLoc; + IDElem.SecondColonLoc = D.SecColonLoc; + } + if (!IsCorrect) { + // Invalidate all created iterator declarations if error is found. + for (const OMPIteratorExpr::IteratorDefinition &D : ID) { + if (Decl *ID = D.IteratorDecl) + ID->setInvalidDecl(); + } + return ExprError(); + } + SmallVector Helpers; + if (!CurContext->isDependentContext()) { + // Build number of ityeration for each iteration range. + // Ni = ((Stepi > 0) ? ((Endi + Stepi -1 - Begini)/Stepi) : + // ((Begini-Stepi-1-Endi) / -Stepi); + for (OMPIteratorExpr::IteratorDefinition &D : ID) { + // (Endi - Begini) + ExprResult Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, D.Range.End, + D.Range.Begin); + if(!Res.isUsable()) { + IsCorrect = false; + continue; + } + ExprResult St, St1; + if (D.Range.Step) { + St = D.Range.Step; + // (Endi - Begini) + Stepi + Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, Res.get(), St.get()); + if (!Res.isUsable()) { + IsCorrect = false; + continue; + } + // (Endi - Begini) + Stepi - 1 + Res = + CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, Res.get(), + ActOnIntegerConstant(D.AssignmentLoc, 1).get()); + if (!Res.isUsable()) { + IsCorrect = false; + continue; + } + // ((Endi - Begini) + Stepi - 1) / Stepi + Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Div, Res.get(), St.get()); + if (!Res.isUsable()) { + IsCorrect = false; + continue; + } + St1 = CreateBuiltinUnaryOp(D.AssignmentLoc, UO_Minus, D.Range.Step); + // (Begini - Endi) + ExprResult Res1 = CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, + D.Range.Begin, D.Range.End); + if (!Res1.isUsable()) { + IsCorrect = false; + continue; + } + // (Begini - Endi) - Stepi + Res1 = + CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, Res1.get(), St1.get()); + if (!Res1.isUsable()) { + IsCorrect = false; + continue; + } + // (Begini - Endi) - Stepi - 1 + Res1 = + CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, Res1.get(), + ActOnIntegerConstant(D.AssignmentLoc, 1).get()); + if (!Res1.isUsable()) { + IsCorrect = false; + continue; + } + // ((Begini - Endi) - Stepi - 1) / (-Stepi) + Res1 = + CreateBuiltinBinOp(D.AssignmentLoc, BO_Div, Res1.get(), St1.get()); + if (!Res1.isUsable()) { + IsCorrect = false; + continue; + } + // Stepi > 0. + ExprResult CmpRes = + CreateBuiltinBinOp(D.AssignmentLoc, BO_GT, D.Range.Step, + ActOnIntegerConstant(D.AssignmentLoc, 0).get()); + if (!CmpRes.isUsable()) { + IsCorrect = false; + continue; + } + Res = ActOnConditionalOp(D.AssignmentLoc, D.AssignmentLoc, CmpRes.get(), + Res.get(), Res1.get()); + if (!Res.isUsable()) { + IsCorrect = false; + continue; + } + } + Res = ActOnFinishFullExpr(Res.get(), /*DiscardedValue=*/false); + if (!Res.isUsable()) { + IsCorrect = false; + continue; + } + + // Build counter update. + // Build counter. + auto *CounterVD = + VarDecl::Create(Context, CurContext, D.IteratorDecl->getBeginLoc(), + D.IteratorDecl->getBeginLoc(), nullptr, + Res.get()->getType(), nullptr, SC_None); + CounterVD->setImplicit(); + ExprResult RefRes = + BuildDeclRefExpr(CounterVD, CounterVD->getType(), VK_LValue, + D.IteratorDecl->getBeginLoc()); + // Build counter update. + // I = Begini + counter * Stepi; + ExprResult UpdateRes; + if (D.Range.Step) { + UpdateRes = CreateBuiltinBinOp( + D.AssignmentLoc, BO_Mul, + DefaultLvalueConversion(RefRes.get()).get(), St.get()); + } else { + UpdateRes = DefaultLvalueConversion(RefRes.get()); + } + if (!UpdateRes.isUsable()) { + IsCorrect = false; + continue; + } + UpdateRes = CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, D.Range.Begin, + UpdateRes.get()); + if (!UpdateRes.isUsable()) { + IsCorrect = false; + continue; + } + ExprResult VDRes = + BuildDeclRefExpr(cast(D.IteratorDecl), + cast(D.IteratorDecl)->getType(), VK_LValue, + D.IteratorDecl->getBeginLoc()); + UpdateRes = CreateBuiltinBinOp(D.AssignmentLoc, BO_Assign, VDRes.get(), + UpdateRes.get()); + if (!UpdateRes.isUsable()) { + IsCorrect = false; + continue; + } + UpdateRes = + ActOnFinishFullExpr(UpdateRes.get(), /*DiscardedValue=*/true); + if (!UpdateRes.isUsable()) { + IsCorrect = false; + continue; + } + ExprResult CounterUpdateRes = + CreateBuiltinUnaryOp(D.AssignmentLoc, UO_PreInc, RefRes.get()); + if (!CounterUpdateRes.isUsable()) { + IsCorrect = false; + continue; + } + CounterUpdateRes = + ActOnFinishFullExpr(CounterUpdateRes.get(), /*DiscardedValue=*/true); + if (!CounterUpdateRes.isUsable()) { + IsCorrect = false; + continue; + } + OMPIteratorHelperData &HD = Helpers.emplace_back(); + HD.CounterVD = CounterVD; + HD.Upper = Res.get(); + HD.Update = UpdateRes.get(); + HD.CounterUpdate = CounterUpdateRes.get(); + } + } else { + Helpers.assign(ID.size(), {}); + } + if (!IsCorrect) { + // Invalidate all created iterator declarations if error is found. + for (const OMPIteratorExpr::IteratorDefinition &D : ID) { + if (Decl *ID = D.IteratorDecl) + ID->setInvalidDecl(); + } + return ExprError(); + } + return OMPIteratorExpr::Create(Context, Context.OMPIteratorTy, IteratorKwLoc, + LLoc, RLoc, ID, Helpers); + } + + ExprResult + Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc, + Expr *Idx, SourceLocation RLoc) { + Expr *LHSExp = Base; + Expr *RHSExp = Idx; + + ExprValueKind VK = VK_LValue; + ExprObjectKind OK = OK_Ordinary; + + // Per C++ core issue 1213, the result is an xvalue if either operand is + // a non-lvalue array, and an lvalue otherwise. + if (getLangOpts().CPlusPlus11) { + for (auto *Op : {LHSExp, RHSExp}) { + Op = Op->IgnoreImplicit(); + if (Op->getType()->isArrayType() && !Op->isLValue()) + VK = VK_XValue; + } + } + + // Perform default conversions. + if (!LHSExp->getType()->getAs()) { + ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp); + if (Result.isInvalid()) + return ExprError(); + LHSExp = Result.get(); + } + ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp); + if (Result.isInvalid()) + return ExprError(); + RHSExp = Result.get(); + + QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType(); + + // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent + // to the expression *((e1)+(e2)). This means the array "Base" may actually be + // in the subscript position. As a result, we need to derive the array base + // and index from the expression types. + Expr *BaseExpr, *IndexExpr; + QualType ResultType; + if (LHSTy->isDependentType() || RHSTy->isDependentType()) { + BaseExpr = LHSExp; + IndexExpr = RHSExp; + ResultType = + getDependentArraySubscriptType(LHSExp, RHSExp, getASTContext()); + } else if (const PointerType *PTy = LHSTy->getAs()) { + BaseExpr = LHSExp; + IndexExpr = RHSExp; + ResultType = PTy->getPointeeType(); + } else if (const ObjCObjectPointerType *PTy = + LHSTy->getAs()) { + BaseExpr = LHSExp; + IndexExpr = RHSExp; + + // Use custom logic if this should be the pseudo-object subscript + // expression. + if (!LangOpts.isSubscriptPointerArithmetic()) + return BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr, nullptr, + nullptr); + + ResultType = PTy->getPointeeType(); + } else if (const PointerType *PTy = RHSTy->getAs()) { + // Handle the uncommon case of "123[Ptr]". + BaseExpr = RHSExp; + IndexExpr = LHSExp; + ResultType = PTy->getPointeeType(); + } else if (const ObjCObjectPointerType *PTy = + RHSTy->getAs()) { + // Handle the uncommon case of "123[Ptr]". + BaseExpr = RHSExp; + IndexExpr = LHSExp; + ResultType = PTy->getPointeeType(); + if (!LangOpts.isSubscriptPointerArithmetic()) { + Diag(LLoc, diag::err_subscript_nonfragile_interface) + << ResultType << BaseExpr->getSourceRange(); + return ExprError(); + } + } else if (const VectorType *VTy = LHSTy->getAs()) { + BaseExpr = LHSExp; // vectors: V[123] + IndexExpr = RHSExp; + // We apply C++ DR1213 to vector subscripting too. + if (getLangOpts().CPlusPlus11 && LHSExp->isPRValue()) { + ExprResult Materialized = TemporaryMaterializationConversion(LHSExp); + if (Materialized.isInvalid()) + return ExprError(); + LHSExp = Materialized.get(); + } + VK = LHSExp->getValueKind(); + if (VK != VK_PRValue) + OK = OK_VectorComponent; + + ResultType = VTy->getElementType(); + QualType BaseType = BaseExpr->getType(); + Qualifiers BaseQuals = BaseType.getQualifiers(); + Qualifiers MemberQuals = ResultType.getQualifiers(); + Qualifiers Combined = BaseQuals + MemberQuals; + if (Combined != MemberQuals) + ResultType = Context.getQualifiedType(ResultType, Combined); + } else if (LHSTy->isBuiltinType() && + LHSTy->getAs()->isVLSTBuiltinType()) { + const BuiltinType *BTy = LHSTy->getAs(); + if (BTy->isSVEBool()) + return ExprError(Diag(LLoc, diag::err_subscript_svbool_t) + << LHSExp->getSourceRange() << RHSExp->getSourceRange()); + + BaseExpr = LHSExp; + IndexExpr = RHSExp; + if (getLangOpts().CPlusPlus11 && LHSExp->isPRValue()) { + ExprResult Materialized = TemporaryMaterializationConversion(LHSExp); + if (Materialized.isInvalid()) + return ExprError(); + LHSExp = Materialized.get(); + } + VK = LHSExp->getValueKind(); + if (VK != VK_PRValue) + OK = OK_VectorComponent; + + ResultType = BTy->getSveEltType(Context); + + QualType BaseType = BaseExpr->getType(); + Qualifiers BaseQuals = BaseType.getQualifiers(); + Qualifiers MemberQuals = ResultType.getQualifiers(); + Qualifiers Combined = BaseQuals + MemberQuals; + if (Combined != MemberQuals) + ResultType = Context.getQualifiedType(ResultType, Combined); + } else if (LHSTy->isArrayType()) { + // If we see an array that wasn't promoted by + // DefaultFunctionArrayLvalueConversion, it must be an array that + // wasn't promoted because of the C90 rule that doesn't + // allow promoting non-lvalue arrays. Warn, then + // force the promotion here. + Diag(LHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue) + << LHSExp->getSourceRange(); + LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy), + CK_ArrayToPointerDecay).get(); + LHSTy = LHSExp->getType(); + + BaseExpr = LHSExp; + IndexExpr = RHSExp; + ResultType = LHSTy->castAs()->getPointeeType(); + } else if (RHSTy->isArrayType()) { + // Same as previous, except for 123[f().a] case + Diag(RHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue) + << RHSExp->getSourceRange(); + RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy), + CK_ArrayToPointerDecay).get(); + RHSTy = RHSExp->getType(); + + BaseExpr = RHSExp; + IndexExpr = LHSExp; + ResultType = RHSTy->castAs()->getPointeeType(); + } else { + return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value) + << LHSExp->getSourceRange() << RHSExp->getSourceRange()); + } + // C99 6.5.2.1p1 + if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent()) + return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer) + << IndexExpr->getSourceRange()); + + if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) || + IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U)) + && !IndexExpr->isTypeDependent()) + Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange(); + + // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly, + // C++ [expr.sub]p1: The type "T" shall be a completely-defined object + // type. Note that Functions are not objects, and that (in C99 parlance) + // incomplete types are not object types. + if (ResultType->isFunctionType()) { + Diag(BaseExpr->getBeginLoc(), diag::err_subscript_function_type) + << ResultType << BaseExpr->getSourceRange(); + return ExprError(); + } + + if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) { + // GNU extension: subscripting on pointer to void + Diag(LLoc, diag::ext_gnu_subscript_void_type) + << BaseExpr->getSourceRange(); + + // C forbids expressions of unqualified void type from being l-values. + // See IsCForbiddenLValueType. + if (!ResultType.hasQualifiers()) + VK = VK_PRValue; + } else if (!ResultType->isDependentType() && + !ResultType.isWebAssemblyReferenceType() && + RequireCompleteSizedType( + LLoc, ResultType, + diag::err_subscript_incomplete_or_sizeless_type, BaseExpr)) + return ExprError(); + + assert(VK == VK_PRValue || LangOpts.CPlusPlus || + !ResultType.isCForbiddenLValueType()); + + if (LHSExp->IgnoreParenImpCasts()->getType()->isVariablyModifiedType() && + FunctionScopes.size() > 1) { + if (auto *TT = + LHSExp->IgnoreParenImpCasts()->getType()->getAs()) { + for (auto I = FunctionScopes.rbegin(), + E = std::prev(FunctionScopes.rend()); + I != E; ++I) { + auto *CSI = dyn_cast(*I); + if (CSI == nullptr) + break; + DeclContext *DC = nullptr; + if (auto *LSI = dyn_cast(CSI)) + DC = LSI->CallOperator; + else if (auto *CRSI = dyn_cast(CSI)) + DC = CRSI->TheCapturedDecl; + else if (auto *BSI = dyn_cast(CSI)) + DC = BSI->TheDecl; + if (DC) { + if (DC->containsDecl(TT->getDecl())) + break; + captureVariablyModifiedType( + Context, LHSExp->IgnoreParenImpCasts()->getType(), CSI); + } + } + } + } + + return new (Context) + ArraySubscriptExpr(LHSExp, RHSExp, ResultType, VK, OK, RLoc); + } + + bool Sema::CheckCXXDefaultArgExpr(SourceLocation CallLoc, FunctionDecl *FD, + ParmVarDecl *Param, Expr *RewrittenInit, + bool SkipImmediateInvocations) { + if (Param->hasUnparsedDefaultArg()) { + assert(!RewrittenInit && "Should not have a rewritten init expression yet"); + // If we've already cleared out the location for the default argument, + // that means we're parsing it right now. + if (!UnparsedDefaultArgLocs.count(Param)) { + Diag(Param->getBeginLoc(), diag::err_recursive_default_argument) << FD; + Diag(CallLoc, diag::note_recursive_default_argument_used_here); + Param->setInvalidDecl(); + return true; + } + + Diag(CallLoc, diag::err_use_of_default_argument_to_function_declared_later) + << FD << cast(FD->getDeclContext()); + Diag(UnparsedDefaultArgLocs[Param], + diag::note_default_argument_declared_here); + return true; + } + + if (Param->hasUninstantiatedDefaultArg()) { + assert(!RewrittenInit && "Should not have a rewitten init expression yet"); + if (InstantiateDefaultArgument(CallLoc, FD, Param)) + return true; + } + + Expr *Init = RewrittenInit ? RewrittenInit : Param->getInit(); + assert(Init && "default argument but no initializer?"); + + // If the default expression creates temporaries, we need to + // push them to the current stack of expression temporaries so they'll + // be properly destroyed. + // FIXME: We should really be rebuilding the default argument with new + // bound temporaries; see the comment in PR5810. + // We don't need to do that with block decls, though, because + // blocks in default argument expression can never capture anything. + if (auto *InitWithCleanup = dyn_cast(Init)) { + // Set the "needs cleanups" bit regardless of whether there are + // any explicit objects. + Cleanup.setExprNeedsCleanups(InitWithCleanup->cleanupsHaveSideEffects()); + // Append all the objects to the cleanup list. Right now, this + // should always be a no-op, because blocks in default argument + // expressions should never be able to capture anything. + assert(!InitWithCleanup->getNumObjects() && + "default argument expression has capturing blocks?"); + } + // C++ [expr.const]p15.1: + // An expression or conversion is in an immediate function context if it is + // potentially evaluated and [...] its innermost enclosing non-block scope + // is a function parameter scope of an immediate function. + EnterExpressionEvaluationContext EvalContext( + *this, + FD->isImmediateFunction() + ? ExpressionEvaluationContext::ImmediateFunctionContext + : ExpressionEvaluationContext::PotentiallyEvaluated, + Param); + ExprEvalContexts.back().IsCurrentlyCheckingDefaultArgumentOrInitializer = + SkipImmediateInvocations; + runWithSufficientStackSpace(CallLoc, [&] { + MarkDeclarationsReferencedInExpr(Init, /*SkipLocalVariables=*/true); + }); + return false; + } + + struct ImmediateCallVisitor : public RecursiveASTVisitor { + const ASTContext &Context; + ImmediateCallVisitor(const ASTContext &Ctx) : Context(Ctx) {} + + bool HasImmediateCalls = false; + bool IsImmediateInvocation = false; + + bool shouldVisitImplicitCode() const { return true; } + + bool VisitCallExpr(CallExpr *E) { + if (const FunctionDecl *FD = E->getDirectCallee()) { + HasImmediateCalls |= FD->isImmediateFunction(); + if (FD->isConsteval() && !E->isCXX11ConstantExpr(Context)) + IsImmediateInvocation = true; + } + + return RecursiveASTVisitor::VisitStmt(E); + } + + // SourceLocExpr are not immediate invocations + // but CXXDefaultInitExpr/CXXDefaultArgExpr containing a SourceLocExpr + // need to be rebuilt so that they refer to the correct SourceLocation and + // DeclContext. + bool VisitSourceLocExpr(SourceLocExpr *E) { + HasImmediateCalls = true; + return RecursiveASTVisitor::VisitStmt(E); + } + + // A nested lambda might have parameters with immediate invocations + // in their default arguments. + // The compound statement is not visited (as it does not constitute a + // subexpression). + // FIXME: We should consider visiting and transforming captures + // with init expressions. + bool VisitLambdaExpr(LambdaExpr *E) { + return VisitCXXMethodDecl(E->getCallOperator()); + } + + // Blocks don't support default parameters, and, as for lambdas, + // we don't consider their body a subexpression. + bool VisitBlockDecl(BlockDecl *B) { return false; } + + bool VisitCompoundStmt(CompoundStmt *B) { return false; } + + bool VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) { + return TraverseStmt(E->getExpr()); + } + + bool VisitCXXDefaultInitExpr(CXXDefaultInitExpr *E) { + return TraverseStmt(E->getExpr()); + } + }; + + struct EnsureImmediateInvocationInDefaultArgs + : TreeTransform { + EnsureImmediateInvocationInDefaultArgs(Sema &SemaRef) + : TreeTransform(SemaRef) {} + + // Lambda can only have immediate invocations in the default + // args of their parameters, which is transformed upon calling the closure. + // The body is not a subexpression, so we have nothing to do. + // FIXME: Immediate calls in capture initializers should be transformed. + ExprResult TransformLambdaExpr(LambdaExpr *E) { return E; } + ExprResult TransformBlockExpr(BlockExpr *E) { return E; } + + // Make sure we don't rebuild the this pointer as it would + // cause it to incorrectly point it to the outermost class + // in the case of nested struct initialization. + ExprResult TransformCXXThisExpr(CXXThisExpr *E) { return E; } + }; + + ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc, + FunctionDecl *FD, ParmVarDecl *Param, + Expr *Init) { + assert(Param->hasDefaultArg() && "can't build nonexistent default arg"); + + bool NestedDefaultChecking = isCheckingDefaultArgumentOrInitializer(); + + std::optional + InitializationContext = + OutermostDeclarationWithDelayedImmediateInvocations(); + if (!InitializationContext.has_value()) + InitializationContext.emplace(CallLoc, Param, CurContext); + + if (!Init && !Param->hasUnparsedDefaultArg()) { + // Mark that we are replacing a default argument first. + // If we are instantiating a template we won't have to + // retransform immediate calls. + // C++ [expr.const]p15.1: + // An expression or conversion is in an immediate function context if it + // is potentially evaluated and [...] its innermost enclosing non-block + // scope is a function parameter scope of an immediate function. + EnterExpressionEvaluationContext EvalContext( + *this, + FD->isImmediateFunction() + ? ExpressionEvaluationContext::ImmediateFunctionContext + : ExpressionEvaluationContext::PotentiallyEvaluated, + Param); + + if (Param->hasUninstantiatedDefaultArg()) { + if (InstantiateDefaultArgument(CallLoc, FD, Param)) + return ExprError(); + } + // CWG2631 + // An immediate invocation that is not evaluated where it appears is + // evaluated and checked for whether it is a constant expression at the + // point where the enclosing initializer is used in a function call. + ImmediateCallVisitor V(getASTContext()); + if (!NestedDefaultChecking) + V.TraverseDecl(Param); + if (V.HasImmediateCalls) { + ExprEvalContexts.back().DelayedDefaultInitializationContext = { + CallLoc, Param, CurContext}; + EnsureImmediateInvocationInDefaultArgs Immediate(*this); + ExprResult Res; + runWithSufficientStackSpace(CallLoc, [&] { + Res = Immediate.TransformInitializer(Param->getInit(), + /*NotCopy=*/false); + }); + if (Res.isInvalid()) + return ExprError(); + Res = ConvertParamDefaultArgument(Param, Res.get(), + Res.get()->getBeginLoc()); + if (Res.isInvalid()) + return ExprError(); + Init = Res.get(); + } + } + + if (CheckCXXDefaultArgExpr( + CallLoc, FD, Param, Init, + /*SkipImmediateInvocations=*/NestedDefaultChecking)) + return ExprError(); + + return CXXDefaultArgExpr::Create(Context, InitializationContext->Loc, Param, + Init, InitializationContext->Context); + } + + ExprResult Sema::BuildCXXDefaultInitExpr(SourceLocation Loc, FieldDecl *Field) { + assert(Field->hasInClassInitializer()); + + // If we might have already tried and failed to instantiate, don't try again. + if (Field->isInvalidDecl()) + return ExprError(); + + auto *ParentRD = cast(Field->getParent()); + + std::optional + InitializationContext = + OutermostDeclarationWithDelayedImmediateInvocations(); + if (!InitializationContext.has_value()) + InitializationContext.emplace(Loc, Field, CurContext); + + Expr *Init = nullptr; + + bool NestedDefaultChecking = isCheckingDefaultArgumentOrInitializer(); + + EnterExpressionEvaluationContext EvalContext( + *this, ExpressionEvaluationContext::PotentiallyEvaluated, Field); + + if (!Field->getInClassInitializer()) { + // Maybe we haven't instantiated the in-class initializer. Go check the + // pattern FieldDecl to see if it has one. + if (isTemplateInstantiation(ParentRD->getTemplateSpecializationKind())) { + CXXRecordDecl *ClassPattern = ParentRD->getTemplateInstantiationPattern(); + DeclContext::lookup_result Lookup = + ClassPattern->lookup(Field->getDeclName()); + + FieldDecl *Pattern = nullptr; + for (auto *L : Lookup) { + if ((Pattern = dyn_cast(L))) + break; + } + assert(Pattern && "We must have set the Pattern!"); + if (!Pattern->hasInClassInitializer() || + InstantiateInClassInitializer(Loc, Field, Pattern, + getTemplateInstantiationArgs(Field))) { + Field->setInvalidDecl(); + return ExprError(); + } + } + } + + // CWG2631 + // An immediate invocation that is not evaluated where it appears is + // evaluated and checked for whether it is a constant expression at the + // point where the enclosing initializer is used in a [...] a constructor + // definition, or an aggregate initialization. + ImmediateCallVisitor V(getASTContext()); + if (!NestedDefaultChecking) + V.TraverseDecl(Field); + if (V.HasImmediateCalls) { + // C++23 [expr.const]/p15 + // An aggregate initialization is an immediate invocation + // if it evaluates a default member initializer that has a subexpression + // that is an immediate-escalating expression. + ExprEvalContexts.back().InImmediateFunctionContext |= + V.IsImmediateInvocation; + + ExprEvalContexts.back().DelayedDefaultInitializationContext = {Loc, Field, + CurContext}; + ExprEvalContexts.back().IsCurrentlyCheckingDefaultArgumentOrInitializer = + NestedDefaultChecking; + + EnsureImmediateInvocationInDefaultArgs Immediate(*this); + ExprResult Res; + runWithSufficientStackSpace(Loc, [&] { + Res = Immediate.TransformInitializer(Field->getInClassInitializer(), + /*CXXDirectInit=*/false); + }); + if (!Res.isInvalid()) + Res = ConvertMemberDefaultInitExpression(Field, Res.get(), Loc); + if (Res.isInvalid()) { + Field->setInvalidDecl(); + return ExprError(); + } + Init = Res.get(); + } + + if (Field->getInClassInitializer()) { + Expr *E = Init ? Init : Field->getInClassInitializer(); + if (!NestedDefaultChecking) + runWithSufficientStackSpace(Loc, [&] { + MarkDeclarationsReferencedInExpr(E, /*SkipLocalVariables=*/false); + }); + // C++11 [class.base.init]p7: + // The initialization of each base and member constitutes a + // full-expression. + ExprResult Res = ActOnFinishFullExpr(E, /*DiscardedValue=*/false); + if (Res.isInvalid()) { + Field->setInvalidDecl(); + return ExprError(); + } + Init = Res.get(); + + return CXXDefaultInitExpr::Create(Context, InitializationContext->Loc, + Field, InitializationContext->Context, + Init); + } + + // DR1351: + // If the brace-or-equal-initializer of a non-static data member + // invokes a defaulted default constructor of its class or of an + // enclosing class in a potentially evaluated subexpression, the + // program is ill-formed. + // + // This resolution is unworkable: the exception specification of the + // default constructor can be needed in an unevaluated context, in + // particular, in the operand of a noexcept-expression, and we can be + // unable to compute an exception specification for an enclosed class. + // + // Any attempt to resolve the exception specification of a defaulted default + // constructor before the initializer is lexically complete will ultimately + // come here at which point we can diagnose it. + RecordDecl *OutermostClass = ParentRD->getOuterLexicalRecordContext(); + Diag(Loc, diag::err_default_member_initializer_not_yet_parsed) + << OutermostClass << Field; + Diag(Field->getEndLoc(), + diag::note_default_member_initializer_not_yet_parsed); + // Recover by marking the field invalid, unless we're in a SFINAE context. + if (!isSFINAEContext()) + Field->setInvalidDecl(); + return ExprError(); + } + + Sema::VariadicCallType + Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto, + Expr *Fn) { + if (Proto && Proto->isVariadic()) { + if (isa_and_nonnull(FDecl)) + return VariadicConstructor; + else if (Fn && Fn->getType()->isBlockPointerType()) + return VariadicBlock; + else if (FDecl) { + if (CXXMethodDecl *Method = dyn_cast_or_null(FDecl)) + if (Method->isInstance()) + return VariadicMethod; + } else if (Fn && Fn->getType() == Context.BoundMemberTy) + return VariadicMethod; + return VariadicFunction; + } + return VariadicDoesNotApply; + } + + namespace { + class FunctionCallCCC final : public FunctionCallFilterCCC { + public: + FunctionCallCCC(Sema &SemaRef, const IdentifierInfo *FuncName, + unsigned NumArgs, MemberExpr *ME) + : FunctionCallFilterCCC(SemaRef, NumArgs, false, ME), + FunctionName(FuncName) {} + + bool ValidateCandidate(const TypoCorrection &candidate) override { + if (!candidate.getCorrectionSpecifier() || + candidate.getCorrectionAsIdentifierInfo() != FunctionName) { + return false; + } + + return FunctionCallFilterCCC::ValidateCandidate(candidate); + } + + std::unique_ptr clone() override { + return std::make_unique(*this); + } + + private: + const IdentifierInfo *const FunctionName; + }; + } + + static TypoCorrection TryTypoCorrectionForCall(Sema &S, Expr *Fn, + FunctionDecl *FDecl, + ArrayRef Args) { + MemberExpr *ME = dyn_cast(Fn); + DeclarationName FuncName = FDecl->getDeclName(); + SourceLocation NameLoc = ME ? ME->getMemberLoc() : Fn->getBeginLoc(); + + FunctionCallCCC CCC(S, FuncName.getAsIdentifierInfo(), Args.size(), ME); + if (TypoCorrection Corrected = S.CorrectTypo( + DeclarationNameInfo(FuncName, NameLoc), Sema::LookupOrdinaryName, + S.getScopeForContext(S.CurContext), nullptr, CCC, + Sema::CTK_ErrorRecovery)) { + if (NamedDecl *ND = Corrected.getFoundDecl()) { + if (Corrected.isOverloaded()) { + OverloadCandidateSet OCS(NameLoc, OverloadCandidateSet::CSK_Normal); + OverloadCandidateSet::iterator Best; + for (NamedDecl *CD : Corrected) { + if (FunctionDecl *FD = dyn_cast(CD)) + S.AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none), Args, + OCS); + } + switch (OCS.BestViableFunction(S, NameLoc, Best)) { + case OR_Success: + ND = Best->FoundDecl; + Corrected.setCorrectionDecl(ND); + break; + default: + break; + } + } + ND = ND->getUnderlyingDecl(); + if (isa(ND) || isa(ND)) + return Corrected; + } + } + return TypoCorrection(); + } + + /// ConvertArgumentsForCall - Converts the arguments specified in + /// Args/NumArgs to the parameter types of the function FDecl with + /// function prototype Proto. Call is the call expression itself, and + /// Fn is the function expression. For a C++ member function, this + /// routine does not attempt to convert the object argument. Returns + /// true if the call is ill-formed. + bool + Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn, + FunctionDecl *FDecl, + const FunctionProtoType *Proto, + ArrayRef Args, + SourceLocation RParenLoc, + bool IsExecConfig) { + // Bail out early if calling a builtin with custom typechecking. + if (FDecl) + if (unsigned ID = FDecl->getBuiltinID()) + if (Context.BuiltinInfo.hasCustomTypechecking(ID)) + return false; + + // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by + // assignment, to the types of the corresponding parameter, ... + unsigned NumParams = Proto->getNumParams(); + bool Invalid = false; + unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumParams; + unsigned FnKind = Fn->getType()->isBlockPointerType() + ? 1 /* block */ + : (IsExecConfig ? 3 /* kernel function (exec config) */ + : 0 /* function */); + + // If too few arguments are available (and we don't have default + // arguments for the remaining parameters), don't make the call. + if (Args.size() < NumParams) { + if (Args.size() < MinArgs) { + TypoCorrection TC; + if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) { + unsigned diag_id = + MinArgs == NumParams && !Proto->isVariadic() + ? diag::err_typecheck_call_too_few_args_suggest + : diag::err_typecheck_call_too_few_args_at_least_suggest; + diagnoseTypo(TC, PDiag(diag_id) << FnKind << MinArgs + << static_cast(Args.size()) + << TC.getCorrectionRange()); + } else if (MinArgs == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName()) + Diag(RParenLoc, + MinArgs == NumParams && !Proto->isVariadic() + ? diag::err_typecheck_call_too_few_args_one + : diag::err_typecheck_call_too_few_args_at_least_one) + << FnKind << FDecl->getParamDecl(0) << Fn->getSourceRange(); + else + Diag(RParenLoc, MinArgs == NumParams && !Proto->isVariadic() + ? diag::err_typecheck_call_too_few_args + : diag::err_typecheck_call_too_few_args_at_least) + << FnKind << MinArgs << static_cast(Args.size()) + << Fn->getSourceRange(); + + // Emit the location of the prototype. + if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig) + Diag(FDecl->getLocation(), diag::note_callee_decl) + << FDecl << FDecl->getParametersSourceRange(); + + return true; + } + // We reserve space for the default arguments when we create + // the call expression, before calling ConvertArgumentsForCall. + assert((Call->getNumArgs() == NumParams) && + "We should have reserved space for the default arguments before!"); + } + + // If too many are passed and not variadic, error on the extras and drop + // them. + if (Args.size() > NumParams) { + if (!Proto->isVariadic()) { + TypoCorrection TC; + if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) { + unsigned diag_id = + MinArgs == NumParams && !Proto->isVariadic() + ? diag::err_typecheck_call_too_many_args_suggest + : diag::err_typecheck_call_too_many_args_at_most_suggest; + diagnoseTypo(TC, PDiag(diag_id) << FnKind << NumParams + << static_cast(Args.size()) + << TC.getCorrectionRange()); + } else if (NumParams == 1 && FDecl && + FDecl->getParamDecl(0)->getDeclName()) + Diag(Args[NumParams]->getBeginLoc(), + MinArgs == NumParams + ? diag::err_typecheck_call_too_many_args_one + : diag::err_typecheck_call_too_many_args_at_most_one) + << FnKind << FDecl->getParamDecl(0) + << static_cast(Args.size()) << Fn->getSourceRange() + << SourceRange(Args[NumParams]->getBeginLoc(), + Args.back()->getEndLoc()); + else + Diag(Args[NumParams]->getBeginLoc(), + MinArgs == NumParams + ? diag::err_typecheck_call_too_many_args + : diag::err_typecheck_call_too_many_args_at_most) + << FnKind << NumParams << static_cast(Args.size()) + << Fn->getSourceRange() + << SourceRange(Args[NumParams]->getBeginLoc(), + Args.back()->getEndLoc()); + + // Emit the location of the prototype. + if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig) + Diag(FDecl->getLocation(), diag::note_callee_decl) + << FDecl << FDecl->getParametersSourceRange(); + + // This deletes the extra arguments. + Call->shrinkNumArgs(NumParams); + return true; + } + } + SmallVector AllArgs; + VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn); + + Invalid = GatherArgumentsForCall(Call->getBeginLoc(), FDecl, Proto, 0, Args, + AllArgs, CallType); + if (Invalid) + return true; + unsigned TotalNumArgs = AllArgs.size(); + for (unsigned i = 0; i < TotalNumArgs; ++i) + Call->setArg(i, AllArgs[i]); + + Call->computeDependence(); + return false; + } + + bool Sema::GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl, + const FunctionProtoType *Proto, + unsigned FirstParam, ArrayRef Args, + SmallVectorImpl &AllArgs, + VariadicCallType CallType, bool AllowExplicit, + bool IsListInitialization) { + unsigned NumParams = Proto->getNumParams(); + bool Invalid = false; + size_t ArgIx = 0; + // Continue to check argument types (even if we have too few/many args). + for (unsigned i = FirstParam; i < NumParams; i++) { + QualType ProtoArgType = Proto->getParamType(i); + + Expr *Arg; + ParmVarDecl *Param = FDecl ? FDecl->getParamDecl(i) : nullptr; + if (ArgIx < Args.size()) { + Arg = Args[ArgIx++]; + + if (RequireCompleteType(Arg->getBeginLoc(), ProtoArgType, + diag::err_call_incomplete_argument, Arg)) + return true; + + // Strip the unbridged-cast placeholder expression off, if applicable. + bool CFAudited = false; + if (Arg->getType() == Context.ARCUnbridgedCastTy && + FDecl && FDecl->hasAttr() && + (!Param || !Param->hasAttr())) + Arg = stripARCUnbridgedCast(Arg); + else if (getLangOpts().ObjCAutoRefCount && + FDecl && FDecl->hasAttr() && + (!Param || !Param->hasAttr())) + CFAudited = true; + + if (Proto->getExtParameterInfo(i).isNoEscape() && + ProtoArgType->isBlockPointerType()) + if (auto *BE = dyn_cast(Arg->IgnoreParenNoopCasts(Context))) + BE->getBlockDecl()->setDoesNotEscape(); + + InitializedEntity Entity = + Param ? InitializedEntity::InitializeParameter(Context, Param, + ProtoArgType) + : InitializedEntity::InitializeParameter( + Context, ProtoArgType, Proto->isParamConsumed(i)); + + // Remember that parameter belongs to a CF audited API. + if (CFAudited) + Entity.setParameterCFAudited(); + + ExprResult ArgE = PerformCopyInitialization( + Entity, SourceLocation(), Arg, IsListInitialization, AllowExplicit); + if (ArgE.isInvalid()) + return true; + + Arg = ArgE.getAs(); + } else { + assert(Param && "can't use default arguments without a known callee"); + + ExprResult ArgExpr = BuildCXXDefaultArgExpr(CallLoc, FDecl, Param); + if (ArgExpr.isInvalid()) + return true; + + Arg = ArgExpr.getAs(); + } + + // Check for array bounds violations for each argument to the call. This + // check only triggers warnings when the argument isn't a more complex Expr + // with its own checking, such as a BinaryOperator. + CheckArrayAccess(Arg); + + // Check for violations of C99 static array rules (C99 6.7.5.3p7). + CheckStaticArrayArgument(CallLoc, Param, Arg); + + AllArgs.push_back(Arg); + } + + // If this is a variadic call, handle args passed through "...". + if (CallType != VariadicDoesNotApply) { + // Assume that extern "C" functions with variadic arguments that + // return __unknown_anytype aren't *really* variadic. + if (Proto->getReturnType() == Context.UnknownAnyTy && FDecl && + FDecl->isExternC()) { + for (Expr *A : Args.slice(ArgIx)) { + QualType paramType; // ignored + ExprResult arg = checkUnknownAnyArg(CallLoc, A, paramType); + Invalid |= arg.isInvalid(); + AllArgs.push_back(arg.get()); + } + + // Otherwise do argument promotion, (C99 6.5.2.2p7). + } else { + for (Expr *A : Args.slice(ArgIx)) { + ExprResult Arg = DefaultVariadicArgumentPromotion(A, CallType, FDecl); + Invalid |= Arg.isInvalid(); + AllArgs.push_back(Arg.get()); + } + } + + // Check for array bounds violations. + for (Expr *A : Args.slice(ArgIx)) + CheckArrayAccess(A); + } + return Invalid; + } + + static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) { + TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc(); + if (DecayedTypeLoc DTL = TL.getAs()) + TL = DTL.getOriginalLoc(); + if (ArrayTypeLoc ATL = TL.getAs()) + S.Diag(PVD->getLocation(), diag::note_callee_static_array) + << ATL.getLocalSourceRange(); + } + + /// CheckStaticArrayArgument - If the given argument corresponds to a static + /// array parameter, check that it is non-null, and that if it is formed by + /// array-to-pointer decay, the underlying array is sufficiently large. + /// + /// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the + /// array type derivation, then for each call to the function, the value of the + /// corresponding actual argument shall provide access to the first element of + /// an array with at least as many elements as specified by the size expression. + void + Sema::CheckStaticArrayArgument(SourceLocation CallLoc, + ParmVarDecl *Param, + const Expr *ArgExpr) { + // Static array parameters are not supported in C++. + if (!Param || getLangOpts().CPlusPlus) + return; + + QualType OrigTy = Param->getOriginalType(); + + const ArrayType *AT = Context.getAsArrayType(OrigTy); + if (!AT || AT->getSizeModifier() != ArrayType::Static) + return; + + if (ArgExpr->isNullPointerConstant(Context, + Expr::NPC_NeverValueDependent)) { + Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange(); + DiagnoseCalleeStaticArrayParam(*this, Param); + return; + } + + const ConstantArrayType *CAT = dyn_cast(AT); + if (!CAT) + return; + + const ConstantArrayType *ArgCAT = + Context.getAsConstantArrayType(ArgExpr->IgnoreParenCasts()->getType()); + if (!ArgCAT) + return; + + if (getASTContext().hasSameUnqualifiedType(CAT->getElementType(), + ArgCAT->getElementType())) { + if (ArgCAT->getSize().ult(CAT->getSize())) { + Diag(CallLoc, diag::warn_static_array_too_small) + << ArgExpr->getSourceRange() + << (unsigned)ArgCAT->getSize().getZExtValue() + << (unsigned)CAT->getSize().getZExtValue() << 0; + DiagnoseCalleeStaticArrayParam(*this, Param); + } + return; + } + + std::optional ArgSize = + getASTContext().getTypeSizeInCharsIfKnown(ArgCAT); + std::optional ParmSize = + getASTContext().getTypeSizeInCharsIfKnown(CAT); + if (ArgSize && ParmSize && *ArgSize < *ParmSize) { + Diag(CallLoc, diag::warn_static_array_too_small) + << ArgExpr->getSourceRange() << (unsigned)ArgSize->getQuantity() + << (unsigned)ParmSize->getQuantity() << 1; + DiagnoseCalleeStaticArrayParam(*this, Param); + } + } + + /// Given a function expression of unknown-any type, try to rebuild it + /// to have a function type. + static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn); + + /// Is the given type a placeholder that we need to lower out + /// immediately during argument processing? + static bool isPlaceholderToRemoveAsArg(QualType type) { + // Placeholders are never sugared. + const BuiltinType *placeholder = dyn_cast(type); + if (!placeholder) return false; + + switch (placeholder->getKind()) { + // Ignore all the non-placeholder types. + #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ + case BuiltinType::Id: + #include "clang/Basic/OpenCLImageTypes.def" + #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ + case BuiltinType::Id: + #include "clang/Basic/OpenCLExtensionTypes.def" + // In practice we'll never use this, since all SVE types are sugared + // via TypedefTypes rather than exposed directly as BuiltinTypes. + #define SVE_TYPE(Name, Id, SingletonId) \ + case BuiltinType::Id: + #include "clang/Basic/AArch64SVEACLETypes.def" + #define PPC_VECTOR_TYPE(Name, Id, Size) \ + case BuiltinType::Id: + #include "clang/Basic/PPCTypes.def" + #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id: + #include "clang/Basic/RISCVVTypes.def" + #define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id: + #include "clang/Basic/WebAssemblyReferenceTypes.def" + #define PLACEHOLDER_TYPE(ID, SINGLETON_ID) + #define BUILTIN_TYPE(ID, SINGLETON_ID) case BuiltinType::ID: + #include "clang/AST/BuiltinTypes.def" + return false; + + // We cannot lower out overload sets; they might validly be resolved + // by the call machinery. + case BuiltinType::Overload: + return false; + + // Unbridged casts in ARC can be handled in some call positions and + // should be left in place. + case BuiltinType::ARCUnbridgedCast: + return false; + + // Pseudo-objects should be converted as soon as possible. + case BuiltinType::PseudoObject: + return true; + + // The debugger mode could theoretically but currently does not try + // to resolve unknown-typed arguments based on known parameter types. + case BuiltinType::UnknownAny: + return true; + + // These are always invalid as call arguments and should be reported. + case BuiltinType::BoundMember: + case BuiltinType::BuiltinFn: + case BuiltinType::IncompleteMatrixIdx: + case BuiltinType::OMPArraySection: + case BuiltinType::OMPArrayShaping: + case BuiltinType::OMPIterator: + return true; + + } + llvm_unreachable("bad builtin type kind"); + } + + /// Check an argument list for placeholders that we won't try to + /// handle later. + static bool checkArgsForPlaceholders(Sema &S, MultiExprArg args) { + // Apply this processing to all the arguments at once instead of + // dying at the first failure. + bool hasInvalid = false; + for (size_t i = 0, e = args.size(); i != e; i++) { + if (isPlaceholderToRemoveAsArg(args[i]->getType())) { + ExprResult result = S.CheckPlaceholderExpr(args[i]); + if (result.isInvalid()) hasInvalid = true; + else args[i] = result.get(); + } + } + return hasInvalid; + } + + /// If a builtin function has a pointer argument with no explicit address + /// space, then it should be able to accept a pointer to any address + /// space as input. In order to do this, we need to replace the + /// standard builtin declaration with one that uses the same address space + /// as the call. + /// + /// \returns nullptr If this builtin is not a candidate for a rewrite i.e. + /// it does not contain any pointer arguments without + /// an address space qualifer. Otherwise the rewritten + /// FunctionDecl is returned. + /// TODO: Handle pointer return types. + static FunctionDecl *rewriteBuiltinFunctionDecl(Sema *Sema, ASTContext &Context, + FunctionDecl *FDecl, + MultiExprArg ArgExprs) { + + QualType DeclType = FDecl->getType(); + const FunctionProtoType *FT = dyn_cast(DeclType); + + if (!Context.BuiltinInfo.hasPtrArgsOrResult(FDecl->getBuiltinID()) || !FT || + ArgExprs.size() < FT->getNumParams()) + return nullptr; + + bool NeedsNewDecl = false; + unsigned i = 0; + SmallVector OverloadParams; + + for (QualType ParamType : FT->param_types()) { + + // Convert array arguments to pointer to simplify type lookup. + ExprResult ArgRes = + Sema->DefaultFunctionArrayLvalueConversion(ArgExprs[i++]); + if (ArgRes.isInvalid()) + return nullptr; + Expr *Arg = ArgRes.get(); + QualType ArgType = Arg->getType(); + if (!ParamType->isPointerType() || ParamType.hasAddressSpace() || + !ArgType->isPointerType() || + !ArgType->getPointeeType().hasAddressSpace() || + isPtrSizeAddressSpace(ArgType->getPointeeType().getAddressSpace())) { + OverloadParams.push_back(ParamType); + continue; + } + + QualType PointeeType = ParamType->getPointeeType(); + if (PointeeType.hasAddressSpace()) + continue; + + NeedsNewDecl = true; + LangAS AS = ArgType->getPointeeType().getAddressSpace(); + + PointeeType = Context.getAddrSpaceQualType(PointeeType, AS); + OverloadParams.push_back(Context.getPointerType(PointeeType)); + } + + if (!NeedsNewDecl) + return nullptr; + + FunctionProtoType::ExtProtoInfo EPI; + EPI.Variadic = FT->isVariadic(); + QualType OverloadTy = Context.getFunctionType(FT->getReturnType(), + OverloadParams, EPI); + DeclContext *Parent = FDecl->getParent(); + FunctionDecl *OverloadDecl = FunctionDecl::Create( + Context, Parent, FDecl->getLocation(), FDecl->getLocation(), + FDecl->getIdentifier(), OverloadTy, + /*TInfo=*/nullptr, SC_Extern, Sema->getCurFPFeatures().isFPConstrained(), + false, + /*hasPrototype=*/true); + SmallVector Params; + FT = cast(OverloadTy); + for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { + QualType ParamType = FT->getParamType(i); + ParmVarDecl *Parm = + ParmVarDecl::Create(Context, OverloadDecl, SourceLocation(), + SourceLocation(), nullptr, ParamType, + /*TInfo=*/nullptr, SC_None, nullptr); + Parm->setScopeInfo(0, i); + Params.push_back(Parm); + } + OverloadDecl->setParams(Params); + Sema->mergeDeclAttributes(OverloadDecl, FDecl); + return OverloadDecl; + } + + static void checkDirectCallValidity(Sema &S, const Expr *Fn, + FunctionDecl *Callee, + MultiExprArg ArgExprs) { + // `Callee` (when called with ArgExprs) may be ill-formed. enable_if (and + // similar attributes) really don't like it when functions are called with an + // invalid number of args. + if (S.TooManyArguments(Callee->getNumParams(), ArgExprs.size(), + /*PartialOverloading=*/false) && + !Callee->isVariadic()) + return; + if (Callee->getMinRequiredArguments() > ArgExprs.size()) + return; + + if (const EnableIfAttr *Attr = + S.CheckEnableIf(Callee, Fn->getBeginLoc(), ArgExprs, true)) { + S.Diag(Fn->getBeginLoc(), + isa(Callee) + ? diag::err_ovl_no_viable_member_function_in_call + : diag::err_ovl_no_viable_function_in_call) + << Callee << Callee->getSourceRange(); + S.Diag(Callee->getLocation(), + diag::note_ovl_candidate_disabled_by_function_cond_attr) + << Attr->getCond()->getSourceRange() << Attr->getMessage(); + return; + } + } + + static bool enclosingClassIsRelatedToClassInWhichMembersWereFound( + const UnresolvedMemberExpr *const UME, Sema &S) { + + const auto GetFunctionLevelDCIfCXXClass = + [](Sema &S) -> const CXXRecordDecl * { + const DeclContext *const DC = S.getFunctionLevelDeclContext(); + if (!DC || !DC->getParent()) + return nullptr; + + // If the call to some member function was made from within a member + // function body 'M' return return 'M's parent. + if (const auto *MD = dyn_cast(DC)) + return MD->getParent()->getCanonicalDecl(); + // else the call was made from within a default member initializer of a + // class, so return the class. + if (const auto *RD = dyn_cast(DC)) + return RD->getCanonicalDecl(); + return nullptr; + }; + // If our DeclContext is neither a member function nor a class (in the + // case of a lambda in a default member initializer), we can't have an + // enclosing 'this'. + + const CXXRecordDecl *const CurParentClass = GetFunctionLevelDCIfCXXClass(S); + if (!CurParentClass) + return false; + + // The naming class for implicit member functions call is the class in which + // name lookup starts. + const CXXRecordDecl *const NamingClass = + UME->getNamingClass()->getCanonicalDecl(); + assert(NamingClass && "Must have naming class even for implicit access"); + + // If the unresolved member functions were found in a 'naming class' that is + // related (either the same or derived from) to the class that contains the + // member function that itself contained the implicit member access. + + return CurParentClass == NamingClass || + CurParentClass->isDerivedFrom(NamingClass); + } + + static void + tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs( + Sema &S, const UnresolvedMemberExpr *const UME, SourceLocation CallLoc) { + + if (!UME) + return; + + LambdaScopeInfo *const CurLSI = S.getCurLambda(); + // Only try and implicitly capture 'this' within a C++ Lambda if it hasn't + // already been captured, or if this is an implicit member function call (if + // it isn't, an attempt to capture 'this' should already have been made). + if (!CurLSI || CurLSI->ImpCaptureStyle == CurLSI->ImpCap_None || + !UME->isImplicitAccess() || CurLSI->isCXXThisCaptured()) + return; + + // Check if the naming class in which the unresolved members were found is + // related (same as or is a base of) to the enclosing class. + + if (!enclosingClassIsRelatedToClassInWhichMembersWereFound(UME, S)) + return; + + + DeclContext *EnclosingFunctionCtx = S.CurContext->getParent()->getParent(); + // If the enclosing function is not dependent, then this lambda is + // capture ready, so if we can capture this, do so. + if (!EnclosingFunctionCtx->isDependentContext()) { + // If the current lambda and all enclosing lambdas can capture 'this' - + // then go ahead and capture 'this' (since our unresolved overload set + // contains at least one non-static member function). + if (!S.CheckCXXThisCapture(CallLoc, /*Explcit*/ false, /*Diagnose*/ false)) + S.CheckCXXThisCapture(CallLoc); + } else if (S.CurContext->isDependentContext()) { + // ... since this is an implicit member reference, that might potentially + // involve a 'this' capture, mark 'this' for potential capture in + // enclosing lambdas. + if (CurLSI->ImpCaptureStyle != CurLSI->ImpCap_None) + CurLSI->addPotentialThisCapture(CallLoc); + } + } + + // Once a call is fully resolved, warn for unqualified calls to specific + // C++ standard functions, like move and forward. + static void DiagnosedUnqualifiedCallsToStdFunctions(Sema &S, CallExpr *Call) { + // We are only checking unary move and forward so exit early here. + if (Call->getNumArgs() != 1) + return; + + Expr *E = Call->getCallee()->IgnoreParenImpCasts(); + if (!E || isa(E)) + return; + DeclRefExpr *DRE = dyn_cast_or_null(E); + if (!DRE || !DRE->getLocation().isValid()) + return; + + if (DRE->getQualifier()) + return; + + const FunctionDecl *FD = Call->getDirectCallee(); + if (!FD) + return; + + // Only warn for some functions deemed more frequent or problematic. + unsigned BuiltinID = FD->getBuiltinID(); + if (BuiltinID != Builtin::BImove && BuiltinID != Builtin::BIforward) + return; + + S.Diag(DRE->getLocation(), diag::warn_unqualified_call_to_std_cast_function) + << FD->getQualifiedNameAsString() + << FixItHint::CreateInsertion(DRE->getLocation(), "std::"); + } + + ExprResult Sema::ActOnCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc, + MultiExprArg ArgExprs, SourceLocation RParenLoc, + Expr *ExecConfig) { + ExprResult Call = + BuildCallExpr(Scope, Fn, LParenLoc, ArgExprs, RParenLoc, ExecConfig, + /*IsExecConfig=*/false, /*AllowRecovery=*/true); + if (Call.isInvalid()) + return Call; + + // Diagnose uses of the C++20 "ADL-only template-id call" feature in earlier + // language modes. + if (auto *ULE = dyn_cast(Fn)) { + if (ULE->hasExplicitTemplateArgs() && + ULE->decls_begin() == ULE->decls_end()) { + Diag(Fn->getExprLoc(), getLangOpts().CPlusPlus20 + ? diag::warn_cxx17_compat_adl_only_template_id + : diag::ext_adl_only_template_id) + << ULE->getName(); + } + } + + if (LangOpts.OpenMP) + Call = ActOnOpenMPCall(Call, Scope, LParenLoc, ArgExprs, RParenLoc, + ExecConfig); + if (LangOpts.CPlusPlus) { + CallExpr *CE = dyn_cast(Call.get()); + if (CE) + DiagnosedUnqualifiedCallsToStdFunctions(*this, CE); + } + return Call; + } + + /// BuildCallExpr - Handle a call to Fn with the specified array of arguments. + /// This provides the location of the left/right parens and a list of comma + /// locations. + ExprResult Sema::BuildCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc, + MultiExprArg ArgExprs, SourceLocation RParenLoc, + Expr *ExecConfig, bool IsExecConfig, + bool AllowRecovery) { + // Since this might be a postfix expression, get rid of ParenListExprs. + ExprResult Result = MaybeConvertParenListExprToParenExpr(Scope, Fn); + if (Result.isInvalid()) return ExprError(); + Fn = Result.get(); + + if (checkArgsForPlaceholders(*this, ArgExprs)) + return ExprError(); + + if (getLangOpts().CPlusPlus) { + // If this is a pseudo-destructor expression, build the call immediately. + if (isa(Fn)) { + if (!ArgExprs.empty()) { + // Pseudo-destructor calls should not have any arguments. + Diag(Fn->getBeginLoc(), diag::err_pseudo_dtor_call_with_args) + << FixItHint::CreateRemoval( + SourceRange(ArgExprs.front()->getBeginLoc(), + ArgExprs.back()->getEndLoc())); + } + + return CallExpr::Create(Context, Fn, /*Args=*/{}, Context.VoidTy, + VK_PRValue, RParenLoc, CurFPFeatureOverrides()); + } + if (Fn->getType() == Context.PseudoObjectTy) { + ExprResult result = CheckPlaceholderExpr(Fn); + if (result.isInvalid()) return ExprError(); + Fn = result.get(); + } + + // Determine whether this is a dependent call inside a C++ template, + // in which case we won't do any semantic analysis now. + if (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(ArgExprs)) { + if (ExecConfig) { + return CUDAKernelCallExpr::Create(Context, Fn, + cast(ExecConfig), ArgExprs, + Context.DependentTy, VK_PRValue, + RParenLoc, CurFPFeatureOverrides()); + } else { + + tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs( + *this, dyn_cast(Fn->IgnoreParens()), + Fn->getBeginLoc()); + + return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy, + VK_PRValue, RParenLoc, CurFPFeatureOverrides()); + } + } + + // Determine whether this is a call to an object (C++ [over.call.object]). + if (Fn->getType()->isRecordType()) + return BuildCallToObjectOfClassType(Scope, Fn, LParenLoc, ArgExprs, + RParenLoc); + + if (Fn->getType() == Context.UnknownAnyTy) { + ExprResult result = rebuildUnknownAnyFunction(*this, Fn); + if (result.isInvalid()) return ExprError(); + Fn = result.get(); + } + + if (Fn->getType() == Context.BoundMemberTy) { + return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs, + RParenLoc, ExecConfig, IsExecConfig, + AllowRecovery); + } + } + + // Check for overloaded calls. This can happen even in C due to extensions. + if (Fn->getType() == Context.OverloadTy) { + OverloadExpr::FindResult find = OverloadExpr::find(Fn); + + // We aren't supposed to apply this logic if there's an '&' involved. + if (!find.HasFormOfMemberPointer) { + if (Expr::hasAnyTypeDependentArguments(ArgExprs)) + return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy, + VK_PRValue, RParenLoc, CurFPFeatureOverrides()); + OverloadExpr *ovl = find.Expression; + if (UnresolvedLookupExpr *ULE = dyn_cast(ovl)) + return BuildOverloadedCallExpr( + Scope, Fn, ULE, LParenLoc, ArgExprs, RParenLoc, ExecConfig, + /*AllowTypoCorrection=*/true, find.IsAddressOfOperand); + return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs, + RParenLoc, ExecConfig, IsExecConfig, + AllowRecovery); + } + } + + // If we're directly calling a function, get the appropriate declaration. + if (Fn->getType() == Context.UnknownAnyTy) { + ExprResult result = rebuildUnknownAnyFunction(*this, Fn); + if (result.isInvalid()) return ExprError(); + Fn = result.get(); + } + + Expr *NakedFn = Fn->IgnoreParens(); + + bool CallingNDeclIndirectly = false; + NamedDecl *NDecl = nullptr; + if (UnaryOperator *UnOp = dyn_cast(NakedFn)) { + if (UnOp->getOpcode() == UO_AddrOf) { + CallingNDeclIndirectly = true; + NakedFn = UnOp->getSubExpr()->IgnoreParens(); + } + } + + if (auto *DRE = dyn_cast(NakedFn)) { + NDecl = DRE->getDecl(); + + FunctionDecl *FDecl = dyn_cast(NDecl); + if (FDecl && FDecl->getBuiltinID()) { + // Rewrite the function decl for this builtin by replacing parameters + // with no explicit address space with the address space of the arguments + // in ArgExprs. + if ((FDecl = + rewriteBuiltinFunctionDecl(this, Context, FDecl, ArgExprs))) { + NDecl = FDecl; + Fn = DeclRefExpr::Create( + Context, FDecl->getQualifierLoc(), SourceLocation(), FDecl, false, + SourceLocation(), FDecl->getType(), Fn->getValueKind(), FDecl, + nullptr, DRE->isNonOdrUse()); + } + } + } else if (auto *ME = dyn_cast(NakedFn)) + NDecl = ME->getMemberDecl(); + + if (FunctionDecl *FD = dyn_cast_or_null(NDecl)) { + if (CallingNDeclIndirectly && !checkAddressOfFunctionIsAvailable( + FD, /*Complain=*/true, Fn->getBeginLoc())) + return ExprError(); + + checkDirectCallValidity(*this, Fn, FD, ArgExprs); + + // If this expression is a call to a builtin function in HIP device + // compilation, allow a pointer-type argument to default address space to be + // passed as a pointer-type parameter to a non-default address space. + // If Arg is declared in the default address space and Param is declared + // in a non-default address space, perform an implicit address space cast to + // the parameter type. + if (getLangOpts().HIP && getLangOpts().CUDAIsDevice && FD && + FD->getBuiltinID()) { + for (unsigned Idx = 0; Idx < FD->param_size(); ++Idx) { + ParmVarDecl *Param = FD->getParamDecl(Idx); + if (!ArgExprs[Idx] || !Param || !Param->getType()->isPointerType() || + !ArgExprs[Idx]->getType()->isPointerType()) + continue; + + auto ParamAS = Param->getType()->getPointeeType().getAddressSpace(); + auto ArgTy = ArgExprs[Idx]->getType(); + auto ArgPtTy = ArgTy->getPointeeType(); + auto ArgAS = ArgPtTy.getAddressSpace(); + + // Add address space cast if target address spaces are different + bool NeedImplicitASC = + ParamAS != LangAS::Default && // Pointer params in generic AS don't need special handling. + ( ArgAS == LangAS::Default || // We do allow implicit conversion from generic AS + // or from specific AS which has target AS matching that of Param. + getASTContext().getTargetAddressSpace(ArgAS) == getASTContext().getTargetAddressSpace(ParamAS)); + if (!NeedImplicitASC) + continue; + + // First, ensure that the Arg is an RValue. + if (ArgExprs[Idx]->isGLValue()) { + ArgExprs[Idx] = ImplicitCastExpr::Create( + Context, ArgExprs[Idx]->getType(), CK_NoOp, ArgExprs[Idx], + nullptr, VK_PRValue, FPOptionsOverride()); + } + + // Construct a new arg type with address space of Param + Qualifiers ArgPtQuals = ArgPtTy.getQualifiers(); + ArgPtQuals.setAddressSpace(ParamAS); + auto NewArgPtTy = + Context.getQualifiedType(ArgPtTy.getUnqualifiedType(), ArgPtQuals); + auto NewArgTy = + Context.getQualifiedType(Context.getPointerType(NewArgPtTy), + ArgTy.getQualifiers()); + + // Finally perform an implicit address space cast + ArgExprs[Idx] = ImpCastExprToType(ArgExprs[Idx], NewArgTy, + CK_AddressSpaceConversion) + .get(); + } + } + } + + if (Context.isDependenceAllowed() && + (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(ArgExprs))) { + assert(!getLangOpts().CPlusPlus); + assert((Fn->containsErrors() || + llvm::any_of(ArgExprs, + [](clang::Expr *E) { return E->containsErrors(); })) && + "should only occur in error-recovery path."); + return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy, + VK_PRValue, RParenLoc, CurFPFeatureOverrides()); + } + return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, ArgExprs, RParenLoc, + ExecConfig, IsExecConfig); + } + + /// BuildBuiltinCallExpr - Create a call to a builtin function specified by Id + // with the specified CallArgs + Expr *Sema::BuildBuiltinCallExpr(SourceLocation Loc, Builtin::ID Id, + MultiExprArg CallArgs) { + StringRef Name = Context.BuiltinInfo.getName(Id); + LookupResult R(*this, &Context.Idents.get(Name), Loc, + Sema::LookupOrdinaryName); + LookupName(R, TUScope, /*AllowBuiltinCreation=*/true); + + auto *BuiltInDecl = R.getAsSingle(); + assert(BuiltInDecl && "failed to find builtin declaration"); + + ExprResult DeclRef = + BuildDeclRefExpr(BuiltInDecl, BuiltInDecl->getType(), VK_LValue, Loc); + assert(DeclRef.isUsable() && "Builtin reference cannot fail"); + + ExprResult Call = + BuildCallExpr(/*Scope=*/nullptr, DeclRef.get(), Loc, CallArgs, Loc); + + assert(!Call.isInvalid() && "Call to builtin cannot fail!"); + return Call.get(); + } + + /// Parse a __builtin_astype expression. + /// + /// __builtin_astype( value, dst type ) + /// + ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy, + SourceLocation BuiltinLoc, + SourceLocation RParenLoc) { + QualType DstTy = GetTypeFromParser(ParsedDestTy); + return BuildAsTypeExpr(E, DstTy, BuiltinLoc, RParenLoc); + } + + /// Create a new AsTypeExpr node (bitcast) from the arguments. + ExprResult Sema::BuildAsTypeExpr(Expr *E, QualType DestTy, + SourceLocation BuiltinLoc, + SourceLocation RParenLoc) { + ExprValueKind VK = VK_PRValue; + ExprObjectKind OK = OK_Ordinary; + QualType SrcTy = E->getType(); + if (!SrcTy->isDependentType() && + Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy)) + return ExprError( + Diag(BuiltinLoc, diag::err_invalid_astype_of_different_size) + << DestTy << SrcTy << E->getSourceRange()); + return new (Context) AsTypeExpr(E, DestTy, VK, OK, BuiltinLoc, RParenLoc); + } + + /// ActOnConvertVectorExpr - create a new convert-vector expression from the + /// provided arguments. + /// + /// __builtin_convertvector( value, dst type ) + /// + ExprResult Sema::ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy, + SourceLocation BuiltinLoc, + SourceLocation RParenLoc) { + TypeSourceInfo *TInfo; + GetTypeFromParser(ParsedDestTy, &TInfo); + return SemaConvertVectorExpr(E, TInfo, BuiltinLoc, RParenLoc); + } + + /// BuildResolvedCallExpr - Build a call to a resolved expression, + /// i.e. an expression not of \p OverloadTy. The expression should + /// unary-convert to an expression of function-pointer or + /// block-pointer type. + /// + /// \param NDecl the declaration being called, if available + ExprResult Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl, + SourceLocation LParenLoc, + ArrayRef Args, + SourceLocation RParenLoc, Expr *Config, + bool IsExecConfig, ADLCallKind UsesADL) { + FunctionDecl *FDecl = dyn_cast_or_null(NDecl); + unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0); + + // Functions with 'interrupt' attribute cannot be called directly. + if (FDecl && FDecl->hasAttr()) { + Diag(Fn->getExprLoc(), diag::err_anyx86_interrupt_called); + return ExprError(); + } + + // Interrupt handlers don't save off the VFP regs automatically on ARM, + // so there's some risk when calling out to non-interrupt handler functions + // that the callee might not preserve them. This is easy to diagnose here, + // but can be very challenging to debug. + // Likewise, X86 interrupt handlers may only call routines with attribute + // no_caller_saved_registers since there is no efficient way to + // save and restore the non-GPR state. + if (auto *Caller = getCurFunctionDecl()) { + if (Caller->hasAttr()) { + bool VFP = Context.getTargetInfo().hasFeature("vfp"); + if (VFP && (!FDecl || !FDecl->hasAttr())) { + Diag(Fn->getExprLoc(), diag::warn_arm_interrupt_calling_convention); + if (FDecl) + Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl; + } + } + if (Caller->hasAttr() && + ((!FDecl || !FDecl->hasAttr()))) { + Diag(Fn->getExprLoc(), diag::warn_anyx86_interrupt_regsave); + if (FDecl) + Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl; + } + } + + // Promote the function operand. + // We special-case function promotion here because we only allow promoting + // builtin functions to function pointers in the callee of a call. + ExprResult Result; + QualType ResultTy; + if (BuiltinID && + Fn->getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn)) { + // Extract the return type from the (builtin) function pointer type. + // FIXME Several builtins still have setType in + // Sema::CheckBuiltinFunctionCall. One should review their definitions in + // Builtins.def to ensure they are correct before removing setType calls. + QualType FnPtrTy = Context.getPointerType(FDecl->getType()); + Result = ImpCastExprToType(Fn, FnPtrTy, CK_BuiltinFnToFnPtr).get(); + ResultTy = FDecl->getCallResultType(); + } else { + Result = CallExprUnaryConversions(Fn); + ResultTy = Context.BoolTy; + } + if (Result.isInvalid()) + return ExprError(); + Fn = Result.get(); + + // Check for a valid function type, but only if it is not a builtin which + // requires custom type checking. These will be handled by + // CheckBuiltinFunctionCall below just after creation of the call expression. + const FunctionType *FuncT = nullptr; + if (!BuiltinID || !Context.BuiltinInfo.hasCustomTypechecking(BuiltinID)) { + retry: + if (const PointerType *PT = Fn->getType()->getAs()) { + // C99 6.5.2.2p1 - "The expression that denotes the called function shall + // have type pointer to function". + FuncT = PT->getPointeeType()->getAs(); + if (!FuncT) + return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function) + << Fn->getType() << Fn->getSourceRange()); + } else if (const BlockPointerType *BPT = + Fn->getType()->getAs()) { + FuncT = BPT->getPointeeType()->castAs(); + } else { + // Handle calls to expressions of unknown-any type. + if (Fn->getType() == Context.UnknownAnyTy) { + ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn); + if (rewrite.isInvalid()) + return ExprError(); + Fn = rewrite.get(); + goto retry; + } + + return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function) + << Fn->getType() << Fn->getSourceRange()); + } + } + + // Get the number of parameters in the function prototype, if any. + // We will allocate space for max(Args.size(), NumParams) arguments + // in the call expression. + const auto *Proto = dyn_cast_or_null(FuncT); + unsigned NumParams = Proto ? Proto->getNumParams() : 0; + + CallExpr *TheCall; + if (Config) { + assert(UsesADL == ADLCallKind::NotADL && + "CUDAKernelCallExpr should not use ADL"); + TheCall = CUDAKernelCallExpr::Create(Context, Fn, cast(Config), + Args, ResultTy, VK_PRValue, RParenLoc, + CurFPFeatureOverrides(), NumParams); + } else { + TheCall = + CallExpr::Create(Context, Fn, Args, ResultTy, VK_PRValue, RParenLoc, + CurFPFeatureOverrides(), NumParams, UsesADL); + } + + if (!Context.isDependenceAllowed()) { + // Forget about the nulled arguments since typo correction + // do not handle them well. + TheCall->shrinkNumArgs(Args.size()); + // C cannot always handle TypoExpr nodes in builtin calls and direct + // function calls as their argument checking don't necessarily handle + // dependent types properly, so make sure any TypoExprs have been + // dealt with. + ExprResult Result = CorrectDelayedTyposInExpr(TheCall); + if (!Result.isUsable()) return ExprError(); + CallExpr *TheOldCall = TheCall; + TheCall = dyn_cast(Result.get()); + bool CorrectedTypos = TheCall != TheOldCall; + if (!TheCall) return Result; + Args = llvm::ArrayRef(TheCall->getArgs(), TheCall->getNumArgs()); + + // A new call expression node was created if some typos were corrected. + // However it may not have been constructed with enough storage. In this + // case, rebuild the node with enough storage. The waste of space is + // immaterial since this only happens when some typos were corrected. + if (CorrectedTypos && Args.size() < NumParams) { + if (Config) + TheCall = CUDAKernelCallExpr::Create( + Context, Fn, cast(Config), Args, ResultTy, VK_PRValue, + RParenLoc, CurFPFeatureOverrides(), NumParams); + else + TheCall = + CallExpr::Create(Context, Fn, Args, ResultTy, VK_PRValue, RParenLoc, + CurFPFeatureOverrides(), NumParams, UsesADL); + } + // We can now handle the nulled arguments for the default arguments. + TheCall->setNumArgsUnsafe(std::max(Args.size(), NumParams)); + } + + // Bail out early if calling a builtin with custom type checking. + if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID)) + return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall); + + if (getLangOpts().CUDA) { + if (Config) { + // CUDA: Kernel calls must be to global functions + if (FDecl && !FDecl->hasAttr()) + return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function) + << FDecl << Fn->getSourceRange()); + + // CUDA: Kernel function must have 'void' return type + if (!FuncT->getReturnType()->isVoidType() && + !FuncT->getReturnType()->getAs() && + !FuncT->getReturnType()->isInstantiationDependentType()) + return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return) + << Fn->getType() << Fn->getSourceRange()); + } else { + // CUDA: Calls to global functions must be configured + if (FDecl && FDecl->hasAttr()) + return ExprError(Diag(LParenLoc, diag::err_global_call_not_config) + << FDecl << Fn->getSourceRange()); + } + } + + // Check for a valid return type + if (CheckCallReturnType(FuncT->getReturnType(), Fn->getBeginLoc(), TheCall, + FDecl)) + return ExprError(); + + // We know the result type of the call, set it. + TheCall->setType(FuncT->getCallResultType(Context)); + TheCall->setValueKind(Expr::getValueKindForType(FuncT->getReturnType())); + + // WebAssembly tables can't be used as arguments. + if (Context.getTargetInfo().getTriple().isWasm()) { + for (const Expr *Arg : Args) { + if (Arg && Arg->getType()->isWebAssemblyTableType()) { + return ExprError(Diag(Arg->getExprLoc(), + diag::err_wasm_table_as_function_parameter)); + } + } + } + + if (Proto) { + if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, RParenLoc, + IsExecConfig)) + return ExprError(); + } else { + assert(isa(FuncT) && "Unknown FunctionType!"); + + if (FDecl) { + // Check if we have too few/too many template arguments, based + // on our knowledge of the function definition. + const FunctionDecl *Def = nullptr; + if (FDecl->hasBody(Def) && Args.size() != Def->param_size()) { + Proto = Def->getType()->getAs(); + if (!Proto || !(Proto->isVariadic() && Args.size() >= Def->param_size())) + Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments) + << (Args.size() > Def->param_size()) << FDecl << Fn->getSourceRange(); + } + + // If the function we're calling isn't a function prototype, but we have + // a function prototype from a prior declaratiom, use that prototype. + if (!FDecl->hasPrototype()) + Proto = FDecl->getType()->getAs(); + } + + // If we still haven't found a prototype to use but there are arguments to + // the call, diagnose this as calling a function without a prototype. + // However, if we found a function declaration, check to see if + // -Wdeprecated-non-prototype was disabled where the function was declared. + // If so, we will silence the diagnostic here on the assumption that this + // interface is intentional and the user knows what they're doing. We will + // also silence the diagnostic if there is a function declaration but it + // was implicitly defined (the user already gets diagnostics about the + // creation of the implicit function declaration, so the additional warning + // is not helpful). + if (!Proto && !Args.empty() && + (!FDecl || (!FDecl->isImplicit() && + !Diags.isIgnored(diag::warn_strict_uses_without_prototype, + FDecl->getLocation())))) + Diag(LParenLoc, diag::warn_strict_uses_without_prototype) + << (FDecl != nullptr) << FDecl; + + // Promote the arguments (C99 6.5.2.2p6). + for (unsigned i = 0, e = Args.size(); i != e; i++) { + Expr *Arg = Args[i]; + + if (Proto && i < Proto->getNumParams()) { + InitializedEntity Entity = InitializedEntity::InitializeParameter( + Context, Proto->getParamType(i), Proto->isParamConsumed(i)); + ExprResult ArgE = + PerformCopyInitialization(Entity, SourceLocation(), Arg); + if (ArgE.isInvalid()) + return true; + + Arg = ArgE.getAs(); + + } else { + ExprResult ArgE = DefaultArgumentPromotion(Arg); + + if (ArgE.isInvalid()) + return true; + + Arg = ArgE.getAs(); + } + + if (RequireCompleteType(Arg->getBeginLoc(), Arg->getType(), + diag::err_call_incomplete_argument, Arg)) + return ExprError(); + + TheCall->setArg(i, Arg); + } + TheCall->computeDependence(); + } + + if (CXXMethodDecl *Method = dyn_cast_or_null(FDecl)) + if (!Method->isStatic()) + return ExprError(Diag(LParenLoc, diag::err_member_call_without_object) + << Fn->getSourceRange()); + + // Check for sentinels + if (NDecl) + DiagnoseSentinelCalls(NDecl, LParenLoc, Args); + + // Warn for unions passing across security boundary (CMSE). + if (FuncT != nullptr && FuncT->getCmseNSCallAttr()) { + for (unsigned i = 0, e = Args.size(); i != e; i++) { + if (const auto *RT = + dyn_cast(Args[i]->getType().getCanonicalType())) { + if (RT->getDecl()->isOrContainsUnion()) + Diag(Args[i]->getBeginLoc(), diag::warn_cmse_nonsecure_union) + << 0 << i; + } + } + } + + // Do special checking on direct calls to functions. + if (FDecl) { + if (CheckFunctionCall(FDecl, TheCall, Proto)) + return ExprError(); + + checkFortifiedBuiltinMemoryFunction(FDecl, TheCall); + + if (BuiltinID) + return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall); + } else if (NDecl) { + if (CheckPointerCall(NDecl, TheCall, Proto)) + return ExprError(); + } else { + if (CheckOtherCall(TheCall, Proto)) + return ExprError(); + } + + return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), FDecl); + } + + ExprResult + Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty, + SourceLocation RParenLoc, Expr *InitExpr) { + assert(Ty && "ActOnCompoundLiteral(): missing type"); + assert(InitExpr && "ActOnCompoundLiteral(): missing expression"); + + TypeSourceInfo *TInfo; + QualType literalType = GetTypeFromParser(Ty, &TInfo); + if (!TInfo) + TInfo = Context.getTrivialTypeSourceInfo(literalType); + + return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr); + } + + ExprResult + Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo, + SourceLocation RParenLoc, Expr *LiteralExpr) { + QualType literalType = TInfo->getType(); + + if (literalType->isArrayType()) { + if (RequireCompleteSizedType( + LParenLoc, Context.getBaseElementType(literalType), + diag::err_array_incomplete_or_sizeless_type, + SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd()))) + return ExprError(); + if (literalType->isVariableArrayType()) { + // C2x 6.7.9p4: An entity of variable length array type shall not be + // initialized except by an empty initializer. + // + // The C extension warnings are issued from ParseBraceInitializer() and + // do not need to be issued here. However, we continue to issue an error + // in the case there are initializers or we are compiling C++. We allow + // use of VLAs in C++, but it's not clear we want to allow {} to zero + // init a VLA in C++ in all cases (such as with non-trivial constructors). + // FIXME: should we allow this construct in C++ when it makes sense to do + // so? + std::optional NumInits; + if (const auto *ILE = dyn_cast(LiteralExpr)) + NumInits = ILE->getNumInits(); + if ((LangOpts.CPlusPlus || NumInits.value_or(0)) && + !tryToFixVariablyModifiedVarType(TInfo, literalType, LParenLoc, + diag::err_variable_object_no_init)) + return ExprError(); + } + } else if (!literalType->isDependentType() && + RequireCompleteType(LParenLoc, literalType, + diag::err_typecheck_decl_incomplete_type, + SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd()))) + return ExprError(); + + InitializedEntity Entity + = InitializedEntity::InitializeCompoundLiteralInit(TInfo); + InitializationKind Kind + = InitializationKind::CreateCStyleCast(LParenLoc, + SourceRange(LParenLoc, RParenLoc), + /*InitList=*/true); + InitializationSequence InitSeq(*this, Entity, Kind, LiteralExpr); + ExprResult Result = InitSeq.Perform(*this, Entity, Kind, LiteralExpr, + &literalType); + if (Result.isInvalid()) + return ExprError(); + LiteralExpr = Result.get(); + + bool isFileScope = !CurContext->isFunctionOrMethod(); + + // In C, compound literals are l-values for some reason. + // For GCC compatibility, in C++, file-scope array compound literals with + // constant initializers are also l-values, and compound literals are + // otherwise prvalues. + // + // (GCC also treats C++ list-initialized file-scope array prvalues with + // constant initializers as l-values, but that's non-conforming, so we don't + // follow it there.) + // + // FIXME: It would be better to handle the lvalue cases as materializing and + // lifetime-extending a temporary object, but our materialized temporaries + // representation only supports lifetime extension from a variable, not "out + // of thin air". + // FIXME: For C++, we might want to instead lifetime-extend only if a pointer + // is bound to the result of applying array-to-pointer decay to the compound + // literal. + // FIXME: GCC supports compound literals of reference type, which should + // obviously have a value kind derived from the kind of reference involved. + ExprValueKind VK = + (getLangOpts().CPlusPlus && !(isFileScope && literalType->isArrayType())) + ? VK_PRValue + : VK_LValue; + + if (isFileScope) + if (auto ILE = dyn_cast(LiteralExpr)) + for (unsigned i = 0, j = ILE->getNumInits(); i != j; i++) { + Expr *Init = ILE->getInit(i); + ILE->setInit(i, ConstantExpr::Create(Context, Init)); + } + + auto *E = new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType, + VK, LiteralExpr, isFileScope); + if (isFileScope) { + if (!LiteralExpr->isTypeDependent() && + !LiteralExpr->isValueDependent() && + !literalType->isDependentType()) // C99 6.5.2.5p3 + if (CheckForConstantInitializer(LiteralExpr, literalType)) + return ExprError(); + } else if (literalType.getAddressSpace() != LangAS::opencl_private && + literalType.getAddressSpace() != LangAS::Default) { + // Embedded-C extensions to C99 6.5.2.5: + // "If the compound literal occurs inside the body of a function, the + // type name shall not be qualified by an address-space qualifier." + Diag(LParenLoc, diag::err_compound_literal_with_address_space) + << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd()); + return ExprError(); + } + + if (!isFileScope && !getLangOpts().CPlusPlus) { + // Compound literals that have automatic storage duration are destroyed at + // the end of the scope in C; in C++, they're just temporaries. + + // Emit diagnostics if it is or contains a C union type that is non-trivial + // to destruct. + if (E->getType().hasNonTrivialToPrimitiveDestructCUnion()) + checkNonTrivialCUnion(E->getType(), E->getExprLoc(), + NTCUC_CompoundLiteral, NTCUK_Destruct); + + // Diagnose jumps that enter or exit the lifetime of the compound literal. + if (literalType.isDestructedType()) { + Cleanup.setExprNeedsCleanups(true); + ExprCleanupObjects.push_back(E); + getCurFunction()->setHasBranchProtectedScope(); + } + } + + if (E->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() || + E->getType().hasNonTrivialToPrimitiveCopyCUnion()) + checkNonTrivialCUnionInInitializer(E->getInitializer(), + E->getInitializer()->getExprLoc()); + + return MaybeBindToTemporary(E); + } + + ExprResult + Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList, + SourceLocation RBraceLoc) { + // Only produce each kind of designated initialization diagnostic once. + SourceLocation FirstDesignator; + bool DiagnosedArrayDesignator = false; + bool DiagnosedNestedDesignator = false; + bool DiagnosedMixedDesignator = false; + + // Check that any designated initializers are syntactically valid in the + // current language mode. + for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) { + if (auto *DIE = dyn_cast(InitArgList[I])) { + if (FirstDesignator.isInvalid()) + FirstDesignator = DIE->getBeginLoc(); + + if (!getLangOpts().CPlusPlus) + break; + + if (!DiagnosedNestedDesignator && DIE->size() > 1) { + DiagnosedNestedDesignator = true; + Diag(DIE->getBeginLoc(), diag::ext_designated_init_nested) + << DIE->getDesignatorsSourceRange(); + } + + for (auto &Desig : DIE->designators()) { + if (!Desig.isFieldDesignator() && !DiagnosedArrayDesignator) { + DiagnosedArrayDesignator = true; + Diag(Desig.getBeginLoc(), diag::ext_designated_init_array) + << Desig.getSourceRange(); + } + } + + if (!DiagnosedMixedDesignator && + !isa(InitArgList[0])) { + DiagnosedMixedDesignator = true; + Diag(DIE->getBeginLoc(), diag::ext_designated_init_mixed) + << DIE->getSourceRange(); + Diag(InitArgList[0]->getBeginLoc(), diag::note_designated_init_mixed) + << InitArgList[0]->getSourceRange(); + } + } else if (getLangOpts().CPlusPlus && !DiagnosedMixedDesignator && + isa(InitArgList[0])) { + DiagnosedMixedDesignator = true; + auto *DIE = cast(InitArgList[0]); + Diag(DIE->getBeginLoc(), diag::ext_designated_init_mixed) + << DIE->getSourceRange(); + Diag(InitArgList[I]->getBeginLoc(), diag::note_designated_init_mixed) + << InitArgList[I]->getSourceRange(); + } + } + + if (FirstDesignator.isValid()) { + // Only diagnose designated initiaization as a C++20 extension if we didn't + // already diagnose use of (non-C++20) C99 designator syntax. + if (getLangOpts().CPlusPlus && !DiagnosedArrayDesignator && + !DiagnosedNestedDesignator && !DiagnosedMixedDesignator) { + Diag(FirstDesignator, getLangOpts().CPlusPlus20 + ? diag::warn_cxx17_compat_designated_init + : diag::ext_cxx_designated_init); + } else if (!getLangOpts().CPlusPlus && !getLangOpts().C99) { + Diag(FirstDesignator, diag::ext_designated_init); + } + } + + return BuildInitList(LBraceLoc, InitArgList, RBraceLoc); + } + + ExprResult + Sema::BuildInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList, + SourceLocation RBraceLoc) { + // Semantic analysis for initializers is done by ActOnDeclarator() and + // CheckInitializer() - it requires knowledge of the object being initialized. + + // Immediately handle non-overload placeholders. Overloads can be + // resolved contextually, but everything else here can't. + for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) { + if (InitArgList[I]->getType()->isNonOverloadPlaceholderType()) { + ExprResult result = CheckPlaceholderExpr(InitArgList[I]); + + // Ignore failures; dropping the entire initializer list because + // of one failure would be terrible for indexing/etc. + if (result.isInvalid()) continue; + + InitArgList[I] = result.get(); + } + } + + InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitArgList, + RBraceLoc); + E->setType(Context.VoidTy); // FIXME: just a place holder for now. + return E; + } + + /// Do an explicit extend of the given block pointer if we're in ARC. + void Sema::maybeExtendBlockObject(ExprResult &E) { + assert(E.get()->getType()->isBlockPointerType()); + assert(E.get()->isPRValue()); + + // Only do this in an r-value context. + if (!getLangOpts().ObjCAutoRefCount) return; + + E = ImplicitCastExpr::Create( + Context, E.get()->getType(), CK_ARCExtendBlockObject, E.get(), + /*base path*/ nullptr, VK_PRValue, FPOptionsOverride()); + Cleanup.setExprNeedsCleanups(true); + } + + /// Prepare a conversion of the given expression to an ObjC object + /// pointer type. + CastKind Sema::PrepareCastToObjCObjectPointer(ExprResult &E) { + QualType type = E.get()->getType(); + if (type->isObjCObjectPointerType()) { + return CK_BitCast; + } else if (type->isBlockPointerType()) { + maybeExtendBlockObject(E); + return CK_BlockPointerToObjCPointerCast; + } else { + assert(type->isPointerType()); + return CK_CPointerToObjCPointerCast; + } + } + + /// Prepares for a scalar cast, performing all the necessary stages + /// except the final cast and returning the kind required. + CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) { + // Both Src and Dest are scalar types, i.e. arithmetic or pointer. + // Also, callers should have filtered out the invalid cases with + // pointers. Everything else should be possible. + + QualType SrcTy = Src.get()->getType(); + if (Context.hasSameUnqualifiedType(SrcTy, DestTy)) + return CK_NoOp; + + switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) { + case Type::STK_MemberPointer: + llvm_unreachable("member pointer type in C"); + + case Type::STK_CPointer: + case Type::STK_BlockPointer: + case Type::STK_ObjCObjectPointer: + switch (DestTy->getScalarTypeKind()) { + case Type::STK_CPointer: { + LangAS SrcAS = SrcTy->getPointeeType().getAddressSpace(); + LangAS DestAS = DestTy->getPointeeType().getAddressSpace(); + if (SrcAS != DestAS) + return CK_AddressSpaceConversion; + if (Context.hasCvrSimilarType(SrcTy, DestTy)) + return CK_NoOp; + return CK_BitCast; + } + case Type::STK_BlockPointer: + return (SrcKind == Type::STK_BlockPointer + ? CK_BitCast : CK_AnyPointerToBlockPointerCast); + case Type::STK_ObjCObjectPointer: + if (SrcKind == Type::STK_ObjCObjectPointer) + return CK_BitCast; + if (SrcKind == Type::STK_CPointer) + return CK_CPointerToObjCPointerCast; + maybeExtendBlockObject(Src); + return CK_BlockPointerToObjCPointerCast; + case Type::STK_Bool: + return CK_PointerToBoolean; + case Type::STK_Integral: + return CK_PointerToIntegral; + case Type::STK_Floating: + case Type::STK_FloatingComplex: + case Type::STK_IntegralComplex: + case Type::STK_MemberPointer: + case Type::STK_FixedPoint: + llvm_unreachable("illegal cast from pointer"); + } + llvm_unreachable("Should have returned before this"); + + case Type::STK_FixedPoint: + switch (DestTy->getScalarTypeKind()) { + case Type::STK_FixedPoint: + return CK_FixedPointCast; + case Type::STK_Bool: + return CK_FixedPointToBoolean; + case Type::STK_Integral: + return CK_FixedPointToIntegral; + case Type::STK_Floating: + return CK_FixedPointToFloating; + case Type::STK_IntegralComplex: + case Type::STK_FloatingComplex: + Diag(Src.get()->getExprLoc(), + diag::err_unimplemented_conversion_with_fixed_point_type) + << DestTy; + return CK_IntegralCast; + case Type::STK_CPointer: + case Type::STK_ObjCObjectPointer: + case Type::STK_BlockPointer: + case Type::STK_MemberPointer: + llvm_unreachable("illegal cast to pointer type"); + } + llvm_unreachable("Should have returned before this"); + + case Type::STK_Bool: // casting from bool is like casting from an integer + case Type::STK_Integral: + switch (DestTy->getScalarTypeKind()) { + case Type::STK_CPointer: + case Type::STK_ObjCObjectPointer: + case Type::STK_BlockPointer: + if (Src.get()->isNullPointerConstant(Context, + Expr::NPC_ValueDependentIsNull)) + return CK_NullToPointer; + return CK_IntegralToPointer; + case Type::STK_Bool: + return CK_IntegralToBoolean; + case Type::STK_Integral: + return CK_IntegralCast; + case Type::STK_Floating: + return CK_IntegralToFloating; + case Type::STK_IntegralComplex: + Src = ImpCastExprToType(Src.get(), + DestTy->castAs()->getElementType(), + CK_IntegralCast); + return CK_IntegralRealToComplex; + case Type::STK_FloatingComplex: + Src = ImpCastExprToType(Src.get(), + DestTy->castAs()->getElementType(), + CK_IntegralToFloating); + return CK_FloatingRealToComplex; + case Type::STK_MemberPointer: + llvm_unreachable("member pointer type in C"); + case Type::STK_FixedPoint: + return CK_IntegralToFixedPoint; + } + llvm_unreachable("Should have returned before this"); + + case Type::STK_Floating: + switch (DestTy->getScalarTypeKind()) { + case Type::STK_Floating: + return CK_FloatingCast; + case Type::STK_Bool: + return CK_FloatingToBoolean; + case Type::STK_Integral: + return CK_FloatingToIntegral; + case Type::STK_FloatingComplex: + Src = ImpCastExprToType(Src.get(), + DestTy->castAs()->getElementType(), + CK_FloatingCast); + return CK_FloatingRealToComplex; + case Type::STK_IntegralComplex: + Src = ImpCastExprToType(Src.get(), + DestTy->castAs()->getElementType(), + CK_FloatingToIntegral); + return CK_IntegralRealToComplex; + case Type::STK_CPointer: + case Type::STK_ObjCObjectPointer: + case Type::STK_BlockPointer: + llvm_unreachable("valid float->pointer cast?"); + case Type::STK_MemberPointer: + llvm_unreachable("member pointer type in C"); + case Type::STK_FixedPoint: + return CK_FloatingToFixedPoint; + } + llvm_unreachable("Should have returned before this"); + + case Type::STK_FloatingComplex: + switch (DestTy->getScalarTypeKind()) { + case Type::STK_FloatingComplex: + return CK_FloatingComplexCast; + case Type::STK_IntegralComplex: + return CK_FloatingComplexToIntegralComplex; + case Type::STK_Floating: { + QualType ET = SrcTy->castAs()->getElementType(); + if (Context.hasSameType(ET, DestTy)) + return CK_FloatingComplexToReal; + Src = ImpCastExprToType(Src.get(), ET, CK_FloatingComplexToReal); + return CK_FloatingCast; + } + case Type::STK_Bool: + return CK_FloatingComplexToBoolean; + case Type::STK_Integral: + Src = ImpCastExprToType(Src.get(), + SrcTy->castAs()->getElementType(), + CK_FloatingComplexToReal); + return CK_FloatingToIntegral; + case Type::STK_CPointer: + case Type::STK_ObjCObjectPointer: + case Type::STK_BlockPointer: + llvm_unreachable("valid complex float->pointer cast?"); + case Type::STK_MemberPointer: + llvm_unreachable("member pointer type in C"); + case Type::STK_FixedPoint: + Diag(Src.get()->getExprLoc(), + diag::err_unimplemented_conversion_with_fixed_point_type) + << SrcTy; + return CK_IntegralCast; + } + llvm_unreachable("Should have returned before this"); + + case Type::STK_IntegralComplex: + switch (DestTy->getScalarTypeKind()) { + case Type::STK_FloatingComplex: + return CK_IntegralComplexToFloatingComplex; + case Type::STK_IntegralComplex: + return CK_IntegralComplexCast; + case Type::STK_Integral: { + QualType ET = SrcTy->castAs()->getElementType(); + if (Context.hasSameType(ET, DestTy)) + return CK_IntegralComplexToReal; + Src = ImpCastExprToType(Src.get(), ET, CK_IntegralComplexToReal); + return CK_IntegralCast; + } + case Type::STK_Bool: + return CK_IntegralComplexToBoolean; + case Type::STK_Floating: + Src = ImpCastExprToType(Src.get(), + SrcTy->castAs()->getElementType(), + CK_IntegralComplexToReal); + return CK_IntegralToFloating; + case Type::STK_CPointer: + case Type::STK_ObjCObjectPointer: + case Type::STK_BlockPointer: + llvm_unreachable("valid complex int->pointer cast?"); + case Type::STK_MemberPointer: + llvm_unreachable("member pointer type in C"); + case Type::STK_FixedPoint: + Diag(Src.get()->getExprLoc(), + diag::err_unimplemented_conversion_with_fixed_point_type) + << SrcTy; + return CK_IntegralCast; + } + llvm_unreachable("Should have returned before this"); + } + + llvm_unreachable("Unhandled scalar cast"); + } + + static bool breakDownVectorType(QualType type, uint64_t &len, + QualType &eltType) { + // Vectors are simple. + if (const VectorType *vecType = type->getAs()) { + len = vecType->getNumElements(); + eltType = vecType->getElementType(); + assert(eltType->isScalarType()); + return true; + } + + // We allow lax conversion to and from non-vector types, but only if + // they're real types (i.e. non-complex, non-pointer scalar types). + if (!type->isRealType()) return false; + + len = 1; + eltType = type; + return true; + } + + /// Are the two types SVE-bitcast-compatible types? I.e. is bitcasting from the + /// first SVE type (e.g. an SVE VLAT) to the second type (e.g. an SVE VLST) + /// allowed? + /// + /// This will also return false if the two given types do not make sense from + /// the perspective of SVE bitcasts. + bool Sema::isValidSveBitcast(QualType srcTy, QualType destTy) { + assert(srcTy->isVectorType() || destTy->isVectorType()); + + auto ValidScalableConversion = [](QualType FirstType, QualType SecondType) { + if (!FirstType->isSVESizelessBuiltinType()) + return false; + + const auto *VecTy = SecondType->getAs(); + return VecTy && + VecTy->getVectorKind() == VectorType::SveFixedLengthDataVector; + }; + + return ValidScalableConversion(srcTy, destTy) || + ValidScalableConversion(destTy, srcTy); + } + + /// Are the two types RVV-bitcast-compatible types? I.e. is bitcasting from the + /// first RVV type (e.g. an RVV scalable type) to the second type (e.g. an RVV + /// VLS type) allowed? + /// + /// This will also return false if the two given types do not make sense from + /// the perspective of RVV bitcasts. + bool Sema::isValidRVVBitcast(QualType srcTy, QualType destTy) { + assert(srcTy->isVectorType() || destTy->isVectorType()); + + auto ValidScalableConversion = [](QualType FirstType, QualType SecondType) { + if (!FirstType->isRVVSizelessBuiltinType()) + return false; + + const auto *VecTy = SecondType->getAs(); + return VecTy && + VecTy->getVectorKind() == VectorType::RVVFixedLengthDataVector; + }; + + return ValidScalableConversion(srcTy, destTy) || + ValidScalableConversion(destTy, srcTy); + } + + /// Are the two types matrix types and do they have the same dimensions i.e. + /// do they have the same number of rows and the same number of columns? + bool Sema::areMatrixTypesOfTheSameDimension(QualType srcTy, QualType destTy) { + if (!destTy->isMatrixType() || !srcTy->isMatrixType()) + return false; + + const ConstantMatrixType *matSrcType = srcTy->getAs(); + const ConstantMatrixType *matDestType = destTy->getAs(); + + return matSrcType->getNumRows() == matDestType->getNumRows() && + matSrcType->getNumColumns() == matDestType->getNumColumns(); + } + + bool Sema::areVectorTypesSameSize(QualType SrcTy, QualType DestTy) { + assert(DestTy->isVectorType() || SrcTy->isVectorType()); + + uint64_t SrcLen, DestLen; + QualType SrcEltTy, DestEltTy; + if (!breakDownVectorType(SrcTy, SrcLen, SrcEltTy)) + return false; + if (!breakDownVectorType(DestTy, DestLen, DestEltTy)) + return false; + + // ASTContext::getTypeSize will return the size rounded up to a + // power of 2, so instead of using that, we need to use the raw + // element size multiplied by the element count. + uint64_t SrcEltSize = Context.getTypeSize(SrcEltTy); + uint64_t DestEltSize = Context.getTypeSize(DestEltTy); + + return (SrcLen * SrcEltSize == DestLen * DestEltSize); + } + + // This returns true if at least one of the types is an altivec vector. + bool Sema::anyAltivecTypes(QualType SrcTy, QualType DestTy) { + assert((DestTy->isVectorType() || SrcTy->isVectorType()) && + "expected at least one type to be a vector here"); + + bool IsSrcTyAltivec = + SrcTy->isVectorType() && ((SrcTy->castAs()->getVectorKind() == + VectorType::AltiVecVector) || + (SrcTy->castAs()->getVectorKind() == + VectorType::AltiVecBool) || + (SrcTy->castAs()->getVectorKind() == + VectorType::AltiVecPixel)); + + bool IsDestTyAltivec = DestTy->isVectorType() && + ((DestTy->castAs()->getVectorKind() == + VectorType::AltiVecVector) || + (DestTy->castAs()->getVectorKind() == + VectorType::AltiVecBool) || + (DestTy->castAs()->getVectorKind() == + VectorType::AltiVecPixel)); + + return (IsSrcTyAltivec || IsDestTyAltivec); + } + + /// Are the two types lax-compatible vector types? That is, given + /// that one of them is a vector, do they have equal storage sizes, + /// where the storage size is the number of elements times the element + /// size? + /// + /// This will also return false if either of the types is neither a + /// vector nor a real type. + bool Sema::areLaxCompatibleVectorTypes(QualType srcTy, QualType destTy) { + assert(destTy->isVectorType() || srcTy->isVectorType()); + + // Disallow lax conversions between scalars and ExtVectors (these + // conversions are allowed for other vector types because common headers + // depend on them). Most scalar OP ExtVector cases are handled by the + // splat path anyway, which does what we want (convert, not bitcast). + // What this rules out for ExtVectors is crazy things like char4*float. + if (srcTy->isScalarType() && destTy->isExtVectorType()) return false; + if (destTy->isScalarType() && srcTy->isExtVectorType()) return false; + + return areVectorTypesSameSize(srcTy, destTy); + } + + /// Is this a legal conversion between two types, one of which is + /// known to be a vector type? + bool Sema::isLaxVectorConversion(QualType srcTy, QualType destTy) { + assert(destTy->isVectorType() || srcTy->isVectorType()); + + switch (Context.getLangOpts().getLaxVectorConversions()) { + case LangOptions::LaxVectorConversionKind::None: + return false; + + case LangOptions::LaxVectorConversionKind::Integer: + if (!srcTy->isIntegralOrEnumerationType()) { + auto *Vec = srcTy->getAs(); + if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType()) + return false; + } + if (!destTy->isIntegralOrEnumerationType()) { + auto *Vec = destTy->getAs(); + if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType()) + return false; + } + // OK, integer (vector) -> integer (vector) bitcast. + break; + + case LangOptions::LaxVectorConversionKind::All: + break; + } + + return areLaxCompatibleVectorTypes(srcTy, destTy); + } + + bool Sema::CheckMatrixCast(SourceRange R, QualType DestTy, QualType SrcTy, + CastKind &Kind) { + if (SrcTy->isMatrixType() && DestTy->isMatrixType()) { + if (!areMatrixTypesOfTheSameDimension(SrcTy, DestTy)) { + return Diag(R.getBegin(), diag::err_invalid_conversion_between_matrixes) + << DestTy << SrcTy << R; + } + } else if (SrcTy->isMatrixType()) { + return Diag(R.getBegin(), + diag::err_invalid_conversion_between_matrix_and_type) + << SrcTy << DestTy << R; + } else if (DestTy->isMatrixType()) { + return Diag(R.getBegin(), + diag::err_invalid_conversion_between_matrix_and_type) + << DestTy << SrcTy << R; + } + + Kind = CK_MatrixCast; + return false; + } + + bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty, + CastKind &Kind) { + assert(VectorTy->isVectorType() && "Not a vector type!"); + + if (Ty->isVectorType() || Ty->isIntegralType(Context)) { + if (!areLaxCompatibleVectorTypes(Ty, VectorTy)) + return Diag(R.getBegin(), + Ty->isVectorType() ? + diag::err_invalid_conversion_between_vectors : + diag::err_invalid_conversion_between_vector_and_integer) + << VectorTy << Ty << R; + } else + return Diag(R.getBegin(), + diag::err_invalid_conversion_between_vector_and_scalar) + << VectorTy << Ty << R; + + Kind = CK_BitCast; + return false; + } + + ExprResult Sema::prepareVectorSplat(QualType VectorTy, Expr *SplattedExpr) { + QualType DestElemTy = VectorTy->castAs()->getElementType(); + + if (DestElemTy == SplattedExpr->getType()) + return SplattedExpr; + + assert(DestElemTy->isFloatingType() || + DestElemTy->isIntegralOrEnumerationType()); + + CastKind CK; + if (VectorTy->isExtVectorType() && SplattedExpr->getType()->isBooleanType()) { + // OpenCL requires that we convert `true` boolean expressions to -1, but + // only when splatting vectors. + if (DestElemTy->isFloatingType()) { + // To avoid having to have a CK_BooleanToSignedFloating cast kind, we cast + // in two steps: boolean to signed integral, then to floating. + ExprResult CastExprRes = ImpCastExprToType(SplattedExpr, Context.IntTy, + CK_BooleanToSignedIntegral); + SplattedExpr = CastExprRes.get(); + CK = CK_IntegralToFloating; + } else { + CK = CK_BooleanToSignedIntegral; + } + } else { + ExprResult CastExprRes = SplattedExpr; + CK = PrepareScalarCast(CastExprRes, DestElemTy); + if (CastExprRes.isInvalid()) + return ExprError(); + SplattedExpr = CastExprRes.get(); + } + return ImpCastExprToType(SplattedExpr, DestElemTy, CK); + } + + ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy, + Expr *CastExpr, CastKind &Kind) { + assert(DestTy->isExtVectorType() && "Not an extended vector type!"); + + QualType SrcTy = CastExpr->getType(); + + // If SrcTy is a VectorType, the total size must match to explicitly cast to + // an ExtVectorType. + // In OpenCL, casts between vectors of different types are not allowed. + // (See OpenCL 6.2). + if (SrcTy->isVectorType()) { + if (!areLaxCompatibleVectorTypes(SrcTy, DestTy) || + (getLangOpts().OpenCL && + !Context.hasSameUnqualifiedType(DestTy, SrcTy))) { + Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors) + << DestTy << SrcTy << R; + return ExprError(); + } + Kind = CK_BitCast; + return CastExpr; + } + + // All non-pointer scalars can be cast to ExtVector type. The appropriate + // conversion will take place first from scalar to elt type, and then + // splat from elt type to vector. + if (SrcTy->isPointerType()) + return Diag(R.getBegin(), + diag::err_invalid_conversion_between_vector_and_scalar) + << DestTy << SrcTy << R; + + Kind = CK_VectorSplat; + return prepareVectorSplat(DestTy, CastExpr); + } + + ExprResult + Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc, + Declarator &D, ParsedType &Ty, + SourceLocation RParenLoc, Expr *CastExpr) { + assert(!D.isInvalidType() && (CastExpr != nullptr) && + "ActOnCastExpr(): missing type or expr"); + + TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType()); + if (D.isInvalidType()) + return ExprError(); + + if (getLangOpts().CPlusPlus) { + // Check that there are no default arguments (C++ only). + CheckExtraCXXDefaultArguments(D); + } else { + // Make sure any TypoExprs have been dealt with. + ExprResult Res = CorrectDelayedTyposInExpr(CastExpr); + if (!Res.isUsable()) + return ExprError(); + CastExpr = Res.get(); + } + + checkUnusedDeclAttributes(D); + + QualType castType = castTInfo->getType(); + Ty = CreateParsedType(castType, castTInfo); + + bool isVectorLiteral = false; + + // Check for an altivec or OpenCL literal, + // i.e. all the elements are integer constants. + ParenExpr *PE = dyn_cast(CastExpr); + ParenListExpr *PLE = dyn_cast(CastExpr); + if ((getLangOpts().AltiVec || getLangOpts().ZVector || getLangOpts().OpenCL) + && castType->isVectorType() && (PE || PLE)) { + if (PLE && PLE->getNumExprs() == 0) { + Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer); + return ExprError(); + } + if (PE || PLE->getNumExprs() == 1) { + Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0)); + if (!E->isTypeDependent() && !E->getType()->isVectorType()) + isVectorLiteral = true; + } + else + isVectorLiteral = true; + } + + // If this is a vector initializer, '(' type ')' '(' init, ..., init ')' + // then handle it as such. + if (isVectorLiteral) + return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo); + + // If the Expr being casted is a ParenListExpr, handle it specially. + // This is not an AltiVec-style cast, so turn the ParenListExpr into a + // sequence of BinOp comma operators. + if (isa(CastExpr)) { + ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr); + if (Result.isInvalid()) return ExprError(); + CastExpr = Result.get(); + } + + if (getLangOpts().CPlusPlus && !castType->isVoidType()) + Diag(LParenLoc, diag::warn_old_style_cast) << CastExpr->getSourceRange(); + + CheckTollFreeBridgeCast(castType, CastExpr); + + CheckObjCBridgeRelatedCast(castType, CastExpr); + + DiscardMisalignedMemberAddress(castType.getTypePtr(), CastExpr); + + return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr); + } + + ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc, + SourceLocation RParenLoc, Expr *E, + TypeSourceInfo *TInfo) { + assert((isa(E) || isa(E)) && + "Expected paren or paren list expression"); + + Expr **exprs; + unsigned numExprs; + Expr *subExpr; + SourceLocation LiteralLParenLoc, LiteralRParenLoc; + if (ParenListExpr *PE = dyn_cast(E)) { + LiteralLParenLoc = PE->getLParenLoc(); + LiteralRParenLoc = PE->getRParenLoc(); + exprs = PE->getExprs(); + numExprs = PE->getNumExprs(); + } else { // isa by assertion at function entrance + LiteralLParenLoc = cast(E)->getLParen(); + LiteralRParenLoc = cast(E)->getRParen(); + subExpr = cast(E)->getSubExpr(); + exprs = &subExpr; + numExprs = 1; + } + + QualType Ty = TInfo->getType(); + assert(Ty->isVectorType() && "Expected vector type"); + + SmallVector initExprs; + const VectorType *VTy = Ty->castAs(); + unsigned numElems = VTy->getNumElements(); + + // '(...)' form of vector initialization in AltiVec: the number of + // initializers must be one or must match the size of the vector. + // If a single value is specified in the initializer then it will be + // replicated to all the components of the vector + if (CheckAltivecInitFromScalar(E->getSourceRange(), Ty, + VTy->getElementType())) + return ExprError(); + if (ShouldSplatAltivecScalarInCast(VTy)) { + // The number of initializers must be one or must match the size of the + // vector. If a single value is specified in the initializer then it will + // be replicated to all the components of the vector + if (numExprs == 1) { + QualType ElemTy = VTy->getElementType(); + ExprResult Literal = DefaultLvalueConversion(exprs[0]); + if (Literal.isInvalid()) + return ExprError(); + Literal = ImpCastExprToType(Literal.get(), ElemTy, + PrepareScalarCast(Literal, ElemTy)); + return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get()); + } + else if (numExprs < numElems) { + Diag(E->getExprLoc(), + diag::err_incorrect_number_of_vector_initializers); + return ExprError(); + } + else + initExprs.append(exprs, exprs + numExprs); + } + else { + // For OpenCL, when the number of initializers is a single value, + // it will be replicated to all components of the vector. + if (getLangOpts().OpenCL && + VTy->getVectorKind() == VectorType::GenericVector && + numExprs == 1) { + QualType ElemTy = VTy->getElementType(); + ExprResult Literal = DefaultLvalueConversion(exprs[0]); + if (Literal.isInvalid()) + return ExprError(); + Literal = ImpCastExprToType(Literal.get(), ElemTy, + PrepareScalarCast(Literal, ElemTy)); + return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get()); + } + + initExprs.append(exprs, exprs + numExprs); + } + // FIXME: This means that pretty-printing the final AST will produce curly + // braces instead of the original commas. + InitListExpr *initE = new (Context) InitListExpr(Context, LiteralLParenLoc, + initExprs, LiteralRParenLoc); + initE->setType(Ty); + return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE); + } + + /// This is not an AltiVec-style cast or or C++ direct-initialization, so turn + /// the ParenListExpr into a sequence of comma binary operators. + ExprResult + Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) { + ParenListExpr *E = dyn_cast(OrigExpr); + if (!E) + return OrigExpr; + + ExprResult Result(E->getExpr(0)); + + for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i) + Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(), + E->getExpr(i)); + + if (Result.isInvalid()) return ExprError(); + + return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get()); + } + + ExprResult Sema::ActOnParenListExpr(SourceLocation L, + SourceLocation R, + MultiExprArg Val) { + return ParenListExpr::Create(Context, L, Val, R); + } + + /// Emit a specialized diagnostic when one expression is a null pointer + /// constant and the other is not a pointer. Returns true if a diagnostic is + /// emitted. + bool Sema::DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr, + SourceLocation QuestionLoc) { + Expr *NullExpr = LHSExpr; + Expr *NonPointerExpr = RHSExpr; + Expr::NullPointerConstantKind NullKind = + NullExpr->isNullPointerConstant(Context, + Expr::NPC_ValueDependentIsNotNull); + + if (NullKind == Expr::NPCK_NotNull) { + NullExpr = RHSExpr; + NonPointerExpr = LHSExpr; + NullKind = + NullExpr->isNullPointerConstant(Context, + Expr::NPC_ValueDependentIsNotNull); + } + + if (NullKind == Expr::NPCK_NotNull) + return false; + + if (NullKind == Expr::NPCK_ZeroExpression) + return false; + + if (NullKind == Expr::NPCK_ZeroLiteral) { + // In this case, check to make sure that we got here from a "NULL" + // string in the source code. + NullExpr = NullExpr->IgnoreParenImpCasts(); + SourceLocation loc = NullExpr->getExprLoc(); + if (!findMacroSpelling(loc, "NULL")) + return false; + } + + int DiagType = (NullKind == Expr::NPCK_CXX11_nullptr); + Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null) + << NonPointerExpr->getType() << DiagType + << NonPointerExpr->getSourceRange(); + return true; + } + + /// Return false if the condition expression is valid, true otherwise. + static bool checkCondition(Sema &S, Expr *Cond, SourceLocation QuestionLoc) { + QualType CondTy = Cond->getType(); + + // OpenCL v1.1 s6.3.i says the condition cannot be a floating point type. + if (S.getLangOpts().OpenCL && CondTy->isFloatingType()) { + S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat) + << CondTy << Cond->getSourceRange(); + return true; + } + + // C99 6.5.15p2 + if (CondTy->isScalarType()) return false; + + S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_scalar) + << CondTy << Cond->getSourceRange(); + return true; + } + + /// Return false if the NullExpr can be promoted to PointerTy, + /// true otherwise. + static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr, + QualType PointerTy) { + if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) || + !NullExpr.get()->isNullPointerConstant(S.Context, + Expr::NPC_ValueDependentIsNull)) + return true; + + NullExpr = S.ImpCastExprToType(NullExpr.get(), PointerTy, CK_NullToPointer); + return false; + } + + /// Checks compatibility between two pointers and return the resulting + /// type. + static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS, + ExprResult &RHS, + SourceLocation Loc) { + QualType LHSTy = LHS.get()->getType(); + QualType RHSTy = RHS.get()->getType(); + + if (S.Context.hasSameType(LHSTy, RHSTy)) { + // Two identical pointers types are always compatible. + return S.Context.getCommonSugaredType(LHSTy, RHSTy); + } + + QualType lhptee, rhptee; + + // Get the pointee types. + bool IsBlockPointer = false; + if (const BlockPointerType *LHSBTy = LHSTy->getAs()) { + lhptee = LHSBTy->getPointeeType(); + rhptee = RHSTy->castAs()->getPointeeType(); + IsBlockPointer = true; + } else { + lhptee = LHSTy->castAs()->getPointeeType(); + rhptee = RHSTy->castAs()->getPointeeType(); + } + + // C99 6.5.15p6: If both operands are pointers to compatible types or to + // differently qualified versions of compatible types, the result type is + // a pointer to an appropriately qualified version of the composite + // type. + + // Only CVR-qualifiers exist in the standard, and the differently-qualified + // clause doesn't make sense for our extensions. E.g. address space 2 should + // be incompatible with address space 3: they may live on different devices or + // anything. + Qualifiers lhQual = lhptee.getQualifiers(); + Qualifiers rhQual = rhptee.getQualifiers(); + + LangAS ResultAddrSpace = LangAS::Default; + LangAS LAddrSpace = lhQual.getAddressSpace(); + LangAS RAddrSpace = rhQual.getAddressSpace(); + + // OpenCL v1.1 s6.5 - Conversion between pointers to distinct address + // spaces is disallowed. + if (lhQual.isAddressSpaceSupersetOf(rhQual)) + ResultAddrSpace = LAddrSpace; + else if (rhQual.isAddressSpaceSupersetOf(lhQual)) + ResultAddrSpace = RAddrSpace; + else { + S.Diag(Loc, diag::err_typecheck_op_on_nonoverlapping_address_space_pointers) + << LHSTy << RHSTy << 2 << LHS.get()->getSourceRange() + << RHS.get()->getSourceRange(); + return QualType(); + } + + unsigned MergedCVRQual = lhQual.getCVRQualifiers() | rhQual.getCVRQualifiers(); + auto LHSCastKind = CK_BitCast, RHSCastKind = CK_BitCast; + lhQual.removeCVRQualifiers(); + rhQual.removeCVRQualifiers(); + + // OpenCL v2.0 specification doesn't extend compatibility of type qualifiers + // (C99 6.7.3) for address spaces. We assume that the check should behave in + // the same manner as it's defined for CVR qualifiers, so for OpenCL two + // qual types are compatible iff + // * corresponded types are compatible + // * CVR qualifiers are equal + // * address spaces are equal + // Thus for conditional operator we merge CVR and address space unqualified + // pointees and if there is a composite type we return a pointer to it with + // merged qualifiers. + LHSCastKind = + LAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion; + RHSCastKind = + RAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion; + lhQual.removeAddressSpace(); + rhQual.removeAddressSpace(); + + lhptee = S.Context.getQualifiedType(lhptee.getUnqualifiedType(), lhQual); + rhptee = S.Context.getQualifiedType(rhptee.getUnqualifiedType(), rhQual); + + QualType CompositeTy = S.Context.mergeTypes( + lhptee, rhptee, /*OfBlockPointer=*/false, /*Unqualified=*/false, + /*BlockReturnType=*/false, /*IsConditionalOperator=*/true); + + if (CompositeTy.isNull()) { + // In this situation, we assume void* type. No especially good + // reason, but this is what gcc does, and we do have to pick + // to get a consistent AST. + QualType incompatTy; + incompatTy = S.Context.getPointerType( + S.Context.getAddrSpaceQualType(S.Context.VoidTy, ResultAddrSpace)); + LHS = S.ImpCastExprToType(LHS.get(), incompatTy, LHSCastKind); + RHS = S.ImpCastExprToType(RHS.get(), incompatTy, RHSCastKind); + + // FIXME: For OpenCL the warning emission and cast to void* leaves a room + // for casts between types with incompatible address space qualifiers. + // For the following code the compiler produces casts between global and + // local address spaces of the corresponded innermost pointees: + // local int *global *a; + // global int *global *b; + // a = (0 ? a : b); // see C99 6.5.16.1.p1. + S.Diag(Loc, diag::ext_typecheck_cond_incompatible_pointers) + << LHSTy << RHSTy << LHS.get()->getSourceRange() + << RHS.get()->getSourceRange(); + + return incompatTy; + } + + // The pointer types are compatible. + // In case of OpenCL ResultTy should have the address space qualifier + // which is a superset of address spaces of both the 2nd and the 3rd + // operands of the conditional operator. + QualType ResultTy = [&, ResultAddrSpace]() { + if (S.getLangOpts().OpenCL) { + Qualifiers CompositeQuals = CompositeTy.getQualifiers(); + CompositeQuals.setAddressSpace(ResultAddrSpace); + return S.Context + .getQualifiedType(CompositeTy.getUnqualifiedType(), CompositeQuals) + .withCVRQualifiers(MergedCVRQual); + } + return CompositeTy.withCVRQualifiers(MergedCVRQual); + }(); + if (IsBlockPointer) + ResultTy = S.Context.getBlockPointerType(ResultTy); + else + ResultTy = S.Context.getPointerType(ResultTy); + + LHS = S.ImpCastExprToType(LHS.get(), ResultTy, LHSCastKind); + RHS = S.ImpCastExprToType(RHS.get(), ResultTy, RHSCastKind); + return ResultTy; + } + + /// Return the resulting type when the operands are both block pointers. + static QualType checkConditionalBlockPointerCompatibility(Sema &S, + ExprResult &LHS, + ExprResult &RHS, + SourceLocation Loc) { + QualType LHSTy = LHS.get()->getType(); + QualType RHSTy = RHS.get()->getType(); + + if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) { + if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) { + QualType destType = S.Context.getPointerType(S.Context.VoidTy); + LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast); + RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast); + return destType; + } + S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands) + << LHSTy << RHSTy << LHS.get()->getSourceRange() + << RHS.get()->getSourceRange(); + return QualType(); + } + + // We have 2 block pointer types. + return checkConditionalPointerCompatibility(S, LHS, RHS, Loc); + } + + /// Return the resulting type when the operands are both pointers. + static QualType + checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS, + ExprResult &RHS, + SourceLocation Loc) { + // get the pointer types + QualType LHSTy = LHS.get()->getType(); + QualType RHSTy = RHS.get()->getType(); + + // get the "pointed to" types + QualType lhptee = LHSTy->castAs()->getPointeeType(); + QualType rhptee = RHSTy->castAs()->getPointeeType(); + + // ignore qualifiers on void (C99 6.5.15p3, clause 6) + if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) { + // Figure out necessary qualifiers (C99 6.5.15p6) + QualType destPointee + = S.Context.getQualifiedType(lhptee, rhptee.getQualifiers()); + QualType destType = S.Context.getPointerType(destPointee); + // Add qualifiers if necessary. + LHS = S.ImpCastExprToType(LHS.get(), destType, CK_NoOp); + // Promote to void*. + RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast); + return destType; + } + if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) { + QualType destPointee + = S.Context.getQualifiedType(rhptee, lhptee.getQualifiers()); + QualType destType = S.Context.getPointerType(destPointee); + // Add qualifiers if necessary. + RHS = S.ImpCastExprToType(RHS.get(), destType, CK_NoOp); + // Promote to void*. + LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast); + return destType; + } + + return checkConditionalPointerCompatibility(S, LHS, RHS, Loc); + } + + /// Return false if the first expression is not an integer and the second + /// expression is not a pointer, true otherwise. + static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int, + Expr* PointerExpr, SourceLocation Loc, + bool IsIntFirstExpr) { + if (!PointerExpr->getType()->isPointerType() || + !Int.get()->getType()->isIntegerType()) + return false; + + Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr; + Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get(); + + S.Diag(Loc, diag::ext_typecheck_cond_pointer_integer_mismatch) + << Expr1->getType() << Expr2->getType() + << Expr1->getSourceRange() << Expr2->getSourceRange(); + Int = S.ImpCastExprToType(Int.get(), PointerExpr->getType(), + CK_IntegralToPointer); + return true; + } + + /// Simple conversion between integer and floating point types. + /// + /// Used when handling the OpenCL conditional operator where the + /// condition is a vector while the other operands are scalar. + /// + /// OpenCL v1.1 s6.3.i and s6.11.6 together require that the scalar + /// types are either integer or floating type. Between the two + /// operands, the type with the higher rank is defined as the "result + /// type". The other operand needs to be promoted to the same type. No + /// other type promotion is allowed. We cannot use + /// UsualArithmeticConversions() for this purpose, since it always + /// promotes promotable types. + static QualType OpenCLArithmeticConversions(Sema &S, ExprResult &LHS, + ExprResult &RHS, + SourceLocation QuestionLoc) { + LHS = S.DefaultFunctionArrayLvalueConversion(LHS.get()); + if (LHS.isInvalid()) + return QualType(); + RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get()); + if (RHS.isInvalid()) + return QualType(); + + // For conversion purposes, we ignore any qualifiers. + // For example, "const float" and "float" are equivalent. + QualType LHSType = + S.Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType(); + QualType RHSType = + S.Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType(); + + if (!LHSType->isIntegerType() && !LHSType->isRealFloatingType()) { + S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float) + << LHSType << LHS.get()->getSourceRange(); + return QualType(); + } + + if (!RHSType->isIntegerType() && !RHSType->isRealFloatingType()) { + S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float) + << RHSType << RHS.get()->getSourceRange(); + return QualType(); + } + + // If both types are identical, no conversion is needed. + if (LHSType == RHSType) + return LHSType; + + // Now handle "real" floating types (i.e. float, double, long double). + if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType()) + return handleFloatConversion(S, LHS, RHS, LHSType, RHSType, + /*IsCompAssign = */ false); + + // Finally, we have two differing integer types. + return handleIntegerConversion + (S, LHS, RHS, LHSType, RHSType, /*IsCompAssign = */ false); + } + + /// Convert scalar operands to a vector that matches the + /// condition in length. + /// + /// Used when handling the OpenCL conditional operator where the + /// condition is a vector while the other operands are scalar. + /// + /// We first compute the "result type" for the scalar operands + /// according to OpenCL v1.1 s6.3.i. Both operands are then converted + /// into a vector of that type where the length matches the condition + /// vector type. s6.11.6 requires that the element types of the result + /// and the condition must have the same number of bits. + static QualType + OpenCLConvertScalarsToVectors(Sema &S, ExprResult &LHS, ExprResult &RHS, + QualType CondTy, SourceLocation QuestionLoc) { + QualType ResTy = OpenCLArithmeticConversions(S, LHS, RHS, QuestionLoc); + if (ResTy.isNull()) return QualType(); + + const VectorType *CV = CondTy->getAs(); + assert(CV); + + // Determine the vector result type + unsigned NumElements = CV->getNumElements(); + QualType VectorTy = S.Context.getExtVectorType(ResTy, NumElements); + + // Ensure that all types have the same number of bits + if (S.Context.getTypeSize(CV->getElementType()) + != S.Context.getTypeSize(ResTy)) { + // Since VectorTy is created internally, it does not pretty print + // with an OpenCL name. Instead, we just print a description. + std::string EleTyName = ResTy.getUnqualifiedType().getAsString(); + SmallString<64> Str; + llvm::raw_svector_ostream OS(Str); + OS << "(vector of " << NumElements << " '" << EleTyName << "' values)"; + S.Diag(QuestionLoc, diag::err_conditional_vector_element_size) + << CondTy << OS.str(); + return QualType(); + } + + // Convert operands to the vector result type + LHS = S.ImpCastExprToType(LHS.get(), VectorTy, CK_VectorSplat); + RHS = S.ImpCastExprToType(RHS.get(), VectorTy, CK_VectorSplat); + + return VectorTy; + } + + /// Return false if this is a valid OpenCL condition vector + static bool checkOpenCLConditionVector(Sema &S, Expr *Cond, + SourceLocation QuestionLoc) { + // OpenCL v1.1 s6.11.6 says the elements of the vector must be of + // integral type. + const VectorType *CondTy = Cond->getType()->getAs(); + assert(CondTy); + QualType EleTy = CondTy->getElementType(); + if (EleTy->isIntegerType()) return false; + + S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat) + << Cond->getType() << Cond->getSourceRange(); + return true; + } + + /// Return false if the vector condition type and the vector + /// result type are compatible. + /// + /// OpenCL v1.1 s6.11.6 requires that both vector types have the same + /// number of elements, and their element types have the same number + /// of bits. + static bool checkVectorResult(Sema &S, QualType CondTy, QualType VecResTy, + SourceLocation QuestionLoc) { + const VectorType *CV = CondTy->getAs(); + const VectorType *RV = VecResTy->getAs(); + assert(CV && RV); + + if (CV->getNumElements() != RV->getNumElements()) { + S.Diag(QuestionLoc, diag::err_conditional_vector_size) + << CondTy << VecResTy; + return true; + } + + QualType CVE = CV->getElementType(); + QualType RVE = RV->getElementType(); + + if (S.Context.getTypeSize(CVE) != S.Context.getTypeSize(RVE)) { + S.Diag(QuestionLoc, diag::err_conditional_vector_element_size) + << CondTy << VecResTy; + return true; + } + + return false; + } + + /// Return the resulting type for the conditional operator in + /// OpenCL (aka "ternary selection operator", OpenCL v1.1 + /// s6.3.i) when the condition is a vector type. + static QualType + OpenCLCheckVectorConditional(Sema &S, ExprResult &Cond, + ExprResult &LHS, ExprResult &RHS, + SourceLocation QuestionLoc) { + Cond = S.DefaultFunctionArrayLvalueConversion(Cond.get()); + if (Cond.isInvalid()) + return QualType(); + QualType CondTy = Cond.get()->getType(); + + if (checkOpenCLConditionVector(S, Cond.get(), QuestionLoc)) + return QualType(); + + // If either operand is a vector then find the vector type of the + // result as specified in OpenCL v1.1 s6.3.i. + if (LHS.get()->getType()->isVectorType() || + RHS.get()->getType()->isVectorType()) { + bool IsBoolVecLang = + !S.getLangOpts().OpenCL && !S.getLangOpts().OpenCLCPlusPlus; + QualType VecResTy = + S.CheckVectorOperands(LHS, RHS, QuestionLoc, + /*isCompAssign*/ false, + /*AllowBothBool*/ true, + /*AllowBoolConversions*/ false, + /*AllowBooleanOperation*/ IsBoolVecLang, + /*ReportInvalid*/ true); + if (VecResTy.isNull()) + return QualType(); + // The result type must match the condition type as specified in + // OpenCL v1.1 s6.11.6. + if (checkVectorResult(S, CondTy, VecResTy, QuestionLoc)) + return QualType(); + return VecResTy; + } + + // Both operands are scalar. + return OpenCLConvertScalarsToVectors(S, LHS, RHS, CondTy, QuestionLoc); + } + + /// Return true if the Expr is block type + static bool checkBlockType(Sema &S, const Expr *E) { + if (const CallExpr *CE = dyn_cast(E)) { + QualType Ty = CE->getCallee()->getType(); + if (Ty->isBlockPointerType()) { + S.Diag(E->getExprLoc(), diag::err_opencl_ternary_with_block); + return true; + } + } + return false; + } + + /// Note that LHS is not null here, even if this is the gnu "x ?: y" extension. + /// In that case, LHS = cond. + /// C99 6.5.15 + QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS, + ExprResult &RHS, ExprValueKind &VK, + ExprObjectKind &OK, + SourceLocation QuestionLoc) { + + ExprResult LHSResult = CheckPlaceholderExpr(LHS.get()); + if (!LHSResult.isUsable()) return QualType(); + LHS = LHSResult; + + ExprResult RHSResult = CheckPlaceholderExpr(RHS.get()); + if (!RHSResult.isUsable()) return QualType(); + RHS = RHSResult; + + // C++ is sufficiently different to merit its own checker. + if (getLangOpts().CPlusPlus) + return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc); + + VK = VK_PRValue; + OK = OK_Ordinary; + + if (Context.isDependenceAllowed() && + (Cond.get()->isTypeDependent() || LHS.get()->isTypeDependent() || + RHS.get()->isTypeDependent())) { + assert(!getLangOpts().CPlusPlus); + assert((Cond.get()->containsErrors() || LHS.get()->containsErrors() || + RHS.get()->containsErrors()) && + "should only occur in error-recovery path."); + return Context.DependentTy; + } + + // The OpenCL operator with a vector condition is sufficiently + // different to merit its own checker. + if ((getLangOpts().OpenCL && Cond.get()->getType()->isVectorType()) || + Cond.get()->getType()->isExtVectorType()) + return OpenCLCheckVectorConditional(*this, Cond, LHS, RHS, QuestionLoc); + + // First, check the condition. + Cond = UsualUnaryConversions(Cond.get()); + if (Cond.isInvalid()) + return QualType(); + if (checkCondition(*this, Cond.get(), QuestionLoc)) + return QualType(); + + // Now check the two expressions. + if (LHS.get()->getType()->isVectorType() || + RHS.get()->getType()->isVectorType()) + return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/ false, + /*AllowBothBool*/ true, + /*AllowBoolConversions*/ false, + /*AllowBooleanOperation*/ false, + /*ReportInvalid*/ true); + + QualType ResTy = + UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional); + if (LHS.isInvalid() || RHS.isInvalid()) + return QualType(); + + // WebAssembly tables are not allowed as conditional LHS or RHS. + QualType LHSTy = LHS.get()->getType(); + QualType RHSTy = RHS.get()->getType(); + if (LHSTy->isWebAssemblyTableType() || RHSTy->isWebAssemblyTableType()) { + Diag(QuestionLoc, diag::err_wasm_table_conditional_expression) + << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); + return QualType(); + } + + // Diagnose attempts to convert between __ibm128, __float128 and long double + // where such conversions currently can't be handled. + if (unsupportedTypeConversion(*this, LHSTy, RHSTy)) { + Diag(QuestionLoc, + diag::err_typecheck_cond_incompatible_operands) << LHSTy << RHSTy + << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); + return QualType(); + } + + // OpenCL v2.0 s6.12.5 - Blocks cannot be used as expressions of the ternary + // selection operator (?:). + if (getLangOpts().OpenCL && + ((int)checkBlockType(*this, LHS.get()) | (int)checkBlockType(*this, RHS.get()))) { + return QualType(); + } + + // If both operands have arithmetic type, do the usual arithmetic conversions + // to find a common type: C99 6.5.15p3,5. + if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) { + // Disallow invalid arithmetic conversions, such as those between bit- + // precise integers types of different sizes, or between a bit-precise + // integer and another type. + if (ResTy.isNull() && (LHSTy->isBitIntType() || RHSTy->isBitIntType())) { + Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) + << LHSTy << RHSTy << LHS.get()->getSourceRange() + << RHS.get()->getSourceRange(); + return QualType(); + } + + LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy)); + RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy)); + + return ResTy; + } + + // And if they're both bfloat (which isn't arithmetic), that's fine too. + if (LHSTy->isBFloat16Type() && RHSTy->isBFloat16Type()) { + return Context.getCommonSugaredType(LHSTy, RHSTy); + } + + // If both operands are the same structure or union type, the result is that + // type. + if (const RecordType *LHSRT = LHSTy->getAs()) { // C99 6.5.15p3 + if (const RecordType *RHSRT = RHSTy->getAs()) + if (LHSRT->getDecl() == RHSRT->getDecl()) + // "If both the operands have structure or union type, the result has + // that type." This implies that CV qualifiers are dropped. + return Context.getCommonSugaredType(LHSTy.getUnqualifiedType(), + RHSTy.getUnqualifiedType()); + // FIXME: Type of conditional expression must be complete in C mode. + } + + // C99 6.5.15p5: "If both operands have void type, the result has void type." + // The following || allows only one side to be void (a GCC-ism). + if (LHSTy->isVoidType() || RHSTy->isVoidType()) { + QualType ResTy; + if (LHSTy->isVoidType() && RHSTy->isVoidType()) { + ResTy = Context.getCommonSugaredType(LHSTy, RHSTy); + } else if (RHSTy->isVoidType()) { + ResTy = RHSTy; + Diag(RHS.get()->getBeginLoc(), diag::ext_typecheck_cond_one_void) + << RHS.get()->getSourceRange(); + } else { + ResTy = LHSTy; + Diag(LHS.get()->getBeginLoc(), diag::ext_typecheck_cond_one_void) + << LHS.get()->getSourceRange(); + } + LHS = ImpCastExprToType(LHS.get(), ResTy, CK_ToVoid); + RHS = ImpCastExprToType(RHS.get(), ResTy, CK_ToVoid); + return ResTy; + } + + // C2x 6.5.15p7: + // ... if both the second and third operands have nullptr_t type, the + // result also has that type. + if (LHSTy->isNullPtrType() && Context.hasSameType(LHSTy, RHSTy)) + return ResTy; + + // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has + // the type of the other operand." + if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy; + if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy; + + // All objective-c pointer type analysis is done here. + QualType compositeType = FindCompositeObjCPointerType(LHS, RHS, + QuestionLoc); + if (LHS.isInvalid() || RHS.isInvalid()) + return QualType(); + if (!compositeType.isNull()) + return compositeType; + + + // Handle block pointer types. + if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) + return checkConditionalBlockPointerCompatibility(*this, LHS, RHS, + QuestionLoc); + + // Check constraints for C object pointers types (C99 6.5.15p3,6). + if (LHSTy->isPointerType() && RHSTy->isPointerType()) + return checkConditionalObjectPointersCompatibility(*this, LHS, RHS, + QuestionLoc); + + // GCC compatibility: soften pointer/integer mismatch. Note that + // null pointers have been filtered out by this point. + if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc, + /*IsIntFirstExpr=*/true)) + return RHSTy; + if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc, + /*IsIntFirstExpr=*/false)) + return LHSTy; + + // Allow ?: operations in which both operands have the same + // built-in sizeless type. + if (LHSTy->isSizelessBuiltinType() && Context.hasSameType(LHSTy, RHSTy)) + return Context.getCommonSugaredType(LHSTy, RHSTy); + + // Emit a better diagnostic if one of the expressions is a null pointer + // constant and the other is not a pointer type. In this case, the user most + // likely forgot to take the address of the other expression. + if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc)) + return QualType(); + + // Otherwise, the operands are not compatible. + Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) + << LHSTy << RHSTy << LHS.get()->getSourceRange() + << RHS.get()->getSourceRange(); + return QualType(); + } + + /// FindCompositeObjCPointerType - Helper method to find composite type of + /// two objective-c pointer types of the two input expressions. + QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS, + SourceLocation QuestionLoc) { + QualType LHSTy = LHS.get()->getType(); + QualType RHSTy = RHS.get()->getType(); + + // Handle things like Class and struct objc_class*. Here we case the result + // to the pseudo-builtin, because that will be implicitly cast back to the + // redefinition type if an attempt is made to access its fields. + if (LHSTy->isObjCClassType() && + (Context.hasSameType(RHSTy, Context.getObjCClassRedefinitionType()))) { + RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast); + return LHSTy; + } + if (RHSTy->isObjCClassType() && + (Context.hasSameType(LHSTy, Context.getObjCClassRedefinitionType()))) { + LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast); + return RHSTy; + } + // And the same for struct objc_object* / id + if (LHSTy->isObjCIdType() && + (Context.hasSameType(RHSTy, Context.getObjCIdRedefinitionType()))) { + RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast); + return LHSTy; + } + if (RHSTy->isObjCIdType() && + (Context.hasSameType(LHSTy, Context.getObjCIdRedefinitionType()))) { + LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast); + return RHSTy; + } + // And the same for struct objc_selector* / SEL + if (Context.isObjCSelType(LHSTy) && + (Context.hasSameType(RHSTy, Context.getObjCSelRedefinitionType()))) { + RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_BitCast); + return LHSTy; + } + if (Context.isObjCSelType(RHSTy) && + (Context.hasSameType(LHSTy, Context.getObjCSelRedefinitionType()))) { + LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_BitCast); + return RHSTy; + } + // Check constraints for Objective-C object pointers types. + if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) { + + if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) { + // Two identical object pointer types are always compatible. + return LHSTy; + } + const ObjCObjectPointerType *LHSOPT = LHSTy->castAs(); + const ObjCObjectPointerType *RHSOPT = RHSTy->castAs(); + QualType compositeType = LHSTy; + + // If both operands are interfaces and either operand can be + // assigned to the other, use that type as the composite + // type. This allows + // xxx ? (A*) a : (B*) b + // where B is a subclass of A. + // + // Additionally, as for assignment, if either type is 'id' + // allow silent coercion. Finally, if the types are + // incompatible then make sure to use 'id' as the composite + // type so the result is acceptable for sending messages to. + + // FIXME: Consider unifying with 'areComparableObjCPointerTypes'. + // It could return the composite type. + if (!(compositeType = + Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull()) { + // Nothing more to do. + } else if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) { + compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy; + } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) { + compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy; + } else if ((LHSOPT->isObjCQualifiedIdType() || + RHSOPT->isObjCQualifiedIdType()) && + Context.ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT, + true)) { + // Need to handle "id" explicitly. + // GCC allows qualified id and any Objective-C type to devolve to + // id. Currently localizing to here until clear this should be + // part of ObjCQualifiedIdTypesAreCompatible. + compositeType = Context.getObjCIdType(); + } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) { + compositeType = Context.getObjCIdType(); + } else { + Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands) + << LHSTy << RHSTy + << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); + QualType incompatTy = Context.getObjCIdType(); + LHS = ImpCastExprToType(LHS.get(), incompatTy, CK_BitCast); + RHS = ImpCastExprToType(RHS.get(), incompatTy, CK_BitCast); + return incompatTy; + } + // The object pointer types are compatible. + LHS = ImpCastExprToType(LHS.get(), compositeType, CK_BitCast); + RHS = ImpCastExprToType(RHS.get(), compositeType, CK_BitCast); + return compositeType; + } + // Check Objective-C object pointer types and 'void *' + if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) { + if (getLangOpts().ObjCAutoRefCount) { + // ARC forbids the implicit conversion of object pointers to 'void *', + // so these types are not compatible. + Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy + << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); + LHS = RHS = true; + return QualType(); + } + QualType lhptee = LHSTy->castAs()->getPointeeType(); + QualType rhptee = RHSTy->castAs()->getPointeeType(); + QualType destPointee + = Context.getQualifiedType(lhptee, rhptee.getQualifiers()); + QualType destType = Context.getPointerType(destPointee); + // Add qualifiers if necessary. + LHS = ImpCastExprToType(LHS.get(), destType, CK_NoOp); + // Promote to void*. + RHS = ImpCastExprToType(RHS.get(), destType, CK_BitCast); + return destType; + } + if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) { + if (getLangOpts().ObjCAutoRefCount) { + // ARC forbids the implicit conversion of object pointers to 'void *', + // so these types are not compatible. + Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy + << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); + LHS = RHS = true; + return QualType(); + } + QualType lhptee = LHSTy->castAs()->getPointeeType(); + QualType rhptee = RHSTy->castAs()->getPointeeType(); + QualType destPointee + = Context.getQualifiedType(rhptee, lhptee.getQualifiers()); + QualType destType = Context.getPointerType(destPointee); + // Add qualifiers if necessary. + RHS = ImpCastExprToType(RHS.get(), destType, CK_NoOp); + // Promote to void*. + LHS = ImpCastExprToType(LHS.get(), destType, CK_BitCast); + return destType; + } + return QualType(); + } + + /// SuggestParentheses - Emit a note with a fixit hint that wraps + /// ParenRange in parentheses. + static void SuggestParentheses(Sema &Self, SourceLocation Loc, + const PartialDiagnostic &Note, + SourceRange ParenRange) { + SourceLocation EndLoc = Self.getLocForEndOfToken(ParenRange.getEnd()); + if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() && + EndLoc.isValid()) { + Self.Diag(Loc, Note) + << FixItHint::CreateInsertion(ParenRange.getBegin(), "(") + << FixItHint::CreateInsertion(EndLoc, ")"); + } else { + // We can't display the parentheses, so just show the bare note. + Self.Diag(Loc, Note) << ParenRange; + } + } + + static bool IsArithmeticOp(BinaryOperatorKind Opc) { + return BinaryOperator::isAdditiveOp(Opc) || + BinaryOperator::isMultiplicativeOp(Opc) || + BinaryOperator::isShiftOp(Opc) || Opc == BO_And || Opc == BO_Or; + // This only checks for bitwise-or and bitwise-and, but not bitwise-xor and + // not any of the logical operators. Bitwise-xor is commonly used as a + // logical-xor because there is no logical-xor operator. The logical + // operators, including uses of xor, have a high false positive rate for + // precedence warnings. + } + + /// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary + /// expression, either using a built-in or overloaded operator, + /// and sets *OpCode to the opcode and *RHSExprs to the right-hand side + /// expression. + static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode, + Expr **RHSExprs) { + // Don't strip parenthesis: we should not warn if E is in parenthesis. + E = E->IgnoreImpCasts(); + E = E->IgnoreConversionOperatorSingleStep(); + E = E->IgnoreImpCasts(); + if (auto *MTE = dyn_cast(E)) { + E = MTE->getSubExpr(); + E = E->IgnoreImpCasts(); + } + + // Built-in binary operator. + if (BinaryOperator *OP = dyn_cast(E)) { + if (IsArithmeticOp(OP->getOpcode())) { + *Opcode = OP->getOpcode(); + *RHSExprs = OP->getRHS(); + return true; + } + } + + // Overloaded operator. + if (CXXOperatorCallExpr *Call = dyn_cast(E)) { + if (Call->getNumArgs() != 2) + return false; + + // Make sure this is really a binary operator that is safe to pass into + // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op. + OverloadedOperatorKind OO = Call->getOperator(); + if (OO < OO_Plus || OO > OO_Arrow || + OO == OO_PlusPlus || OO == OO_MinusMinus) + return false; + + BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO); + if (IsArithmeticOp(OpKind)) { + *Opcode = OpKind; + *RHSExprs = Call->getArg(1); + return true; + } + } + + return false; + } + + /// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type + /// or is a logical expression such as (x==y) which has int type, but is + /// commonly interpreted as boolean. + static bool ExprLooksBoolean(Expr *E) { + E = E->IgnoreParenImpCasts(); + + if (E->getType()->isBooleanType()) + return true; + if (BinaryOperator *OP = dyn_cast(E)) + return OP->isComparisonOp() || OP->isLogicalOp(); + if (UnaryOperator *OP = dyn_cast(E)) + return OP->getOpcode() == UO_LNot; + if (E->getType()->isPointerType()) + return true; + // FIXME: What about overloaded operator calls returning "unspecified boolean + // type"s (commonly pointer-to-members)? + + return false; + } + + /// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator + /// and binary operator are mixed in a way that suggests the programmer assumed + /// the conditional operator has higher precedence, for example: + /// "int x = a + someBinaryCondition ? 1 : 2". + static void DiagnoseConditionalPrecedence(Sema &Self, + SourceLocation OpLoc, + Expr *Condition, + Expr *LHSExpr, + Expr *RHSExpr) { + BinaryOperatorKind CondOpcode; + Expr *CondRHS; + + if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS)) + return; + if (!ExprLooksBoolean(CondRHS)) + return; + + // The condition is an arithmetic binary expression, with a right- + // hand side that looks boolean, so warn. + + unsigned DiagID = BinaryOperator::isBitwiseOp(CondOpcode) + ? diag::warn_precedence_bitwise_conditional + : diag::warn_precedence_conditional; + + Self.Diag(OpLoc, DiagID) + << Condition->getSourceRange() + << BinaryOperator::getOpcodeStr(CondOpcode); + + SuggestParentheses( + Self, OpLoc, + Self.PDiag(diag::note_precedence_silence) + << BinaryOperator::getOpcodeStr(CondOpcode), + SourceRange(Condition->getBeginLoc(), Condition->getEndLoc())); + + SuggestParentheses(Self, OpLoc, + Self.PDiag(diag::note_precedence_conditional_first), + SourceRange(CondRHS->getBeginLoc(), RHSExpr->getEndLoc())); + } + + /// Compute the nullability of a conditional expression. + static QualType computeConditionalNullability(QualType ResTy, bool IsBin, + QualType LHSTy, QualType RHSTy, + ASTContext &Ctx) { + if (!ResTy->isAnyPointerType()) + return ResTy; + + auto GetNullability = [](QualType Ty) { + std::optional Kind = Ty->getNullability(); + if (Kind) { + // For our purposes, treat _Nullable_result as _Nullable. + if (*Kind == NullabilityKind::NullableResult) + return NullabilityKind::Nullable; + return *Kind; + } + return NullabilityKind::Unspecified; + }; + + auto LHSKind = GetNullability(LHSTy), RHSKind = GetNullability(RHSTy); + NullabilityKind MergedKind; + + // Compute nullability of a binary conditional expression. + if (IsBin) { + if (LHSKind == NullabilityKind::NonNull) + MergedKind = NullabilityKind::NonNull; + else + MergedKind = RHSKind; + // Compute nullability of a normal conditional expression. + } else { + if (LHSKind == NullabilityKind::Nullable || + RHSKind == NullabilityKind::Nullable) + MergedKind = NullabilityKind::Nullable; + else if (LHSKind == NullabilityKind::NonNull) + MergedKind = RHSKind; + else if (RHSKind == NullabilityKind::NonNull) + MergedKind = LHSKind; + else + MergedKind = NullabilityKind::Unspecified; + } + + // Return if ResTy already has the correct nullability. + if (GetNullability(ResTy) == MergedKind) + return ResTy; + + // Strip all nullability from ResTy. + while (ResTy->getNullability()) + ResTy = ResTy.getSingleStepDesugaredType(Ctx); + + // Create a new AttributedType with the new nullability kind. + auto NewAttr = AttributedType::getNullabilityAttrKind(MergedKind); + return Ctx.getAttributedType(NewAttr, ResTy, ResTy); + } + + /// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null + /// in the case of a the GNU conditional expr extension. + ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc, + SourceLocation ColonLoc, + Expr *CondExpr, Expr *LHSExpr, + Expr *RHSExpr) { + if (!Context.isDependenceAllowed()) { + // C cannot handle TypoExpr nodes in the condition because it + // doesn't handle dependent types properly, so make sure any TypoExprs have + // been dealt with before checking the operands. + ExprResult CondResult = CorrectDelayedTyposInExpr(CondExpr); + ExprResult LHSResult = CorrectDelayedTyposInExpr(LHSExpr); + ExprResult RHSResult = CorrectDelayedTyposInExpr(RHSExpr); + + if (!CondResult.isUsable()) + return ExprError(); + + if (LHSExpr) { + if (!LHSResult.isUsable()) + return ExprError(); + } + + if (!RHSResult.isUsable()) + return ExprError(); + + CondExpr = CondResult.get(); + LHSExpr = LHSResult.get(); + RHSExpr = RHSResult.get(); + } + + // If this is the gnu "x ?: y" extension, analyze the types as though the LHS + // was the condition. + OpaqueValueExpr *opaqueValue = nullptr; + Expr *commonExpr = nullptr; + if (!LHSExpr) { + commonExpr = CondExpr; + // Lower out placeholder types first. This is important so that we don't + // try to capture a placeholder. This happens in few cases in C++; such + // as Objective-C++'s dictionary subscripting syntax. + if (commonExpr->hasPlaceholderType()) { + ExprResult result = CheckPlaceholderExpr(commonExpr); + if (!result.isUsable()) return ExprError(); + commonExpr = result.get(); + } + // We usually want to apply unary conversions *before* saving, except + // in the special case of a C++ l-value conditional. + if (!(getLangOpts().CPlusPlus + && !commonExpr->isTypeDependent() + && commonExpr->getValueKind() == RHSExpr->getValueKind() + && commonExpr->isGLValue() + && commonExpr->isOrdinaryOrBitFieldObject() + && RHSExpr->isOrdinaryOrBitFieldObject() + && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) { + ExprResult commonRes = UsualUnaryConversions(commonExpr); + if (commonRes.isInvalid()) + return ExprError(); + commonExpr = commonRes.get(); + } + + // If the common expression is a class or array prvalue, materialize it + // so that we can safely refer to it multiple times. + if (commonExpr->isPRValue() && (commonExpr->getType()->isRecordType() || + commonExpr->getType()->isArrayType())) { + ExprResult MatExpr = TemporaryMaterializationConversion(commonExpr); + if (MatExpr.isInvalid()) + return ExprError(); + commonExpr = MatExpr.get(); + } + + opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(), + commonExpr->getType(), + commonExpr->getValueKind(), + commonExpr->getObjectKind(), + commonExpr); + LHSExpr = CondExpr = opaqueValue; + } + + QualType LHSTy = LHSExpr->getType(), RHSTy = RHSExpr->getType(); + ExprValueKind VK = VK_PRValue; + ExprObjectKind OK = OK_Ordinary; + ExprResult Cond = CondExpr, LHS = LHSExpr, RHS = RHSExpr; + QualType result = CheckConditionalOperands(Cond, LHS, RHS, + VK, OK, QuestionLoc); + if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() || + RHS.isInvalid()) + return ExprError(); + + DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(), + RHS.get()); + + CheckBoolLikeConversion(Cond.get(), QuestionLoc); + + result = computeConditionalNullability(result, commonExpr, LHSTy, RHSTy, + Context); + + if (!commonExpr) + return new (Context) + ConditionalOperator(Cond.get(), QuestionLoc, LHS.get(), ColonLoc, + RHS.get(), result, VK, OK); + + return new (Context) BinaryConditionalOperator( + commonExpr, opaqueValue, Cond.get(), LHS.get(), RHS.get(), QuestionLoc, + ColonLoc, result, VK, OK); + } + + // Check if we have a conversion between incompatible cmse function pointer + // types, that is, a conversion between a function pointer with the + // cmse_nonsecure_call attribute and one without. + static bool IsInvalidCmseNSCallConversion(Sema &S, QualType FromType, + QualType ToType) { + if (const auto *ToFn = + dyn_cast(S.Context.getCanonicalType(ToType))) { + if (const auto *FromFn = + dyn_cast(S.Context.getCanonicalType(FromType))) { + FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo(); + FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo(); + + return ToEInfo.getCmseNSCall() != FromEInfo.getCmseNSCall(); + } + } + return false; + } + + // checkPointerTypesForAssignment - This is a very tricky routine (despite + // being closely modeled after the C99 spec:-). The odd characteristic of this + // routine is it effectively iqnores the qualifiers on the top level pointee. + // This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3]. + // FIXME: add a couple examples in this comment. + static Sema::AssignConvertType + checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType, + SourceLocation Loc) { + assert(LHSType.isCanonical() && "LHS not canonicalized!"); + assert(RHSType.isCanonical() && "RHS not canonicalized!"); + + // get the "pointed to" type (ignoring qualifiers at the top level) + const Type *lhptee, *rhptee; + Qualifiers lhq, rhq; + std::tie(lhptee, lhq) = + cast(LHSType)->getPointeeType().split().asPair(); + std::tie(rhptee, rhq) = + cast(RHSType)->getPointeeType().split().asPair(); + + Sema::AssignConvertType ConvTy = Sema::Compatible; + + // C99 6.5.16.1p1: This following citation is common to constraints + // 3 & 4 (below). ...and the type *pointed to* by the left has all the + // qualifiers of the type *pointed to* by the right; + + // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay. + if (lhq.getObjCLifetime() != rhq.getObjCLifetime() && + lhq.compatiblyIncludesObjCLifetime(rhq)) { + // Ignore lifetime for further calculation. + lhq.removeObjCLifetime(); + rhq.removeObjCLifetime(); + } + + if (!lhq.compatiblyIncludes(rhq)) { + // Treat address-space mismatches as fatal. + if (!lhq.isAddressSpaceSupersetOf(rhq)) + return Sema::IncompatiblePointerDiscardsQualifiers; + + // It's okay to add or remove GC or lifetime qualifiers when converting to + // and from void*. + else if (lhq.withoutObjCGCAttr().withoutObjCLifetime() + .compatiblyIncludes( + rhq.withoutObjCGCAttr().withoutObjCLifetime()) + && (lhptee->isVoidType() || rhptee->isVoidType())) + ; // keep old + + // Treat lifetime mismatches as fatal. + else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) + ConvTy = Sema::IncompatiblePointerDiscardsQualifiers; + + // For GCC/MS compatibility, other qualifier mismatches are treated + // as still compatible in C. + else ConvTy = Sema::CompatiblePointerDiscardsQualifiers; + } + + // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or + // incomplete type and the other is a pointer to a qualified or unqualified + // version of void... + if (lhptee->isVoidType()) { + if (rhptee->isIncompleteOrObjectType()) + return ConvTy; + + // As an extension, we allow cast to/from void* to function pointer. + assert(rhptee->isFunctionType()); + return Sema::FunctionVoidPointer; + } + + if (rhptee->isVoidType()) { + if (lhptee->isIncompleteOrObjectType()) + return ConvTy; + + // As an extension, we allow cast to/from void* to function pointer. + assert(lhptee->isFunctionType()); + return Sema::FunctionVoidPointer; + } + + if (!S.Diags.isIgnored( + diag::warn_typecheck_convert_incompatible_function_pointer_strict, + Loc) && + RHSType->isFunctionPointerType() && LHSType->isFunctionPointerType() && + !S.IsFunctionConversion(RHSType, LHSType, RHSType)) + return Sema::IncompatibleFunctionPointerStrict; + + // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or + // unqualified versions of compatible types, ... + QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0); + if (!S.Context.typesAreCompatible(ltrans, rtrans)) { + // Check if the pointee types are compatible ignoring the sign. + // We explicitly check for char so that we catch "char" vs + // "unsigned char" on systems where "char" is unsigned. + if (lhptee->isCharType()) + ltrans = S.Context.UnsignedCharTy; + else if (lhptee->hasSignedIntegerRepresentation()) + ltrans = S.Context.getCorrespondingUnsignedType(ltrans); + + if (rhptee->isCharType()) + rtrans = S.Context.UnsignedCharTy; + else if (rhptee->hasSignedIntegerRepresentation()) + rtrans = S.Context.getCorrespondingUnsignedType(rtrans); + + if (ltrans == rtrans) { + // Types are compatible ignoring the sign. Qualifier incompatibility + // takes priority over sign incompatibility because the sign + // warning can be disabled. + if (ConvTy != Sema::Compatible) + return ConvTy; + + return Sema::IncompatiblePointerSign; + } + + // If we are a multi-level pointer, it's possible that our issue is simply + // one of qualification - e.g. char ** -> const char ** is not allowed. If + // the eventual target type is the same and the pointers have the same + // level of indirection, this must be the issue. + if (isa(lhptee) && isa(rhptee)) { + do { + std::tie(lhptee, lhq) = + cast(lhptee)->getPointeeType().split().asPair(); + std::tie(rhptee, rhq) = + cast(rhptee)->getPointeeType().split().asPair(); + + // Inconsistent address spaces at this point is invalid, even if the + // address spaces would be compatible. + // FIXME: This doesn't catch address space mismatches for pointers of + // different nesting levels, like: + // __local int *** a; + // int ** b = a; + // It's not clear how to actually determine when such pointers are + // invalidly incompatible. + if (lhq.getAddressSpace() != rhq.getAddressSpace()) + return Sema::IncompatibleNestedPointerAddressSpaceMismatch; + + } while (isa(lhptee) && isa(rhptee)); + + if (lhptee == rhptee) + return Sema::IncompatibleNestedPointerQualifiers; + } + + // General pointer incompatibility takes priority over qualifiers. + if (RHSType->isFunctionPointerType() && LHSType->isFunctionPointerType()) + return Sema::IncompatibleFunctionPointer; + return Sema::IncompatiblePointer; + } + if (!S.getLangOpts().CPlusPlus && + S.IsFunctionConversion(ltrans, rtrans, ltrans)) + return Sema::IncompatibleFunctionPointer; + if (IsInvalidCmseNSCallConversion(S, ltrans, rtrans)) + return Sema::IncompatibleFunctionPointer; + return ConvTy; + } + + /// checkBlockPointerTypesForAssignment - This routine determines whether two + /// block pointer types are compatible or whether a block and normal pointer + /// are compatible. It is more restrict than comparing two function pointer + // types. + static Sema::AssignConvertType + checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType, + QualType RHSType) { + assert(LHSType.isCanonical() && "LHS not canonicalized!"); + assert(RHSType.isCanonical() && "RHS not canonicalized!"); + + QualType lhptee, rhptee; + + // get the "pointed to" type (ignoring qualifiers at the top level) + lhptee = cast(LHSType)->getPointeeType(); + rhptee = cast(RHSType)->getPointeeType(); + + // In C++, the types have to match exactly. + if (S.getLangOpts().CPlusPlus) + return Sema::IncompatibleBlockPointer; + + Sema::AssignConvertType ConvTy = Sema::Compatible; + + // For blocks we enforce that qualifiers are identical. + Qualifiers LQuals = lhptee.getLocalQualifiers(); + Qualifiers RQuals = rhptee.getLocalQualifiers(); + if (S.getLangOpts().OpenCL) { + LQuals.removeAddressSpace(); + RQuals.removeAddressSpace(); + } + if (LQuals != RQuals) + ConvTy = Sema::CompatiblePointerDiscardsQualifiers; + + // FIXME: OpenCL doesn't define the exact compile time semantics for a block + // assignment. + // The current behavior is similar to C++ lambdas. A block might be + // assigned to a variable iff its return type and parameters are compatible + // (C99 6.2.7) with the corresponding return type and parameters of the LHS of + // an assignment. Presumably it should behave in way that a function pointer + // assignment does in C, so for each parameter and return type: + // * CVR and address space of LHS should be a superset of CVR and address + // space of RHS. + // * unqualified types should be compatible. + if (S.getLangOpts().OpenCL) { + if (!S.Context.typesAreBlockPointerCompatible( + S.Context.getQualifiedType(LHSType.getUnqualifiedType(), LQuals), + S.Context.getQualifiedType(RHSType.getUnqualifiedType(), RQuals))) + return Sema::IncompatibleBlockPointer; + } else if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType)) + return Sema::IncompatibleBlockPointer; + + return ConvTy; + } + + /// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types + /// for assignment compatibility. + static Sema::AssignConvertType + checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType, + QualType RHSType) { + assert(LHSType.isCanonical() && "LHS was not canonicalized!"); + assert(RHSType.isCanonical() && "RHS was not canonicalized!"); + + if (LHSType->isObjCBuiltinType()) { + // Class is not compatible with ObjC object pointers. + if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() && + !RHSType->isObjCQualifiedClassType()) + return Sema::IncompatiblePointer; + return Sema::Compatible; + } + if (RHSType->isObjCBuiltinType()) { + if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() && + !LHSType->isObjCQualifiedClassType()) + return Sema::IncompatiblePointer; + return Sema::Compatible; + } + QualType lhptee = LHSType->castAs()->getPointeeType(); + QualType rhptee = RHSType->castAs()->getPointeeType(); + + if (!lhptee.isAtLeastAsQualifiedAs(rhptee) && + // make an exception for id

+ !LHSType->isObjCQualifiedIdType()) + return Sema::CompatiblePointerDiscardsQualifiers; + + if (S.Context.typesAreCompatible(LHSType, RHSType)) + return Sema::Compatible; + if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType()) + return Sema::IncompatibleObjCQualifiedId; + return Sema::IncompatiblePointer; + } + + Sema::AssignConvertType + Sema::CheckAssignmentConstraints(SourceLocation Loc, + QualType LHSType, QualType RHSType) { + // Fake up an opaque expression. We don't actually care about what + // cast operations are required, so if CheckAssignmentConstraints + // adds casts to this they'll be wasted, but fortunately that doesn't + // usually happen on valid code. + OpaqueValueExpr RHSExpr(Loc, RHSType, VK_PRValue); + ExprResult RHSPtr = &RHSExpr; + CastKind K; + + return CheckAssignmentConstraints(LHSType, RHSPtr, K, /*ConvertRHS=*/false); + } + + /// This helper function returns true if QT is a vector type that has element + /// type ElementType. + static bool isVector(QualType QT, QualType ElementType) { + if (const VectorType *VT = QT->getAs()) + return VT->getElementType().getCanonicalType() == ElementType; + return false; + } + + /// CheckAssignmentConstraints (C99 6.5.16) - This routine currently + /// has code to accommodate several GCC extensions when type checking + /// pointers. Here are some objectionable examples that GCC considers warnings: + /// + /// int a, *pint; + /// short *pshort; + /// struct foo *pfoo; + /// + /// pint = pshort; // warning: assignment from incompatible pointer type + /// a = pint; // warning: assignment makes integer from pointer without a cast + /// pint = a; // warning: assignment makes pointer from integer without a cast + /// pint = pfoo; // warning: assignment from incompatible pointer type + /// + /// As a result, the code for dealing with pointers is more complex than the + /// C99 spec dictates. + /// + /// Sets 'Kind' for any result kind except Incompatible. + Sema::AssignConvertType + Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS, + CastKind &Kind, bool ConvertRHS) { + QualType RHSType = RHS.get()->getType(); + QualType OrigLHSType = LHSType; + + // Get canonical types. We're not formatting these types, just comparing + // them. + LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType(); + RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType(); + + // Common case: no conversion required. + if (LHSType == RHSType) { + Kind = CK_NoOp; + return Compatible; + } + + // If the LHS has an __auto_type, there are no additional type constraints + // to be worried about. + if (const auto *AT = dyn_cast(LHSType)) { + if (AT->isGNUAutoType()) { + Kind = CK_NoOp; + return Compatible; + } + } + + // If we have an atomic type, try a non-atomic assignment, then just add an + // atomic qualification step. + if (const AtomicType *AtomicTy = dyn_cast(LHSType)) { + Sema::AssignConvertType result = + CheckAssignmentConstraints(AtomicTy->getValueType(), RHS, Kind); + if (result != Compatible) + return result; + if (Kind != CK_NoOp && ConvertRHS) + RHS = ImpCastExprToType(RHS.get(), AtomicTy->getValueType(), Kind); + Kind = CK_NonAtomicToAtomic; + return Compatible; + } + + // If the left-hand side is a reference type, then we are in a + // (rare!) case where we've allowed the use of references in C, + // e.g., as a parameter type in a built-in function. In this case, + // just make sure that the type referenced is compatible with the + // right-hand side type. The caller is responsible for adjusting + // LHSType so that the resulting expression does not have reference + // type. + if (const ReferenceType *LHSTypeRef = LHSType->getAs()) { + if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) { + Kind = CK_LValueBitCast; + return Compatible; + } + return Incompatible; + } + + // Allow scalar to ExtVector assignments, and assignments of an ExtVector type + // to the same ExtVector type. + if (LHSType->isExtVectorType()) { + if (RHSType->isExtVectorType()) + return Incompatible; + if (RHSType->isArithmeticType()) { + // CK_VectorSplat does T -> vector T, so first cast to the element type. + if (ConvertRHS) + RHS = prepareVectorSplat(LHSType, RHS.get()); + Kind = CK_VectorSplat; + return Compatible; + } + } + + // Conversions to or from vector type. + if (LHSType->isVectorType() || RHSType->isVectorType()) { + if (LHSType->isVectorType() && RHSType->isVectorType()) { + // Allow assignments of an AltiVec vector type to an equivalent GCC + // vector type and vice versa + if (Context.areCompatibleVectorTypes(LHSType, RHSType)) { + Kind = CK_BitCast; + return Compatible; + } + + // If we are allowing lax vector conversions, and LHS and RHS are both + // vectors, the total size only needs to be the same. This is a bitcast; + // no bits are changed but the result type is different. + if (isLaxVectorConversion(RHSType, LHSType)) { + // The default for lax vector conversions with Altivec vectors will + // change, so if we are converting between vector types where + // at least one is an Altivec vector, emit a warning. + if (Context.getTargetInfo().getTriple().isPPC() && + anyAltivecTypes(RHSType, LHSType) && + !Context.areCompatibleVectorTypes(RHSType, LHSType)) + Diag(RHS.get()->getExprLoc(), diag::warn_deprecated_lax_vec_conv_all) + << RHSType << LHSType; + Kind = CK_BitCast; + return IncompatibleVectors; + } + } + + // When the RHS comes from another lax conversion (e.g. binops between + // scalars and vectors) the result is canonicalized as a vector. When the + // LHS is also a vector, the lax is allowed by the condition above. Handle + // the case where LHS is a scalar. + if (LHSType->isScalarType()) { + const VectorType *VecType = RHSType->getAs(); + if (VecType && VecType->getNumElements() == 1 && + isLaxVectorConversion(RHSType, LHSType)) { + if (Context.getTargetInfo().getTriple().isPPC() && + (VecType->getVectorKind() == VectorType::AltiVecVector || + VecType->getVectorKind() == VectorType::AltiVecBool || + VecType->getVectorKind() == VectorType::AltiVecPixel)) + Diag(RHS.get()->getExprLoc(), diag::warn_deprecated_lax_vec_conv_all) + << RHSType << LHSType; + ExprResult *VecExpr = &RHS; + *VecExpr = ImpCastExprToType(VecExpr->get(), LHSType, CK_BitCast); + Kind = CK_BitCast; + return Compatible; + } + } + + // Allow assignments between fixed-length and sizeless SVE vectors. + if ((LHSType->isSVESizelessBuiltinType() && RHSType->isVectorType()) || + (LHSType->isVectorType() && RHSType->isSVESizelessBuiltinType())) + if (Context.areCompatibleSveTypes(LHSType, RHSType) || + Context.areLaxCompatibleSveTypes(LHSType, RHSType)) { + Kind = CK_BitCast; + return Compatible; + } + + // Allow assignments between fixed-length and sizeless RVV vectors. + if ((LHSType->isRVVSizelessBuiltinType() && RHSType->isVectorType()) || + (LHSType->isVectorType() && RHSType->isRVVSizelessBuiltinType())) { + if (Context.areCompatibleRVVTypes(LHSType, RHSType) || + Context.areLaxCompatibleRVVTypes(LHSType, RHSType)) { + Kind = CK_BitCast; + return Compatible; + } + } + + return Incompatible; + } + + // Diagnose attempts to convert between __ibm128, __float128 and long double + // where such conversions currently can't be handled. + if (unsupportedTypeConversion(*this, LHSType, RHSType)) + return Incompatible; + + // Disallow assigning a _Complex to a real type in C++ mode since it simply + // discards the imaginary part. + if (getLangOpts().CPlusPlus && RHSType->getAs() && + !LHSType->getAs()) + return Incompatible; + + // Arithmetic conversions. + if (LHSType->isArithmeticType() && RHSType->isArithmeticType() && + !(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) { + if (ConvertRHS) + Kind = PrepareScalarCast(RHS, LHSType); + return Compatible; + } + + // Conversions to normal pointers. + if (const PointerType *LHSPointer = dyn_cast(LHSType)) { + // U* -> T* + if (isa(RHSType)) { + LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace(); + LangAS AddrSpaceR = RHSType->getPointeeType().getAddressSpace(); + if (AddrSpaceL != AddrSpaceR) + Kind = CK_AddressSpaceConversion; + else if (Context.hasCvrSimilarType(RHSType, LHSType)) + Kind = CK_NoOp; + else + Kind = CK_BitCast; + return checkPointerTypesForAssignment(*this, LHSType, RHSType, + RHS.get()->getBeginLoc()); + } + + // int -> T* + if (RHSType->isIntegerType()) { + Kind = CK_IntegralToPointer; // FIXME: null? + return IntToPointer; + } + + // C pointers are not compatible with ObjC object pointers, + // with two exceptions: + if (isa(RHSType)) { + // - conversions to void* + if (LHSPointer->getPointeeType()->isVoidType()) { + Kind = CK_BitCast; + return Compatible; + } + + // - conversions from 'Class' to the redefinition type + if (RHSType->isObjCClassType() && + Context.hasSameType(LHSType, + Context.getObjCClassRedefinitionType())) { + Kind = CK_BitCast; + return Compatible; + } + + Kind = CK_BitCast; + return IncompatiblePointer; + } + + // U^ -> void* + if (RHSType->getAs()) { + if (LHSPointer->getPointeeType()->isVoidType()) { + LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace(); + LangAS AddrSpaceR = RHSType->getAs() + ->getPointeeType() + .getAddressSpace(); + Kind = + AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast; + return Compatible; + } + } + + return Incompatible; + } + + // Conversions to block pointers. + if (isa(LHSType)) { + // U^ -> T^ + if (RHSType->isBlockPointerType()) { + LangAS AddrSpaceL = LHSType->getAs() + ->getPointeeType() + .getAddressSpace(); + LangAS AddrSpaceR = RHSType->getAs() + ->getPointeeType() + .getAddressSpace(); + Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast; + return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType); + } + + // int or null -> T^ + if (RHSType->isIntegerType()) { + Kind = CK_IntegralToPointer; // FIXME: null + return IntToBlockPointer; + } + + // id -> T^ + if (getLangOpts().ObjC && RHSType->isObjCIdType()) { + Kind = CK_AnyPointerToBlockPointerCast; + return Compatible; + } + + // void* -> T^ + if (const PointerType *RHSPT = RHSType->getAs()) + if (RHSPT->getPointeeType()->isVoidType()) { + Kind = CK_AnyPointerToBlockPointerCast; + return Compatible; + } + + return Incompatible; + } + + // Conversions to Objective-C pointers. + if (isa(LHSType)) { + // A* -> B* + if (RHSType->isObjCObjectPointerType()) { + Kind = CK_BitCast; + Sema::AssignConvertType result = + checkObjCPointerTypesForAssignment(*this, LHSType, RHSType); + if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() && + result == Compatible && + !CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType)) + result = IncompatibleObjCWeakRef; + return result; + } + + // int or null -> A* + if (RHSType->isIntegerType()) { + Kind = CK_IntegralToPointer; // FIXME: null + return IntToPointer; + } + + // In general, C pointers are not compatible with ObjC object pointers, + // with two exceptions: + if (isa(RHSType)) { + Kind = CK_CPointerToObjCPointerCast; + + // - conversions from 'void*' + if (RHSType->isVoidPointerType()) { + return Compatible; + } + + // - conversions to 'Class' from its redefinition type + if (LHSType->isObjCClassType() && + Context.hasSameType(RHSType, + Context.getObjCClassRedefinitionType())) { + return Compatible; + } + + return IncompatiblePointer; + } + + // Only under strict condition T^ is compatible with an Objective-C pointer. + if (RHSType->isBlockPointerType() && + LHSType->isBlockCompatibleObjCPointerType(Context)) { + if (ConvertRHS) + maybeExtendBlockObject(RHS); + Kind = CK_BlockPointerToObjCPointerCast; + return Compatible; + } + + return Incompatible; + } + + // Conversion to nullptr_t (C2x only) + if (getLangOpts().C2x && LHSType->isNullPtrType() && + RHS.get()->isNullPointerConstant(Context, + Expr::NPC_ValueDependentIsNull)) { + // null -> nullptr_t + Kind = CK_NullToPointer; + return Compatible; + } + + // Conversions from pointers that are not covered by the above. + if (isa(RHSType)) { + // T* -> _Bool + if (LHSType == Context.BoolTy) { + Kind = CK_PointerToBoolean; + return Compatible; + } + + // T* -> int + if (LHSType->isIntegerType()) { + Kind = CK_PointerToIntegral; + return PointerToInt; + } + + return Incompatible; + } + + // Conversions from Objective-C pointers that are not covered by the above. + if (isa(RHSType)) { + // T* -> _Bool + if (LHSType == Context.BoolTy) { + Kind = CK_PointerToBoolean; + return Compatible; + } + + // T* -> int + if (LHSType->isIntegerType()) { + Kind = CK_PointerToIntegral; + return PointerToInt; + } + + return Incompatible; + } + + // struct A -> struct B + if (isa(LHSType) && isa(RHSType)) { + if (Context.typesAreCompatible(LHSType, RHSType)) { + Kind = CK_NoOp; + return Compatible; + } + } + + if (LHSType->isSamplerT() && RHSType->isIntegerType()) { + Kind = CK_IntToOCLSampler; + return Compatible; + } + + return Incompatible; + } + + /// Constructs a transparent union from an expression that is + /// used to initialize the transparent union. + static void ConstructTransparentUnion(Sema &S, ASTContext &C, + ExprResult &EResult, QualType UnionType, + FieldDecl *Field) { + // Build an initializer list that designates the appropriate member + // of the transparent union. + Expr *E = EResult.get(); + InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(), + E, SourceLocation()); + Initializer->setType(UnionType); + Initializer->setInitializedFieldInUnion(Field); + + // Build a compound literal constructing a value of the transparent + // union type from this initializer list. + TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType); + EResult = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType, + VK_PRValue, Initializer, false); + } + + Sema::AssignConvertType + Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType, + ExprResult &RHS) { + QualType RHSType = RHS.get()->getType(); + + // If the ArgType is a Union type, we want to handle a potential + // transparent_union GCC extension. + const RecordType *UT = ArgType->getAsUnionType(); + if (!UT || !UT->getDecl()->hasAttr()) + return Incompatible; + + // The field to initialize within the transparent union. + RecordDecl *UD = UT->getDecl(); + FieldDecl *InitField = nullptr; + // It's compatible if the expression matches any of the fields. + for (auto *it : UD->fields()) { + if (it->getType()->isPointerType()) { + // If the transparent union contains a pointer type, we allow: + // 1) void pointer + // 2) null pointer constant + if (RHSType->isPointerType()) + if (RHSType->castAs()->getPointeeType()->isVoidType()) { + RHS = ImpCastExprToType(RHS.get(), it->getType(), CK_BitCast); + InitField = it; + break; + } + + if (RHS.get()->isNullPointerConstant(Context, + Expr::NPC_ValueDependentIsNull)) { + RHS = ImpCastExprToType(RHS.get(), it->getType(), + CK_NullToPointer); + InitField = it; + break; + } + } + + CastKind Kind; + if (CheckAssignmentConstraints(it->getType(), RHS, Kind) + == Compatible) { + RHS = ImpCastExprToType(RHS.get(), it->getType(), Kind); + InitField = it; + break; + } + } + + if (!InitField) + return Incompatible; + + ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField); + return Compatible; + } + + Sema::AssignConvertType + Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &CallerRHS, + bool Diagnose, + bool DiagnoseCFAudited, + bool ConvertRHS) { + // We need to be able to tell the caller whether we diagnosed a problem, if + // they ask us to issue diagnostics. + assert((ConvertRHS || !Diagnose) && "can't indicate whether we diagnosed"); + + // If ConvertRHS is false, we want to leave the caller's RHS untouched. Sadly, + // we can't avoid *all* modifications at the moment, so we need some somewhere + // to put the updated value. + ExprResult LocalRHS = CallerRHS; + ExprResult &RHS = ConvertRHS ? CallerRHS : LocalRHS; + + if (const auto *LHSPtrType = LHSType->getAs()) { + if (const auto *RHSPtrType = RHS.get()->getType()->getAs()) { + if (RHSPtrType->getPointeeType()->hasAttr(attr::NoDeref) && + !LHSPtrType->getPointeeType()->hasAttr(attr::NoDeref)) { + Diag(RHS.get()->getExprLoc(), + diag::warn_noderef_to_dereferenceable_pointer) + << RHS.get()->getSourceRange(); + } + } + } + + if (getLangOpts().CPlusPlus) { + if (!LHSType->isRecordType() && !LHSType->isAtomicType()) { + // C++ 5.17p3: If the left operand is not of class type, the + // expression is implicitly converted (C++ 4) to the + // cv-unqualified type of the left operand. + QualType RHSType = RHS.get()->getType(); + if (Diagnose) { + RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(), + AA_Assigning); + } else { + ImplicitConversionSequence ICS = + TryImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(), + /*SuppressUserConversions=*/false, + AllowedExplicit::None, + /*InOverloadResolution=*/false, + /*CStyle=*/false, + /*AllowObjCWritebackConversion=*/false); + if (ICS.isFailure()) + return Incompatible; + RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(), + ICS, AA_Assigning); + } + if (RHS.isInvalid()) + return Incompatible; + Sema::AssignConvertType result = Compatible; + if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() && + !CheckObjCARCUnavailableWeakConversion(LHSType, RHSType)) + result = IncompatibleObjCWeakRef; + return result; + } + + // FIXME: Currently, we fall through and treat C++ classes like C + // structures. + // FIXME: We also fall through for atomics; not sure what should + // happen there, though. + } else if (RHS.get()->getType() == Context.OverloadTy) { + // As a set of extensions to C, we support overloading on functions. These + // functions need to be resolved here. + DeclAccessPair DAP; + if (FunctionDecl *FD = ResolveAddressOfOverloadedFunction( + RHS.get(), LHSType, /*Complain=*/false, DAP)) + RHS = FixOverloadedFunctionReference(RHS.get(), DAP, FD); + else + return Incompatible; + } + + // This check seems unnatural, however it is necessary to ensure the proper + // conversion of functions/arrays. If the conversion were done for all + // DeclExpr's (created by ActOnIdExpression), it would mess up the unary + // expressions that suppress this implicit conversion (&, sizeof). This needs + // to happen before we check for null pointer conversions because C does not + // undergo the same implicit conversions as C++ does above (by the calls to + // TryImplicitConversion() and PerformImplicitConversion()) which insert the + // lvalue to rvalue cast before checking for null pointer constraints. This + // addresses code like: nullptr_t val; int *ptr; ptr = val; + // + // Suppress this for references: C++ 8.5.3p5. + if (!LHSType->isReferenceType()) { + // FIXME: We potentially allocate here even if ConvertRHS is false. + RHS = DefaultFunctionArrayLvalueConversion(RHS.get(), Diagnose); + if (RHS.isInvalid()) + return Incompatible; + } + + // The constraints are expressed in terms of the atomic, qualified, or + // unqualified type of the LHS. + QualType LHSTypeAfterConversion = LHSType.getAtomicUnqualifiedType(); + + // C99 6.5.16.1p1: the left operand is a pointer and the right is + // a null pointer constant or its type is nullptr_t;. + if ((LHSTypeAfterConversion->isPointerType() || + LHSTypeAfterConversion->isObjCObjectPointerType() || + LHSTypeAfterConversion->isBlockPointerType()) && + ((getLangOpts().C2x && RHS.get()->getType()->isNullPtrType()) || + RHS.get()->isNullPointerConstant(Context, + Expr::NPC_ValueDependentIsNull))) { + if (Diagnose || ConvertRHS) { + CastKind Kind; + CXXCastPath Path; + CheckPointerConversion(RHS.get(), LHSType, Kind, Path, + /*IgnoreBaseAccess=*/false, Diagnose); + if (ConvertRHS) + RHS = ImpCastExprToType(RHS.get(), LHSType, Kind, VK_PRValue, &Path); + } + return Compatible; + } + // C2x 6.5.16.1p1: the left operand has type atomic, qualified, or + // unqualified bool, and the right operand is a pointer or its type is + // nullptr_t. + if (getLangOpts().C2x && LHSType->isBooleanType() && + RHS.get()->getType()->isNullPtrType()) { + // NB: T* -> _Bool is handled in CheckAssignmentConstraints, this only + // only handles nullptr -> _Bool due to needing an extra conversion + // step. + // We model this by converting from nullptr -> void * and then let the + // conversion from void * -> _Bool happen naturally. + if (Diagnose || ConvertRHS) { + CastKind Kind; + CXXCastPath Path; + CheckPointerConversion(RHS.get(), Context.VoidPtrTy, Kind, Path, + /*IgnoreBaseAccess=*/false, Diagnose); + if (ConvertRHS) + RHS = ImpCastExprToType(RHS.get(), Context.VoidPtrTy, Kind, VK_PRValue, + &Path); + } + } + + // OpenCL queue_t type assignment. + if (LHSType->isQueueT() && RHS.get()->isNullPointerConstant( + Context, Expr::NPC_ValueDependentIsNull)) { + RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer); + return Compatible; + } + + CastKind Kind; + Sema::AssignConvertType result = + CheckAssignmentConstraints(LHSType, RHS, Kind, ConvertRHS); + + // C99 6.5.16.1p2: The value of the right operand is converted to the + // type of the assignment expression. + // CheckAssignmentConstraints allows the left-hand side to be a reference, + // so that we can use references in built-in functions even in C. + // The getNonReferenceType() call makes sure that the resulting expression + // does not have reference type. + if (result != Incompatible && RHS.get()->getType() != LHSType) { + QualType Ty = LHSType.getNonLValueExprType(Context); + Expr *E = RHS.get(); + + // Check for various Objective-C errors. If we are not reporting + // diagnostics and just checking for errors, e.g., during overload + // resolution, return Incompatible to indicate the failure. + if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() && + CheckObjCConversion(SourceRange(), Ty, E, CCK_ImplicitConversion, + Diagnose, DiagnoseCFAudited) != ACR_okay) { + if (!Diagnose) + return Incompatible; + } + if (getLangOpts().ObjC && + (CheckObjCBridgeRelatedConversions(E->getBeginLoc(), LHSType, + E->getType(), E, Diagnose) || + CheckConversionToObjCLiteral(LHSType, E, Diagnose))) { + if (!Diagnose) + return Incompatible; + // Replace the expression with a corrected version and continue so we + // can find further errors. + RHS = E; + return Compatible; + } + + if (ConvertRHS) + RHS = ImpCastExprToType(E, Ty, Kind); + } + + return result; + } + + namespace { + /// The original operand to an operator, prior to the application of the usual + /// arithmetic conversions and converting the arguments of a builtin operator + /// candidate. + struct OriginalOperand { + explicit OriginalOperand(Expr *Op) : Orig(Op), Conversion(nullptr) { + if (auto *MTE = dyn_cast(Op)) + Op = MTE->getSubExpr(); + if (auto *BTE = dyn_cast(Op)) + Op = BTE->getSubExpr(); + if (auto *ICE = dyn_cast(Op)) { + Orig = ICE->getSubExprAsWritten(); + Conversion = ICE->getConversionFunction(); + } + } + + QualType getType() const { return Orig->getType(); } + + Expr *Orig; + NamedDecl *Conversion; + }; + } + + QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS, + ExprResult &RHS) { + OriginalOperand OrigLHS(LHS.get()), OrigRHS(RHS.get()); + + Diag(Loc, diag::err_typecheck_invalid_operands) + << OrigLHS.getType() << OrigRHS.getType() + << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); + + // If a user-defined conversion was applied to either of the operands prior + // to applying the built-in operator rules, tell the user about it. + if (OrigLHS.Conversion) { + Diag(OrigLHS.Conversion->getLocation(), + diag::note_typecheck_invalid_operands_converted) + << 0 << LHS.get()->getType(); + } + if (OrigRHS.Conversion) { + Diag(OrigRHS.Conversion->getLocation(), + diag::note_typecheck_invalid_operands_converted) + << 1 << RHS.get()->getType(); + } + + return QualType(); + } + + // Diagnose cases where a scalar was implicitly converted to a vector and + // diagnose the underlying types. Otherwise, diagnose the error + // as invalid vector logical operands for non-C++ cases. + QualType Sema::InvalidLogicalVectorOperands(SourceLocation Loc, ExprResult &LHS, + ExprResult &RHS) { + QualType LHSType = LHS.get()->IgnoreImpCasts()->getType(); + QualType RHSType = RHS.get()->IgnoreImpCasts()->getType(); + + bool LHSNatVec = LHSType->isVectorType(); + bool RHSNatVec = RHSType->isVectorType(); + + if (!(LHSNatVec && RHSNatVec)) { + Expr *Vector = LHSNatVec ? LHS.get() : RHS.get(); + Expr *NonVector = !LHSNatVec ? LHS.get() : RHS.get(); + Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict) + << 0 << Vector->getType() << NonVector->IgnoreImpCasts()->getType() + << Vector->getSourceRange(); + return QualType(); + } + + Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict) + << 1 << LHSType << RHSType << LHS.get()->getSourceRange() + << RHS.get()->getSourceRange(); + + return QualType(); + } + + /// Try to convert a value of non-vector type to a vector type by converting + /// the type to the element type of the vector and then performing a splat. + /// If the language is OpenCL, we only use conversions that promote scalar + /// rank; for C, Obj-C, and C++ we allow any real scalar conversion except + /// for float->int. + /// + /// OpenCL V2.0 6.2.6.p2: + /// An error shall occur if any scalar operand type has greater rank + /// than the type of the vector element. + /// + /// \param scalar - if non-null, actually perform the conversions + /// \return true if the operation fails (but without diagnosing the failure) + static bool tryVectorConvertAndSplat(Sema &S, ExprResult *scalar, + QualType scalarTy, + QualType vectorEltTy, + QualType vectorTy, + unsigned &DiagID) { + // The conversion to apply to the scalar before splatting it, + // if necessary. + CastKind scalarCast = CK_NoOp; + + if (vectorEltTy->isIntegralType(S.Context)) { + if (S.getLangOpts().OpenCL && (scalarTy->isRealFloatingType() || + (scalarTy->isIntegerType() && + S.Context.getIntegerTypeOrder(vectorEltTy, scalarTy) < 0))) { + DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type; + return true; + } + if (!scalarTy->isIntegralType(S.Context)) + return true; + scalarCast = CK_IntegralCast; + } else if (vectorEltTy->isRealFloatingType()) { + if (scalarTy->isRealFloatingType()) { + if (S.getLangOpts().OpenCL && + S.Context.getFloatingTypeOrder(vectorEltTy, scalarTy) < 0) { + DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type; + return true; + } + scalarCast = CK_FloatingCast; + } + else if (scalarTy->isIntegralType(S.Context)) + scalarCast = CK_IntegralToFloating; + else + return true; + } else { + return true; + } + + // Adjust scalar if desired. + if (scalar) { + if (scalarCast != CK_NoOp) + *scalar = S.ImpCastExprToType(scalar->get(), vectorEltTy, scalarCast); + *scalar = S.ImpCastExprToType(scalar->get(), vectorTy, CK_VectorSplat); + } + return false; + } + + /// Convert vector E to a vector with the same number of elements but different + /// element type. + static ExprResult convertVector(Expr *E, QualType ElementType, Sema &S) { + const auto *VecTy = E->getType()->getAs(); + assert(VecTy && "Expression E must be a vector"); + QualType NewVecTy = + VecTy->isExtVectorType() + ? S.Context.getExtVectorType(ElementType, VecTy->getNumElements()) + : S.Context.getVectorType(ElementType, VecTy->getNumElements(), + VecTy->getVectorKind()); + + // Look through the implicit cast. Return the subexpression if its type is + // NewVecTy. + if (auto *ICE = dyn_cast(E)) + if (ICE->getSubExpr()->getType() == NewVecTy) + return ICE->getSubExpr(); + + auto Cast = ElementType->isIntegerType() ? CK_IntegralCast : CK_FloatingCast; + return S.ImpCastExprToType(E, NewVecTy, Cast); + } + + /// Test if a (constant) integer Int can be casted to another integer type + /// IntTy without losing precision. + static bool canConvertIntToOtherIntTy(Sema &S, ExprResult *Int, + QualType OtherIntTy) { + QualType IntTy = Int->get()->getType().getUnqualifiedType(); + + // Reject cases where the value of the Int is unknown as that would + // possibly cause truncation, but accept cases where the scalar can be + // demoted without loss of precision. + Expr::EvalResult EVResult; + bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context); + int Order = S.Context.getIntegerTypeOrder(OtherIntTy, IntTy); + bool IntSigned = IntTy->hasSignedIntegerRepresentation(); + bool OtherIntSigned = OtherIntTy->hasSignedIntegerRepresentation(); + + if (CstInt) { + // If the scalar is constant and is of a higher order and has more active + // bits that the vector element type, reject it. + llvm::APSInt Result = EVResult.Val.getInt(); + unsigned NumBits = IntSigned + ? (Result.isNegative() ? Result.getSignificantBits() + : Result.getActiveBits()) + : Result.getActiveBits(); + if (Order < 0 && S.Context.getIntWidth(OtherIntTy) < NumBits) + return true; + + // If the signedness of the scalar type and the vector element type + // differs and the number of bits is greater than that of the vector + // element reject it. + return (IntSigned != OtherIntSigned && + NumBits > S.Context.getIntWidth(OtherIntTy)); + } + + // Reject cases where the value of the scalar is not constant and it's + // order is greater than that of the vector element type. + return (Order < 0); + } + + /// Test if a (constant) integer Int can be casted to floating point type + /// FloatTy without losing precision. + static bool canConvertIntTyToFloatTy(Sema &S, ExprResult *Int, + QualType FloatTy) { + QualType IntTy = Int->get()->getType().getUnqualifiedType(); + + // Determine if the integer constant can be expressed as a floating point + // number of the appropriate type. + Expr::EvalResult EVResult; + bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context); + + uint64_t Bits = 0; + if (CstInt) { + // Reject constants that would be truncated if they were converted to + // the floating point type. Test by simple to/from conversion. + // FIXME: Ideally the conversion to an APFloat and from an APFloat + // could be avoided if there was a convertFromAPInt method + // which could signal back if implicit truncation occurred. + llvm::APSInt Result = EVResult.Val.getInt(); + llvm::APFloat Float(S.Context.getFloatTypeSemantics(FloatTy)); + Float.convertFromAPInt(Result, IntTy->hasSignedIntegerRepresentation(), + llvm::APFloat::rmTowardZero); + llvm::APSInt ConvertBack(S.Context.getIntWidth(IntTy), + !IntTy->hasSignedIntegerRepresentation()); + bool Ignored = false; + Float.convertToInteger(ConvertBack, llvm::APFloat::rmNearestTiesToEven, + &Ignored); + if (Result != ConvertBack) + return true; + } else { + // Reject types that cannot be fully encoded into the mantissa of + // the float. + Bits = S.Context.getTypeSize(IntTy); + unsigned FloatPrec = llvm::APFloat::semanticsPrecision( + S.Context.getFloatTypeSemantics(FloatTy)); + if (Bits > FloatPrec) + return true; + } + + return false; + } + + /// Attempt to convert and splat Scalar into a vector whose types matches + /// Vector following GCC conversion rules. The rule is that implicit + /// conversion can occur when Scalar can be casted to match Vector's element + /// type without causing truncation of Scalar. + static bool tryGCCVectorConvertAndSplat(Sema &S, ExprResult *Scalar, + ExprResult *Vector) { + QualType ScalarTy = Scalar->get()->getType().getUnqualifiedType(); + QualType VectorTy = Vector->get()->getType().getUnqualifiedType(); + QualType VectorEltTy; + + if (const auto *VT = VectorTy->getAs()) { + assert(!isa(VT) && + "ExtVectorTypes should not be handled here!"); + VectorEltTy = VT->getElementType(); + } else if (VectorTy->isVLSTBuiltinType()) { + VectorEltTy = + VectorTy->castAs()->getSveEltType(S.getASTContext()); + } else { + llvm_unreachable("Only Fixed-Length and SVE Vector types are handled here"); + } + + // Reject cases where the vector element type or the scalar element type are + // not integral or floating point types. + if (!VectorEltTy->isArithmeticType() || !ScalarTy->isArithmeticType()) + return true; + + // The conversion to apply to the scalar before splatting it, + // if necessary. + CastKind ScalarCast = CK_NoOp; + + // Accept cases where the vector elements are integers and the scalar is + // an integer. + // FIXME: Notionally if the scalar was a floating point value with a precise + // integral representation, we could cast it to an appropriate integer + // type and then perform the rest of the checks here. GCC will perform + // this conversion in some cases as determined by the input language. + // We should accept it on a language independent basis. + if (VectorEltTy->isIntegralType(S.Context) && + ScalarTy->isIntegralType(S.Context) && + S.Context.getIntegerTypeOrder(VectorEltTy, ScalarTy)) { + + if (canConvertIntToOtherIntTy(S, Scalar, VectorEltTy)) + return true; + + ScalarCast = CK_IntegralCast; + } else if (VectorEltTy->isIntegralType(S.Context) && + ScalarTy->isRealFloatingType()) { + if (S.Context.getTypeSize(VectorEltTy) == S.Context.getTypeSize(ScalarTy)) + ScalarCast = CK_FloatingToIntegral; + else + return true; + } else if (VectorEltTy->isRealFloatingType()) { + if (ScalarTy->isRealFloatingType()) { + + // Reject cases where the scalar type is not a constant and has a higher + // Order than the vector element type. + llvm::APFloat Result(0.0); + + // Determine whether this is a constant scalar. In the event that the + // value is dependent (and thus cannot be evaluated by the constant + // evaluator), skip the evaluation. This will then diagnose once the + // expression is instantiated. + bool CstScalar = Scalar->get()->isValueDependent() || + Scalar->get()->EvaluateAsFloat(Result, S.Context); + int Order = S.Context.getFloatingTypeOrder(VectorEltTy, ScalarTy); + if (!CstScalar && Order < 0) + return true; + + // If the scalar cannot be safely casted to the vector element type, + // reject it. + if (CstScalar) { + bool Truncated = false; + Result.convert(S.Context.getFloatTypeSemantics(VectorEltTy), + llvm::APFloat::rmNearestTiesToEven, &Truncated); + if (Truncated) + return true; + } + + ScalarCast = CK_FloatingCast; + } else if (ScalarTy->isIntegralType(S.Context)) { + if (canConvertIntTyToFloatTy(S, Scalar, VectorEltTy)) + return true; + + ScalarCast = CK_IntegralToFloating; + } else + return true; + } else if (ScalarTy->isEnumeralType()) + return true; + + // Adjust scalar if desired. + if (Scalar) { + if (ScalarCast != CK_NoOp) + *Scalar = S.ImpCastExprToType(Scalar->get(), VectorEltTy, ScalarCast); + *Scalar = S.ImpCastExprToType(Scalar->get(), VectorTy, CK_VectorSplat); + } + return false; + } + + QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS, + SourceLocation Loc, bool IsCompAssign, + bool AllowBothBool, + bool AllowBoolConversions, + bool AllowBoolOperation, + bool ReportInvalid) { + if (!IsCompAssign) { + LHS = DefaultFunctionArrayLvalueConversion(LHS.get()); + if (LHS.isInvalid()) + return QualType(); + } + RHS = DefaultFunctionArrayLvalueConversion(RHS.get()); + if (RHS.isInvalid()) + return QualType(); + + // For conversion purposes, we ignore any qualifiers. + // For example, "const float" and "float" are equivalent. + QualType LHSType = LHS.get()->getType().getUnqualifiedType(); + QualType RHSType = RHS.get()->getType().getUnqualifiedType(); + + const VectorType *LHSVecType = LHSType->getAs(); + const VectorType *RHSVecType = RHSType->getAs(); + assert(LHSVecType || RHSVecType); + + // AltiVec-style "vector bool op vector bool" combinations are allowed + // for some operators but not others. + if (!AllowBothBool && + LHSVecType && LHSVecType->getVectorKind() == VectorType::AltiVecBool && + RHSVecType && RHSVecType->getVectorKind() == VectorType::AltiVecBool) + return ReportInvalid ? InvalidOperands(Loc, LHS, RHS) : QualType(); + + // This operation may not be performed on boolean vectors. + if (!AllowBoolOperation && + (LHSType->isExtVectorBoolType() || RHSType->isExtVectorBoolType())) + return ReportInvalid ? InvalidOperands(Loc, LHS, RHS) : QualType(); + + // If the vector types are identical, return. + if (Context.hasSameType(LHSType, RHSType)) + return Context.getCommonSugaredType(LHSType, RHSType); + + // If we have compatible AltiVec and GCC vector types, use the AltiVec type. + if (LHSVecType && RHSVecType && + Context.areCompatibleVectorTypes(LHSType, RHSType)) { + if (isa(LHSVecType)) { + RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast); + return LHSType; + } + + if (!IsCompAssign) + LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast); + return RHSType; + } + + // AllowBoolConversions says that bool and non-bool AltiVec vectors + // can be mixed, with the result being the non-bool type. The non-bool + // operand must have integer element type. + if (AllowBoolConversions && LHSVecType && RHSVecType && + LHSVecType->getNumElements() == RHSVecType->getNumElements() && + (Context.getTypeSize(LHSVecType->getElementType()) == + Context.getTypeSize(RHSVecType->getElementType()))) { + if (LHSVecType->getVectorKind() == VectorType::AltiVecVector && + LHSVecType->getElementType()->isIntegerType() && + RHSVecType->getVectorKind() == VectorType::AltiVecBool) { + RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast); + return LHSType; + } + if (!IsCompAssign && + LHSVecType->getVectorKind() == VectorType::AltiVecBool && + RHSVecType->getVectorKind() == VectorType::AltiVecVector && + RHSVecType->getElementType()->isIntegerType()) { + LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast); + return RHSType; + } + } + + // Expressions containing fixed-length and sizeless SVE/RVV vectors are + // invalid since the ambiguity can affect the ABI. + auto IsSveRVVConversion = [](QualType FirstType, QualType SecondType, + unsigned &SVEorRVV) { + const VectorType *VecType = SecondType->getAs(); + SVEorRVV = 0; + if (FirstType->isSizelessBuiltinType() && VecType) { + if (VecType->getVectorKind() == VectorType::SveFixedLengthDataVector || + VecType->getVectorKind() == VectorType::SveFixedLengthPredicateVector) + return true; + if (VecType->getVectorKind() == VectorType::RVVFixedLengthDataVector) { + SVEorRVV = 1; + return true; + } + } + + return false; + }; + + unsigned SVEorRVV; + if (IsSveRVVConversion(LHSType, RHSType, SVEorRVV) || + IsSveRVVConversion(RHSType, LHSType, SVEorRVV)) { + Diag(Loc, diag::err_typecheck_sve_rvv_ambiguous) + << SVEorRVV << LHSType << RHSType; + return QualType(); + } + + // Expressions containing GNU and SVE or RVV (fixed or sizeless) vectors are + // invalid since the ambiguity can affect the ABI. + auto IsSveRVVGnuConversion = [](QualType FirstType, QualType SecondType, + unsigned &SVEorRVV) { + const VectorType *FirstVecType = FirstType->getAs(); + const VectorType *SecondVecType = SecondType->getAs(); + + SVEorRVV = 0; + if (FirstVecType && SecondVecType) { + if (FirstVecType->getVectorKind() == VectorType::GenericVector) { + if (SecondVecType->getVectorKind() == + VectorType::SveFixedLengthDataVector || + SecondVecType->getVectorKind() == + VectorType::SveFixedLengthPredicateVector) + return true; + if (SecondVecType->getVectorKind() == + VectorType::RVVFixedLengthDataVector) { + SVEorRVV = 1; + return true; + } + } + return false; + } + + if (SecondVecType && + SecondVecType->getVectorKind() == VectorType::GenericVector) { + if (FirstType->isSVESizelessBuiltinType()) + return true; + if (FirstType->isRVVSizelessBuiltinType()) { + SVEorRVV = 1; + return true; + } + } + + return false; + }; + + if (IsSveRVVGnuConversion(LHSType, RHSType, SVEorRVV) || + IsSveRVVGnuConversion(RHSType, LHSType, SVEorRVV)) { + Diag(Loc, diag::err_typecheck_sve_rvv_gnu_ambiguous) + << SVEorRVV << LHSType << RHSType; + return QualType(); + } + + // If there's a vector type and a scalar, try to convert the scalar to + // the vector element type and splat. + unsigned DiagID = diag::err_typecheck_vector_not_convertable; + if (!RHSVecType) { + if (isa(LHSVecType)) { + if (!tryVectorConvertAndSplat(*this, &RHS, RHSType, + LHSVecType->getElementType(), LHSType, + DiagID)) + return LHSType; + } else { + if (!tryGCCVectorConvertAndSplat(*this, &RHS, &LHS)) + return LHSType; + } + } + if (!LHSVecType) { + if (isa(RHSVecType)) { + if (!tryVectorConvertAndSplat(*this, (IsCompAssign ? nullptr : &LHS), + LHSType, RHSVecType->getElementType(), + RHSType, DiagID)) + return RHSType; + } else { + if (LHS.get()->isLValue() || + !tryGCCVectorConvertAndSplat(*this, &LHS, &RHS)) + return RHSType; + } + } + + // FIXME: The code below also handles conversion between vectors and + // non-scalars, we should break this down into fine grained specific checks + // and emit proper diagnostics. + QualType VecType = LHSVecType ? LHSType : RHSType; + const VectorType *VT = LHSVecType ? LHSVecType : RHSVecType; + QualType OtherType = LHSVecType ? RHSType : LHSType; + ExprResult *OtherExpr = LHSVecType ? &RHS : &LHS; + if (isLaxVectorConversion(OtherType, VecType)) { + if (Context.getTargetInfo().getTriple().isPPC() && + anyAltivecTypes(RHSType, LHSType) && + !Context.areCompatibleVectorTypes(RHSType, LHSType)) + Diag(Loc, diag::warn_deprecated_lax_vec_conv_all) << RHSType << LHSType; + // If we're allowing lax vector conversions, only the total (data) size + // needs to be the same. For non compound assignment, if one of the types is + // scalar, the result is always the vector type. + if (!IsCompAssign) { + *OtherExpr = ImpCastExprToType(OtherExpr->get(), VecType, CK_BitCast); + return VecType; + // In a compound assignment, lhs += rhs, 'lhs' is a lvalue src, forbidding + // any implicit cast. Here, the 'rhs' should be implicit casted to 'lhs' + // type. Note that this is already done by non-compound assignments in + // CheckAssignmentConstraints. If it's a scalar type, only bitcast for + // <1 x T> -> T. The result is also a vector type. + } else if (OtherType->isExtVectorType() || OtherType->isVectorType() || + (OtherType->isScalarType() && VT->getNumElements() == 1)) { + ExprResult *RHSExpr = &RHS; + *RHSExpr = ImpCastExprToType(RHSExpr->get(), LHSType, CK_BitCast); + return VecType; + } + } + + // Okay, the expression is invalid. + + // If there's a non-vector, non-real operand, diagnose that. + if ((!RHSVecType && !RHSType->isRealType()) || + (!LHSVecType && !LHSType->isRealType())) { + Diag(Loc, diag::err_typecheck_vector_not_convertable_non_scalar) + << LHSType << RHSType + << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); + return QualType(); + } + + // OpenCL V1.1 6.2.6.p1: + // If the operands are of more than one vector type, then an error shall + // occur. Implicit conversions between vector types are not permitted, per + // section 6.2.1. + if (getLangOpts().OpenCL && + RHSVecType && isa(RHSVecType) && + LHSVecType && isa(LHSVecType)) { + Diag(Loc, diag::err_opencl_implicit_vector_conversion) << LHSType + << RHSType; + return QualType(); + } + + + // If there is a vector type that is not a ExtVector and a scalar, we reach + // this point if scalar could not be converted to the vector's element type + // without truncation. + if ((RHSVecType && !isa(RHSVecType)) || + (LHSVecType && !isa(LHSVecType))) { + QualType Scalar = LHSVecType ? RHSType : LHSType; + QualType Vector = LHSVecType ? LHSType : RHSType; + unsigned ScalarOrVector = LHSVecType && RHSVecType ? 1 : 0; + Diag(Loc, + diag::err_typecheck_vector_not_convertable_implict_truncation) + << ScalarOrVector << Scalar << Vector; + + return QualType(); + } + + // Otherwise, use the generic diagnostic. + Diag(Loc, DiagID) + << LHSType << RHSType + << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); + return QualType(); + } + + QualType Sema::CheckSizelessVectorOperands(ExprResult &LHS, ExprResult &RHS, + SourceLocation Loc, + bool IsCompAssign, + ArithConvKind OperationKind) { + if (!IsCompAssign) { + LHS = DefaultFunctionArrayLvalueConversion(LHS.get()); + if (LHS.isInvalid()) + return QualType(); + } + RHS = DefaultFunctionArrayLvalueConversion(RHS.get()); + if (RHS.isInvalid()) + return QualType(); + + QualType LHSType = LHS.get()->getType().getUnqualifiedType(); + QualType RHSType = RHS.get()->getType().getUnqualifiedType(); + + const BuiltinType *LHSBuiltinTy = LHSType->getAs(); + const BuiltinType *RHSBuiltinTy = RHSType->getAs(); + + unsigned DiagID = diag::err_typecheck_invalid_operands; + if ((OperationKind == ACK_Arithmetic) && + ((LHSBuiltinTy && LHSBuiltinTy->isSVEBool()) || + (RHSBuiltinTy && RHSBuiltinTy->isSVEBool()))) { + Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange() + << RHS.get()->getSourceRange(); + return QualType(); + } + + if (Context.hasSameType(LHSType, RHSType)) + return LHSType; + + if (LHSType->isVLSTBuiltinType() && !RHSType->isVLSTBuiltinType()) { + if (!tryGCCVectorConvertAndSplat(*this, &RHS, &LHS)) + return LHSType; + } + if (RHSType->isVLSTBuiltinType() && !LHSType->isVLSTBuiltinType()) { + if (LHS.get()->isLValue() || + !tryGCCVectorConvertAndSplat(*this, &LHS, &RHS)) + return RHSType; + } + + if ((!LHSType->isVLSTBuiltinType() && !LHSType->isRealType()) || + (!RHSType->isVLSTBuiltinType() && !RHSType->isRealType())) { + Diag(Loc, diag::err_typecheck_vector_not_convertable_non_scalar) + << LHSType << RHSType << LHS.get()->getSourceRange() + << RHS.get()->getSourceRange(); + return QualType(); + } + + if (LHSType->isVLSTBuiltinType() && RHSType->isVLSTBuiltinType() && + Context.getBuiltinVectorTypeInfo(LHSBuiltinTy).EC != + Context.getBuiltinVectorTypeInfo(RHSBuiltinTy).EC) { + Diag(Loc, diag::err_typecheck_vector_lengths_not_equal) + << LHSType << RHSType << LHS.get()->getSourceRange() + << RHS.get()->getSourceRange(); + return QualType(); + } + + if (LHSType->isVLSTBuiltinType() || RHSType->isVLSTBuiltinType()) { + QualType Scalar = LHSType->isVLSTBuiltinType() ? RHSType : LHSType; + QualType Vector = LHSType->isVLSTBuiltinType() ? LHSType : RHSType; + bool ScalarOrVector = + LHSType->isVLSTBuiltinType() && RHSType->isVLSTBuiltinType(); + + Diag(Loc, diag::err_typecheck_vector_not_convertable_implict_truncation) + << ScalarOrVector << Scalar << Vector; + + return QualType(); + } + + Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange() + << RHS.get()->getSourceRange(); + return QualType(); + } + + // checkArithmeticNull - Detect when a NULL constant is used improperly in an + // expression. These are mainly cases where the null pointer is used as an + // integer instead of a pointer. + static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS, + SourceLocation Loc, bool IsCompare) { + // The canonical way to check for a GNU null is with isNullPointerConstant, + // but we use a bit of a hack here for speed; this is a relatively + // hot path, and isNullPointerConstant is slow. + bool LHSNull = isa(LHS.get()->IgnoreParenImpCasts()); + bool RHSNull = isa(RHS.get()->IgnoreParenImpCasts()); + + QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType(); + + // Avoid analyzing cases where the result will either be invalid (and + // diagnosed as such) or entirely valid and not something to warn about. + if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() || + NonNullType->isMemberPointerType() || NonNullType->isFunctionType()) + return; + + // Comparison operations would not make sense with a null pointer no matter + // what the other expression is. + if (!IsCompare) { + S.Diag(Loc, diag::warn_null_in_arithmetic_operation) + << (LHSNull ? LHS.get()->getSourceRange() : SourceRange()) + << (RHSNull ? RHS.get()->getSourceRange() : SourceRange()); + return; + } + + // The rest of the operations only make sense with a null pointer + // if the other expression is a pointer. + if (LHSNull == RHSNull || NonNullType->isAnyPointerType() || + NonNullType->canDecayToPointerType()) + return; + + S.Diag(Loc, diag::warn_null_in_comparison_operation) + << LHSNull /* LHS is NULL */ << NonNullType + << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); + } + + static void DiagnoseDivisionSizeofPointerOrArray(Sema &S, Expr *LHS, Expr *RHS, + SourceLocation Loc) { + const auto *LUE = dyn_cast(LHS); + const auto *RUE = dyn_cast(RHS); + if (!LUE || !RUE) + return; + if (LUE->getKind() != UETT_SizeOf || LUE->isArgumentType() || + RUE->getKind() != UETT_SizeOf) + return; + + const Expr *LHSArg = LUE->getArgumentExpr()->IgnoreParens(); + QualType LHSTy = LHSArg->getType(); + QualType RHSTy; + + if (RUE->isArgumentType()) + RHSTy = RUE->getArgumentType().getNonReferenceType(); + else + RHSTy = RUE->getArgumentExpr()->IgnoreParens()->getType(); + + if (LHSTy->isPointerType() && !RHSTy->isPointerType()) { + if (!S.Context.hasSameUnqualifiedType(LHSTy->getPointeeType(), RHSTy)) + return; + + S.Diag(Loc, diag::warn_division_sizeof_ptr) << LHS << LHS->getSourceRange(); + if (const auto *DRE = dyn_cast(LHSArg)) { + if (const ValueDecl *LHSArgDecl = DRE->getDecl()) + S.Diag(LHSArgDecl->getLocation(), diag::note_pointer_declared_here) + << LHSArgDecl; + } + } else if (const auto *ArrayTy = S.Context.getAsArrayType(LHSTy)) { + QualType ArrayElemTy = ArrayTy->getElementType(); + if (ArrayElemTy != S.Context.getBaseElementType(ArrayTy) || + ArrayElemTy->isDependentType() || RHSTy->isDependentType() || + RHSTy->isReferenceType() || ArrayElemTy->isCharType() || + S.Context.getTypeSize(ArrayElemTy) == S.Context.getTypeSize(RHSTy)) + return; + S.Diag(Loc, diag::warn_division_sizeof_array) + << LHSArg->getSourceRange() << ArrayElemTy << RHSTy; + if (const auto *DRE = dyn_cast(LHSArg)) { + if (const ValueDecl *LHSArgDecl = DRE->getDecl()) + S.Diag(LHSArgDecl->getLocation(), diag::note_array_declared_here) + << LHSArgDecl; + } + + S.Diag(Loc, diag::note_precedence_silence) << RHS; + } + } + + static void DiagnoseBadDivideOrRemainderValues(Sema& S, ExprResult &LHS, + ExprResult &RHS, + SourceLocation Loc, bool IsDiv) { + // Check for division/remainder by zero. + Expr::EvalResult RHSValue; + if (!RHS.get()->isValueDependent() && + RHS.get()->EvaluateAsInt(RHSValue, S.Context) && + RHSValue.Val.getInt() == 0) + S.DiagRuntimeBehavior(Loc, RHS.get(), + S.PDiag(diag::warn_remainder_division_by_zero) + << IsDiv << RHS.get()->getSourceRange()); + } + + QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS, + SourceLocation Loc, + bool IsCompAssign, bool IsDiv) { + checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false); + + QualType LHSTy = LHS.get()->getType(); + QualType RHSTy = RHS.get()->getType(); + if (LHSTy->isVectorType() || RHSTy->isVectorType()) + return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign, + /*AllowBothBool*/ getLangOpts().AltiVec, + /*AllowBoolConversions*/ false, + /*AllowBooleanOperation*/ false, + /*ReportInvalid*/ true); + if (LHSTy->isVLSTBuiltinType() || RHSTy->isVLSTBuiltinType()) + return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign, + ACK_Arithmetic); + if (!IsDiv && + (LHSTy->isConstantMatrixType() || RHSTy->isConstantMatrixType())) + return CheckMatrixMultiplyOperands(LHS, RHS, Loc, IsCompAssign); + // For division, only matrix-by-scalar is supported. Other combinations with + // matrix types are invalid. + if (IsDiv && LHSTy->isConstantMatrixType() && RHSTy->isArithmeticType()) + return CheckMatrixElementwiseOperands(LHS, RHS, Loc, IsCompAssign); + + QualType compType = UsualArithmeticConversions( + LHS, RHS, Loc, IsCompAssign ? ACK_CompAssign : ACK_Arithmetic); + if (LHS.isInvalid() || RHS.isInvalid()) + return QualType(); + + + if (compType.isNull() || !compType->isArithmeticType()) + return InvalidOperands(Loc, LHS, RHS); + if (IsDiv) { + DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, IsDiv); + DiagnoseDivisionSizeofPointerOrArray(*this, LHS.get(), RHS.get(), Loc); + } + return compType; + } + + QualType Sema::CheckRemainderOperands( + ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) { + checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false); + + if (LHS.get()->getType()->isVectorType() || + RHS.get()->getType()->isVectorType()) { + if (LHS.get()->getType()->hasIntegerRepresentation() && + RHS.get()->getType()->hasIntegerRepresentation()) + return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign, + /*AllowBothBool*/ getLangOpts().AltiVec, + /*AllowBoolConversions*/ false, + /*AllowBooleanOperation*/ false, + /*ReportInvalid*/ true); + return InvalidOperands(Loc, LHS, RHS); + } + + if (LHS.get()->getType()->isVLSTBuiltinType() || + RHS.get()->getType()->isVLSTBuiltinType()) { + if (LHS.get()->getType()->hasIntegerRepresentation() && + RHS.get()->getType()->hasIntegerRepresentation()) + return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign, + ACK_Arithmetic); + + return InvalidOperands(Loc, LHS, RHS); + } + + QualType compType = UsualArithmeticConversions( + LHS, RHS, Loc, IsCompAssign ? ACK_CompAssign : ACK_Arithmetic); + if (LHS.isInvalid() || RHS.isInvalid()) + return QualType(); + + if (compType.isNull() || !compType->isIntegerType()) + return InvalidOperands(Loc, LHS, RHS); + DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, false /* IsDiv */); + return compType; + } + + /// Diagnose invalid arithmetic on two void pointers. + static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc, + Expr *LHSExpr, Expr *RHSExpr) { + S.Diag(Loc, S.getLangOpts().CPlusPlus + ? diag::err_typecheck_pointer_arith_void_type + : diag::ext_gnu_void_ptr) + << 1 /* two pointers */ << LHSExpr->getSourceRange() + << RHSExpr->getSourceRange(); + } + + /// Diagnose invalid arithmetic on a void pointer. + static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc, + Expr *Pointer) { + S.Diag(Loc, S.getLangOpts().CPlusPlus + ? diag::err_typecheck_pointer_arith_void_type + : diag::ext_gnu_void_ptr) + << 0 /* one pointer */ << Pointer->getSourceRange(); + } + + /// Diagnose invalid arithmetic on a null pointer. + /// + /// If \p IsGNUIdiom is true, the operation is using the 'p = (i8*)nullptr + n' + /// idiom, which we recognize as a GNU extension. + /// + static void diagnoseArithmeticOnNullPointer(Sema &S, SourceLocation Loc, + Expr *Pointer, bool IsGNUIdiom) { + if (IsGNUIdiom) + S.Diag(Loc, diag::warn_gnu_null_ptr_arith) + << Pointer->getSourceRange(); + else + S.Diag(Loc, diag::warn_pointer_arith_null_ptr) + << S.getLangOpts().CPlusPlus << Pointer->getSourceRange(); + } + + /// Diagnose invalid subraction on a null pointer. + /// + static void diagnoseSubtractionOnNullPointer(Sema &S, SourceLocation Loc, + Expr *Pointer, bool BothNull) { + // Null - null is valid in C++ [expr.add]p7 + if (BothNull && S.getLangOpts().CPlusPlus) + return; + + // Is this s a macro from a system header? + if (S.Diags.getSuppressSystemWarnings() && S.SourceMgr.isInSystemMacro(Loc)) + return; + + S.DiagRuntimeBehavior(Loc, Pointer, + S.PDiag(diag::warn_pointer_sub_null_ptr) + << S.getLangOpts().CPlusPlus + << Pointer->getSourceRange()); + } + + /// Diagnose invalid arithmetic on two function pointers. + static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc, + Expr *LHS, Expr *RHS) { + assert(LHS->getType()->isAnyPointerType()); + assert(RHS->getType()->isAnyPointerType()); + S.Diag(Loc, S.getLangOpts().CPlusPlus + ? diag::err_typecheck_pointer_arith_function_type + : diag::ext_gnu_ptr_func_arith) + << 1 /* two pointers */ << LHS->getType()->getPointeeType() + // We only show the second type if it differs from the first. + << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(), + RHS->getType()) + << RHS->getType()->getPointeeType() + << LHS->getSourceRange() << RHS->getSourceRange(); + } + + /// Diagnose invalid arithmetic on a function pointer. + static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc, + Expr *Pointer) { + assert(Pointer->getType()->isAnyPointerType()); + S.Diag(Loc, S.getLangOpts().CPlusPlus + ? diag::err_typecheck_pointer_arith_function_type + : diag::ext_gnu_ptr_func_arith) + << 0 /* one pointer */ << Pointer->getType()->getPointeeType() + << 0 /* one pointer, so only one type */ + << Pointer->getSourceRange(); + } + + /// Emit error if Operand is incomplete pointer type + /// + /// \returns True if pointer has incomplete type + static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc, + Expr *Operand) { + QualType ResType = Operand->getType(); + if (const AtomicType *ResAtomicType = ResType->getAs()) + ResType = ResAtomicType->getValueType(); + + assert(ResType->isAnyPointerType() && !ResType->isDependentType()); + QualType PointeeTy = ResType->getPointeeType(); + return S.RequireCompleteSizedType( + Loc, PointeeTy, + diag::err_typecheck_arithmetic_incomplete_or_sizeless_type, + Operand->getSourceRange()); + } + + /// Check the validity of an arithmetic pointer operand. + /// + /// If the operand has pointer type, this code will check for pointer types + /// which are invalid in arithmetic operations. These will be diagnosed + /// appropriately, including whether or not the use is supported as an + /// extension. + /// + /// \returns True when the operand is valid to use (even if as an extension). + static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc, + Expr *Operand) { + QualType ResType = Operand->getType(); + if (const AtomicType *ResAtomicType = ResType->getAs()) + ResType = ResAtomicType->getValueType(); + + if (!ResType->isAnyPointerType()) return true; + + QualType PointeeTy = ResType->getPointeeType(); + if (PointeeTy->isVoidType()) { + diagnoseArithmeticOnVoidPointer(S, Loc, Operand); + return !S.getLangOpts().CPlusPlus; + } + if (PointeeTy->isFunctionType()) { + diagnoseArithmeticOnFunctionPointer(S, Loc, Operand); + return !S.getLangOpts().CPlusPlus; + } + + if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false; + + return true; + } + + /// Check the validity of a binary arithmetic operation w.r.t. pointer + /// operands. + /// + /// This routine will diagnose any invalid arithmetic on pointer operands much + /// like \see checkArithmeticOpPointerOperand. However, it has special logic + /// for emitting a single diagnostic even for operations where both LHS and RHS + /// are (potentially problematic) pointers. + /// + /// \returns True when the operand is valid to use (even if as an extension). + static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc, + Expr *LHSExpr, Expr *RHSExpr) { + bool isLHSPointer = LHSExpr->getType()->isAnyPointerType(); + bool isRHSPointer = RHSExpr->getType()->isAnyPointerType(); + if (!isLHSPointer && !isRHSPointer) return true; + + QualType LHSPointeeTy, RHSPointeeTy; + if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType(); + if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType(); + + // if both are pointers check if operation is valid wrt address spaces + if (isLHSPointer && isRHSPointer) { + if (!LHSPointeeTy.isAddressSpaceOverlapping(RHSPointeeTy)) { + S.Diag(Loc, + diag::err_typecheck_op_on_nonoverlapping_address_space_pointers) + << LHSExpr->getType() << RHSExpr->getType() << 1 /*arithmetic op*/ + << LHSExpr->getSourceRange() << RHSExpr->getSourceRange(); + return false; + } + } + + // Check for arithmetic on pointers to incomplete types. + bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType(); + bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType(); + if (isLHSVoidPtr || isRHSVoidPtr) { + if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr); + else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr); + else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr); + + return !S.getLangOpts().CPlusPlus; + } + + bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType(); + bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType(); + if (isLHSFuncPtr || isRHSFuncPtr) { + if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr); + else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, + RHSExpr); + else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr); + + return !S.getLangOpts().CPlusPlus; + } + + if (isLHSPointer && checkArithmeticIncompletePointerType(S, Loc, LHSExpr)) + return false; + if (isRHSPointer && checkArithmeticIncompletePointerType(S, Loc, RHSExpr)) + return false; + + return true; + } + + /// diagnoseStringPlusInt - Emit a warning when adding an integer to a string + /// literal. + static void diagnoseStringPlusInt(Sema &Self, SourceLocation OpLoc, + Expr *LHSExpr, Expr *RHSExpr) { + StringLiteral* StrExpr = dyn_cast(LHSExpr->IgnoreImpCasts()); + Expr* IndexExpr = RHSExpr; + if (!StrExpr) { + StrExpr = dyn_cast(RHSExpr->IgnoreImpCasts()); + IndexExpr = LHSExpr; + } + + bool IsStringPlusInt = StrExpr && + IndexExpr->getType()->isIntegralOrUnscopedEnumerationType(); + if (!IsStringPlusInt || IndexExpr->isValueDependent()) + return; + + SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc()); + Self.Diag(OpLoc, diag::warn_string_plus_int) + << DiagRange << IndexExpr->IgnoreImpCasts()->getType(); + + // Only print a fixit for "str" + int, not for int + "str". + if (IndexExpr == RHSExpr) { + SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc()); + Self.Diag(OpLoc, diag::note_string_plus_scalar_silence) + << FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&") + << FixItHint::CreateReplacement(SourceRange(OpLoc), "[") + << FixItHint::CreateInsertion(EndLoc, "]"); + } else + Self.Diag(OpLoc, diag::note_string_plus_scalar_silence); + } + + /// Emit a warning when adding a char literal to a string. + static void diagnoseStringPlusChar(Sema &Self, SourceLocation OpLoc, + Expr *LHSExpr, Expr *RHSExpr) { + const Expr *StringRefExpr = LHSExpr; + const CharacterLiteral *CharExpr = + dyn_cast(RHSExpr->IgnoreImpCasts()); + + if (!CharExpr) { + CharExpr = dyn_cast(LHSExpr->IgnoreImpCasts()); + StringRefExpr = RHSExpr; + } + + if (!CharExpr || !StringRefExpr) + return; + + const QualType StringType = StringRefExpr->getType(); + + // Return if not a PointerType. + if (!StringType->isAnyPointerType()) + return; + + // Return if not a CharacterType. + if (!StringType->getPointeeType()->isAnyCharacterType()) + return; + + ASTContext &Ctx = Self.getASTContext(); + SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc()); + + const QualType CharType = CharExpr->getType(); + if (!CharType->isAnyCharacterType() && + CharType->isIntegerType() && + llvm::isUIntN(Ctx.getCharWidth(), CharExpr->getValue())) { + Self.Diag(OpLoc, diag::warn_string_plus_char) + << DiagRange << Ctx.CharTy; + } else { + Self.Diag(OpLoc, diag::warn_string_plus_char) + << DiagRange << CharExpr->getType(); + } + + // Only print a fixit for str + char, not for char + str. + if (isa(RHSExpr->IgnoreImpCasts())) { + SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc()); + Self.Diag(OpLoc, diag::note_string_plus_scalar_silence) + << FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&") + << FixItHint::CreateReplacement(SourceRange(OpLoc), "[") + << FixItHint::CreateInsertion(EndLoc, "]"); + } else { + Self.Diag(OpLoc, diag::note_string_plus_scalar_silence); + } + } + + /// Emit error when two pointers are incompatible. + static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc, + Expr *LHSExpr, Expr *RHSExpr) { + assert(LHSExpr->getType()->isAnyPointerType()); + assert(RHSExpr->getType()->isAnyPointerType()); + S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible) + << LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange() + << RHSExpr->getSourceRange(); + } + + // C99 6.5.6 + QualType Sema::CheckAdditionOperands(ExprResult &LHS, ExprResult &RHS, + SourceLocation Loc, BinaryOperatorKind Opc, + QualType* CompLHSTy) { + checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false); + + if (LHS.get()->getType()->isVectorType() || + RHS.get()->getType()->isVectorType()) { + QualType compType = + CheckVectorOperands(LHS, RHS, Loc, CompLHSTy, + /*AllowBothBool*/ getLangOpts().AltiVec, + /*AllowBoolConversions*/ getLangOpts().ZVector, + /*AllowBooleanOperation*/ false, + /*ReportInvalid*/ true); + if (CompLHSTy) *CompLHSTy = compType; + return compType; + } + + if (LHS.get()->getType()->isVLSTBuiltinType() || + RHS.get()->getType()->isVLSTBuiltinType()) { + QualType compType = + CheckSizelessVectorOperands(LHS, RHS, Loc, CompLHSTy, ACK_Arithmetic); + if (CompLHSTy) + *CompLHSTy = compType; + return compType; + } + + if (LHS.get()->getType()->isConstantMatrixType() || + RHS.get()->getType()->isConstantMatrixType()) { + QualType compType = + CheckMatrixElementwiseOperands(LHS, RHS, Loc, CompLHSTy); + if (CompLHSTy) + *CompLHSTy = compType; + return compType; + } + + QualType compType = UsualArithmeticConversions( + LHS, RHS, Loc, CompLHSTy ? ACK_CompAssign : ACK_Arithmetic); + if (LHS.isInvalid() || RHS.isInvalid()) + return QualType(); + + // Diagnose "string literal" '+' int and string '+' "char literal". + if (Opc == BO_Add) { + diagnoseStringPlusInt(*this, Loc, LHS.get(), RHS.get()); + diagnoseStringPlusChar(*this, Loc, LHS.get(), RHS.get()); + } + + // handle the common case first (both operands are arithmetic). + if (!compType.isNull() && compType->isArithmeticType()) { + if (CompLHSTy) *CompLHSTy = compType; + return compType; + } + + // Type-checking. Ultimately the pointer's going to be in PExp; + // note that we bias towards the LHS being the pointer. + Expr *PExp = LHS.get(), *IExp = RHS.get(); + + bool isObjCPointer; + if (PExp->getType()->isPointerType()) { + isObjCPointer = false; + } else if (PExp->getType()->isObjCObjectPointerType()) { + isObjCPointer = true; + } else { + std::swap(PExp, IExp); + if (PExp->getType()->isPointerType()) { + isObjCPointer = false; + } else if (PExp->getType()->isObjCObjectPointerType()) { + isObjCPointer = true; + } else { + return InvalidOperands(Loc, LHS, RHS); + } + } + assert(PExp->getType()->isAnyPointerType()); + + if (!IExp->getType()->isIntegerType()) + return InvalidOperands(Loc, LHS, RHS); + + // Adding to a null pointer results in undefined behavior. + if (PExp->IgnoreParenCasts()->isNullPointerConstant( + Context, Expr::NPC_ValueDependentIsNotNull)) { + // In C++ adding zero to a null pointer is defined. + Expr::EvalResult KnownVal; + if (!getLangOpts().CPlusPlus || + (!IExp->isValueDependent() && + (!IExp->EvaluateAsInt(KnownVal, Context) || + KnownVal.Val.getInt() != 0))) { + // Check the conditions to see if this is the 'p = nullptr + n' idiom. + bool IsGNUIdiom = BinaryOperator::isNullPointerArithmeticExtension( + Context, BO_Add, PExp, IExp); + diagnoseArithmeticOnNullPointer(*this, Loc, PExp, IsGNUIdiom); + } + } + + if (!checkArithmeticOpPointerOperand(*this, Loc, PExp)) + return QualType(); + + if (isObjCPointer && checkArithmeticOnObjCPointer(*this, Loc, PExp)) + return QualType(); + + // Check array bounds for pointer arithemtic + CheckArrayAccess(PExp, IExp); + + if (CompLHSTy) { + QualType LHSTy = Context.isPromotableBitField(LHS.get()); + if (LHSTy.isNull()) { + LHSTy = LHS.get()->getType(); + if (Context.isPromotableIntegerType(LHSTy)) + LHSTy = Context.getPromotedIntegerType(LHSTy); + } + *CompLHSTy = LHSTy; + } + + return PExp->getType(); + } + + // C99 6.5.6 + QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS, + SourceLocation Loc, + QualType* CompLHSTy) { + checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false); + + if (LHS.get()->getType()->isVectorType() || + RHS.get()->getType()->isVectorType()) { + QualType compType = + CheckVectorOperands(LHS, RHS, Loc, CompLHSTy, + /*AllowBothBool*/ getLangOpts().AltiVec, + /*AllowBoolConversions*/ getLangOpts().ZVector, + /*AllowBooleanOperation*/ false, + /*ReportInvalid*/ true); + if (CompLHSTy) *CompLHSTy = compType; + return compType; + } + + if (LHS.get()->getType()->isVLSTBuiltinType() || + RHS.get()->getType()->isVLSTBuiltinType()) { + QualType compType = + CheckSizelessVectorOperands(LHS, RHS, Loc, CompLHSTy, ACK_Arithmetic); + if (CompLHSTy) + *CompLHSTy = compType; + return compType; + } + + if (LHS.get()->getType()->isConstantMatrixType() || + RHS.get()->getType()->isConstantMatrixType()) { + QualType compType = + CheckMatrixElementwiseOperands(LHS, RHS, Loc, CompLHSTy); + if (CompLHSTy) + *CompLHSTy = compType; + return compType; + } + + QualType compType = UsualArithmeticConversions( + LHS, RHS, Loc, CompLHSTy ? ACK_CompAssign : ACK_Arithmetic); + if (LHS.isInvalid() || RHS.isInvalid()) + return QualType(); + + // Enforce type constraints: C99 6.5.6p3. + + // Handle the common case first (both operands are arithmetic). + if (!compType.isNull() && compType->isArithmeticType()) { + if (CompLHSTy) *CompLHSTy = compType; + return compType; + } + + // Either ptr - int or ptr - ptr. + if (LHS.get()->getType()->isAnyPointerType()) { + QualType lpointee = LHS.get()->getType()->getPointeeType(); + + // Diagnose bad cases where we step over interface counts. + if (LHS.get()->getType()->isObjCObjectPointerType() && + checkArithmeticOnObjCPointer(*this, Loc, LHS.get())) + return QualType(); + + // The result type of a pointer-int computation is the pointer type. + if (RHS.get()->getType()->isIntegerType()) { + // Subtracting from a null pointer should produce a warning. + // The last argument to the diagnose call says this doesn't match the + // GNU int-to-pointer idiom. + if (LHS.get()->IgnoreParenCasts()->isNullPointerConstant(Context, + Expr::NPC_ValueDependentIsNotNull)) { + // In C++ adding zero to a null pointer is defined. + Expr::EvalResult KnownVal; + if (!getLangOpts().CPlusPlus || + (!RHS.get()->isValueDependent() && + (!RHS.get()->EvaluateAsInt(KnownVal, Context) || + KnownVal.Val.getInt() != 0))) { + diagnoseArithmeticOnNullPointer(*this, Loc, LHS.get(), false); + } + } + + if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get())) + return QualType(); + + // Check array bounds for pointer arithemtic + CheckArrayAccess(LHS.get(), RHS.get(), /*ArraySubscriptExpr*/nullptr, + /*AllowOnePastEnd*/true, /*IndexNegated*/true); + + if (CompLHSTy) *CompLHSTy = LHS.get()->getType(); + return LHS.get()->getType(); + } + + // Handle pointer-pointer subtractions. + if (const PointerType *RHSPTy + = RHS.get()->getType()->getAs()) { + QualType rpointee = RHSPTy->getPointeeType(); + + if (getLangOpts().CPlusPlus) { + // Pointee types must be the same: C++ [expr.add] + if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) { + diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get()); + } + } else { + // Pointee types must be compatible C99 6.5.6p3 + if (!Context.typesAreCompatible( + Context.getCanonicalType(lpointee).getUnqualifiedType(), + Context.getCanonicalType(rpointee).getUnqualifiedType())) { + diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get()); + return QualType(); + } + } + + if (!checkArithmeticBinOpPointerOperands(*this, Loc, + LHS.get(), RHS.get())) + return QualType(); + + bool LHSIsNullPtr = LHS.get()->IgnoreParenCasts()->isNullPointerConstant( + Context, Expr::NPC_ValueDependentIsNotNull); + bool RHSIsNullPtr = RHS.get()->IgnoreParenCasts()->isNullPointerConstant( + Context, Expr::NPC_ValueDependentIsNotNull); + + // Subtracting nullptr or from nullptr is suspect + if (LHSIsNullPtr) + diagnoseSubtractionOnNullPointer(*this, Loc, LHS.get(), RHSIsNullPtr); + if (RHSIsNullPtr) + diagnoseSubtractionOnNullPointer(*this, Loc, RHS.get(), LHSIsNullPtr); + + // The pointee type may have zero size. As an extension, a structure or + // union may have zero size or an array may have zero length. In this + // case subtraction does not make sense. + if (!rpointee->isVoidType() && !rpointee->isFunctionType()) { + CharUnits ElementSize = Context.getTypeSizeInChars(rpointee); + if (ElementSize.isZero()) { + Diag(Loc,diag::warn_sub_ptr_zero_size_types) + << rpointee.getUnqualifiedType() + << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); + } + } + + if (CompLHSTy) *CompLHSTy = LHS.get()->getType(); + return Context.getPointerDiffType(); + } + } + + return InvalidOperands(Loc, LHS, RHS); + } + + static bool isScopedEnumerationType(QualType T) { + if (const EnumType *ET = T->getAs()) + return ET->getDecl()->isScoped(); + return false; + } + + static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS, + SourceLocation Loc, BinaryOperatorKind Opc, + QualType LHSType) { + // OpenCL 6.3j: shift values are effectively % word size of LHS (more defined), + // so skip remaining warnings as we don't want to modify values within Sema. + if (S.getLangOpts().OpenCL) + return; + + // Check right/shifter operand + Expr::EvalResult RHSResult; + if (RHS.get()->isValueDependent() || + !RHS.get()->EvaluateAsInt(RHSResult, S.Context)) + return; + llvm::APSInt Right = RHSResult.Val.getInt(); + + if (Right.isNegative()) { + S.DiagRuntimeBehavior(Loc, RHS.get(), + S.PDiag(diag::warn_shift_negative) + << RHS.get()->getSourceRange()); + return; + } + + QualType LHSExprType = LHS.get()->getType(); + uint64_t LeftSize = S.Context.getTypeSize(LHSExprType); + if (LHSExprType->isBitIntType()) + LeftSize = S.Context.getIntWidth(LHSExprType); + else if (LHSExprType->isFixedPointType()) { + auto FXSema = S.Context.getFixedPointSemantics(LHSExprType); + LeftSize = FXSema.getWidth() - (unsigned)FXSema.hasUnsignedPadding(); + } + llvm::APInt LeftBits(Right.getBitWidth(), LeftSize); + if (Right.uge(LeftBits)) { + S.DiagRuntimeBehavior(Loc, RHS.get(), + S.PDiag(diag::warn_shift_gt_typewidth) + << RHS.get()->getSourceRange()); + return; + } + + // FIXME: We probably need to handle fixed point types specially here. + if (Opc != BO_Shl || LHSExprType->isFixedPointType()) + return; + + // When left shifting an ICE which is signed, we can check for overflow which + // according to C++ standards prior to C++2a has undefined behavior + // ([expr.shift] 5.8/2). Unsigned integers have defined behavior modulo one + // more than the maximum value representable in the result type, so never + // warn for those. (FIXME: Unsigned left-shift overflow in a constant + // expression is still probably a bug.) + Expr::EvalResult LHSResult; + if (LHS.get()->isValueDependent() || + LHSType->hasUnsignedIntegerRepresentation() || + !LHS.get()->EvaluateAsInt(LHSResult, S.Context)) + return; + llvm::APSInt Left = LHSResult.Val.getInt(); + + // Don't warn if signed overflow is defined, then all the rest of the + // diagnostics will not be triggered because the behavior is defined. + // Also don't warn in C++20 mode (and newer), as signed left shifts + // always wrap and never overflow. + if (S.getLangOpts().isSignedOverflowDefined() || S.getLangOpts().CPlusPlus20) + return; + + // If LHS does not have a non-negative value then, the + // behavior is undefined before C++2a. Warn about it. + if (Left.isNegative()) { + S.DiagRuntimeBehavior(Loc, LHS.get(), + S.PDiag(diag::warn_shift_lhs_negative) + << LHS.get()->getSourceRange()); + return; + } + + llvm::APInt ResultBits = + static_cast(Right) + Left.getSignificantBits(); + if (LeftBits.uge(ResultBits)) + return; + llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue()); + Result = Result.shl(Right); + + // Print the bit representation of the signed integer as an unsigned + // hexadecimal number. + SmallString<40> HexResult; + Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true); + + // If we are only missing a sign bit, this is less likely to result in actual + // bugs -- if the result is cast back to an unsigned type, it will have the + // expected value. Thus we place this behind a different warning that can be + // turned off separately if needed. + if (LeftBits == ResultBits - 1) { + S.Diag(Loc, diag::warn_shift_result_sets_sign_bit) + << HexResult << LHSType + << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); + return; + } + + S.Diag(Loc, diag::warn_shift_result_gt_typewidth) + << HexResult.str() << Result.getSignificantBits() << LHSType + << Left.getBitWidth() << LHS.get()->getSourceRange() + << RHS.get()->getSourceRange(); + } + + /// Return the resulting type when a vector is shifted + /// by a scalar or vector shift amount. + static QualType checkVectorShift(Sema &S, ExprResult &LHS, ExprResult &RHS, + SourceLocation Loc, bool IsCompAssign) { + // OpenCL v1.1 s6.3.j says RHS can be a vector only if LHS is a vector. + if ((S.LangOpts.OpenCL || S.LangOpts.ZVector) && + !LHS.get()->getType()->isVectorType()) { + S.Diag(Loc, diag::err_shift_rhs_only_vector) + << RHS.get()->getType() << LHS.get()->getType() + << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); + return QualType(); + } + + if (!IsCompAssign) { + LHS = S.UsualUnaryConversions(LHS.get()); + if (LHS.isInvalid()) return QualType(); + } + + RHS = S.UsualUnaryConversions(RHS.get()); + if (RHS.isInvalid()) return QualType(); + + QualType LHSType = LHS.get()->getType(); + // Note that LHS might be a scalar because the routine calls not only in + // OpenCL case. + const VectorType *LHSVecTy = LHSType->getAs(); + QualType LHSEleType = LHSVecTy ? LHSVecTy->getElementType() : LHSType; + + // Note that RHS might not be a vector. + QualType RHSType = RHS.get()->getType(); + const VectorType *RHSVecTy = RHSType->getAs(); + QualType RHSEleType = RHSVecTy ? RHSVecTy->getElementType() : RHSType; + + // Do not allow shifts for boolean vectors. + if ((LHSVecTy && LHSVecTy->isExtVectorBoolType()) || + (RHSVecTy && RHSVecTy->isExtVectorBoolType())) { + S.Diag(Loc, diag::err_typecheck_invalid_operands) + << LHS.get()->getType() << RHS.get()->getType() + << LHS.get()->getSourceRange(); + return QualType(); + } + + // The operands need to be integers. + if (!LHSEleType->isIntegerType()) { + S.Diag(Loc, diag::err_typecheck_expect_int) + << LHS.get()->getType() << LHS.get()->getSourceRange(); + return QualType(); + } + + if (!RHSEleType->isIntegerType()) { + S.Diag(Loc, diag::err_typecheck_expect_int) + << RHS.get()->getType() << RHS.get()->getSourceRange(); + return QualType(); + } + + if (!LHSVecTy) { + assert(RHSVecTy); + if (IsCompAssign) + return RHSType; + if (LHSEleType != RHSEleType) { + LHS = S.ImpCastExprToType(LHS.get(),RHSEleType, CK_IntegralCast); + LHSEleType = RHSEleType; + } + QualType VecTy = + S.Context.getExtVectorType(LHSEleType, RHSVecTy->getNumElements()); + LHS = S.ImpCastExprToType(LHS.get(), VecTy, CK_VectorSplat); + LHSType = VecTy; + } else if (RHSVecTy) { + // OpenCL v1.1 s6.3.j says that for vector types, the operators + // are applied component-wise. So if RHS is a vector, then ensure + // that the number of elements is the same as LHS... + if (RHSVecTy->getNumElements() != LHSVecTy->getNumElements()) { + S.Diag(Loc, diag::err_typecheck_vector_lengths_not_equal) + << LHS.get()->getType() << RHS.get()->getType() + << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); + return QualType(); + } + if (!S.LangOpts.OpenCL && !S.LangOpts.ZVector) { + const BuiltinType *LHSBT = LHSEleType->getAs(); + const BuiltinType *RHSBT = RHSEleType->getAs(); + if (LHSBT != RHSBT && + S.Context.getTypeSize(LHSBT) != S.Context.getTypeSize(RHSBT)) { + S.Diag(Loc, diag::warn_typecheck_vector_element_sizes_not_equal) + << LHS.get()->getType() << RHS.get()->getType() + << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); + } + } + } else { + // ...else expand RHS to match the number of elements in LHS. + QualType VecTy = + S.Context.getExtVectorType(RHSEleType, LHSVecTy->getNumElements()); + RHS = S.ImpCastExprToType(RHS.get(), VecTy, CK_VectorSplat); + } + + return LHSType; + } + + static QualType checkSizelessVectorShift(Sema &S, ExprResult &LHS, + ExprResult &RHS, SourceLocation Loc, + bool IsCompAssign) { + if (!IsCompAssign) { + LHS = S.UsualUnaryConversions(LHS.get()); + if (LHS.isInvalid()) + return QualType(); + } + + RHS = S.UsualUnaryConversions(RHS.get()); + if (RHS.isInvalid()) + return QualType(); + + QualType LHSType = LHS.get()->getType(); + const BuiltinType *LHSBuiltinTy = LHSType->castAs(); + QualType LHSEleType = LHSType->isVLSTBuiltinType() + ? LHSBuiltinTy->getSveEltType(S.getASTContext()) + : LHSType; + + // Note that RHS might not be a vector + QualType RHSType = RHS.get()->getType(); + const BuiltinType *RHSBuiltinTy = RHSType->castAs(); + QualType RHSEleType = RHSType->isVLSTBuiltinType() + ? RHSBuiltinTy->getSveEltType(S.getASTContext()) + : RHSType; + + if ((LHSBuiltinTy && LHSBuiltinTy->isSVEBool()) || + (RHSBuiltinTy && RHSBuiltinTy->isSVEBool())) { + S.Diag(Loc, diag::err_typecheck_invalid_operands) + << LHSType << RHSType << LHS.get()->getSourceRange(); + return QualType(); + } + + if (!LHSEleType->isIntegerType()) { + S.Diag(Loc, diag::err_typecheck_expect_int) + << LHS.get()->getType() << LHS.get()->getSourceRange(); + return QualType(); + } + + if (!RHSEleType->isIntegerType()) { + S.Diag(Loc, diag::err_typecheck_expect_int) + << RHS.get()->getType() << RHS.get()->getSourceRange(); + return QualType(); + } + + if (LHSType->isVLSTBuiltinType() && RHSType->isVLSTBuiltinType() && + (S.Context.getBuiltinVectorTypeInfo(LHSBuiltinTy).EC != + S.Context.getBuiltinVectorTypeInfo(RHSBuiltinTy).EC)) { + S.Diag(Loc, diag::err_typecheck_invalid_operands) + << LHSType << RHSType << LHS.get()->getSourceRange() + << RHS.get()->getSourceRange(); + return QualType(); + } + + if (!LHSType->isVLSTBuiltinType()) { + assert(RHSType->isVLSTBuiltinType()); + if (IsCompAssign) + return RHSType; + if (LHSEleType != RHSEleType) { + LHS = S.ImpCastExprToType(LHS.get(), RHSEleType, clang::CK_IntegralCast); + LHSEleType = RHSEleType; + } + const llvm::ElementCount VecSize = + S.Context.getBuiltinVectorTypeInfo(RHSBuiltinTy).EC; + QualType VecTy = + S.Context.getScalableVectorType(LHSEleType, VecSize.getKnownMinValue()); + LHS = S.ImpCastExprToType(LHS.get(), VecTy, clang::CK_VectorSplat); + LHSType = VecTy; + } else if (RHSBuiltinTy && RHSBuiltinTy->isVLSTBuiltinType()) { + if (S.Context.getTypeSize(RHSBuiltinTy) != + S.Context.getTypeSize(LHSBuiltinTy)) { + S.Diag(Loc, diag::err_typecheck_vector_lengths_not_equal) + << LHSType << RHSType << LHS.get()->getSourceRange() + << RHS.get()->getSourceRange(); + return QualType(); + } + } else { + const llvm::ElementCount VecSize = + S.Context.getBuiltinVectorTypeInfo(LHSBuiltinTy).EC; + if (LHSEleType != RHSEleType) { + RHS = S.ImpCastExprToType(RHS.get(), LHSEleType, clang::CK_IntegralCast); + RHSEleType = LHSEleType; + } + QualType VecTy = + S.Context.getScalableVectorType(RHSEleType, VecSize.getKnownMinValue()); + RHS = S.ImpCastExprToType(RHS.get(), VecTy, CK_VectorSplat); + } + + return LHSType; + } + + // C99 6.5.7 + QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS, + SourceLocation Loc, BinaryOperatorKind Opc, + bool IsCompAssign) { + checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false); + + // Vector shifts promote their scalar inputs to vector type. + if (LHS.get()->getType()->isVectorType() || + RHS.get()->getType()->isVectorType()) { + if (LangOpts.ZVector) { + // The shift operators for the z vector extensions work basically + // like general shifts, except that neither the LHS nor the RHS is + // allowed to be a "vector bool". + if (auto LHSVecType = LHS.get()->getType()->getAs()) + if (LHSVecType->getVectorKind() == VectorType::AltiVecBool) + return InvalidOperands(Loc, LHS, RHS); + if (auto RHSVecType = RHS.get()->getType()->getAs()) + if (RHSVecType->getVectorKind() == VectorType::AltiVecBool) + return InvalidOperands(Loc, LHS, RHS); + } + return checkVectorShift(*this, LHS, RHS, Loc, IsCompAssign); + } + + if (LHS.get()->getType()->isVLSTBuiltinType() || + RHS.get()->getType()->isVLSTBuiltinType()) + return checkSizelessVectorShift(*this, LHS, RHS, Loc, IsCompAssign); + + // Shifts don't perform usual arithmetic conversions, they just do integer + // promotions on each operand. C99 6.5.7p3 + + // For the LHS, do usual unary conversions, but then reset them away + // if this is a compound assignment. + ExprResult OldLHS = LHS; + LHS = UsualUnaryConversions(LHS.get()); + if (LHS.isInvalid()) + return QualType(); + QualType LHSType = LHS.get()->getType(); + if (IsCompAssign) LHS = OldLHS; + + // The RHS is simpler. + RHS = UsualUnaryConversions(RHS.get()); + if (RHS.isInvalid()) + return QualType(); + QualType RHSType = RHS.get()->getType(); + + // C99 6.5.7p2: Each of the operands shall have integer type. + // Embedded-C 4.1.6.2.2: The LHS may also be fixed-point. + if ((!LHSType->isFixedPointOrIntegerType() && + !LHSType->hasIntegerRepresentation()) || + !RHSType->hasIntegerRepresentation()) + return InvalidOperands(Loc, LHS, RHS); + + // C++0x: Don't allow scoped enums. FIXME: Use something better than + // hasIntegerRepresentation() above instead of this. + if (isScopedEnumerationType(LHSType) || + isScopedEnumerationType(RHSType)) { + return InvalidOperands(Loc, LHS, RHS); + } + DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType); + + // "The type of the result is that of the promoted left operand." + return LHSType; + } + + /// Diagnose bad pointer comparisons. + static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc, + ExprResult &LHS, ExprResult &RHS, + bool IsError) { + S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers + : diag::ext_typecheck_comparison_of_distinct_pointers) + << LHS.get()->getType() << RHS.get()->getType() + << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); + } + + /// Returns false if the pointers are converted to a composite type, + /// true otherwise. + static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc, + ExprResult &LHS, ExprResult &RHS) { + // C++ [expr.rel]p2: + // [...] Pointer conversions (4.10) and qualification + // conversions (4.4) are performed on pointer operands (or on + // a pointer operand and a null pointer constant) to bring + // them to their composite pointer type. [...] + // + // C++ [expr.eq]p1 uses the same notion for (in)equality + // comparisons of pointers. + + QualType LHSType = LHS.get()->getType(); + QualType RHSType = RHS.get()->getType(); + assert(LHSType->isPointerType() || RHSType->isPointerType() || + LHSType->isMemberPointerType() || RHSType->isMemberPointerType()); + + QualType T = S.FindCompositePointerType(Loc, LHS, RHS); + if (T.isNull()) { + if ((LHSType->isAnyPointerType() || LHSType->isMemberPointerType()) && + (RHSType->isAnyPointerType() || RHSType->isMemberPointerType())) + diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true); + else + S.InvalidOperands(Loc, LHS, RHS); + return true; + } + + return false; + } + + static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc, + ExprResult &LHS, + ExprResult &RHS, + bool IsError) { + S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void + : diag::ext_typecheck_comparison_of_fptr_to_void) + << LHS.get()->getType() << RHS.get()->getType() + << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); + } + + static bool isObjCObjectLiteral(ExprResult &E) { + switch (E.get()->IgnoreParenImpCasts()->getStmtClass()) { + case Stmt::ObjCArrayLiteralClass: + case Stmt::ObjCDictionaryLiteralClass: + case Stmt::ObjCStringLiteralClass: + case Stmt::ObjCBoxedExprClass: + return true; + default: + // Note that ObjCBoolLiteral is NOT an object literal! + return false; + } + } + + static bool hasIsEqualMethod(Sema &S, const Expr *LHS, const Expr *RHS) { + const ObjCObjectPointerType *Type = + LHS->getType()->getAs(); + + // If this is not actually an Objective-C object, bail out. + if (!Type) + return false; + + // Get the LHS object's interface type. + QualType InterfaceType = Type->getPointeeType(); + + // If the RHS isn't an Objective-C object, bail out. + if (!RHS->getType()->isObjCObjectPointerType()) + return false; + + // Try to find the -isEqual: method. + Selector IsEqualSel = S.NSAPIObj->getIsEqualSelector(); + ObjCMethodDecl *Method = S.LookupMethodInObjectType(IsEqualSel, + InterfaceType, + /*IsInstance=*/true); + if (!Method) { + if (Type->isObjCIdType()) { + // For 'id', just check the global pool. + Method = S.LookupInstanceMethodInGlobalPool(IsEqualSel, SourceRange(), + /*receiverId=*/true); + } else { + // Check protocols. + Method = S.LookupMethodInQualifiedType(IsEqualSel, Type, + /*IsInstance=*/true); + } + } + + if (!Method) + return false; + + QualType T = Method->parameters()[0]->getType(); + if (!T->isObjCObjectPointerType()) + return false; + + QualType R = Method->getReturnType(); + if (!R->isScalarType()) + return false; + + return true; + } + + Sema::ObjCLiteralKind Sema::CheckLiteralKind(Expr *FromE) { + FromE = FromE->IgnoreParenImpCasts(); + switch (FromE->getStmtClass()) { + default: + break; + case Stmt::ObjCStringLiteralClass: + // "string literal" + return LK_String; + case Stmt::ObjCArrayLiteralClass: + // "array literal" + return LK_Array; + case Stmt::ObjCDictionaryLiteralClass: + // "dictionary literal" + return LK_Dictionary; + case Stmt::BlockExprClass: + return LK_Block; + case Stmt::ObjCBoxedExprClass: { + Expr *Inner = cast(FromE)->getSubExpr()->IgnoreParens(); + switch (Inner->getStmtClass()) { + case Stmt::IntegerLiteralClass: + case Stmt::FloatingLiteralClass: + case Stmt::CharacterLiteralClass: + case Stmt::ObjCBoolLiteralExprClass: + case Stmt::CXXBoolLiteralExprClass: + // "numeric literal" + return LK_Numeric; + case Stmt::ImplicitCastExprClass: { + CastKind CK = cast(Inner)->getCastKind(); + // Boolean literals can be represented by implicit casts. + if (CK == CK_IntegralToBoolean || CK == CK_IntegralCast) + return LK_Numeric; + break; + } + default: + break; + } + return LK_Boxed; + } + } + return LK_None; + } + + static void diagnoseObjCLiteralComparison(Sema &S, SourceLocation Loc, + ExprResult &LHS, ExprResult &RHS, + BinaryOperator::Opcode Opc){ + Expr *Literal; + Expr *Other; + if (isObjCObjectLiteral(LHS)) { + Literal = LHS.get(); + Other = RHS.get(); + } else { + Literal = RHS.get(); + Other = LHS.get(); + } + + // Don't warn on comparisons against nil. + Other = Other->IgnoreParenCasts(); + if (Other->isNullPointerConstant(S.getASTContext(), + Expr::NPC_ValueDependentIsNotNull)) + return; + + // This should be kept in sync with warn_objc_literal_comparison. + // LK_String should always be after the other literals, since it has its own + // warning flag. + Sema::ObjCLiteralKind LiteralKind = S.CheckLiteralKind(Literal); + assert(LiteralKind != Sema::LK_Block); + if (LiteralKind == Sema::LK_None) { + llvm_unreachable("Unknown Objective-C object literal kind"); + } + + if (LiteralKind == Sema::LK_String) + S.Diag(Loc, diag::warn_objc_string_literal_comparison) + << Literal->getSourceRange(); + else + S.Diag(Loc, diag::warn_objc_literal_comparison) + << LiteralKind << Literal->getSourceRange(); + + if (BinaryOperator::isEqualityOp(Opc) && + hasIsEqualMethod(S, LHS.get(), RHS.get())) { + SourceLocation Start = LHS.get()->getBeginLoc(); + SourceLocation End = S.getLocForEndOfToken(RHS.get()->getEndLoc()); + CharSourceRange OpRange = + CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc)); + + S.Diag(Loc, diag::note_objc_literal_comparison_isequal) + << FixItHint::CreateInsertion(Start, Opc == BO_EQ ? "[" : "![") + << FixItHint::CreateReplacement(OpRange, " isEqual:") + << FixItHint::CreateInsertion(End, "]"); + } + } + + /// Warns on !x < y, !x & y where !(x < y), !(x & y) was probably intended. + static void diagnoseLogicalNotOnLHSofCheck(Sema &S, ExprResult &LHS, + ExprResult &RHS, SourceLocation Loc, + BinaryOperatorKind Opc) { + // Check that left hand side is !something. + UnaryOperator *UO = dyn_cast(LHS.get()->IgnoreImpCasts()); + if (!UO || UO->getOpcode() != UO_LNot) return; + + // Only check if the right hand side is non-bool arithmetic type. + if (RHS.get()->isKnownToHaveBooleanValue()) return; + + // Make sure that the something in !something is not bool. + Expr *SubExpr = UO->getSubExpr()->IgnoreImpCasts(); + if (SubExpr->isKnownToHaveBooleanValue()) return; + + // Emit warning. + bool IsBitwiseOp = Opc == BO_And || Opc == BO_Or || Opc == BO_Xor; + S.Diag(UO->getOperatorLoc(), diag::warn_logical_not_on_lhs_of_check) + << Loc << IsBitwiseOp; + + // First note suggest !(x < y) + SourceLocation FirstOpen = SubExpr->getBeginLoc(); + SourceLocation FirstClose = RHS.get()->getEndLoc(); + FirstClose = S.getLocForEndOfToken(FirstClose); + if (FirstClose.isInvalid()) + FirstOpen = SourceLocation(); + S.Diag(UO->getOperatorLoc(), diag::note_logical_not_fix) + << IsBitwiseOp + << FixItHint::CreateInsertion(FirstOpen, "(") + << FixItHint::CreateInsertion(FirstClose, ")"); + + // Second note suggests (!x) < y + SourceLocation SecondOpen = LHS.get()->getBeginLoc(); + SourceLocation SecondClose = LHS.get()->getEndLoc(); + SecondClose = S.getLocForEndOfToken(SecondClose); + if (SecondClose.isInvalid()) + SecondOpen = SourceLocation(); + S.Diag(UO->getOperatorLoc(), diag::note_logical_not_silence_with_parens) + << FixItHint::CreateInsertion(SecondOpen, "(") + << FixItHint::CreateInsertion(SecondClose, ")"); + } + + // Returns true if E refers to a non-weak array. + static bool checkForArray(const Expr *E) { + const ValueDecl *D = nullptr; + if (const DeclRefExpr *DR = dyn_cast(E)) { + D = DR->getDecl(); + } else if (const MemberExpr *Mem = dyn_cast(E)) { + if (Mem->isImplicitAccess()) + D = Mem->getMemberDecl(); + } + if (!D) + return false; + return D->getType()->isArrayType() && !D->isWeak(); + } + + /// Diagnose some forms of syntactically-obvious tautological comparison. + static void diagnoseTautologicalComparison(Sema &S, SourceLocation Loc, + Expr *LHS, Expr *RHS, + BinaryOperatorKind Opc) { + Expr *LHSStripped = LHS->IgnoreParenImpCasts(); + Expr *RHSStripped = RHS->IgnoreParenImpCasts(); + + QualType LHSType = LHS->getType(); + QualType RHSType = RHS->getType(); + if (LHSType->hasFloatingRepresentation() || + (LHSType->isBlockPointerType() && !BinaryOperator::isEqualityOp(Opc)) || + S.inTemplateInstantiation()) + return; + + // WebAssembly Tables cannot be compared, therefore shouldn't emit + // Tautological diagnostics. + if (LHSType->isWebAssemblyTableType() || RHSType->isWebAssemblyTableType()) + return; + + // Comparisons between two array types are ill-formed for operator<=>, so + // we shouldn't emit any additional warnings about it. + if (Opc == BO_Cmp && LHSType->isArrayType() && RHSType->isArrayType()) + return; + + // For non-floating point types, check for self-comparisons of the form + // x == x, x != x, x < x, etc. These always evaluate to a constant, and + // often indicate logic errors in the program. + // + // NOTE: Don't warn about comparison expressions resulting from macro + // expansion. Also don't warn about comparisons which are only self + // comparisons within a template instantiation. The warnings should catch + // obvious cases in the definition of the template anyways. The idea is to + // warn when the typed comparison operator will always evaluate to the same + // result. + + // Used for indexing into %select in warn_comparison_always + enum { + AlwaysConstant, + AlwaysTrue, + AlwaysFalse, + AlwaysEqual, // std::strong_ordering::equal from operator<=> + }; + + // C++2a [depr.array.comp]: + // Equality and relational comparisons ([expr.eq], [expr.rel]) between two + // operands of array type are deprecated. + if (S.getLangOpts().CPlusPlus20 && LHSStripped->getType()->isArrayType() && + RHSStripped->getType()->isArrayType()) { + S.Diag(Loc, diag::warn_depr_array_comparison) + << LHS->getSourceRange() << RHS->getSourceRange() + << LHSStripped->getType() << RHSStripped->getType(); + // Carry on to produce the tautological comparison warning, if this + // expression is potentially-evaluated, we can resolve the array to a + // non-weak declaration, and so on. + } + + if (!LHS->getBeginLoc().isMacroID() && !RHS->getBeginLoc().isMacroID()) { + if (Expr::isSameComparisonOperand(LHS, RHS)) { + unsigned Result; + switch (Opc) { + case BO_EQ: + case BO_LE: + case BO_GE: + Result = AlwaysTrue; + break; + case BO_NE: + case BO_LT: + case BO_GT: + Result = AlwaysFalse; + break; + case BO_Cmp: + Result = AlwaysEqual; + break; + default: + Result = AlwaysConstant; + break; + } + S.DiagRuntimeBehavior(Loc, nullptr, + S.PDiag(diag::warn_comparison_always) + << 0 /*self-comparison*/ + << Result); + } else if (checkForArray(LHSStripped) && checkForArray(RHSStripped)) { + // What is it always going to evaluate to? + unsigned Result; + switch (Opc) { + case BO_EQ: // e.g. array1 == array2 + Result = AlwaysFalse; + break; + case BO_NE: // e.g. array1 != array2 + Result = AlwaysTrue; + break; + default: // e.g. array1 <= array2 + // The best we can say is 'a constant' + Result = AlwaysConstant; + break; + } + S.DiagRuntimeBehavior(Loc, nullptr, + S.PDiag(diag::warn_comparison_always) + << 1 /*array comparison*/ + << Result); + } + } + + if (isa(LHSStripped)) + LHSStripped = LHSStripped->IgnoreParenCasts(); + if (isa(RHSStripped)) + RHSStripped = RHSStripped->IgnoreParenCasts(); + + // Warn about comparisons against a string constant (unless the other + // operand is null); the user probably wants string comparison function. + Expr *LiteralString = nullptr; + Expr *LiteralStringStripped = nullptr; + if ((isa(LHSStripped) || isa(LHSStripped)) && + !RHSStripped->isNullPointerConstant(S.Context, + Expr::NPC_ValueDependentIsNull)) { + LiteralString = LHS; + LiteralStringStripped = LHSStripped; + } else if ((isa(RHSStripped) || + isa(RHSStripped)) && + !LHSStripped->isNullPointerConstant(S.Context, + Expr::NPC_ValueDependentIsNull)) { + LiteralString = RHS; + LiteralStringStripped = RHSStripped; + } + + if (LiteralString) { + S.DiagRuntimeBehavior(Loc, nullptr, + S.PDiag(diag::warn_stringcompare) + << isa(LiteralStringStripped) + << LiteralString->getSourceRange()); + } + } + + static ImplicitConversionKind castKindToImplicitConversionKind(CastKind CK) { + switch (CK) { + default: { + #ifndef NDEBUG + llvm::errs() << "unhandled cast kind: " << CastExpr::getCastKindName(CK) + << "\n"; + #endif + llvm_unreachable("unhandled cast kind"); + } + case CK_UserDefinedConversion: + return ICK_Identity; + case CK_LValueToRValue: + return ICK_Lvalue_To_Rvalue; + case CK_ArrayToPointerDecay: + return ICK_Array_To_Pointer; + case CK_FunctionToPointerDecay: + return ICK_Function_To_Pointer; + case CK_IntegralCast: + return ICK_Integral_Conversion; + case CK_FloatingCast: + return ICK_Floating_Conversion; + case CK_IntegralToFloating: + case CK_FloatingToIntegral: + return ICK_Floating_Integral; + case CK_IntegralComplexCast: + case CK_FloatingComplexCast: + case CK_FloatingComplexToIntegralComplex: + case CK_IntegralComplexToFloatingComplex: + return ICK_Complex_Conversion; + case CK_FloatingComplexToReal: + case CK_FloatingRealToComplex: + case CK_IntegralComplexToReal: + case CK_IntegralRealToComplex: + return ICK_Complex_Real; + } + } + + static bool checkThreeWayNarrowingConversion(Sema &S, QualType ToType, Expr *E, + QualType FromType, + SourceLocation Loc) { + // Check for a narrowing implicit conversion. + StandardConversionSequence SCS; + SCS.setAsIdentityConversion(); + SCS.setToType(0, FromType); + SCS.setToType(1, ToType); + if (const auto *ICE = dyn_cast(E)) + SCS.Second = castKindToImplicitConversionKind(ICE->getCastKind()); + + APValue PreNarrowingValue; + QualType PreNarrowingType; + switch (SCS.getNarrowingKind(S.Context, E, PreNarrowingValue, + PreNarrowingType, + /*IgnoreFloatToIntegralConversion*/ true)) { + case NK_Dependent_Narrowing: + // Implicit conversion to a narrower type, but the expression is + // value-dependent so we can't tell whether it's actually narrowing. + case NK_Not_Narrowing: + return false; + + case NK_Constant_Narrowing: + // Implicit conversion to a narrower type, and the value is not a constant + // expression. + S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing) + << /*Constant*/ 1 + << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << ToType; + return true; + + case NK_Variable_Narrowing: + // Implicit conversion to a narrower type, and the value is not a constant + // expression. + case NK_Type_Narrowing: + S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing) + << /*Constant*/ 0 << FromType << ToType; + // TODO: It's not a constant expression, but what if the user intended it + // to be? Can we produce notes to help them figure out why it isn't? + return true; + } + llvm_unreachable("unhandled case in switch"); + } + + static QualType checkArithmeticOrEnumeralThreeWayCompare(Sema &S, + ExprResult &LHS, + ExprResult &RHS, + SourceLocation Loc) { + QualType LHSType = LHS.get()->getType(); + QualType RHSType = RHS.get()->getType(); + // Dig out the original argument type and expression before implicit casts + // were applied. These are the types/expressions we need to check the + // [expr.spaceship] requirements against. + ExprResult LHSStripped = LHS.get()->IgnoreParenImpCasts(); + ExprResult RHSStripped = RHS.get()->IgnoreParenImpCasts(); + QualType LHSStrippedType = LHSStripped.get()->getType(); + QualType RHSStrippedType = RHSStripped.get()->getType(); + + // C++2a [expr.spaceship]p3: If one of the operands is of type bool and the + // other is not, the program is ill-formed. + if (LHSStrippedType->isBooleanType() != RHSStrippedType->isBooleanType()) { + S.InvalidOperands(Loc, LHSStripped, RHSStripped); + return QualType(); + } + + // FIXME: Consider combining this with checkEnumArithmeticConversions. + int NumEnumArgs = (int)LHSStrippedType->isEnumeralType() + + RHSStrippedType->isEnumeralType(); + if (NumEnumArgs == 1) { + bool LHSIsEnum = LHSStrippedType->isEnumeralType(); + QualType OtherTy = LHSIsEnum ? RHSStrippedType : LHSStrippedType; + if (OtherTy->hasFloatingRepresentation()) { + S.InvalidOperands(Loc, LHSStripped, RHSStripped); + return QualType(); + } + } + if (NumEnumArgs == 2) { + // C++2a [expr.spaceship]p5: If both operands have the same enumeration + // type E, the operator yields the result of converting the operands + // to the underlying type of E and applying <=> to the converted operands. + if (!S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType)) { + S.InvalidOperands(Loc, LHS, RHS); + return QualType(); + } + QualType IntType = + LHSStrippedType->castAs()->getDecl()->getIntegerType(); + assert(IntType->isArithmeticType()); + + // We can't use `CK_IntegralCast` when the underlying type is 'bool', so we + // promote the boolean type, and all other promotable integer types, to + // avoid this. + if (S.Context.isPromotableIntegerType(IntType)) + IntType = S.Context.getPromotedIntegerType(IntType); + + LHS = S.ImpCastExprToType(LHS.get(), IntType, CK_IntegralCast); + RHS = S.ImpCastExprToType(RHS.get(), IntType, CK_IntegralCast); + LHSType = RHSType = IntType; + } + + // C++2a [expr.spaceship]p4: If both operands have arithmetic types, the + // usual arithmetic conversions are applied to the operands. + QualType Type = + S.UsualArithmeticConversions(LHS, RHS, Loc, Sema::ACK_Comparison); + if (LHS.isInvalid() || RHS.isInvalid()) + return QualType(); + if (Type.isNull()) + return S.InvalidOperands(Loc, LHS, RHS); + + std::optional CCT = + getComparisonCategoryForBuiltinCmp(Type); + if (!CCT) + return S.InvalidOperands(Loc, LHS, RHS); + + bool HasNarrowing = checkThreeWayNarrowingConversion( + S, Type, LHS.get(), LHSType, LHS.get()->getBeginLoc()); + HasNarrowing |= checkThreeWayNarrowingConversion(S, Type, RHS.get(), RHSType, + RHS.get()->getBeginLoc()); + if (HasNarrowing) + return QualType(); + + assert(!Type.isNull() && "composite type for <=> has not been set"); + + return S.CheckComparisonCategoryType( + *CCT, Loc, Sema::ComparisonCategoryUsage::OperatorInExpression); + } + + static QualType checkArithmeticOrEnumeralCompare(Sema &S, ExprResult &LHS, + ExprResult &RHS, + SourceLocation Loc, + BinaryOperatorKind Opc) { + if (Opc == BO_Cmp) + return checkArithmeticOrEnumeralThreeWayCompare(S, LHS, RHS, Loc); + + // C99 6.5.8p3 / C99 6.5.9p4 + QualType Type = + S.UsualArithmeticConversions(LHS, RHS, Loc, Sema::ACK_Comparison); + if (LHS.isInvalid() || RHS.isInvalid()) + return QualType(); + if (Type.isNull()) + return S.InvalidOperands(Loc, LHS, RHS); + assert(Type->isArithmeticType() || Type->isEnumeralType()); + + if (Type->isAnyComplexType() && BinaryOperator::isRelationalOp(Opc)) + return S.InvalidOperands(Loc, LHS, RHS); + + // Check for comparisons of floating point operands using != and ==. + if (Type->hasFloatingRepresentation()) + S.CheckFloatComparison(Loc, LHS.get(), RHS.get(), Opc); + + // The result of comparisons is 'bool' in C++, 'int' in C. + return S.Context.getLogicalOperationType(); + } + + void Sema::CheckPtrComparisonWithNullChar(ExprResult &E, ExprResult &NullE) { + if (!NullE.get()->getType()->isAnyPointerType()) + return; + int NullValue = PP.isMacroDefined("NULL") ? 0 : 1; + if (!E.get()->getType()->isAnyPointerType() && + E.get()->isNullPointerConstant(Context, + Expr::NPC_ValueDependentIsNotNull) == + Expr::NPCK_ZeroExpression) { + if (const auto *CL = dyn_cast(E.get())) { + if (CL->getValue() == 0) + Diag(E.get()->getExprLoc(), diag::warn_pointer_compare) + << NullValue + << FixItHint::CreateReplacement(E.get()->getExprLoc(), + NullValue ? "NULL" : "(void *)0"); + } else if (const auto *CE = dyn_cast(E.get())) { + TypeSourceInfo *TI = CE->getTypeInfoAsWritten(); + QualType T = Context.getCanonicalType(TI->getType()).getUnqualifiedType(); + if (T == Context.CharTy) + Diag(E.get()->getExprLoc(), diag::warn_pointer_compare) + << NullValue + << FixItHint::CreateReplacement(E.get()->getExprLoc(), + NullValue ? "NULL" : "(void *)0"); + } + } + } + + // C99 6.5.8, C++ [expr.rel] + QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS, + SourceLocation Loc, + BinaryOperatorKind Opc) { + bool IsRelational = BinaryOperator::isRelationalOp(Opc); + bool IsThreeWay = Opc == BO_Cmp; + bool IsOrdered = IsRelational || IsThreeWay; + auto IsAnyPointerType = [](ExprResult E) { + QualType Ty = E.get()->getType(); + return Ty->isPointerType() || Ty->isMemberPointerType(); + }; + + // C++2a [expr.spaceship]p6: If at least one of the operands is of pointer + // type, array-to-pointer, ..., conversions are performed on both operands to + // bring them to their composite type. + // Otherwise, all comparisons expect an rvalue, so convert to rvalue before + // any type-related checks. + if (!IsThreeWay || IsAnyPointerType(LHS) || IsAnyPointerType(RHS)) { + LHS = DefaultFunctionArrayLvalueConversion(LHS.get()); + if (LHS.isInvalid()) + return QualType(); + RHS = DefaultFunctionArrayLvalueConversion(RHS.get()); + if (RHS.isInvalid()) + return QualType(); + } else { + LHS = DefaultLvalueConversion(LHS.get()); + if (LHS.isInvalid()) + return QualType(); + RHS = DefaultLvalueConversion(RHS.get()); + if (RHS.isInvalid()) + return QualType(); + } + + checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/true); + if (!getLangOpts().CPlusPlus && BinaryOperator::isEqualityOp(Opc)) { + CheckPtrComparisonWithNullChar(LHS, RHS); + CheckPtrComparisonWithNullChar(RHS, LHS); + } + + // Handle vector comparisons separately. + if (LHS.get()->getType()->isVectorType() || + RHS.get()->getType()->isVectorType()) + return CheckVectorCompareOperands(LHS, RHS, Loc, Opc); + + if (LHS.get()->getType()->isVLSTBuiltinType() || + RHS.get()->getType()->isVLSTBuiltinType()) + return CheckSizelessVectorCompareOperands(LHS, RHS, Loc, Opc); + + diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc); + diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc); + + QualType LHSType = LHS.get()->getType(); + QualType RHSType = RHS.get()->getType(); + if ((LHSType->isArithmeticType() || LHSType->isEnumeralType()) && + (RHSType->isArithmeticType() || RHSType->isEnumeralType())) + return checkArithmeticOrEnumeralCompare(*this, LHS, RHS, Loc, Opc); + + if ((LHSType->isPointerType() && + LHSType->getPointeeType().isWebAssemblyReferenceType()) || + (RHSType->isPointerType() && + RHSType->getPointeeType().isWebAssemblyReferenceType())) + return InvalidOperands(Loc, LHS, RHS); + + const Expr::NullPointerConstantKind LHSNullKind = + LHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull); + const Expr::NullPointerConstantKind RHSNullKind = + RHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull); + bool LHSIsNull = LHSNullKind != Expr::NPCK_NotNull; + bool RHSIsNull = RHSNullKind != Expr::NPCK_NotNull; + + auto computeResultTy = [&]() { + if (Opc != BO_Cmp) + return Context.getLogicalOperationType(); + assert(getLangOpts().CPlusPlus); + assert(Context.hasSameType(LHS.get()->getType(), RHS.get()->getType())); + + QualType CompositeTy = LHS.get()->getType(); + assert(!CompositeTy->isReferenceType()); + + std::optional CCT = + getComparisonCategoryForBuiltinCmp(CompositeTy); + if (!CCT) + return InvalidOperands(Loc, LHS, RHS); + + if (CompositeTy->isPointerType() && LHSIsNull != RHSIsNull) { + // P0946R0: Comparisons between a null pointer constant and an object + // pointer result in std::strong_equality, which is ill-formed under + // P1959R0. + Diag(Loc, diag::err_typecheck_three_way_comparison_of_pointer_and_zero) + << (LHSIsNull ? LHS.get()->getSourceRange() + : RHS.get()->getSourceRange()); + return QualType(); + } + + return CheckComparisonCategoryType( + *CCT, Loc, ComparisonCategoryUsage::OperatorInExpression); + }; + + if (!IsOrdered && LHSIsNull != RHSIsNull) { + bool IsEquality = Opc == BO_EQ; + if (RHSIsNull) + DiagnoseAlwaysNonNullPointer(LHS.get(), RHSNullKind, IsEquality, + RHS.get()->getSourceRange()); + else + DiagnoseAlwaysNonNullPointer(RHS.get(), LHSNullKind, IsEquality, + LHS.get()->getSourceRange()); + } + + if (IsOrdered && LHSType->isFunctionPointerType() && + RHSType->isFunctionPointerType()) { + // Valid unless a relational comparison of function pointers + bool IsError = Opc == BO_Cmp; + auto DiagID = + IsError ? diag::err_typecheck_ordered_comparison_of_function_pointers + : getLangOpts().CPlusPlus + ? diag::warn_typecheck_ordered_comparison_of_function_pointers + : diag::ext_typecheck_ordered_comparison_of_function_pointers; + Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange() + << RHS.get()->getSourceRange(); + if (IsError) + return QualType(); + } + + if ((LHSType->isIntegerType() && !LHSIsNull) || + (RHSType->isIntegerType() && !RHSIsNull)) { + // Skip normal pointer conversion checks in this case; we have better + // diagnostics for this below. + } else if (getLangOpts().CPlusPlus) { + // Equality comparison of a function pointer to a void pointer is invalid, + // but we allow it as an extension. + // FIXME: If we really want to allow this, should it be part of composite + // pointer type computation so it works in conditionals too? + if (!IsOrdered && + ((LHSType->isFunctionPointerType() && RHSType->isVoidPointerType()) || + (RHSType->isFunctionPointerType() && LHSType->isVoidPointerType()))) { + // This is a gcc extension compatibility comparison. + // In a SFINAE context, we treat this as a hard error to maintain + // conformance with the C++ standard. + diagnoseFunctionPointerToVoidComparison( + *this, Loc, LHS, RHS, /*isError*/ (bool)isSFINAEContext()); + + if (isSFINAEContext()) + return QualType(); + + RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast); + return computeResultTy(); + } + + // C++ [expr.eq]p2: + // If at least one operand is a pointer [...] bring them to their + // composite pointer type. + // C++ [expr.spaceship]p6 + // If at least one of the operands is of pointer type, [...] bring them + // to their composite pointer type. + // C++ [expr.rel]p2: + // If both operands are pointers, [...] bring them to their composite + // pointer type. + // For <=>, the only valid non-pointer types are arrays and functions, and + // we already decayed those, so this is really the same as the relational + // comparison rule. + if ((int)LHSType->isPointerType() + (int)RHSType->isPointerType() >= + (IsOrdered ? 2 : 1) && + (!LangOpts.ObjCAutoRefCount || !(LHSType->isObjCObjectPointerType() || + RHSType->isObjCObjectPointerType()))) { + if (convertPointersToCompositeType(*this, Loc, LHS, RHS)) + return QualType(); + return computeResultTy(); + } + } else if (LHSType->isPointerType() && + RHSType->isPointerType()) { // C99 6.5.8p2 + // All of the following pointer-related warnings are GCC extensions, except + // when handling null pointer constants. + QualType LCanPointeeTy = + LHSType->castAs()->getPointeeType().getCanonicalType(); + QualType RCanPointeeTy = + RHSType->castAs()->getPointeeType().getCanonicalType(); + + // C99 6.5.9p2 and C99 6.5.8p2 + if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(), + RCanPointeeTy.getUnqualifiedType())) { + if (IsRelational) { + // Pointers both need to point to complete or incomplete types + if ((LCanPointeeTy->isIncompleteType() != + RCanPointeeTy->isIncompleteType()) && + !getLangOpts().C11) { + Diag(Loc, diag::ext_typecheck_compare_complete_incomplete_pointers) + << LHS.get()->getSourceRange() << RHS.get()->getSourceRange() + << LHSType << RHSType << LCanPointeeTy->isIncompleteType() + << RCanPointeeTy->isIncompleteType(); + } + } + } else if (!IsRelational && + (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) { + // Valid unless comparison between non-null pointer and function pointer + if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType()) + && !LHSIsNull && !RHSIsNull) + diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS, + /*isError*/false); + } else { + // Invalid + diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false); + } + if (LCanPointeeTy != RCanPointeeTy) { + // Treat NULL constant as a special case in OpenCL. + if (getLangOpts().OpenCL && !LHSIsNull && !RHSIsNull) { + if (!LCanPointeeTy.isAddressSpaceOverlapping(RCanPointeeTy)) { + Diag(Loc, + diag::err_typecheck_op_on_nonoverlapping_address_space_pointers) + << LHSType << RHSType << 0 /* comparison */ + << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); + } + } + LangAS AddrSpaceL = LCanPointeeTy.getAddressSpace(); + LangAS AddrSpaceR = RCanPointeeTy.getAddressSpace(); + CastKind Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion + : CK_BitCast; + if (LHSIsNull && !RHSIsNull) + LHS = ImpCastExprToType(LHS.get(), RHSType, Kind); + else + RHS = ImpCastExprToType(RHS.get(), LHSType, Kind); + } + return computeResultTy(); + } + + + // C++ [expr.eq]p4: + // Two operands of type std::nullptr_t or one operand of type + // std::nullptr_t and the other a null pointer constant compare + // equal. + // C2x 6.5.9p5: + // If both operands have type nullptr_t or one operand has type nullptr_t + // and the other is a null pointer constant, they compare equal. + if (!IsOrdered && LHSIsNull && RHSIsNull) { + if (LHSType->isNullPtrType()) { + RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer); + return computeResultTy(); + } + if (RHSType->isNullPtrType()) { + LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer); + return computeResultTy(); + } + } + + if (!getLangOpts().CPlusPlus && !IsOrdered && (LHSIsNull || RHSIsNull)) { + // C2x 6.5.9p6: + // Otherwise, at least one operand is a pointer. If one is a pointer and + // the other is a null pointer constant, the null pointer constant is + // converted to the type of the pointer. + if (LHSIsNull && RHSType->isPointerType()) { + LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer); + return computeResultTy(); + } + if (RHSIsNull && LHSType->isPointerType()) { + RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer); + return computeResultTy(); + } + } + + // Comparison of Objective-C pointers and block pointers against nullptr_t. + // These aren't covered by the composite pointer type rules. + if (!IsOrdered && RHSType->isNullPtrType() && + (LHSType->isObjCObjectPointerType() || LHSType->isBlockPointerType())) { + RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer); + return computeResultTy(); + } + if (!IsOrdered && LHSType->isNullPtrType() && + (RHSType->isObjCObjectPointerType() || RHSType->isBlockPointerType())) { + LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer); + return computeResultTy(); + } + + if (getLangOpts().CPlusPlus) { + if (IsRelational && + ((LHSType->isNullPtrType() && RHSType->isPointerType()) || + (RHSType->isNullPtrType() && LHSType->isPointerType()))) { + // HACK: Relational comparison of nullptr_t against a pointer type is + // invalid per DR583, but we allow it within std::less<> and friends, + // since otherwise common uses of it break. + // FIXME: Consider removing this hack once LWG fixes std::less<> and + // friends to have std::nullptr_t overload candidates. + DeclContext *DC = CurContext; + if (isa(DC)) + DC = DC->getParent(); + if (auto *CTSD = dyn_cast(DC)) { + if (CTSD->isInStdNamespace() && + llvm::StringSwitch(CTSD->getName()) + .Cases("less", "less_equal", "greater", "greater_equal", true) + .Default(false)) { + if (RHSType->isNullPtrType()) + RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer); + else + LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer); + return computeResultTy(); + } + } + } + + // C++ [expr.eq]p2: + // If at least one operand is a pointer to member, [...] bring them to + // their composite pointer type. + if (!IsOrdered && + (LHSType->isMemberPointerType() || RHSType->isMemberPointerType())) { + if (convertPointersToCompositeType(*this, Loc, LHS, RHS)) + return QualType(); + else + return computeResultTy(); + } + } + + // Handle block pointer types. + if (!IsOrdered && LHSType->isBlockPointerType() && + RHSType->isBlockPointerType()) { + QualType lpointee = LHSType->castAs()->getPointeeType(); + QualType rpointee = RHSType->castAs()->getPointeeType(); + + if (!LHSIsNull && !RHSIsNull && + !Context.typesAreCompatible(lpointee, rpointee)) { + Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks) + << LHSType << RHSType << LHS.get()->getSourceRange() + << RHS.get()->getSourceRange(); + } + RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast); + return computeResultTy(); + } + + // Allow block pointers to be compared with null pointer constants. + if (!IsOrdered + && ((LHSType->isBlockPointerType() && RHSType->isPointerType()) + || (LHSType->isPointerType() && RHSType->isBlockPointerType()))) { + if (!LHSIsNull && !RHSIsNull) { + if (!((RHSType->isPointerType() && RHSType->castAs() + ->getPointeeType()->isVoidType()) + || (LHSType->isPointerType() && LHSType->castAs() + ->getPointeeType()->isVoidType()))) + Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks) + << LHSType << RHSType << LHS.get()->getSourceRange() + << RHS.get()->getSourceRange(); + } + if (LHSIsNull && !RHSIsNull) + LHS = ImpCastExprToType(LHS.get(), RHSType, + RHSType->isPointerType() ? CK_BitCast + : CK_AnyPointerToBlockPointerCast); + else + RHS = ImpCastExprToType(RHS.get(), LHSType, + LHSType->isPointerType() ? CK_BitCast + : CK_AnyPointerToBlockPointerCast); + return computeResultTy(); + } + + if (LHSType->isObjCObjectPointerType() || + RHSType->isObjCObjectPointerType()) { + const PointerType *LPT = LHSType->getAs(); + const PointerType *RPT = RHSType->getAs(); + if (LPT || RPT) { + bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false; + bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false; + + if (!LPtrToVoid && !RPtrToVoid && + !Context.typesAreCompatible(LHSType, RHSType)) { + diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, + /*isError*/false); + } + // FIXME: If LPtrToVoid, we should presumably convert the LHS rather than + // the RHS, but we have test coverage for this behavior. + // FIXME: Consider using convertPointersToCompositeType in C++. + if (LHSIsNull && !RHSIsNull) { + Expr *E = LHS.get(); + if (getLangOpts().ObjCAutoRefCount) + CheckObjCConversion(SourceRange(), RHSType, E, + CCK_ImplicitConversion); + LHS = ImpCastExprToType(E, RHSType, + RPT ? CK_BitCast :CK_CPointerToObjCPointerCast); + } + else { + Expr *E = RHS.get(); + if (getLangOpts().ObjCAutoRefCount) + CheckObjCConversion(SourceRange(), LHSType, E, CCK_ImplicitConversion, + /*Diagnose=*/true, + /*DiagnoseCFAudited=*/false, Opc); + RHS = ImpCastExprToType(E, LHSType, + LPT ? CK_BitCast :CK_CPointerToObjCPointerCast); + } + return computeResultTy(); + } + if (LHSType->isObjCObjectPointerType() && + RHSType->isObjCObjectPointerType()) { + if (!Context.areComparableObjCPointerTypes(LHSType, RHSType)) + diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, + /*isError*/false); + if (isObjCObjectLiteral(LHS) || isObjCObjectLiteral(RHS)) + diagnoseObjCLiteralComparison(*this, Loc, LHS, RHS, Opc); + + if (LHSIsNull && !RHSIsNull) + LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast); + else + RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast); + return computeResultTy(); + } + + if (!IsOrdered && LHSType->isBlockPointerType() && + RHSType->isBlockCompatibleObjCPointerType(Context)) { + LHS = ImpCastExprToType(LHS.get(), RHSType, + CK_BlockPointerToObjCPointerCast); + return computeResultTy(); + } else if (!IsOrdered && + LHSType->isBlockCompatibleObjCPointerType(Context) && + RHSType->isBlockPointerType()) { + RHS = ImpCastExprToType(RHS.get(), LHSType, + CK_BlockPointerToObjCPointerCast); + return computeResultTy(); + } + } + if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) || + (LHSType->isIntegerType() && RHSType->isAnyPointerType())) { + unsigned DiagID = 0; + bool isError = false; + if (LangOpts.DebuggerSupport) { + // Under a debugger, allow the comparison of pointers to integers, + // since users tend to want to compare addresses. + } else if ((LHSIsNull && LHSType->isIntegerType()) || + (RHSIsNull && RHSType->isIntegerType())) { + if (IsOrdered) { + isError = getLangOpts().CPlusPlus; + DiagID = + isError ? diag::err_typecheck_ordered_comparison_of_pointer_and_zero + : diag::ext_typecheck_ordered_comparison_of_pointer_and_zero; + } + } else if (getLangOpts().CPlusPlus) { + DiagID = diag::err_typecheck_comparison_of_pointer_integer; + isError = true; + } else if (IsOrdered) + DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer; + else + DiagID = diag::ext_typecheck_comparison_of_pointer_integer; + + if (DiagID) { + Diag(Loc, DiagID) + << LHSType << RHSType << LHS.get()->getSourceRange() + << RHS.get()->getSourceRange(); + if (isError) + return QualType(); + } + + if (LHSType->isIntegerType()) + LHS = ImpCastExprToType(LHS.get(), RHSType, + LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer); + else + RHS = ImpCastExprToType(RHS.get(), LHSType, + RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer); + return computeResultTy(); + } + + // Handle block pointers. + if (!IsOrdered && RHSIsNull + && LHSType->isBlockPointerType() && RHSType->isIntegerType()) { + RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer); + return computeResultTy(); + } + if (!IsOrdered && LHSIsNull + && LHSType->isIntegerType() && RHSType->isBlockPointerType()) { + LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer); + return computeResultTy(); + } + + if (getLangOpts().getOpenCLCompatibleVersion() >= 200) { + if (LHSType->isClkEventT() && RHSType->isClkEventT()) { + return computeResultTy(); + } + + if (LHSType->isQueueT() && RHSType->isQueueT()) { + return computeResultTy(); + } + + if (LHSIsNull && RHSType->isQueueT()) { + LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer); + return computeResultTy(); + } + + if (LHSType->isQueueT() && RHSIsNull) { + RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer); + return computeResultTy(); + } + } + + return InvalidOperands(Loc, LHS, RHS); + } + + // Return a signed ext_vector_type that is of identical size and number of + // elements. For floating point vectors, return an integer type of identical + // size and number of elements. In the non ext_vector_type case, search from + // the largest type to the smallest type to avoid cases where long long == long, + // where long gets picked over long long. + QualType Sema::GetSignedVectorType(QualType V) { + const VectorType *VTy = V->castAs(); + unsigned TypeSize = Context.getTypeSize(VTy->getElementType()); + + if (isa(VTy)) { + if (VTy->isExtVectorBoolType()) + return Context.getExtVectorType(Context.BoolTy, VTy->getNumElements()); + if (TypeSize == Context.getTypeSize(Context.CharTy)) + return Context.getExtVectorType(Context.CharTy, VTy->getNumElements()); + if (TypeSize == Context.getTypeSize(Context.ShortTy)) + return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements()); + if (TypeSize == Context.getTypeSize(Context.IntTy)) + return Context.getExtVectorType(Context.IntTy, VTy->getNumElements()); + if (TypeSize == Context.getTypeSize(Context.Int128Ty)) + return Context.getExtVectorType(Context.Int128Ty, VTy->getNumElements()); + if (TypeSize == Context.getTypeSize(Context.LongTy)) + return Context.getExtVectorType(Context.LongTy, VTy->getNumElements()); + assert(TypeSize == Context.getTypeSize(Context.LongLongTy) && + "Unhandled vector element size in vector compare"); + return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements()); + } + + if (TypeSize == Context.getTypeSize(Context.Int128Ty)) + return Context.getVectorType(Context.Int128Ty, VTy->getNumElements(), + VectorType::GenericVector); + if (TypeSize == Context.getTypeSize(Context.LongLongTy)) + return Context.getVectorType(Context.LongLongTy, VTy->getNumElements(), + VectorType::GenericVector); + if (TypeSize == Context.getTypeSize(Context.LongTy)) + return Context.getVectorType(Context.LongTy, VTy->getNumElements(), + VectorType::GenericVector); + if (TypeSize == Context.getTypeSize(Context.IntTy)) + return Context.getVectorType(Context.IntTy, VTy->getNumElements(), + VectorType::GenericVector); + if (TypeSize == Context.getTypeSize(Context.ShortTy)) + return Context.getVectorType(Context.ShortTy, VTy->getNumElements(), + VectorType::GenericVector); + assert(TypeSize == Context.getTypeSize(Context.CharTy) && + "Unhandled vector element size in vector compare"); + return Context.getVectorType(Context.CharTy, VTy->getNumElements(), + VectorType::GenericVector); + } + + QualType Sema::GetSignedSizelessVectorType(QualType V) { + const BuiltinType *VTy = V->castAs(); + assert(VTy->isSizelessBuiltinType() && "expected sizeless type"); + + const QualType ETy = V->getSveEltType(Context); + const auto TypeSize = Context.getTypeSize(ETy); + + const QualType IntTy = Context.getIntTypeForBitwidth(TypeSize, true); + const llvm::ElementCount VecSize = Context.getBuiltinVectorTypeInfo(VTy).EC; + return Context.getScalableVectorType(IntTy, VecSize.getKnownMinValue()); + } + + /// CheckVectorCompareOperands - vector comparisons are a clang extension that + /// operates on extended vector types. Instead of producing an IntTy result, + /// like a scalar comparison, a vector comparison produces a vector of integer + /// types. + QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS, + SourceLocation Loc, + BinaryOperatorKind Opc) { + if (Opc == BO_Cmp) { + Diag(Loc, diag::err_three_way_vector_comparison); + return QualType(); + } + + // Check to make sure we're operating on vectors of the same type and width, + // Allowing one side to be a scalar of element type. + QualType vType = + CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/ false, + /*AllowBothBool*/ true, + /*AllowBoolConversions*/ getLangOpts().ZVector, + /*AllowBooleanOperation*/ true, + /*ReportInvalid*/ true); + if (vType.isNull()) + return vType; + + QualType LHSType = LHS.get()->getType(); + + // Determine the return type of a vector compare. By default clang will return + // a scalar for all vector compares except vector bool and vector pixel. + // With the gcc compiler we will always return a vector type and with the xl + // compiler we will always return a scalar type. This switch allows choosing + // which behavior is prefered. + if (getLangOpts().AltiVec) { + switch (getLangOpts().getAltivecSrcCompat()) { + case LangOptions::AltivecSrcCompatKind::Mixed: + // If AltiVec, the comparison results in a numeric type, i.e. + // bool for C++, int for C + if (vType->castAs()->getVectorKind() == + VectorType::AltiVecVector) + return Context.getLogicalOperationType(); + else + Diag(Loc, diag::warn_deprecated_altivec_src_compat); + break; + case LangOptions::AltivecSrcCompatKind::GCC: + // For GCC we always return the vector type. + break; + case LangOptions::AltivecSrcCompatKind::XL: + return Context.getLogicalOperationType(); + break; + } + } + + // For non-floating point types, check for self-comparisons of the form + // x == x, x != x, x < x, etc. These always evaluate to a constant, and + // often indicate logic errors in the program. + diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc); + + // Check for comparisons of floating point operands using != and ==. + if (LHSType->hasFloatingRepresentation()) { + assert(RHS.get()->getType()->hasFloatingRepresentation()); + CheckFloatComparison(Loc, LHS.get(), RHS.get(), Opc); + } + + // Return a signed type for the vector. + return GetSignedVectorType(vType); + } + + QualType Sema::CheckSizelessVectorCompareOperands(ExprResult &LHS, + ExprResult &RHS, + SourceLocation Loc, + BinaryOperatorKind Opc) { + if (Opc == BO_Cmp) { + Diag(Loc, diag::err_three_way_vector_comparison); + return QualType(); + } + + // Check to make sure we're operating on vectors of the same type and width, + // Allowing one side to be a scalar of element type. + QualType vType = CheckSizelessVectorOperands( + LHS, RHS, Loc, /*isCompAssign*/ false, ACK_Comparison); + + if (vType.isNull()) + return vType; + + QualType LHSType = LHS.get()->getType(); + + // For non-floating point types, check for self-comparisons of the form + // x == x, x != x, x < x, etc. These always evaluate to a constant, and + // often indicate logic errors in the program. + diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc); + + // Check for comparisons of floating point operands using != and ==. + if (LHSType->hasFloatingRepresentation()) { + assert(RHS.get()->getType()->hasFloatingRepresentation()); + CheckFloatComparison(Loc, LHS.get(), RHS.get(), Opc); + } + + const BuiltinType *LHSBuiltinTy = LHSType->getAs(); + const BuiltinType *RHSBuiltinTy = RHS.get()->getType()->getAs(); + + if (LHSBuiltinTy && RHSBuiltinTy && LHSBuiltinTy->isSVEBool() && + RHSBuiltinTy->isSVEBool()) + return LHSType; + + // Return a signed type for the vector. + return GetSignedSizelessVectorType(vType); + } + + static void diagnoseXorMisusedAsPow(Sema &S, const ExprResult &XorLHS, + const ExprResult &XorRHS, + const SourceLocation Loc) { + // Do not diagnose macros. + if (Loc.isMacroID()) + return; + + // Do not diagnose if both LHS and RHS are macros. + if (XorLHS.get()->getExprLoc().isMacroID() && + XorRHS.get()->getExprLoc().isMacroID()) + return; + + bool Negative = false; + bool ExplicitPlus = false; + const auto *LHSInt = dyn_cast(XorLHS.get()); + const auto *RHSInt = dyn_cast(XorRHS.get()); + + if (!LHSInt) + return; + if (!RHSInt) { + // Check negative literals. + if (const auto *UO = dyn_cast(XorRHS.get())) { + UnaryOperatorKind Opc = UO->getOpcode(); + if (Opc != UO_Minus && Opc != UO_Plus) + return; + RHSInt = dyn_cast(UO->getSubExpr()); + if (!RHSInt) + return; + Negative = (Opc == UO_Minus); + ExplicitPlus = !Negative; + } else { + return; + } + } + + const llvm::APInt &LeftSideValue = LHSInt->getValue(); + llvm::APInt RightSideValue = RHSInt->getValue(); + if (LeftSideValue != 2 && LeftSideValue != 10) + return; + + if (LeftSideValue.getBitWidth() != RightSideValue.getBitWidth()) + return; + + CharSourceRange ExprRange = CharSourceRange::getCharRange( + LHSInt->getBeginLoc(), S.getLocForEndOfToken(RHSInt->getLocation())); + llvm::StringRef ExprStr = + Lexer::getSourceText(ExprRange, S.getSourceManager(), S.getLangOpts()); + + CharSourceRange XorRange = + CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc)); + llvm::StringRef XorStr = + Lexer::getSourceText(XorRange, S.getSourceManager(), S.getLangOpts()); + // Do not diagnose if xor keyword/macro is used. + if (XorStr == "xor") + return; + + std::string LHSStr = std::string(Lexer::getSourceText( + CharSourceRange::getTokenRange(LHSInt->getSourceRange()), + S.getSourceManager(), S.getLangOpts())); + std::string RHSStr = std::string(Lexer::getSourceText( + CharSourceRange::getTokenRange(RHSInt->getSourceRange()), + S.getSourceManager(), S.getLangOpts())); + + if (Negative) { + RightSideValue = -RightSideValue; + RHSStr = "-" + RHSStr; + } else if (ExplicitPlus) { + RHSStr = "+" + RHSStr; + } + + StringRef LHSStrRef = LHSStr; + StringRef RHSStrRef = RHSStr; + // Do not diagnose literals with digit separators, binary, hexadecimal, octal + // literals. + if (LHSStrRef.startswith("0b") || LHSStrRef.startswith("0B") || + RHSStrRef.startswith("0b") || RHSStrRef.startswith("0B") || + LHSStrRef.startswith("0x") || LHSStrRef.startswith("0X") || + RHSStrRef.startswith("0x") || RHSStrRef.startswith("0X") || + (LHSStrRef.size() > 1 && LHSStrRef.startswith("0")) || + (RHSStrRef.size() > 1 && RHSStrRef.startswith("0")) || + LHSStrRef.contains('\'') || RHSStrRef.contains('\'')) + return; + + bool SuggestXor = + S.getLangOpts().CPlusPlus || S.getPreprocessor().isMacroDefined("xor"); + const llvm::APInt XorValue = LeftSideValue ^ RightSideValue; + int64_t RightSideIntValue = RightSideValue.getSExtValue(); + if (LeftSideValue == 2 && RightSideIntValue >= 0) { + std::string SuggestedExpr = "1 << " + RHSStr; + bool Overflow = false; + llvm::APInt One = (LeftSideValue - 1); + llvm::APInt PowValue = One.sshl_ov(RightSideValue, Overflow); + if (Overflow) { + if (RightSideIntValue < 64) + S.Diag(Loc, diag::warn_xor_used_as_pow_base) + << ExprStr << toString(XorValue, 10, true) << ("1LL << " + RHSStr) + << FixItHint::CreateReplacement(ExprRange, "1LL << " + RHSStr); + else if (RightSideIntValue == 64) + S.Diag(Loc, diag::warn_xor_used_as_pow) + << ExprStr << toString(XorValue, 10, true); + else + return; + } else { + S.Diag(Loc, diag::warn_xor_used_as_pow_base_extra) + << ExprStr << toString(XorValue, 10, true) << SuggestedExpr + << toString(PowValue, 10, true) + << FixItHint::CreateReplacement( + ExprRange, (RightSideIntValue == 0) ? "1" : SuggestedExpr); + } + + S.Diag(Loc, diag::note_xor_used_as_pow_silence) + << ("0x2 ^ " + RHSStr) << SuggestXor; + } else if (LeftSideValue == 10) { + std::string SuggestedValue = "1e" + std::to_string(RightSideIntValue); + S.Diag(Loc, diag::warn_xor_used_as_pow_base) + << ExprStr << toString(XorValue, 10, true) << SuggestedValue + << FixItHint::CreateReplacement(ExprRange, SuggestedValue); + S.Diag(Loc, diag::note_xor_used_as_pow_silence) + << ("0xA ^ " + RHSStr) << SuggestXor; + } + } + + QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS, + SourceLocation Loc) { + // Ensure that either both operands are of the same vector type, or + // one operand is of a vector type and the other is of its element type. + QualType vType = CheckVectorOperands(LHS, RHS, Loc, false, + /*AllowBothBool*/ true, + /*AllowBoolConversions*/ false, + /*AllowBooleanOperation*/ false, + /*ReportInvalid*/ false); + if (vType.isNull()) + return InvalidOperands(Loc, LHS, RHS); + if (getLangOpts().OpenCL && + getLangOpts().getOpenCLCompatibleVersion() < 120 && + vType->hasFloatingRepresentation()) + return InvalidOperands(Loc, LHS, RHS); + // FIXME: The check for C++ here is for GCC compatibility. GCC rejects the + // usage of the logical operators && and || with vectors in C. This + // check could be notionally dropped. + if (!getLangOpts().CPlusPlus && + !(isa(vType->getAs()))) + return InvalidLogicalVectorOperands(Loc, LHS, RHS); + + return GetSignedVectorType(LHS.get()->getType()); + } + + QualType Sema::CheckMatrixElementwiseOperands(ExprResult &LHS, ExprResult &RHS, + SourceLocation Loc, + bool IsCompAssign) { + if (!IsCompAssign) { + LHS = DefaultFunctionArrayLvalueConversion(LHS.get()); + if (LHS.isInvalid()) + return QualType(); + } + RHS = DefaultFunctionArrayLvalueConversion(RHS.get()); + if (RHS.isInvalid()) + return QualType(); + + // For conversion purposes, we ignore any qualifiers. + // For example, "const float" and "float" are equivalent. + QualType LHSType = LHS.get()->getType().getUnqualifiedType(); + QualType RHSType = RHS.get()->getType().getUnqualifiedType(); + + const MatrixType *LHSMatType = LHSType->getAs(); + const MatrixType *RHSMatType = RHSType->getAs(); + assert((LHSMatType || RHSMatType) && "At least one operand must be a matrix"); + + if (Context.hasSameType(LHSType, RHSType)) + return Context.getCommonSugaredType(LHSType, RHSType); + + // Type conversion may change LHS/RHS. Keep copies to the original results, in + // case we have to return InvalidOperands. + ExprResult OriginalLHS = LHS; + ExprResult OriginalRHS = RHS; + if (LHSMatType && !RHSMatType) { + RHS = tryConvertExprToType(RHS.get(), LHSMatType->getElementType()); + if (!RHS.isInvalid()) + return LHSType; + + return InvalidOperands(Loc, OriginalLHS, OriginalRHS); + } + + if (!LHSMatType && RHSMatType) { + LHS = tryConvertExprToType(LHS.get(), RHSMatType->getElementType()); + if (!LHS.isInvalid()) + return RHSType; + return InvalidOperands(Loc, OriginalLHS, OriginalRHS); + } + + return InvalidOperands(Loc, LHS, RHS); + } + + QualType Sema::CheckMatrixMultiplyOperands(ExprResult &LHS, ExprResult &RHS, + SourceLocation Loc, + bool IsCompAssign) { + if (!IsCompAssign) { + LHS = DefaultFunctionArrayLvalueConversion(LHS.get()); + if (LHS.isInvalid()) + return QualType(); + } + RHS = DefaultFunctionArrayLvalueConversion(RHS.get()); + if (RHS.isInvalid()) + return QualType(); + + auto *LHSMatType = LHS.get()->getType()->getAs(); + auto *RHSMatType = RHS.get()->getType()->getAs(); + assert((LHSMatType || RHSMatType) && "At least one operand must be a matrix"); + + if (LHSMatType && RHSMatType) { + if (LHSMatType->getNumColumns() != RHSMatType->getNumRows()) + return InvalidOperands(Loc, LHS, RHS); + + if (Context.hasSameType(LHSMatType, RHSMatType)) + return Context.getCommonSugaredType( + LHS.get()->getType().getUnqualifiedType(), + RHS.get()->getType().getUnqualifiedType()); + + QualType LHSELTy = LHSMatType->getElementType(), + RHSELTy = RHSMatType->getElementType(); + if (!Context.hasSameType(LHSELTy, RHSELTy)) + return InvalidOperands(Loc, LHS, RHS); + + return Context.getConstantMatrixType( + Context.getCommonSugaredType(LHSELTy, RHSELTy), + LHSMatType->getNumRows(), RHSMatType->getNumColumns()); + } + return CheckMatrixElementwiseOperands(LHS, RHS, Loc, IsCompAssign); + } + + static bool isLegalBoolVectorBinaryOp(BinaryOperatorKind Opc) { + switch (Opc) { + default: + return false; + case BO_And: + case BO_AndAssign: + case BO_Or: + case BO_OrAssign: + case BO_Xor: + case BO_XorAssign: + return true; + } + } + + inline QualType Sema::CheckBitwiseOperands(ExprResult &LHS, ExprResult &RHS, + SourceLocation Loc, + BinaryOperatorKind Opc) { + checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false); + + bool IsCompAssign = + Opc == BO_AndAssign || Opc == BO_OrAssign || Opc == BO_XorAssign; + + bool LegalBoolVecOperator = isLegalBoolVectorBinaryOp(Opc); + + if (LHS.get()->getType()->isVectorType() || + RHS.get()->getType()->isVectorType()) { + if (LHS.get()->getType()->hasIntegerRepresentation() && + RHS.get()->getType()->hasIntegerRepresentation()) + return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign, + /*AllowBothBool*/ true, + /*AllowBoolConversions*/ getLangOpts().ZVector, + /*AllowBooleanOperation*/ LegalBoolVecOperator, + /*ReportInvalid*/ true); + return InvalidOperands(Loc, LHS, RHS); + } + + if (LHS.get()->getType()->isVLSTBuiltinType() || + RHS.get()->getType()->isVLSTBuiltinType()) { + if (LHS.get()->getType()->hasIntegerRepresentation() && + RHS.get()->getType()->hasIntegerRepresentation()) + return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign, + ACK_BitwiseOp); + return InvalidOperands(Loc, LHS, RHS); + } + + if (LHS.get()->getType()->isVLSTBuiltinType() || + RHS.get()->getType()->isVLSTBuiltinType()) { + if (LHS.get()->getType()->hasIntegerRepresentation() && + RHS.get()->getType()->hasIntegerRepresentation()) + return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign, + ACK_BitwiseOp); + return InvalidOperands(Loc, LHS, RHS); + } + + if (Opc == BO_And) + diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc); + + if (LHS.get()->getType()->hasFloatingRepresentation() || + RHS.get()->getType()->hasFloatingRepresentation()) + return InvalidOperands(Loc, LHS, RHS); + + ExprResult LHSResult = LHS, RHSResult = RHS; + QualType compType = UsualArithmeticConversions( + LHSResult, RHSResult, Loc, IsCompAssign ? ACK_CompAssign : ACK_BitwiseOp); + if (LHSResult.isInvalid() || RHSResult.isInvalid()) + return QualType(); + LHS = LHSResult.get(); + RHS = RHSResult.get(); + + if (Opc == BO_Xor) + diagnoseXorMisusedAsPow(*this, LHS, RHS, Loc); + + if (!compType.isNull() && compType->isIntegralOrUnscopedEnumerationType()) + return compType; + return InvalidOperands(Loc, LHS, RHS); + } + + // Diagnose cases where the user write a logical and/or but probably meant a + // bitwise one. We do this when one of the operands is a non-bool integer and + // the other is a constant. + void Sema::diagnoseLogicalInsteadOfBitwise(Expr *Op1, Expr *Op2, + SourceLocation Loc, + BinaryOperatorKind Opc) { + if (Op1->getType()->isIntegerType() && !Op1->getType()->isBooleanType() && + Op2->getType()->isIntegerType() && !Op2->isValueDependent() && + // Don't warn in macros or template instantiations. + !Loc.isMacroID() && !inTemplateInstantiation() && + !Op2->getExprLoc().isMacroID() && + !Op1->getExprLoc().isMacroID()) { + bool IsOp1InMacro = Op1->getExprLoc().isMacroID(); + bool IsOp2InMacro = Op2->getExprLoc().isMacroID(); + + // Exclude the specific expression from triggering the warning. + if (!(IsOp1InMacro && IsOp2InMacro && Op1->getSourceRange() == Op2->getSourceRange())) { + // If the RHS can be constant folded, and if it constant folds to something + // that isn't 0 or 1 (which indicate a potential logical operation that + // happened to fold to true/false) then warn. + // Parens on the RHS are ignored. + // If the RHS can be constant folded, and if it constant folds to something + // that isn't 0 or 1 (which indicate a potential logical operation that + // happened to fold to true/false) then warn. + // Parens on the RHS are ignored. + Expr::EvalResult EVResult; + if (Op2->EvaluateAsInt(EVResult, Context)) { + llvm::APSInt Result = EVResult.Val.getInt(); + if ((getLangOpts().Bool && !Op2->getType()->isBooleanType() && + !Op2->getExprLoc().isMacroID()) || + (Result != 0 && Result != 1)) { + Diag(Loc, diag::warn_logical_instead_of_bitwise) + << Op2->getSourceRange() << (Opc == BO_LAnd ? "&&" : "||"); + // Suggest replacing the logical operator with the bitwise version + Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator) + << (Opc == BO_LAnd ? "&" : "|") + << FixItHint::CreateReplacement( + SourceRange(Loc, getLocForEndOfToken(Loc)), + Opc == BO_LAnd ? "&" : "|"); + if (Opc == BO_LAnd) + // Suggest replacing "Foo() && kNonZero" with "Foo()" + Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant) + << FixItHint::CreateRemoval(SourceRange( + getLocForEndOfToken(Op1->getEndLoc()), Op2->getEndLoc())); + } + } + } + } + } + + // C99 6.5.[13,14] + inline QualType Sema::CheckLogicalOperands(ExprResult &LHS, ExprResult &RHS, + SourceLocation Loc, + BinaryOperatorKind Opc) { + // Check vector operands differently. + if (LHS.get()->getType()->isVectorType() || + RHS.get()->getType()->isVectorType()) + return CheckVectorLogicalOperands(LHS, RHS, Loc); + + bool EnumConstantInBoolContext = false; + for (const ExprResult &HS : {LHS, RHS}) { + if (const auto *DREHS = dyn_cast(HS.get())) { + const auto *ECDHS = dyn_cast(DREHS->getDecl()); + if (ECDHS && ECDHS->getInitVal() != 0 && ECDHS->getInitVal() != 1) + EnumConstantInBoolContext = true; + } + } + + // WebAssembly tables can't be used with logical operators. + QualType LHSTy = LHS.get()->getType(); + QualType RHSTy = RHS.get()->getType(); + const auto *LHSATy = dyn_cast(LHSTy); + const auto *RHSATy = dyn_cast(RHSTy); + if ((LHSATy && LHSATy->getElementType().isWebAssemblyReferenceType()) || + (RHSATy && RHSATy->getElementType().isWebAssemblyReferenceType())) { + return InvalidOperands(Loc, LHS, RHS); + } + + if (EnumConstantInBoolContext) { + // Warn when converting the enum constant to a boolean + Diag(Loc, diag::warn_enum_constant_in_bool_context); + } else { + // Diagnose cases where the user write a logical and/or but probably meant a + // bitwise one. + diagnoseLogicalInsteadOfBitwise(LHS.get(), RHS.get(), Loc, Opc); + diagnoseLogicalInsteadOfBitwise(RHS.get(), LHS.get(), Loc, Opc); + } + + if (!Context.getLangOpts().CPlusPlus) { + // OpenCL v1.1 s6.3.g: The logical operators and (&&), or (||) do + // not operate on the built-in scalar and vector float types. + if (Context.getLangOpts().OpenCL && + Context.getLangOpts().OpenCLVersion < 120) { + if (LHS.get()->getType()->isFloatingType() || + RHS.get()->getType()->isFloatingType()) + return InvalidOperands(Loc, LHS, RHS); + } + + LHS = UsualUnaryConversions(LHS.get()); + if (LHS.isInvalid()) + return QualType(); + + RHS = UsualUnaryConversions(RHS.get()); + if (RHS.isInvalid()) + return QualType(); + + if (!LHS.get()->getType()->isScalarType() || + !RHS.get()->getType()->isScalarType()) + return InvalidOperands(Loc, LHS, RHS); + + return Context.IntTy; + } + + // The following is safe because we only use this method for + // non-overloadable operands. + + // C++ [expr.log.and]p1 + // C++ [expr.log.or]p1 + // The operands are both contextually converted to type bool. + ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get()); + if (LHSRes.isInvalid()) + return InvalidOperands(Loc, LHS, RHS); + LHS = LHSRes; + + ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get()); + if (RHSRes.isInvalid()) + return InvalidOperands(Loc, LHS, RHS); + RHS = RHSRes; + + // C++ [expr.log.and]p2 + // C++ [expr.log.or]p2 + // The result is a bool. + return Context.BoolTy; + } + + static bool IsReadonlyMessage(Expr *E, Sema &S) { + const MemberExpr *ME = dyn_cast(E); + if (!ME) return false; + if (!isa(ME->getMemberDecl())) return false; + ObjCMessageExpr *Base = dyn_cast( + ME->getBase()->IgnoreImplicit()->IgnoreParenImpCasts()); + if (!Base) return false; + return Base->getMethodDecl() != nullptr; + } + + /// Is the given expression (which must be 'const') a reference to a + /// variable which was originally non-const, but which has become + /// 'const' due to being captured within a block? + enum NonConstCaptureKind { NCCK_None, NCCK_Block, NCCK_Lambda }; + static NonConstCaptureKind isReferenceToNonConstCapture(Sema &S, Expr *E) { + assert(E->isLValue() && E->getType().isConstQualified()); + E = E->IgnoreParens(); + + // Must be a reference to a declaration from an enclosing scope. + DeclRefExpr *DRE = dyn_cast(E); + if (!DRE) return NCCK_None; + if (!DRE->refersToEnclosingVariableOrCapture()) return NCCK_None; + + // The declaration must be a variable which is not declared 'const'. + VarDecl *var = dyn_cast(DRE->getDecl()); + if (!var) return NCCK_None; + if (var->getType().isConstQualified()) return NCCK_None; + assert(var->hasLocalStorage() && "capture added 'const' to non-local?"); + + // Decide whether the first capture was for a block or a lambda. + DeclContext *DC = S.CurContext, *Prev = nullptr; + // Decide whether the first capture was for a block or a lambda. + while (DC) { + // For init-capture, it is possible that the variable belongs to the + // template pattern of the current context. + if (auto *FD = dyn_cast(DC)) + if (var->isInitCapture() && + FD->getTemplateInstantiationPattern() == var->getDeclContext()) + break; + if (DC == var->getDeclContext()) + break; + Prev = DC; + DC = DC->getParent(); + } + // Unless we have an init-capture, we've gone one step too far. + if (!var->isInitCapture()) + DC = Prev; + return (isa(DC) ? NCCK_Block : NCCK_Lambda); + } + + static bool IsTypeModifiable(QualType Ty, bool IsDereference) { + Ty = Ty.getNonReferenceType(); + if (IsDereference && Ty->isPointerType()) + Ty = Ty->getPointeeType(); + return !Ty.isConstQualified(); + } + + // Update err_typecheck_assign_const and note_typecheck_assign_const + // when this enum is changed. + enum { + ConstFunction, + ConstVariable, + ConstMember, + ConstMethod, + NestedConstMember, + ConstUnknown, // Keep as last element + }; + + /// Emit the "read-only variable not assignable" error and print notes to give + /// more information about why the variable is not assignable, such as pointing + /// to the declaration of a const variable, showing that a method is const, or + /// that the function is returning a const reference. + static void DiagnoseConstAssignment(Sema &S, const Expr *E, + SourceLocation Loc) { + SourceRange ExprRange = E->getSourceRange(); + + // Only emit one error on the first const found. All other consts will emit + // a note to the error. + bool DiagnosticEmitted = false; + + // Track if the current expression is the result of a dereference, and if the + // next checked expression is the result of a dereference. + bool IsDereference = false; + bool NextIsDereference = false; + + // Loop to process MemberExpr chains. + while (true) { + IsDereference = NextIsDereference; + + E = E->IgnoreImplicit()->IgnoreParenImpCasts(); + if (const MemberExpr *ME = dyn_cast(E)) { + NextIsDereference = ME->isArrow(); + const ValueDecl *VD = ME->getMemberDecl(); + if (const FieldDecl *Field = dyn_cast(VD)) { + // Mutable fields can be modified even if the class is const. + if (Field->isMutable()) { + assert(DiagnosticEmitted && "Expected diagnostic not emitted."); + break; + } + + if (!IsTypeModifiable(Field->getType(), IsDereference)) { + if (!DiagnosticEmitted) { + S.Diag(Loc, diag::err_typecheck_assign_const) + << ExprRange << ConstMember << false /*static*/ << Field + << Field->getType(); + DiagnosticEmitted = true; + } + S.Diag(VD->getLocation(), diag::note_typecheck_assign_const) + << ConstMember << false /*static*/ << Field << Field->getType() + << Field->getSourceRange(); + } + E = ME->getBase(); + continue; + } else if (const VarDecl *VDecl = dyn_cast(VD)) { + if (VDecl->getType().isConstQualified()) { + if (!DiagnosticEmitted) { + S.Diag(Loc, diag::err_typecheck_assign_const) + << ExprRange << ConstMember << true /*static*/ << VDecl + << VDecl->getType(); + DiagnosticEmitted = true; + } + S.Diag(VD->getLocation(), diag::note_typecheck_assign_const) + << ConstMember << true /*static*/ << VDecl << VDecl->getType() + << VDecl->getSourceRange(); + } + // Static fields do not inherit constness from parents. + break; + } + break; // End MemberExpr + } else if (const ArraySubscriptExpr *ASE = + dyn_cast(E)) { + E = ASE->getBase()->IgnoreParenImpCasts(); + continue; + } else if (const ExtVectorElementExpr *EVE = + dyn_cast(E)) { + E = EVE->getBase()->IgnoreParenImpCasts(); + continue; + } + break; + } + + if (const CallExpr *CE = dyn_cast(E)) { + // Function calls + const FunctionDecl *FD = CE->getDirectCallee(); + if (FD && !IsTypeModifiable(FD->getReturnType(), IsDereference)) { + if (!DiagnosticEmitted) { + S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange + << ConstFunction << FD; + DiagnosticEmitted = true; + } + S.Diag(FD->getReturnTypeSourceRange().getBegin(), + diag::note_typecheck_assign_const) + << ConstFunction << FD << FD->getReturnType() + << FD->getReturnTypeSourceRange(); + } + } else if (const DeclRefExpr *DRE = dyn_cast(E)) { + // Point to variable declaration. + if (const ValueDecl *VD = DRE->getDecl()) { + if (!IsTypeModifiable(VD->getType(), IsDereference)) { + if (!DiagnosticEmitted) { + S.Diag(Loc, diag::err_typecheck_assign_const) + << ExprRange << ConstVariable << VD << VD->getType(); + DiagnosticEmitted = true; + } + S.Diag(VD->getLocation(), diag::note_typecheck_assign_const) + << ConstVariable << VD << VD->getType() << VD->getSourceRange(); + } + } + } else if (isa(E)) { + if (const DeclContext *DC = S.getFunctionLevelDeclContext()) { + if (const CXXMethodDecl *MD = dyn_cast(DC)) { + if (MD->isConst()) { + if (!DiagnosticEmitted) { + S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange + << ConstMethod << MD; + DiagnosticEmitted = true; + } + S.Diag(MD->getLocation(), diag::note_typecheck_assign_const) + << ConstMethod << MD << MD->getSourceRange(); + } + } + } + } + + if (DiagnosticEmitted) + return; + + // Can't determine a more specific message, so display the generic error. + S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange << ConstUnknown; + } + + enum OriginalExprKind { + OEK_Variable, + OEK_Member, + OEK_LValue + }; + + static void DiagnoseRecursiveConstFields(Sema &S, const ValueDecl *VD, + const RecordType *Ty, + SourceLocation Loc, SourceRange Range, + OriginalExprKind OEK, + bool &DiagnosticEmitted) { + std::vector RecordTypeList; + RecordTypeList.push_back(Ty); + unsigned NextToCheckIndex = 0; + // We walk the record hierarchy breadth-first to ensure that we print + // diagnostics in field nesting order. + while (RecordTypeList.size() > NextToCheckIndex) { + bool IsNested = NextToCheckIndex > 0; + for (const FieldDecl *Field : + RecordTypeList[NextToCheckIndex]->getDecl()->fields()) { + // First, check every field for constness. + QualType FieldTy = Field->getType(); + if (FieldTy.isConstQualified()) { + if (!DiagnosticEmitted) { + S.Diag(Loc, diag::err_typecheck_assign_const) + << Range << NestedConstMember << OEK << VD + << IsNested << Field; + DiagnosticEmitted = true; + } + S.Diag(Field->getLocation(), diag::note_typecheck_assign_const) + << NestedConstMember << IsNested << Field + << FieldTy << Field->getSourceRange(); + } + + // Then we append it to the list to check next in order. + FieldTy = FieldTy.getCanonicalType(); + if (const auto *FieldRecTy = FieldTy->getAs()) { + if (!llvm::is_contained(RecordTypeList, FieldRecTy)) + RecordTypeList.push_back(FieldRecTy); + } + } + ++NextToCheckIndex; + } + } + + /// Emit an error for the case where a record we are trying to assign to has a + /// const-qualified field somewhere in its hierarchy. + static void DiagnoseRecursiveConstFields(Sema &S, const Expr *E, + SourceLocation Loc) { + QualType Ty = E->getType(); + assert(Ty->isRecordType() && "lvalue was not record?"); + SourceRange Range = E->getSourceRange(); + const RecordType *RTy = Ty.getCanonicalType()->getAs(); + bool DiagEmitted = false; + + if (const MemberExpr *ME = dyn_cast(E)) + DiagnoseRecursiveConstFields(S, ME->getMemberDecl(), RTy, Loc, + Range, OEK_Member, DiagEmitted); + else if (const DeclRefExpr *DRE = dyn_cast(E)) + DiagnoseRecursiveConstFields(S, DRE->getDecl(), RTy, Loc, + Range, OEK_Variable, DiagEmitted); + else + DiagnoseRecursiveConstFields(S, nullptr, RTy, Loc, + Range, OEK_LValue, DiagEmitted); + if (!DiagEmitted) + DiagnoseConstAssignment(S, E, Loc); + } + + /// CheckForModifiableLvalue - Verify that E is a modifiable lvalue. If not, + /// emit an error and return true. If so, return false. + static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) { + assert(!E->hasPlaceholderType(BuiltinType::PseudoObject)); + + S.CheckShadowingDeclModification(E, Loc); + + SourceLocation OrigLoc = Loc; + Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context, + &Loc); + if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S)) + IsLV = Expr::MLV_InvalidMessageExpression; + if (IsLV == Expr::MLV_Valid) + return false; + + unsigned DiagID = 0; + bool NeedType = false; + switch (IsLV) { // C99 6.5.16p2 + case Expr::MLV_ConstQualified: + // Use a specialized diagnostic when we're assigning to an object + // from an enclosing function or block. + if (NonConstCaptureKind NCCK = isReferenceToNonConstCapture(S, E)) { + if (NCCK == NCCK_Block) + DiagID = diag::err_block_decl_ref_not_modifiable_lvalue; + else + DiagID = diag::err_lambda_decl_ref_not_modifiable_lvalue; + break; + } + + // In ARC, use some specialized diagnostics for occasions where we + // infer 'const'. These are always pseudo-strong variables. + if (S.getLangOpts().ObjCAutoRefCount) { + DeclRefExpr *declRef = dyn_cast(E->IgnoreParenCasts()); + if (declRef && isa(declRef->getDecl())) { + VarDecl *var = cast(declRef->getDecl()); + + // Use the normal diagnostic if it's pseudo-__strong but the + // user actually wrote 'const'. + if (var->isARCPseudoStrong() && + (!var->getTypeSourceInfo() || + !var->getTypeSourceInfo()->getType().isConstQualified())) { + // There are three pseudo-strong cases: + // - self + ObjCMethodDecl *method = S.getCurMethodDecl(); + if (method && var == method->getSelfDecl()) { + DiagID = method->isClassMethod() + ? diag::err_typecheck_arc_assign_self_class_method + : diag::err_typecheck_arc_assign_self; + + // - Objective-C externally_retained attribute. + } else if (var->hasAttr() || + isa(var)) { + DiagID = diag::err_typecheck_arc_assign_externally_retained; + + // - fast enumeration variables + } else { + DiagID = diag::err_typecheck_arr_assign_enumeration; + } + + SourceRange Assign; + if (Loc != OrigLoc) + Assign = SourceRange(OrigLoc, OrigLoc); + S.Diag(Loc, DiagID) << E->getSourceRange() << Assign; + // We need to preserve the AST regardless, so migration tool + // can do its job. + return false; + } + } + } + + // If none of the special cases above are triggered, then this is a + // simple const assignment. + if (DiagID == 0) { + DiagnoseConstAssignment(S, E, Loc); + return true; + } + + break; + case Expr::MLV_ConstAddrSpace: + DiagnoseConstAssignment(S, E, Loc); + return true; + case Expr::MLV_ConstQualifiedField: + DiagnoseRecursiveConstFields(S, E, Loc); + return true; + case Expr::MLV_ArrayType: + case Expr::MLV_ArrayTemporary: + DiagID = diag::err_typecheck_array_not_modifiable_lvalue; + NeedType = true; + break; + case Expr::MLV_NotObjectType: + DiagID = diag::err_typecheck_non_object_not_modifiable_lvalue; + NeedType = true; + break; + case Expr::MLV_LValueCast: + DiagID = diag::err_typecheck_lvalue_casts_not_supported; + break; + case Expr::MLV_Valid: + llvm_unreachable("did not take early return for MLV_Valid"); + case Expr::MLV_InvalidExpression: + case Expr::MLV_MemberFunction: + case Expr::MLV_ClassTemporary: + DiagID = diag::err_typecheck_expression_not_modifiable_lvalue; + break; + case Expr::MLV_IncompleteType: + case Expr::MLV_IncompleteVoidType: + return S.RequireCompleteType(Loc, E->getType(), + diag::err_typecheck_incomplete_type_not_modifiable_lvalue, E); + case Expr::MLV_DuplicateVectorComponents: + DiagID = diag::err_typecheck_duplicate_vector_components_not_mlvalue; + break; + case Expr::MLV_NoSetterProperty: + llvm_unreachable("readonly properties should be processed differently"); + case Expr::MLV_InvalidMessageExpression: + DiagID = diag::err_readonly_message_assignment; + break; + case Expr::MLV_SubObjCPropertySetting: + DiagID = diag::err_no_subobject_property_setting; + break; + } + + SourceRange Assign; + if (Loc != OrigLoc) + Assign = SourceRange(OrigLoc, OrigLoc); + if (NeedType) + S.Diag(Loc, DiagID) << E->getType() << E->getSourceRange() << Assign; + else + S.Diag(Loc, DiagID) << E->getSourceRange() << Assign; + return true; + } + + static void CheckIdentityFieldAssignment(Expr *LHSExpr, Expr *RHSExpr, + SourceLocation Loc, + Sema &Sema) { + if (Sema.inTemplateInstantiation()) + return; + if (Sema.isUnevaluatedContext()) + return; + if (Loc.isInvalid() || Loc.isMacroID()) + return; + if (LHSExpr->getExprLoc().isMacroID() || RHSExpr->getExprLoc().isMacroID()) + return; + + // C / C++ fields + MemberExpr *ML = dyn_cast(LHSExpr); + MemberExpr *MR = dyn_cast(RHSExpr); + if (ML && MR) { + if (!(isa(ML->getBase()) && isa(MR->getBase()))) + return; + const ValueDecl *LHSDecl = + cast(ML->getMemberDecl()->getCanonicalDecl()); + const ValueDecl *RHSDecl = + cast(MR->getMemberDecl()->getCanonicalDecl()); + if (LHSDecl != RHSDecl) + return; + if (LHSDecl->getType().isVolatileQualified()) + return; + if (const ReferenceType *RefTy = LHSDecl->getType()->getAs()) + if (RefTy->getPointeeType().isVolatileQualified()) + return; + + Sema.Diag(Loc, diag::warn_identity_field_assign) << 0; + } + + // Objective-C instance variables + ObjCIvarRefExpr *OL = dyn_cast(LHSExpr); + ObjCIvarRefExpr *OR = dyn_cast(RHSExpr); + if (OL && OR && OL->getDecl() == OR->getDecl()) { + DeclRefExpr *RL = dyn_cast(OL->getBase()->IgnoreImpCasts()); + DeclRefExpr *RR = dyn_cast(OR->getBase()->IgnoreImpCasts()); + if (RL && RR && RL->getDecl() == RR->getDecl()) + Sema.Diag(Loc, diag::warn_identity_field_assign) << 1; + } + } + + // C99 6.5.16.1 + QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS, + SourceLocation Loc, + QualType CompoundType, + BinaryOperatorKind Opc) { + assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject)); + + // Verify that LHS is a modifiable lvalue, and emit error if not. + if (CheckForModifiableLvalue(LHSExpr, Loc, *this)) + return QualType(); + + QualType LHSType = LHSExpr->getType(); + QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() : + CompoundType; + // OpenCL v1.2 s6.1.1.1 p2: + // The half data type can only be used to declare a pointer to a buffer that + // contains half values + if (getLangOpts().OpenCL && + !getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()) && + LHSType->isHalfType()) { + Diag(Loc, diag::err_opencl_half_load_store) << 1 + << LHSType.getUnqualifiedType(); + return QualType(); + } + + // WebAssembly tables can't be used on RHS of an assignment expression. + if (RHSType->isWebAssemblyTableType()) { + Diag(Loc, diag::err_wasm_table_art) << 0; + return QualType(); + } + + AssignConvertType ConvTy; + if (CompoundType.isNull()) { + Expr *RHSCheck = RHS.get(); + + CheckIdentityFieldAssignment(LHSExpr, RHSCheck, Loc, *this); + + QualType LHSTy(LHSType); + ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS); + if (RHS.isInvalid()) + return QualType(); + // Special case of NSObject attributes on c-style pointer types. + if (ConvTy == IncompatiblePointer && + ((Context.isObjCNSObjectType(LHSType) && + RHSType->isObjCObjectPointerType()) || + (Context.isObjCNSObjectType(RHSType) && + LHSType->isObjCObjectPointerType()))) + ConvTy = Compatible; + + if (ConvTy == Compatible && + LHSType->isObjCObjectType()) + Diag(Loc, diag::err_objc_object_assignment) + << LHSType; + + // If the RHS is a unary plus or minus, check to see if they = and + are + // right next to each other. If so, the user may have typo'd "x =+ 4" + // instead of "x += 4". + if (ImplicitCastExpr *ICE = dyn_cast(RHSCheck)) + RHSCheck = ICE->getSubExpr(); + if (UnaryOperator *UO = dyn_cast(RHSCheck)) { + if ((UO->getOpcode() == UO_Plus || UO->getOpcode() == UO_Minus) && + Loc.isFileID() && UO->getOperatorLoc().isFileID() && + // Only if the two operators are exactly adjacent. + Loc.getLocWithOffset(1) == UO->getOperatorLoc() && + // And there is a space or other character before the subexpr of the + // unary +/-. We don't want to warn on "x=-1". + Loc.getLocWithOffset(2) != UO->getSubExpr()->getBeginLoc() && + UO->getSubExpr()->getBeginLoc().isFileID()) { + Diag(Loc, diag::warn_not_compound_assign) + << (UO->getOpcode() == UO_Plus ? "+" : "-") + << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc()); + } + } + + if (ConvTy == Compatible) { + if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong) { + // Warn about retain cycles where a block captures the LHS, but + // not if the LHS is a simple variable into which the block is + // being stored...unless that variable can be captured by reference! + const Expr *InnerLHS = LHSExpr->IgnoreParenCasts(); + const DeclRefExpr *DRE = dyn_cast(InnerLHS); + if (!DRE || DRE->getDecl()->hasAttr()) + checkRetainCycles(LHSExpr, RHS.get()); + } + + if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong || + LHSType.isNonWeakInMRRWithObjCWeak(Context)) { + // It is safe to assign a weak reference into a strong variable. + // Although this code can still have problems: + // id x = self.weakProp; + // id y = self.weakProp; + // we do not warn to warn spuriously when 'x' and 'y' are on separate + // paths through the function. This should be revisited if + // -Wrepeated-use-of-weak is made flow-sensitive. + // For ObjCWeak only, we do not warn if the assign is to a non-weak + // variable, which will be valid for the current autorelease scope. + if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, + RHS.get()->getBeginLoc())) + getCurFunction()->markSafeWeakUse(RHS.get()); + + } else if (getLangOpts().ObjCAutoRefCount || getLangOpts().ObjCWeak) { + checkUnsafeExprAssigns(Loc, LHSExpr, RHS.get()); + } + } + } else { + // Compound assignment "x += y" + ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType); + } + + if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType, + RHS.get(), AA_Assigning)) + return QualType(); + + CheckForNullPointerDereference(*this, LHSExpr); + + if (getLangOpts().CPlusPlus20 && LHSType.isVolatileQualified()) { + if (CompoundType.isNull()) { + // C++2a [expr.ass]p5: + // A simple-assignment whose left operand is of a volatile-qualified + // type is deprecated unless the assignment is either a discarded-value + // expression or an unevaluated operand + ExprEvalContexts.back().VolatileAssignmentLHSs.push_back(LHSExpr); + } + } + + // C11 6.5.16p3: The type of an assignment expression is the type of the + // left operand would have after lvalue conversion. + // C11 6.3.2.1p2: ...this is called lvalue conversion. If the lvalue has + // qualified type, the value has the unqualified version of the type of the + // lvalue; additionally, if the lvalue has atomic type, the value has the + // non-atomic version of the type of the lvalue. + // C++ 5.17p1: the type of the assignment expression is that of its left + // operand. + return getLangOpts().CPlusPlus ? LHSType : LHSType.getAtomicUnqualifiedType(); + } + + // Scenarios to ignore if expression E is: + // 1. an explicit cast expression into void + // 2. a function call expression that returns void + static bool IgnoreCommaOperand(const Expr *E, const ASTContext &Context) { + E = E->IgnoreParens(); + + if (const CastExpr *CE = dyn_cast(E)) { + if (CE->getCastKind() == CK_ToVoid) { + return true; + } + + // static_cast on a dependent type will not show up as CK_ToVoid. + if (CE->getCastKind() == CK_Dependent && E->getType()->isVoidType() && + CE->getSubExpr()->getType()->isDependentType()) { + return true; + } + } + + if (const auto *CE = dyn_cast(E)) + return CE->getCallReturnType(Context)->isVoidType(); + return false; + } + + // Look for instances where it is likely the comma operator is confused with + // another operator. There is an explicit list of acceptable expressions for + // the left hand side of the comma operator, otherwise emit a warning. + void Sema::DiagnoseCommaOperator(const Expr *LHS, SourceLocation Loc) { + // No warnings in macros + if (Loc.isMacroID()) + return; + + // Don't warn in template instantiations. + if (inTemplateInstantiation()) + return; + + // Scope isn't fine-grained enough to explicitly list the specific cases, so + // instead, skip more than needed, then call back into here with the + // CommaVisitor in SemaStmt.cpp. + // The listed locations are the initialization and increment portions + // of a for loop. The additional checks are on the condition of + // if statements, do/while loops, and for loops. + // Differences in scope flags for C89 mode requires the extra logic. + const unsigned ForIncrementFlags = + getLangOpts().C99 || getLangOpts().CPlusPlus + ? Scope::ControlScope | Scope::ContinueScope | Scope::BreakScope + : Scope::ContinueScope | Scope::BreakScope; + const unsigned ForInitFlags = Scope::ControlScope | Scope::DeclScope; + const unsigned ScopeFlags = getCurScope()->getFlags(); + if ((ScopeFlags & ForIncrementFlags) == ForIncrementFlags || + (ScopeFlags & ForInitFlags) == ForInitFlags) + return; + + // If there are multiple comma operators used together, get the RHS of the + // of the comma operator as the LHS. + while (const BinaryOperator *BO = dyn_cast(LHS)) { + if (BO->getOpcode() != BO_Comma) + break; + LHS = BO->getRHS(); + } + + // Only allow some expressions on LHS to not warn. + if (IgnoreCommaOperand(LHS, Context)) + return; + + Diag(Loc, diag::warn_comma_operator); + Diag(LHS->getBeginLoc(), diag::note_cast_to_void) + << LHS->getSourceRange() + << FixItHint::CreateInsertion(LHS->getBeginLoc(), + LangOpts.CPlusPlus ? "static_cast(" + : "(void)(") + << FixItHint::CreateInsertion(PP.getLocForEndOfToken(LHS->getEndLoc()), + ")"); + } + + // C99 6.5.17 + static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS, + SourceLocation Loc) { + LHS = S.CheckPlaceholderExpr(LHS.get()); + RHS = S.CheckPlaceholderExpr(RHS.get()); + if (LHS.isInvalid() || RHS.isInvalid()) + return QualType(); + + // C's comma performs lvalue conversion (C99 6.3.2.1) on both its + // operands, but not unary promotions. + // C++'s comma does not do any conversions at all (C++ [expr.comma]p1). + + // So we treat the LHS as a ignored value, and in C++ we allow the + // containing site to determine what should be done with the RHS. + LHS = S.IgnoredValueConversions(LHS.get()); + if (LHS.isInvalid()) + return QualType(); + + S.DiagnoseUnusedExprResult(LHS.get(), diag::warn_unused_comma_left_operand); + + if (!S.getLangOpts().CPlusPlus) { + RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get()); + if (RHS.isInvalid()) + return QualType(); + if (!RHS.get()->getType()->isVoidType()) + S.RequireCompleteType(Loc, RHS.get()->getType(), + diag::err_incomplete_type); + } + + if (!S.getDiagnostics().isIgnored(diag::warn_comma_operator, Loc)) + S.DiagnoseCommaOperator(LHS.get(), Loc); + + return RHS.get()->getType(); + } + + /// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine + /// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions. + static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op, + ExprValueKind &VK, + ExprObjectKind &OK, + SourceLocation OpLoc, + bool IsInc, bool IsPrefix) { + if (Op->isTypeDependent()) + return S.Context.DependentTy; + + QualType ResType = Op->getType(); + // Atomic types can be used for increment / decrement where the non-atomic + // versions can, so ignore the _Atomic() specifier for the purpose of + // checking. + if (const AtomicType *ResAtomicType = ResType->getAs()) + ResType = ResAtomicType->getValueType(); + + assert(!ResType.isNull() && "no type for increment/decrement expression"); + + if (S.getLangOpts().CPlusPlus && ResType->isBooleanType()) { + // Decrement of bool is not allowed. + if (!IsInc) { + S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange(); + return QualType(); + } + // Increment of bool sets it to true, but is deprecated. + S.Diag(OpLoc, S.getLangOpts().CPlusPlus17 ? diag::ext_increment_bool + : diag::warn_increment_bool) + << Op->getSourceRange(); + } else if (S.getLangOpts().CPlusPlus && ResType->isEnumeralType()) { + // Error on enum increments and decrements in C++ mode + S.Diag(OpLoc, diag::err_increment_decrement_enum) << IsInc << ResType; + return QualType(); + } else if (ResType->isRealType()) { + // OK! + } else if (ResType->isPointerType()) { + // C99 6.5.2.4p2, 6.5.6p2 + if (!checkArithmeticOpPointerOperand(S, OpLoc, Op)) + return QualType(); + } else if (ResType->isObjCObjectPointerType()) { + // On modern runtimes, ObjC pointer arithmetic is forbidden. + // Otherwise, we just need a complete type. + if (checkArithmeticIncompletePointerType(S, OpLoc, Op) || + checkArithmeticOnObjCPointer(S, OpLoc, Op)) + return QualType(); + } else if (ResType->isAnyComplexType()) { + // C99 does not support ++/-- on complex types, we allow as an extension. + S.Diag(OpLoc, diag::ext_integer_increment_complex) + << ResType << Op->getSourceRange(); + } else if (ResType->isPlaceholderType()) { + ExprResult PR = S.CheckPlaceholderExpr(Op); + if (PR.isInvalid()) return QualType(); + return CheckIncrementDecrementOperand(S, PR.get(), VK, OK, OpLoc, + IsInc, IsPrefix); + } else if (S.getLangOpts().AltiVec && ResType->isVectorType()) { + // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 ) + } else if (S.getLangOpts().ZVector && ResType->isVectorType() && + (ResType->castAs()->getVectorKind() != + VectorType::AltiVecBool)) { + // The z vector extensions allow ++ and -- for non-bool vectors. + } else if(S.getLangOpts().OpenCL && ResType->isVectorType() && + ResType->castAs()->getElementType()->isIntegerType()) { + // OpenCL V1.2 6.3 says dec/inc ops operate on integer vector types. + } else { + S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement) + << ResType << int(IsInc) << Op->getSourceRange(); + return QualType(); + } + // At this point, we know we have a real, complex or pointer type. + // Now make sure the operand is a modifiable lvalue. + if (CheckForModifiableLvalue(Op, OpLoc, S)) + return QualType(); + if (S.getLangOpts().CPlusPlus20 && ResType.isVolatileQualified()) { + // C++2a [expr.pre.inc]p1, [expr.post.inc]p1: + // An operand with volatile-qualified type is deprecated + S.Diag(OpLoc, diag::warn_deprecated_increment_decrement_volatile) + << IsInc << ResType; + } + // In C++, a prefix increment is the same type as the operand. Otherwise + // (in C or with postfix), the increment is the unqualified type of the + // operand. + if (IsPrefix && S.getLangOpts().CPlusPlus) { + VK = VK_LValue; + OK = Op->getObjectKind(); + return ResType; + } else { + VK = VK_PRValue; + return ResType.getUnqualifiedType(); + } + } + + + /// getPrimaryDecl - Helper function for CheckAddressOfOperand(). + /// This routine allows us to typecheck complex/recursive expressions + /// where the declaration is needed for type checking. We only need to + /// handle cases when the expression references a function designator + /// or is an lvalue. Here are some examples: + /// - &(x) => x + /// - &*****f => f for f a function designator. + /// - &s.xx => s + /// - &s.zz[1].yy -> s, if zz is an array + /// - *(x + 1) -> x, if x is an array + /// - &"123"[2] -> 0 + /// - & __real__ x -> x + /// + /// FIXME: We don't recurse to the RHS of a comma, nor handle pointers to + /// members. + static ValueDecl *getPrimaryDecl(Expr *E) { + switch (E->getStmtClass()) { + case Stmt::DeclRefExprClass: + return cast(E)->getDecl(); + case Stmt::MemberExprClass: + // If this is an arrow operator, the address is an offset from + // the base's value, so the object the base refers to is + // irrelevant. + if (cast(E)->isArrow()) + return nullptr; + // Otherwise, the expression refers to a part of the base + return getPrimaryDecl(cast(E)->getBase()); + case Stmt::ArraySubscriptExprClass: { + // FIXME: This code shouldn't be necessary! We should catch the implicit + // promotion of register arrays earlier. + Expr* Base = cast(E)->getBase(); + if (ImplicitCastExpr* ICE = dyn_cast(Base)) { + if (ICE->getSubExpr()->getType()->isArrayType()) + return getPrimaryDecl(ICE->getSubExpr()); + } + return nullptr; + } + case Stmt::UnaryOperatorClass: { + UnaryOperator *UO = cast(E); + + switch(UO->getOpcode()) { + case UO_Real: + case UO_Imag: + case UO_Extension: + return getPrimaryDecl(UO->getSubExpr()); + default: + return nullptr; + } + } + case Stmt::ParenExprClass: + return getPrimaryDecl(cast(E)->getSubExpr()); + case Stmt::ImplicitCastExprClass: + // If the result of an implicit cast is an l-value, we care about + // the sub-expression; otherwise, the result here doesn't matter. + return getPrimaryDecl(cast(E)->getSubExpr()); + case Stmt::CXXUuidofExprClass: + return cast(E)->getGuidDecl(); + default: + return nullptr; + } + } + + namespace { + enum { + AO_Bit_Field = 0, + AO_Vector_Element = 1, + AO_Property_Expansion = 2, + AO_Register_Variable = 3, + AO_Matrix_Element = 4, + AO_No_Error = 5 + }; + } + /// Diagnose invalid operand for address of operations. + /// + /// \param Type The type of operand which cannot have its address taken. + static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc, + Expr *E, unsigned Type) { + S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange(); + } + + /// CheckAddressOfOperand - The operand of & must be either a function + /// designator or an lvalue designating an object. If it is an lvalue, the + /// object cannot be declared with storage class register or be a bit field. + /// Note: The usual conversions are *not* applied to the operand of the & + /// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue. + /// In C++, the operand might be an overloaded function name, in which case + /// we allow the '&' but retain the overloaded-function type. + QualType Sema::CheckAddressOfOperand(ExprResult &OrigOp, SourceLocation OpLoc) { + if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){ + if (PTy->getKind() == BuiltinType::Overload) { + Expr *E = OrigOp.get()->IgnoreParens(); + if (!isa(E)) { + assert(cast(E)->getOpcode() == UO_AddrOf); + Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof_addrof_function) + << OrigOp.get()->getSourceRange(); + return QualType(); + } + + OverloadExpr *Ovl = cast(E); + if (isa(Ovl)) + if (!ResolveSingleFunctionTemplateSpecialization(Ovl)) { + Diag(OpLoc, diag::err_invalid_form_pointer_member_function) + << OrigOp.get()->getSourceRange(); + return QualType(); + } + + return Context.OverloadTy; + } + + if (PTy->getKind() == BuiltinType::UnknownAny) + return Context.UnknownAnyTy; + + if (PTy->getKind() == BuiltinType::BoundMember) { + Diag(OpLoc, diag::err_invalid_form_pointer_member_function) + << OrigOp.get()->getSourceRange(); + return QualType(); + } + + OrigOp = CheckPlaceholderExpr(OrigOp.get()); + if (OrigOp.isInvalid()) return QualType(); + } + + if (OrigOp.get()->isTypeDependent()) + return Context.DependentTy; + + assert(!OrigOp.get()->hasPlaceholderType()); + + // Make sure to ignore parentheses in subsequent checks + Expr *op = OrigOp.get()->IgnoreParens(); + + // In OpenCL captures for blocks called as lambda functions + // are located in the private address space. Blocks used in + // enqueue_kernel can be located in a different address space + // depending on a vendor implementation. Thus preventing + // taking an address of the capture to avoid invalid AS casts. + if (LangOpts.OpenCL) { + auto* VarRef = dyn_cast(op); + if (VarRef && VarRef->refersToEnclosingVariableOrCapture()) { + Diag(op->getExprLoc(), diag::err_opencl_taking_address_capture); + return QualType(); + } + } + + if (getLangOpts().C99) { + // Implement C99-only parts of addressof rules. + if (UnaryOperator* uOp = dyn_cast(op)) { + if (uOp->getOpcode() == UO_Deref) + // Per C99 6.5.3.2, the address of a deref always returns a valid result + // (assuming the deref expression is valid). + return uOp->getSubExpr()->getType(); + } + // Technically, there should be a check for array subscript + // expressions here, but the result of one is always an lvalue anyway. + } + ValueDecl *dcl = getPrimaryDecl(op); + + if (auto *FD = dyn_cast_or_null(dcl)) + if (!checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true, + op->getBeginLoc())) + return QualType(); + + Expr::LValueClassification lval = op->ClassifyLValue(Context); + unsigned AddressOfError = AO_No_Error; + + if (lval == Expr::LV_ClassTemporary || lval == Expr::LV_ArrayTemporary) { + bool sfinae = (bool)isSFINAEContext(); + Diag(OpLoc, isSFINAEContext() ? diag::err_typecheck_addrof_temporary + : diag::ext_typecheck_addrof_temporary) + << op->getType() << op->getSourceRange(); + if (sfinae) + return QualType(); + // Materialize the temporary as an lvalue so that we can take its address. + OrigOp = op = + CreateMaterializeTemporaryExpr(op->getType(), OrigOp.get(), true); + } else if (isa(op)) { + return Context.getPointerType(op->getType()); + } else if (lval == Expr::LV_MemberFunction) { + // If it's an instance method, make a member pointer. + // The expression must have exactly the form &A::foo. + + // If the underlying expression isn't a decl ref, give up. + if (!isa(op)) { + Diag(OpLoc, diag::err_invalid_form_pointer_member_function) + << OrigOp.get()->getSourceRange(); + return QualType(); + } + DeclRefExpr *DRE = cast(op); + CXXMethodDecl *MD = cast(DRE->getDecl()); + + // The id-expression was parenthesized. + if (OrigOp.get() != DRE) { + Diag(OpLoc, diag::err_parens_pointer_member_function) + << OrigOp.get()->getSourceRange(); + + // The method was named without a qualifier. + } else if (!DRE->getQualifier()) { + if (MD->getParent()->getName().empty()) + Diag(OpLoc, diag::err_unqualified_pointer_member_function) + << op->getSourceRange(); + else { + SmallString<32> Str; + StringRef Qual = (MD->getParent()->getName() + "::").toStringRef(Str); + Diag(OpLoc, diag::err_unqualified_pointer_member_function) + << op->getSourceRange() + << FixItHint::CreateInsertion(op->getSourceRange().getBegin(), Qual); + } + } + + // Taking the address of a dtor is illegal per C++ [class.dtor]p2. + if (isa(MD)) + Diag(OpLoc, diag::err_typecheck_addrof_dtor) << op->getSourceRange(); + + QualType MPTy = Context.getMemberPointerType( + op->getType(), Context.getTypeDeclType(MD->getParent()).getTypePtr()); + // Under the MS ABI, lock down the inheritance model now. + if (Context.getTargetInfo().getCXXABI().isMicrosoft()) + (void)isCompleteType(OpLoc, MPTy); + return MPTy; + } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) { + // C99 6.5.3.2p1 + // The operand must be either an l-value or a function designator + if (!op->getType()->isFunctionType()) { + // Use a special diagnostic for loads from property references. + if (isa(op)) { + AddressOfError = AO_Property_Expansion; + } else { + Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof) + << op->getType() << op->getSourceRange(); + return QualType(); + } + } + } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1 + // The operand cannot be a bit-field + AddressOfError = AO_Bit_Field; + } else if (op->getObjectKind() == OK_VectorComponent) { + // The operand cannot be an element of a vector + AddressOfError = AO_Vector_Element; + } else if (op->getObjectKind() == OK_MatrixComponent) { + // The operand cannot be an element of a matrix. + AddressOfError = AO_Matrix_Element; + } else if (dcl) { // C99 6.5.3.2p1 + // We have an lvalue with a decl. Make sure the decl is not declared + // with the register storage-class specifier. + if (const VarDecl *vd = dyn_cast(dcl)) { + // in C++ it is not error to take address of a register + // variable (c++03 7.1.1P3) + if (vd->getStorageClass() == SC_Register && + !getLangOpts().CPlusPlus) { + AddressOfError = AO_Register_Variable; + } + } else if (isa(dcl)) { + AddressOfError = AO_Property_Expansion; + } else if (isa(dcl)) { + return Context.OverloadTy; + } else if (isa(dcl) || isa(dcl)) { + // Okay: we can take the address of a field. + // Could be a pointer to member, though, if there is an explicit + // scope qualifier for the class. + if (isa(op) && cast(op)->getQualifier()) { + DeclContext *Ctx = dcl->getDeclContext(); + if (Ctx && Ctx->isRecord()) { + if (dcl->getType()->isReferenceType()) { + Diag(OpLoc, + diag::err_cannot_form_pointer_to_member_of_reference_type) + << dcl->getDeclName() << dcl->getType(); + return QualType(); + } + + while (cast(Ctx)->isAnonymousStructOrUnion()) + Ctx = Ctx->getParent(); + + QualType MPTy = Context.getMemberPointerType( + op->getType(), + Context.getTypeDeclType(cast(Ctx)).getTypePtr()); + // Under the MS ABI, lock down the inheritance model now. + if (Context.getTargetInfo().getCXXABI().isMicrosoft()) + (void)isCompleteType(OpLoc, MPTy); + return MPTy; + } + } + } else if (!isa(dcl)) + llvm_unreachable("Unknown/unexpected decl type"); + } + + if (AddressOfError != AO_No_Error) { + diagnoseAddressOfInvalidType(*this, OpLoc, op, AddressOfError); + return QualType(); + } + + if (lval == Expr::LV_IncompleteVoidType) { + // Taking the address of a void variable is technically illegal, but we + // allow it in cases which are otherwise valid. + // Example: "extern void x; void* y = &x;". + Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange(); + } + + // If the operand has type "type", the result has type "pointer to type". + if (op->getType()->isObjCObjectType()) + return Context.getObjCObjectPointerType(op->getType()); + + // Cannot take the address of WebAssembly references or tables. + if (Context.getTargetInfo().getTriple().isWasm()) { + QualType OpTy = op->getType(); + if (OpTy.isWebAssemblyReferenceType()) { + Diag(OpLoc, diag::err_wasm_ca_reference) + << 1 << OrigOp.get()->getSourceRange(); + return QualType(); + } + if (OpTy->isWebAssemblyTableType()) { + Diag(OpLoc, diag::err_wasm_table_pr) + << 1 << OrigOp.get()->getSourceRange(); + return QualType(); + } + } + + CheckAddressOfPackedMember(op); + + return Context.getPointerType(op->getType()); + } + + static void RecordModifiableNonNullParam(Sema &S, const Expr *Exp) { + const DeclRefExpr *DRE = dyn_cast(Exp); + if (!DRE) + return; + const Decl *D = DRE->getDecl(); + if (!D) + return; + const ParmVarDecl *Param = dyn_cast(D); + if (!Param) + return; + if (const FunctionDecl* FD = dyn_cast(Param->getDeclContext())) + if (!FD->hasAttr() && !Param->hasAttr()) + return; + if (FunctionScopeInfo *FD = S.getCurFunction()) + FD->ModifiedNonNullParams.insert(Param); + } + + /// CheckIndirectionOperand - Type check unary indirection (prefix '*'). + static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK, + SourceLocation OpLoc, + bool IsAfterAmp = false) { + if (Op->isTypeDependent()) + return S.Context.DependentTy; + + ExprResult ConvResult = S.UsualUnaryConversions(Op); + if (ConvResult.isInvalid()) + return QualType(); + Op = ConvResult.get(); + QualType OpTy = Op->getType(); + QualType Result; + + if (isa(Op)) { + QualType OpOrigType = Op->IgnoreParenCasts()->getType(); + S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true, + Op->getSourceRange()); + } + + if (const PointerType *PT = OpTy->getAs()) + { + Result = PT->getPointeeType(); + } + else if (const ObjCObjectPointerType *OPT = + OpTy->getAs()) + Result = OPT->getPointeeType(); + else { + ExprResult PR = S.CheckPlaceholderExpr(Op); + if (PR.isInvalid()) return QualType(); + if (PR.get() != Op) + return CheckIndirectionOperand(S, PR.get(), VK, OpLoc); + } + + if (Result.isNull()) { + S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer) + << OpTy << Op->getSourceRange(); + return QualType(); + } + + if (Result->isVoidType()) { + // C++ [expr.unary.op]p1: + // [...] the expression to which [the unary * operator] is applied shall + // be a pointer to an object type, or a pointer to a function type + LangOptions LO = S.getLangOpts(); + if (LO.CPlusPlus) + S.Diag(OpLoc, diag::err_typecheck_indirection_through_void_pointer_cpp) + << OpTy << Op->getSourceRange(); + else if (!(LO.C99 && IsAfterAmp) && !S.isUnevaluatedContext()) + S.Diag(OpLoc, diag::ext_typecheck_indirection_through_void_pointer) + << OpTy << Op->getSourceRange(); + } + + // Dereferences are usually l-values... + VK = VK_LValue; + + // ...except that certain expressions are never l-values in C. + if (!S.getLangOpts().CPlusPlus && Result.isCForbiddenLValueType()) + VK = VK_PRValue; + + return Result; + } + + BinaryOperatorKind Sema::ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind) { + BinaryOperatorKind Opc; + switch (Kind) { + default: llvm_unreachable("Unknown binop!"); + case tok::periodstar: Opc = BO_PtrMemD; break; + case tok::arrowstar: Opc = BO_PtrMemI; break; + case tok::star: Opc = BO_Mul; break; + case tok::slash: Opc = BO_Div; break; + case tok::percent: Opc = BO_Rem; break; + case tok::plus: Opc = BO_Add; break; + case tok::minus: Opc = BO_Sub; break; + case tok::lessless: Opc = BO_Shl; break; + case tok::greatergreater: Opc = BO_Shr; break; + case tok::lessequal: Opc = BO_LE; break; + case tok::less: Opc = BO_LT; break; + case tok::greaterequal: Opc = BO_GE; break; + case tok::greater: Opc = BO_GT; break; + case tok::exclaimequal: Opc = BO_NE; break; + case tok::equalequal: Opc = BO_EQ; break; + case tok::spaceship: Opc = BO_Cmp; break; + case tok::amp: Opc = BO_And; break; + case tok::caret: Opc = BO_Xor; break; + case tok::pipe: Opc = BO_Or; break; + case tok::ampamp: Opc = BO_LAnd; break; + case tok::pipepipe: Opc = BO_LOr; break; + case tok::equal: Opc = BO_Assign; break; + case tok::starequal: Opc = BO_MulAssign; break; + case tok::slashequal: Opc = BO_DivAssign; break; + case tok::percentequal: Opc = BO_RemAssign; break; + case tok::plusequal: Opc = BO_AddAssign; break; + case tok::minusequal: Opc = BO_SubAssign; break; + case tok::lesslessequal: Opc = BO_ShlAssign; break; + case tok::greatergreaterequal: Opc = BO_ShrAssign; break; + case tok::ampequal: Opc = BO_AndAssign; break; + case tok::caretequal: Opc = BO_XorAssign; break; + case tok::pipeequal: Opc = BO_OrAssign; break; + case tok::comma: Opc = BO_Comma; break; + } + return Opc; + } + + static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode( + tok::TokenKind Kind) { + UnaryOperatorKind Opc; + switch (Kind) { + default: llvm_unreachable("Unknown unary op!"); + case tok::plusplus: Opc = UO_PreInc; break; + case tok::minusminus: Opc = UO_PreDec; break; + case tok::amp: Opc = UO_AddrOf; break; + case tok::star: Opc = UO_Deref; break; + case tok::plus: Opc = UO_Plus; break; + case tok::minus: Opc = UO_Minus; break; + case tok::tilde: Opc = UO_Not; break; + case tok::exclaim: Opc = UO_LNot; break; + case tok::kw___real: Opc = UO_Real; break; + case tok::kw___imag: Opc = UO_Imag; break; + case tok::kw___extension__: Opc = UO_Extension; break; + } + return Opc; + } + + const FieldDecl * + Sema::getSelfAssignmentClassMemberCandidate(const ValueDecl *SelfAssigned) { + // Explore the case for adding 'this->' to the LHS of a self assignment, very + // common for setters. + // struct A { + // int X; + // -void setX(int X) { X = X; } + // +void setX(int X) { this->X = X; } + // }; + + // Only consider parameters for self assignment fixes. + if (!isa(SelfAssigned)) + return nullptr; + const auto *Method = + dyn_cast_or_null(getCurFunctionDecl(true)); + if (!Method) + return nullptr; + + const CXXRecordDecl *Parent = Method->getParent(); + // In theory this is fixable if the lambda explicitly captures this, but + // that's added complexity that's rarely going to be used. + if (Parent->isLambda()) + return nullptr; + + // FIXME: Use an actual Lookup operation instead of just traversing fields + // in order to get base class fields. + auto Field = + llvm::find_if(Parent->fields(), + [Name(SelfAssigned->getDeclName())](const FieldDecl *F) { + return F->getDeclName() == Name; + }); + return (Field != Parent->field_end()) ? *Field : nullptr; + } + + /// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself. + /// This warning suppressed in the event of macro expansions. + static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr, + SourceLocation OpLoc, bool IsBuiltin) { + if (S.inTemplateInstantiation()) + return; + if (S.isUnevaluatedContext()) + return; + if (OpLoc.isInvalid() || OpLoc.isMacroID()) + return; + LHSExpr = LHSExpr->IgnoreParenImpCasts(); + RHSExpr = RHSExpr->IgnoreParenImpCasts(); + const DeclRefExpr *LHSDeclRef = dyn_cast(LHSExpr); + const DeclRefExpr *RHSDeclRef = dyn_cast(RHSExpr); + if (!LHSDeclRef || !RHSDeclRef || + LHSDeclRef->getLocation().isMacroID() || + RHSDeclRef->getLocation().isMacroID()) + return; + const ValueDecl *LHSDecl = + cast(LHSDeclRef->getDecl()->getCanonicalDecl()); + const ValueDecl *RHSDecl = + cast(RHSDeclRef->getDecl()->getCanonicalDecl()); + if (LHSDecl != RHSDecl) + return; + if (LHSDecl->getType().isVolatileQualified()) + return; + if (const ReferenceType *RefTy = LHSDecl->getType()->getAs()) + if (RefTy->getPointeeType().isVolatileQualified()) + return; + + auto Diag = S.Diag(OpLoc, IsBuiltin ? diag::warn_self_assignment_builtin + : diag::warn_self_assignment_overloaded) + << LHSDeclRef->getType() << LHSExpr->getSourceRange() + << RHSExpr->getSourceRange(); + if (const FieldDecl *SelfAssignField = + S.getSelfAssignmentClassMemberCandidate(RHSDecl)) + Diag << 1 << SelfAssignField + << FixItHint::CreateInsertion(LHSDeclRef->getBeginLoc(), "this->"); + else + Diag << 0; + } + + /// Check if a bitwise-& is performed on an Objective-C pointer. This + /// is usually indicative of introspection within the Objective-C pointer. + static void checkObjCPointerIntrospection(Sema &S, ExprResult &L, ExprResult &R, + SourceLocation OpLoc) { + if (!S.getLangOpts().ObjC) + return; + + const Expr *ObjCPointerExpr = nullptr, *OtherExpr = nullptr; + const Expr *LHS = L.get(); + const Expr *RHS = R.get(); + + if (LHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) { + ObjCPointerExpr = LHS; + OtherExpr = RHS; + } + else if (RHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) { + ObjCPointerExpr = RHS; + OtherExpr = LHS; + } + + // This warning is deliberately made very specific to reduce false + // positives with logic that uses '&' for hashing. This logic mainly + // looks for code trying to introspect into tagged pointers, which + // code should generally never do. + if (ObjCPointerExpr && isa(OtherExpr->IgnoreParenCasts())) { + unsigned Diag = diag::warn_objc_pointer_masking; + // Determine if we are introspecting the result of performSelectorXXX. + const Expr *Ex = ObjCPointerExpr->IgnoreParenCasts(); + // Special case messages to -performSelector and friends, which + // can return non-pointer values boxed in a pointer value. + // Some clients may wish to silence warnings in this subcase. + if (const ObjCMessageExpr *ME = dyn_cast(Ex)) { + Selector S = ME->getSelector(); + StringRef SelArg0 = S.getNameForSlot(0); + if (SelArg0.startswith("performSelector")) + Diag = diag::warn_objc_pointer_masking_performSelector; + } + + S.Diag(OpLoc, Diag) + << ObjCPointerExpr->getSourceRange(); + } + } + + static NamedDecl *getDeclFromExpr(Expr *E) { + if (!E) + return nullptr; + if (auto *DRE = dyn_cast(E)) + return DRE->getDecl(); + if (auto *ME = dyn_cast(E)) + return ME->getMemberDecl(); + if (auto *IRE = dyn_cast(E)) + return IRE->getDecl(); + return nullptr; + } + + // This helper function promotes a binary operator's operands (which are of a + // half vector type) to a vector of floats and then truncates the result to + // a vector of either half or short. + static ExprResult convertHalfVecBinOp(Sema &S, ExprResult LHS, ExprResult RHS, + BinaryOperatorKind Opc, QualType ResultTy, + ExprValueKind VK, ExprObjectKind OK, + bool IsCompAssign, SourceLocation OpLoc, + FPOptionsOverride FPFeatures) { + auto &Context = S.getASTContext(); + assert((isVector(ResultTy, Context.HalfTy) || + isVector(ResultTy, Context.ShortTy)) && + "Result must be a vector of half or short"); + assert(isVector(LHS.get()->getType(), Context.HalfTy) && + isVector(RHS.get()->getType(), Context.HalfTy) && + "both operands expected to be a half vector"); + + RHS = convertVector(RHS.get(), Context.FloatTy, S); + QualType BinOpResTy = RHS.get()->getType(); + + // If Opc is a comparison, ResultType is a vector of shorts. In that case, + // change BinOpResTy to a vector of ints. + if (isVector(ResultTy, Context.ShortTy)) + BinOpResTy = S.GetSignedVectorType(BinOpResTy); + + if (IsCompAssign) + return CompoundAssignOperator::Create(Context, LHS.get(), RHS.get(), Opc, + ResultTy, VK, OK, OpLoc, FPFeatures, + BinOpResTy, BinOpResTy); + + LHS = convertVector(LHS.get(), Context.FloatTy, S); + auto *BO = BinaryOperator::Create(Context, LHS.get(), RHS.get(), Opc, + BinOpResTy, VK, OK, OpLoc, FPFeatures); + return convertVector(BO, ResultTy->castAs()->getElementType(), S); + } + + static std::pair + CorrectDelayedTyposInBinOp(Sema &S, BinaryOperatorKind Opc, Expr *LHSExpr, + Expr *RHSExpr) { + ExprResult LHS = LHSExpr, RHS = RHSExpr; + if (!S.Context.isDependenceAllowed()) { + // C cannot handle TypoExpr nodes on either side of a binop because it + // doesn't handle dependent types properly, so make sure any TypoExprs have + // been dealt with before checking the operands. + LHS = S.CorrectDelayedTyposInExpr(LHS); + RHS = S.CorrectDelayedTyposInExpr( + RHS, /*InitDecl=*/nullptr, /*RecoverUncorrectedTypos=*/false, + [Opc, LHS](Expr *E) { + if (Opc != BO_Assign) + return ExprResult(E); + // Avoid correcting the RHS to the same Expr as the LHS. + Decl *D = getDeclFromExpr(E); + return (D && D == getDeclFromExpr(LHS.get())) ? ExprError() : E; + }); + } + return std::make_pair(LHS, RHS); + } + + /// Returns true if conversion between vectors of halfs and vectors of floats + /// is needed. + static bool needsConversionOfHalfVec(bool OpRequiresConversion, ASTContext &Ctx, + Expr *E0, Expr *E1 = nullptr) { + if (!OpRequiresConversion || Ctx.getLangOpts().NativeHalfType || + Ctx.getTargetInfo().useFP16ConversionIntrinsics()) + return false; + + auto HasVectorOfHalfType = [&Ctx](Expr *E) { + QualType Ty = E->IgnoreImplicit()->getType(); + + // Don't promote half precision neon vectors like float16x4_t in arm_neon.h + // to vectors of floats. Although the element type of the vectors is __fp16, + // the vectors shouldn't be treated as storage-only types. See the + // discussion here: https://reviews.llvm.org/rG825235c140e7 + if (const VectorType *VT = Ty->getAs()) { + if (VT->getVectorKind() == VectorType::NeonVector) + return false; + return VT->getElementType().getCanonicalType() == Ctx.HalfTy; + } + return false; + }; + + return HasVectorOfHalfType(E0) && (!E1 || HasVectorOfHalfType(E1)); + } + + /// CreateBuiltinBinOp - Creates a new built-in binary operation with + /// operator @p Opc at location @c TokLoc. This routine only supports + /// built-in operations; ActOnBinOp handles overloaded operators. + ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc, + BinaryOperatorKind Opc, + Expr *LHSExpr, Expr *RHSExpr) { + if (getLangOpts().CPlusPlus11 && isa(RHSExpr)) { + // The syntax only allows initializer lists on the RHS of assignment, + // so we don't need to worry about accepting invalid code for + // non-assignment operators. + // C++11 5.17p9: + // The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning + // of x = {} is x = T(). + InitializationKind Kind = InitializationKind::CreateDirectList( + RHSExpr->getBeginLoc(), RHSExpr->getBeginLoc(), RHSExpr->getEndLoc()); + InitializedEntity Entity = + InitializedEntity::InitializeTemporary(LHSExpr->getType()); + InitializationSequence InitSeq(*this, Entity, Kind, RHSExpr); + ExprResult Init = InitSeq.Perform(*this, Entity, Kind, RHSExpr); + if (Init.isInvalid()) + return Init; + RHSExpr = Init.get(); + } + + ExprResult LHS = LHSExpr, RHS = RHSExpr; + QualType ResultTy; // Result type of the binary operator. + // The following two variables are used for compound assignment operators + QualType CompLHSTy; // Type of LHS after promotions for computation + QualType CompResultTy; // Type of computation result + ExprValueKind VK = VK_PRValue; + ExprObjectKind OK = OK_Ordinary; + bool ConvertHalfVec = false; + + std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr); + if (!LHS.isUsable() || !RHS.isUsable()) + return ExprError(); + + if (getLangOpts().OpenCL) { + QualType LHSTy = LHSExpr->getType(); + QualType RHSTy = RHSExpr->getType(); + // OpenCLC v2.0 s6.13.11.1 allows atomic variables to be initialized by + // the ATOMIC_VAR_INIT macro. + if (LHSTy->isAtomicType() || RHSTy->isAtomicType()) { + SourceRange SR(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc()); + if (BO_Assign == Opc) + Diag(OpLoc, diag::err_opencl_atomic_init) << 0 << SR; + else + ResultTy = InvalidOperands(OpLoc, LHS, RHS); + return ExprError(); + } + + // OpenCL special types - image, sampler, pipe, and blocks are to be used + // only with a builtin functions and therefore should be disallowed here. + if (LHSTy->isImageType() || RHSTy->isImageType() || + LHSTy->isSamplerT() || RHSTy->isSamplerT() || + LHSTy->isPipeType() || RHSTy->isPipeType() || + LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) { + ResultTy = InvalidOperands(OpLoc, LHS, RHS); + return ExprError(); + } + } + + checkTypeSupport(LHSExpr->getType(), OpLoc, /*ValueDecl*/ nullptr); + checkTypeSupport(RHSExpr->getType(), OpLoc, /*ValueDecl*/ nullptr); + + switch (Opc) { + case BO_Assign: + ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, QualType(), Opc); + if (getLangOpts().CPlusPlus && + LHS.get()->getObjectKind() != OK_ObjCProperty) { + VK = LHS.get()->getValueKind(); + OK = LHS.get()->getObjectKind(); + } + if (!ResultTy.isNull()) { + DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true); + DiagnoseSelfMove(LHS.get(), RHS.get(), OpLoc); + + // Avoid copying a block to the heap if the block is assigned to a local + // auto variable that is declared in the same scope as the block. This + // optimization is unsafe if the local variable is declared in an outer + // scope. For example: + // + // BlockTy b; + // { + // b = ^{...}; + // } + // // It is unsafe to invoke the block here if it wasn't copied to the + // // heap. + // b(); + + if (auto *BE = dyn_cast(RHS.get()->IgnoreParens())) + if (auto *DRE = dyn_cast(LHS.get()->IgnoreParens())) + if (auto *VD = dyn_cast(DRE->getDecl())) + if (VD->hasLocalStorage() && getCurScope()->isDeclScope(VD)) + BE->getBlockDecl()->setCanAvoidCopyToHeap(); + + if (LHS.get()->getType().hasNonTrivialToPrimitiveCopyCUnion()) + checkNonTrivialCUnion(LHS.get()->getType(), LHS.get()->getExprLoc(), + NTCUC_Assignment, NTCUK_Copy); + } + RecordModifiableNonNullParam(*this, LHS.get()); + break; + case BO_PtrMemD: + case BO_PtrMemI: + ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc, + Opc == BO_PtrMemI); + break; + case BO_Mul: + case BO_Div: + ConvertHalfVec = true; + ResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, false, + Opc == BO_Div); + break; + case BO_Rem: + ResultTy = CheckRemainderOperands(LHS, RHS, OpLoc); + break; + case BO_Add: + ConvertHalfVec = true; + ResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc); + break; + case BO_Sub: + ConvertHalfVec = true; + ResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc); + break; + case BO_Shl: + case BO_Shr: + ResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc); + break; + case BO_LE: + case BO_LT: + case BO_GE: + case BO_GT: + ConvertHalfVec = true; + ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc); + break; + case BO_EQ: + case BO_NE: + ConvertHalfVec = true; + ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc); + break; + case BO_Cmp: + ConvertHalfVec = true; + ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc); + assert(ResultTy.isNull() || ResultTy->getAsCXXRecordDecl()); + break; + case BO_And: + checkObjCPointerIntrospection(*this, LHS, RHS, OpLoc); + [[fallthrough]]; + case BO_Xor: + case BO_Or: + ResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc); + break; + case BO_LAnd: + case BO_LOr: + ConvertHalfVec = true; + ResultTy = CheckLogicalOperands(LHS, RHS, OpLoc, Opc); + break; + case BO_MulAssign: + case BO_DivAssign: + ConvertHalfVec = true; + CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, true, + Opc == BO_DivAssign); + CompLHSTy = CompResultTy; + if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid()) + ResultTy = + CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc); + break; + case BO_RemAssign: + CompResultTy = CheckRemainderOperands(LHS, RHS, OpLoc, true); + CompLHSTy = CompResultTy; + if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid()) + ResultTy = + CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc); + break; + case BO_AddAssign: + ConvertHalfVec = true; + CompResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc, &CompLHSTy); + if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid()) + ResultTy = + CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc); + break; + case BO_SubAssign: + ConvertHalfVec = true; + CompResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc, &CompLHSTy); + if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid()) + ResultTy = + CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc); + break; + case BO_ShlAssign: + case BO_ShrAssign: + CompResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc, true); + CompLHSTy = CompResultTy; + if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid()) + ResultTy = + CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc); + break; + case BO_AndAssign: + case BO_OrAssign: // fallthrough + DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true); + [[fallthrough]]; + case BO_XorAssign: + CompResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc); + CompLHSTy = CompResultTy; + if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid()) + ResultTy = + CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc); + break; + case BO_Comma: + ResultTy = CheckCommaOperands(*this, LHS, RHS, OpLoc); + if (getLangOpts().CPlusPlus && !RHS.isInvalid()) { + VK = RHS.get()->getValueKind(); + OK = RHS.get()->getObjectKind(); + } + break; + } + if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid()) + return ExprError(); + + // Some of the binary operations require promoting operands of half vector to + // float vectors and truncating the result back to half vector. For now, we do + // this only when HalfArgsAndReturn is set (that is, when the target is arm or + // arm64). + assert( + (Opc == BO_Comma || isVector(RHS.get()->getType(), Context.HalfTy) == + isVector(LHS.get()->getType(), Context.HalfTy)) && + "both sides are half vectors or neither sides are"); + ConvertHalfVec = + needsConversionOfHalfVec(ConvertHalfVec, Context, LHS.get(), RHS.get()); + + // Check for array bounds violations for both sides of the BinaryOperator + CheckArrayAccess(LHS.get()); + CheckArrayAccess(RHS.get()); + + if (const ObjCIsaExpr *OISA = dyn_cast(LHS.get()->IgnoreParenCasts())) { + NamedDecl *ObjectSetClass = LookupSingleName(TUScope, + &Context.Idents.get("object_setClass"), + SourceLocation(), LookupOrdinaryName); + if (ObjectSetClass && isa(LHS.get())) { + SourceLocation RHSLocEnd = getLocForEndOfToken(RHS.get()->getEndLoc()); + Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign) + << FixItHint::CreateInsertion(LHS.get()->getBeginLoc(), + "object_setClass(") + << FixItHint::CreateReplacement(SourceRange(OISA->getOpLoc(), OpLoc), + ",") + << FixItHint::CreateInsertion(RHSLocEnd, ")"); + } + else + Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign); + } + else if (const ObjCIvarRefExpr *OIRE = + dyn_cast(LHS.get()->IgnoreParenCasts())) + DiagnoseDirectIsaAccess(*this, OIRE, OpLoc, RHS.get()); + + // Opc is not a compound assignment if CompResultTy is null. + if (CompResultTy.isNull()) { + if (ConvertHalfVec) + return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, false, + OpLoc, CurFPFeatureOverrides()); + return BinaryOperator::Create(Context, LHS.get(), RHS.get(), Opc, ResultTy, + VK, OK, OpLoc, CurFPFeatureOverrides()); + } + + // Handle compound assignments. + if (getLangOpts().CPlusPlus && LHS.get()->getObjectKind() != + OK_ObjCProperty) { + VK = VK_LValue; + OK = LHS.get()->getObjectKind(); + } + + // The LHS is not converted to the result type for fixed-point compound + // assignment as the common type is computed on demand. Reset the CompLHSTy + // to the LHS type we would have gotten after unary conversions. + if (CompResultTy->isFixedPointType()) + CompLHSTy = UsualUnaryConversions(LHS.get()).get()->getType(); + + if (ConvertHalfVec) + return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, true, + OpLoc, CurFPFeatureOverrides()); + + return CompoundAssignOperator::Create( + Context, LHS.get(), RHS.get(), Opc, ResultTy, VK, OK, OpLoc, + CurFPFeatureOverrides(), CompLHSTy, CompResultTy); + } + + /// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison + /// operators are mixed in a way that suggests that the programmer forgot that + /// comparison operators have higher precedence. The most typical example of + /// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1". + static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc, + SourceLocation OpLoc, Expr *LHSExpr, + Expr *RHSExpr) { + BinaryOperator *LHSBO = dyn_cast(LHSExpr); + BinaryOperator *RHSBO = dyn_cast(RHSExpr); + + // Check that one of the sides is a comparison operator and the other isn't. + bool isLeftComp = LHSBO && LHSBO->isComparisonOp(); + bool isRightComp = RHSBO && RHSBO->isComparisonOp(); + if (isLeftComp == isRightComp) + return; + + // Bitwise operations are sometimes used as eager logical ops. + // Don't diagnose this. + bool isLeftBitwise = LHSBO && LHSBO->isBitwiseOp(); + bool isRightBitwise = RHSBO && RHSBO->isBitwiseOp(); + if (isLeftBitwise || isRightBitwise) + return; + + SourceRange DiagRange = isLeftComp + ? SourceRange(LHSExpr->getBeginLoc(), OpLoc) + : SourceRange(OpLoc, RHSExpr->getEndLoc()); + StringRef OpStr = isLeftComp ? LHSBO->getOpcodeStr() : RHSBO->getOpcodeStr(); + SourceRange ParensRange = + isLeftComp + ? SourceRange(LHSBO->getRHS()->getBeginLoc(), RHSExpr->getEndLoc()) + : SourceRange(LHSExpr->getBeginLoc(), RHSBO->getLHS()->getEndLoc()); + + Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel) + << DiagRange << BinaryOperator::getOpcodeStr(Opc) << OpStr; + SuggestParentheses(Self, OpLoc, + Self.PDiag(diag::note_precedence_silence) << OpStr, + (isLeftComp ? LHSExpr : RHSExpr)->getSourceRange()); + SuggestParentheses(Self, OpLoc, + Self.PDiag(diag::note_precedence_bitwise_first) + << BinaryOperator::getOpcodeStr(Opc), + ParensRange); + } + + /// It accepts a '&&' expr that is inside a '||' one. + /// Emit a diagnostic together with a fixit hint that wraps the '&&' expression + /// in parentheses. + static void + EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc, + BinaryOperator *Bop) { + assert(Bop->getOpcode() == BO_LAnd); + Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or) + << Bop->getSourceRange() << OpLoc; + SuggestParentheses(Self, Bop->getOperatorLoc(), + Self.PDiag(diag::note_precedence_silence) + << Bop->getOpcodeStr(), + Bop->getSourceRange()); + } + + /// Look for '&&' in the left hand of a '||' expr. + static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc, + Expr *LHSExpr, Expr *RHSExpr) { + if (BinaryOperator *Bop = dyn_cast(LHSExpr)) { + if (Bop->getOpcode() == BO_LAnd) { + // If it's "string_literal && a || b" don't warn since the precedence + // doesn't matter. + if (!isa(Bop->getLHS()->IgnoreParenImpCasts())) + return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop); + } else if (Bop->getOpcode() == BO_LOr) { + if (BinaryOperator *RBop = dyn_cast(Bop->getRHS())) { + // If it's "a || b && string_literal || c" we didn't warn earlier for + // "a || b && string_literal", but warn now. + if (RBop->getOpcode() == BO_LAnd && + isa(RBop->getRHS()->IgnoreParenImpCasts())) + return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop); + } + } + } + } + + /// Look for '&&' in the right hand of a '||' expr. + static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc, + Expr *LHSExpr, Expr *RHSExpr) { + if (BinaryOperator *Bop = dyn_cast(RHSExpr)) { + if (Bop->getOpcode() == BO_LAnd) { + // If it's "a || b && string_literal" don't warn since the precedence + // doesn't matter. + if (!isa(Bop->getRHS()->IgnoreParenImpCasts())) + return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop); + } + } + } + + /// Look for bitwise op in the left or right hand of a bitwise op with + /// lower precedence and emit a diagnostic together with a fixit hint that wraps + /// the '&' expression in parentheses. + static void DiagnoseBitwiseOpInBitwiseOp(Sema &S, BinaryOperatorKind Opc, + SourceLocation OpLoc, Expr *SubExpr) { + if (BinaryOperator *Bop = dyn_cast(SubExpr)) { + if (Bop->isBitwiseOp() && Bop->getOpcode() < Opc) { + S.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_op_in_bitwise_op) + << Bop->getOpcodeStr() << BinaryOperator::getOpcodeStr(Opc) + << Bop->getSourceRange() << OpLoc; + SuggestParentheses(S, Bop->getOperatorLoc(), + S.PDiag(diag::note_precedence_silence) + << Bop->getOpcodeStr(), + Bop->getSourceRange()); + } + } + } + + static void DiagnoseAdditionInShift(Sema &S, SourceLocation OpLoc, + Expr *SubExpr, StringRef Shift) { + if (BinaryOperator *Bop = dyn_cast(SubExpr)) { + if (Bop->getOpcode() == BO_Add || Bop->getOpcode() == BO_Sub) { + StringRef Op = Bop->getOpcodeStr(); + S.Diag(Bop->getOperatorLoc(), diag::warn_addition_in_bitshift) + << Bop->getSourceRange() << OpLoc << Shift << Op; + SuggestParentheses(S, Bop->getOperatorLoc(), + S.PDiag(diag::note_precedence_silence) << Op, + Bop->getSourceRange()); + } + } + } + + static void DiagnoseShiftCompare(Sema &S, SourceLocation OpLoc, + Expr *LHSExpr, Expr *RHSExpr) { + CXXOperatorCallExpr *OCE = dyn_cast(LHSExpr); + if (!OCE) + return; + + FunctionDecl *FD = OCE->getDirectCallee(); + if (!FD || !FD->isOverloadedOperator()) + return; + + OverloadedOperatorKind Kind = FD->getOverloadedOperator(); + if (Kind != OO_LessLess && Kind != OO_GreaterGreater) + return; + + S.Diag(OpLoc, diag::warn_overloaded_shift_in_comparison) + << LHSExpr->getSourceRange() << RHSExpr->getSourceRange() + << (Kind == OO_LessLess); + SuggestParentheses(S, OCE->getOperatorLoc(), + S.PDiag(diag::note_precedence_silence) + << (Kind == OO_LessLess ? "<<" : ">>"), + OCE->getSourceRange()); + SuggestParentheses( + S, OpLoc, S.PDiag(diag::note_evaluate_comparison_first), + SourceRange(OCE->getArg(1)->getBeginLoc(), RHSExpr->getEndLoc())); + } + + /// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky + /// precedence. + static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc, + SourceLocation OpLoc, Expr *LHSExpr, + Expr *RHSExpr){ + // Diagnose "arg1 'bitwise' arg2 'eq' arg3". + if (BinaryOperator::isBitwiseOp(Opc)) + DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr); + + // Diagnose "arg1 & arg2 | arg3" + if ((Opc == BO_Or || Opc == BO_Xor) && + !OpLoc.isMacroID()/* Don't warn in macros. */) { + DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, LHSExpr); + DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, RHSExpr); + } + + // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does. + // We don't warn for 'assert(a || b && "bad")' since this is safe. + if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) { + DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, LHSExpr, RHSExpr); + DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, LHSExpr, RHSExpr); + } + + if ((Opc == BO_Shl && LHSExpr->getType()->isIntegralType(Self.getASTContext())) + || Opc == BO_Shr) { + StringRef Shift = BinaryOperator::getOpcodeStr(Opc); + DiagnoseAdditionInShift(Self, OpLoc, LHSExpr, Shift); + DiagnoseAdditionInShift(Self, OpLoc, RHSExpr, Shift); + } + + // Warn on overloaded shift operators and comparisons, such as: + // cout << 5 == 4; + if (BinaryOperator::isComparisonOp(Opc)) + DiagnoseShiftCompare(Self, OpLoc, LHSExpr, RHSExpr); + } + + // Binary Operators. 'Tok' is the token for the operator. + ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc, + tok::TokenKind Kind, + Expr *LHSExpr, Expr *RHSExpr) { + BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind); + assert(LHSExpr && "ActOnBinOp(): missing left expression"); + assert(RHSExpr && "ActOnBinOp(): missing right expression"); + + // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0" + DiagnoseBinOpPrecedence(*this, Opc, TokLoc, LHSExpr, RHSExpr); + + return BuildBinOp(S, TokLoc, Opc, LHSExpr, RHSExpr); + } + + void Sema::LookupBinOp(Scope *S, SourceLocation OpLoc, BinaryOperatorKind Opc, + UnresolvedSetImpl &Functions) { + OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc); + if (OverOp != OO_None && OverOp != OO_Equal) + LookupOverloadedOperatorName(OverOp, S, Functions); + + // In C++20 onwards, we may have a second operator to look up. + if (getLangOpts().CPlusPlus20) { + if (OverloadedOperatorKind ExtraOp = getRewrittenOverloadedOperator(OverOp)) + LookupOverloadedOperatorName(ExtraOp, S, Functions); + } + } + + /// Build an overloaded binary operator expression in the given scope. + static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc, + BinaryOperatorKind Opc, + Expr *LHS, Expr *RHS) { + switch (Opc) { + case BO_Assign: + // In the non-overloaded case, we warn about self-assignment (x = x) for + // both simple assignment and certain compound assignments where algebra + // tells us the operation yields a constant result. When the operator is + // overloaded, we can't do the latter because we don't want to assume that + // those algebraic identities still apply; for example, a path-building + // library might use operator/= to append paths. But it's still reasonable + // to assume that simple assignment is just moving/copying values around + // and so self-assignment is likely a bug. + DiagnoseSelfAssignment(S, LHS, RHS, OpLoc, false); + [[fallthrough]]; + case BO_DivAssign: + case BO_RemAssign: + case BO_SubAssign: + case BO_AndAssign: + case BO_OrAssign: + case BO_XorAssign: + CheckIdentityFieldAssignment(LHS, RHS, OpLoc, S); + break; + default: + break; + } + + // Find all of the overloaded operators visible from this point. + UnresolvedSet<16> Functions; + S.LookupBinOp(Sc, OpLoc, Opc, Functions); + + // Build the (potentially-overloaded, potentially-dependent) + // binary operation. + return S.CreateOverloadedBinOp(OpLoc, Opc, Functions, LHS, RHS); + } + + ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc, + BinaryOperatorKind Opc, + Expr *LHSExpr, Expr *RHSExpr) { + ExprResult LHS, RHS; + std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr); + if (!LHS.isUsable() || !RHS.isUsable()) + return ExprError(); + LHSExpr = LHS.get(); + RHSExpr = RHS.get(); + + // We want to end up calling one of checkPseudoObjectAssignment + // (if the LHS is a pseudo-object), BuildOverloadedBinOp (if + // both expressions are overloadable or either is type-dependent), + // or CreateBuiltinBinOp (in any other case). We also want to get + // any placeholder types out of the way. + + // Handle pseudo-objects in the LHS. + if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) { + // Assignments with a pseudo-object l-value need special analysis. + if (pty->getKind() == BuiltinType::PseudoObject && + BinaryOperator::isAssignmentOp(Opc)) + return checkPseudoObjectAssignment(S, OpLoc, Opc, LHSExpr, RHSExpr); + + // Don't resolve overloads if the other type is overloadable. + if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload) { + // We can't actually test that if we still have a placeholder, + // though. Fortunately, none of the exceptions we see in that + // code below are valid when the LHS is an overload set. Note + // that an overload set can be dependently-typed, but it never + // instantiates to having an overloadable type. + ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr); + if (resolvedRHS.isInvalid()) return ExprError(); + RHSExpr = resolvedRHS.get(); + + if (RHSExpr->isTypeDependent() || + RHSExpr->getType()->isOverloadableType()) + return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr); + } + + // If we're instantiating "a.x < b" or "A::x < b" and 'x' names a function + // template, diagnose the missing 'template' keyword instead of diagnosing + // an invalid use of a bound member function. + // + // Note that "A::x < b" might be valid if 'b' has an overloadable type due + // to C++1z [over.over]/1.4, but we already checked for that case above. + if (Opc == BO_LT && inTemplateInstantiation() && + (pty->getKind() == BuiltinType::BoundMember || + pty->getKind() == BuiltinType::Overload)) { + auto *OE = dyn_cast(LHSExpr); + if (OE && !OE->hasTemplateKeyword() && !OE->hasExplicitTemplateArgs() && + llvm::any_of(OE->decls(), [](NamedDecl *ND) { + return isa(ND); + })) { + Diag(OE->getQualifier() ? OE->getQualifierLoc().getBeginLoc() + : OE->getNameLoc(), + diag::err_template_kw_missing) + << OE->getName().getAsString() << ""; + return ExprError(); + } + } + + ExprResult LHS = CheckPlaceholderExpr(LHSExpr); + if (LHS.isInvalid()) return ExprError(); + LHSExpr = LHS.get(); + } + + // Handle pseudo-objects in the RHS. + if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) { + // An overload in the RHS can potentially be resolved by the type + // being assigned to. + if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) { + if (getLangOpts().CPlusPlus && + (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent() || + LHSExpr->getType()->isOverloadableType())) + return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr); + + return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr); + } + + // Don't resolve overloads if the other type is overloadable. + if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload && + LHSExpr->getType()->isOverloadableType()) + return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr); + + ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr); + if (!resolvedRHS.isUsable()) return ExprError(); + RHSExpr = resolvedRHS.get(); + } + + if (getLangOpts().CPlusPlus) { + // If either expression is type-dependent, always build an + // overloaded op. + if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent()) + return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr); + + // Otherwise, build an overloaded op if either expression has an + // overloadable type. + if (LHSExpr->getType()->isOverloadableType() || + RHSExpr->getType()->isOverloadableType()) + return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr); + } + + if (getLangOpts().RecoveryAST && + (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())) { + assert(!getLangOpts().CPlusPlus); + assert((LHSExpr->containsErrors() || RHSExpr->containsErrors()) && + "Should only occur in error-recovery path."); + if (BinaryOperator::isCompoundAssignmentOp(Opc)) + // C [6.15.16] p3: + // An assignment expression has the value of the left operand after the + // assignment, but is not an lvalue. + return CompoundAssignOperator::Create( + Context, LHSExpr, RHSExpr, Opc, + LHSExpr->getType().getUnqualifiedType(), VK_PRValue, OK_Ordinary, + OpLoc, CurFPFeatureOverrides()); + QualType ResultType; + switch (Opc) { + case BO_Assign: + ResultType = LHSExpr->getType().getUnqualifiedType(); + break; + case BO_LT: + case BO_GT: + case BO_LE: + case BO_GE: + case BO_EQ: + case BO_NE: + case BO_LAnd: + case BO_LOr: + // These operators have a fixed result type regardless of operands. + ResultType = Context.IntTy; + break; + case BO_Comma: + ResultType = RHSExpr->getType(); + break; + default: + ResultType = Context.DependentTy; + break; + } + return BinaryOperator::Create(Context, LHSExpr, RHSExpr, Opc, ResultType, + VK_PRValue, OK_Ordinary, OpLoc, + CurFPFeatureOverrides()); + } + + // Build a built-in binary operation. + return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr); + } + + static bool isOverflowingIntegerType(ASTContext &Ctx, QualType T) { + if (T.isNull() || T->isDependentType()) + return false; + + if (!Ctx.isPromotableIntegerType(T)) + return true; + + return Ctx.getIntWidth(T) >= Ctx.getIntWidth(Ctx.IntTy); + } + + ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc, + UnaryOperatorKind Opc, Expr *InputExpr, + bool IsAfterAmp) { + ExprResult Input = InputExpr; + ExprValueKind VK = VK_PRValue; + ExprObjectKind OK = OK_Ordinary; + QualType resultType; + bool CanOverflow = false; + + bool ConvertHalfVec = false; + if (getLangOpts().OpenCL) { + QualType Ty = InputExpr->getType(); + // The only legal unary operation for atomics is '&'. + if ((Opc != UO_AddrOf && Ty->isAtomicType()) || + // OpenCL special types - image, sampler, pipe, and blocks are to be used + // only with a builtin functions and therefore should be disallowed here. + (Ty->isImageType() || Ty->isSamplerT() || Ty->isPipeType() + || Ty->isBlockPointerType())) { + return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) + << InputExpr->getType() + << Input.get()->getSourceRange()); + } + } + + if (getLangOpts().HLSL && OpLoc.isValid()) { + if (Opc == UO_AddrOf) + return ExprError(Diag(OpLoc, diag::err_hlsl_operator_unsupported) << 0); + if (Opc == UO_Deref) + return ExprError(Diag(OpLoc, diag::err_hlsl_operator_unsupported) << 1); + } + + switch (Opc) { + case UO_PreInc: + case UO_PreDec: + case UO_PostInc: + case UO_PostDec: + resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OK, + OpLoc, + Opc == UO_PreInc || + Opc == UO_PostInc, + Opc == UO_PreInc || + Opc == UO_PreDec); + CanOverflow = isOverflowingIntegerType(Context, resultType); + break; + case UO_AddrOf: + resultType = CheckAddressOfOperand(Input, OpLoc); + CheckAddressOfNoDeref(InputExpr); + RecordModifiableNonNullParam(*this, InputExpr); + break; + case UO_Deref: { + Input = DefaultFunctionArrayLvalueConversion(Input.get()); + if (Input.isInvalid()) return ExprError(); + resultType = + CheckIndirectionOperand(*this, Input.get(), VK, OpLoc, IsAfterAmp); + break; + } + case UO_Plus: + case UO_Minus: + CanOverflow = Opc == UO_Minus && + isOverflowingIntegerType(Context, Input.get()->getType()); + Input = UsualUnaryConversions(Input.get()); + if (Input.isInvalid()) return ExprError(); + // Unary plus and minus require promoting an operand of half vector to a + // float vector and truncating the result back to a half vector. For now, we + // do this only when HalfArgsAndReturns is set (that is, when the target is + // arm or arm64). + ConvertHalfVec = needsConversionOfHalfVec(true, Context, Input.get()); + + // If the operand is a half vector, promote it to a float vector. + if (ConvertHalfVec) + Input = convertVector(Input.get(), Context.FloatTy, *this); + resultType = Input.get()->getType(); + if (resultType->isDependentType()) + break; + if (resultType->isArithmeticType()) // C99 6.5.3.3p1 + break; + else if (resultType->isVectorType() && + // The z vector extensions don't allow + or - with bool vectors. + (!Context.getLangOpts().ZVector || + resultType->castAs()->getVectorKind() != + VectorType::AltiVecBool)) + break; + else if (resultType->isVLSTBuiltinType()) // SVE vectors allow + and - + break; + else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6 + Opc == UO_Plus && + resultType->isPointerType()) + break; + + return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) + << resultType << Input.get()->getSourceRange()); + + case UO_Not: // bitwise complement + Input = UsualUnaryConversions(Input.get()); + if (Input.isInvalid()) + return ExprError(); + resultType = Input.get()->getType(); + if (resultType->isDependentType()) + break; + // C99 6.5.3.3p1. We allow complex int and float as a GCC extension. + if (resultType->isComplexType() || resultType->isComplexIntegerType()) + // C99 does not support '~' for complex conjugation. + Diag(OpLoc, diag::ext_integer_complement_complex) + << resultType << Input.get()->getSourceRange(); + else if (resultType->hasIntegerRepresentation()) + break; + else if (resultType->isExtVectorType() && Context.getLangOpts().OpenCL) { + // OpenCL v1.1 s6.3.f: The bitwise operator not (~) does not operate + // on vector float types. + QualType T = resultType->castAs()->getElementType(); + if (!T->isIntegerType()) + return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) + << resultType << Input.get()->getSourceRange()); + } else { + return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) + << resultType << Input.get()->getSourceRange()); + } + break; + + case UO_LNot: // logical negation + // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5). + Input = DefaultFunctionArrayLvalueConversion(Input.get()); + if (Input.isInvalid()) return ExprError(); + resultType = Input.get()->getType(); + + // Though we still have to promote half FP to float... + if (resultType->isHalfType() && !Context.getLangOpts().NativeHalfType) { + Input = ImpCastExprToType(Input.get(), Context.FloatTy, CK_FloatingCast).get(); + resultType = Context.FloatTy; + } + + // WebAsembly tables can't be used in unary expressions. + if (resultType->isPointerType() && + resultType->getPointeeType().isWebAssemblyReferenceType()) { + return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) + << resultType << Input.get()->getSourceRange()); + } + + if (resultType->isDependentType()) + break; + if (resultType->isScalarType() && !isScopedEnumerationType(resultType)) { + // C99 6.5.3.3p1: ok, fallthrough; + if (Context.getLangOpts().CPlusPlus) { + // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9: + // operand contextually converted to bool. + Input = ImpCastExprToType(Input.get(), Context.BoolTy, + ScalarTypeToBooleanCastKind(resultType)); + } else if (Context.getLangOpts().OpenCL && + Context.getLangOpts().OpenCLVersion < 120) { + // OpenCL v1.1 6.3.h: The logical operator not (!) does not + // operate on scalar float types. + if (!resultType->isIntegerType() && !resultType->isPointerType()) + return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) + << resultType << Input.get()->getSourceRange()); + } + } else if (resultType->isExtVectorType()) { + if (Context.getLangOpts().OpenCL && + Context.getLangOpts().getOpenCLCompatibleVersion() < 120) { + // OpenCL v1.1 6.3.h: The logical operator not (!) does not + // operate on vector float types. + QualType T = resultType->castAs()->getElementType(); + if (!T->isIntegerType()) + return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) + << resultType << Input.get()->getSourceRange()); + } + // Vector logical not returns the signed variant of the operand type. + resultType = GetSignedVectorType(resultType); + break; + } else if (Context.getLangOpts().CPlusPlus && resultType->isVectorType()) { + const VectorType *VTy = resultType->castAs(); + if (VTy->getVectorKind() != VectorType::GenericVector) + return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) + << resultType << Input.get()->getSourceRange()); + + // Vector logical not returns the signed variant of the operand type. + resultType = GetSignedVectorType(resultType); + break; + } else { + return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) + << resultType << Input.get()->getSourceRange()); + } + + // LNot always has type int. C99 6.5.3.3p5. + // In C++, it's bool. C++ 5.3.1p8 + resultType = Context.getLogicalOperationType(); + break; + case UO_Real: + case UO_Imag: + resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real); + // _Real maps ordinary l-values into ordinary l-values. _Imag maps ordinary + // complex l-values to ordinary l-values and all other values to r-values. + if (Input.isInvalid()) return ExprError(); + if (Opc == UO_Real || Input.get()->getType()->isAnyComplexType()) { + if (Input.get()->isGLValue() && + Input.get()->getObjectKind() == OK_Ordinary) + VK = Input.get()->getValueKind(); + } else if (!getLangOpts().CPlusPlus) { + // In C, a volatile scalar is read by __imag. In C++, it is not. + Input = DefaultLvalueConversion(Input.get()); + } + break; + case UO_Extension: + resultType = Input.get()->getType(); + VK = Input.get()->getValueKind(); + OK = Input.get()->getObjectKind(); + break; + case UO_Coawait: + // It's unnecessary to represent the pass-through operator co_await in the + // AST; just return the input expression instead. + assert(!Input.get()->getType()->isDependentType() && + "the co_await expression must be non-dependant before " + "building operator co_await"); + return Input; + } + if (resultType.isNull() || Input.isInvalid()) + return ExprError(); + + // Check for array bounds violations in the operand of the UnaryOperator, + // except for the '*' and '&' operators that have to be handled specially + // by CheckArrayAccess (as there are special cases like &array[arraysize] + // that are explicitly defined as valid by the standard). + if (Opc != UO_AddrOf && Opc != UO_Deref) + CheckArrayAccess(Input.get()); + + auto *UO = + UnaryOperator::Create(Context, Input.get(), Opc, resultType, VK, OK, + OpLoc, CanOverflow, CurFPFeatureOverrides()); + + if (Opc == UO_Deref && UO->getType()->hasAttr(attr::NoDeref) && + !isa(UO->getType().getDesugaredType(Context)) && + !isUnevaluatedContext()) + ExprEvalContexts.back().PossibleDerefs.insert(UO); + + // Convert the result back to a half vector. + if (ConvertHalfVec) + return convertVector(UO, Context.HalfTy, *this); + return UO; + } + + /// Determine whether the given expression is a qualified member + /// access expression, of a form that could be turned into a pointer to member + /// with the address-of operator. + bool Sema::isQualifiedMemberAccess(Expr *E) { + if (DeclRefExpr *DRE = dyn_cast(E)) { + if (!DRE->getQualifier()) + return false; + + ValueDecl *VD = DRE->getDecl(); + if (!VD->isCXXClassMember()) + return false; + + if (isa(VD) || isa(VD)) + return true; + if (CXXMethodDecl *Method = dyn_cast(VD)) + return Method->isInstance(); + + return false; + } + + if (UnresolvedLookupExpr *ULE = dyn_cast(E)) { + if (!ULE->getQualifier()) + return false; + + for (NamedDecl *D : ULE->decls()) { + if (CXXMethodDecl *Method = dyn_cast(D)) { + if (Method->isInstance()) + return true; + } else { + // Overload set does not contain methods. + break; + } + } + + return false; + } + + return false; + } + + ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc, + UnaryOperatorKind Opc, Expr *Input, + bool IsAfterAmp) { + // First things first: handle placeholders so that the + // overloaded-operator check considers the right type. + if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) { + // Increment and decrement of pseudo-object references. + if (pty->getKind() == BuiltinType::PseudoObject && + UnaryOperator::isIncrementDecrementOp(Opc)) + return checkPseudoObjectIncDec(S, OpLoc, Opc, Input); + + // extension is always a builtin operator. + if (Opc == UO_Extension) + return CreateBuiltinUnaryOp(OpLoc, Opc, Input); + + // & gets special logic for several kinds of placeholder. + // The builtin code knows what to do. + if (Opc == UO_AddrOf && + (pty->getKind() == BuiltinType::Overload || + pty->getKind() == BuiltinType::UnknownAny || + pty->getKind() == BuiltinType::BoundMember)) + return CreateBuiltinUnaryOp(OpLoc, Opc, Input); + + // Anything else needs to be handled now. + ExprResult Result = CheckPlaceholderExpr(Input); + if (Result.isInvalid()) return ExprError(); + Input = Result.get(); + } + + if (getLangOpts().CPlusPlus && Input->getType()->isOverloadableType() && + UnaryOperator::getOverloadedOperator(Opc) != OO_None && + !(Opc == UO_AddrOf && isQualifiedMemberAccess(Input))) { + // Find all of the overloaded operators visible from this point. + UnresolvedSet<16> Functions; + OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc); + if (S && OverOp != OO_None) + LookupOverloadedOperatorName(OverOp, S, Functions); + + return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input); + } + + return CreateBuiltinUnaryOp(OpLoc, Opc, Input, IsAfterAmp); + } + + // Unary Operators. 'Tok' is the token for the operator. + ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc, tok::TokenKind Op, + Expr *Input, bool IsAfterAmp) { + return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input, + IsAfterAmp); + } + + /// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo". + ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc, + LabelDecl *TheDecl) { + TheDecl->markUsed(Context); + // Create the AST node. The address of a label always has type 'void*'. + auto *Res = new (Context) AddrLabelExpr( + OpLoc, LabLoc, TheDecl, Context.getPointerType(Context.VoidTy)); + + if (getCurFunction()) + getCurFunction()->AddrLabels.push_back(Res); + + return Res; + } + + void Sema::ActOnStartStmtExpr() { + PushExpressionEvaluationContext(ExprEvalContexts.back().Context); + } + + void Sema::ActOnStmtExprError() { + // Note that function is also called by TreeTransform when leaving a + // StmtExpr scope without rebuilding anything. + + DiscardCleanupsInEvaluationContext(); + PopExpressionEvaluationContext(); + } + + ExprResult Sema::ActOnStmtExpr(Scope *S, SourceLocation LPLoc, Stmt *SubStmt, + SourceLocation RPLoc) { + return BuildStmtExpr(LPLoc, SubStmt, RPLoc, getTemplateDepth(S)); + } + + ExprResult Sema::BuildStmtExpr(SourceLocation LPLoc, Stmt *SubStmt, + SourceLocation RPLoc, unsigned TemplateDepth) { + assert(SubStmt && isa(SubStmt) && "Invalid action invocation!"); + CompoundStmt *Compound = cast(SubStmt); + + if (hasAnyUnrecoverableErrorsInThisFunction()) + DiscardCleanupsInEvaluationContext(); + assert(!Cleanup.exprNeedsCleanups() && + "cleanups within StmtExpr not correctly bound!"); + PopExpressionEvaluationContext(); + + // FIXME: there are a variety of strange constraints to enforce here, for + // example, it is not possible to goto into a stmt expression apparently. + // More semantic analysis is needed. + + // If there are sub-stmts in the compound stmt, take the type of the last one + // as the type of the stmtexpr. + QualType Ty = Context.VoidTy; + bool StmtExprMayBindToTemp = false; + if (!Compound->body_empty()) { + // For GCC compatibility we get the last Stmt excluding trailing NullStmts. + if (const auto *LastStmt = + dyn_cast(Compound->getStmtExprResult())) { + if (const Expr *Value = LastStmt->getExprStmt()) { + StmtExprMayBindToTemp = true; + Ty = Value->getType(); + } + } + } + + // FIXME: Check that expression type is complete/non-abstract; statement + // expressions are not lvalues. + Expr *ResStmtExpr = + new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc, TemplateDepth); + if (StmtExprMayBindToTemp) + return MaybeBindToTemporary(ResStmtExpr); + return ResStmtExpr; + } + + ExprResult Sema::ActOnStmtExprResult(ExprResult ER) { + if (ER.isInvalid()) + return ExprError(); + + // Do function/array conversion on the last expression, but not + // lvalue-to-rvalue. However, initialize an unqualified type. + ER = DefaultFunctionArrayConversion(ER.get()); + if (ER.isInvalid()) + return ExprError(); + Expr *E = ER.get(); + + if (E->isTypeDependent()) + return E; + + // In ARC, if the final expression ends in a consume, splice + // the consume out and bind it later. In the alternate case + // (when dealing with a retainable type), the result + // initialization will create a produce. In both cases the + // result will be +1, and we'll need to balance that out with + // a bind. + auto *Cast = dyn_cast(E); + if (Cast && Cast->getCastKind() == CK_ARCConsumeObject) + return Cast->getSubExpr(); + + // FIXME: Provide a better location for the initialization. + return PerformCopyInitialization( + InitializedEntity::InitializeStmtExprResult( + E->getBeginLoc(), E->getType().getUnqualifiedType()), + SourceLocation(), E); + } + + ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc, + TypeSourceInfo *TInfo, + ArrayRef Components, + SourceLocation RParenLoc) { + QualType ArgTy = TInfo->getType(); + bool Dependent = ArgTy->isDependentType(); + SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange(); + + // We must have at least one component that refers to the type, and the first + // one is known to be a field designator. Verify that the ArgTy represents + // a struct/union/class. + if (!Dependent && !ArgTy->isRecordType()) + return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type) + << ArgTy << TypeRange); + + // Type must be complete per C99 7.17p3 because a declaring a variable + // with an incomplete type would be ill-formed. + if (!Dependent + && RequireCompleteType(BuiltinLoc, ArgTy, + diag::err_offsetof_incomplete_type, TypeRange)) + return ExprError(); + + bool DidWarnAboutNonPOD = false; + QualType CurrentType = ArgTy; + SmallVector Comps; + SmallVector Exprs; + for (const OffsetOfComponent &OC : Components) { + if (OC.isBrackets) { + // Offset of an array sub-field. TODO: Should we allow vector elements? + if (!CurrentType->isDependentType()) { + const ArrayType *AT = Context.getAsArrayType(CurrentType); + if(!AT) + return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type) + << CurrentType); + CurrentType = AT->getElementType(); + } else + CurrentType = Context.DependentTy; + + ExprResult IdxRval = DefaultLvalueConversion(static_cast(OC.U.E)); + if (IdxRval.isInvalid()) + return ExprError(); + Expr *Idx = IdxRval.get(); + + // The expression must be an integral expression. + // FIXME: An integral constant expression? + if (!Idx->isTypeDependent() && !Idx->isValueDependent() && + !Idx->getType()->isIntegerType()) + return ExprError( + Diag(Idx->getBeginLoc(), diag::err_typecheck_subscript_not_integer) + << Idx->getSourceRange()); + + // Record this array index. + Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd)); + Exprs.push_back(Idx); + continue; + } + + // Offset of a field. + if (CurrentType->isDependentType()) { + // We have the offset of a field, but we can't look into the dependent + // type. Just record the identifier of the field. + Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd)); + CurrentType = Context.DependentTy; + continue; + } + + // We need to have a complete type to look into. + if (RequireCompleteType(OC.LocStart, CurrentType, + diag::err_offsetof_incomplete_type)) + return ExprError(); + + // Look for the designated field. + const RecordType *RC = CurrentType->getAs(); + if (!RC) + return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type) + << CurrentType); + RecordDecl *RD = RC->getDecl(); + + // C++ [lib.support.types]p5: + // The macro offsetof accepts a restricted set of type arguments in this + // International Standard. type shall be a POD structure or a POD union + // (clause 9). + // C++11 [support.types]p4: + // If type is not a standard-layout class (Clause 9), the results are + // undefined. + if (CXXRecordDecl *CRD = dyn_cast(RD)) { + bool IsSafe = LangOpts.CPlusPlus11? CRD->isStandardLayout() : CRD->isPOD(); + unsigned DiagID = + LangOpts.CPlusPlus11? diag::ext_offsetof_non_standardlayout_type + : diag::ext_offsetof_non_pod_type; + + if (!IsSafe && !DidWarnAboutNonPOD && + DiagRuntimeBehavior(BuiltinLoc, nullptr, + PDiag(DiagID) + << SourceRange(Components[0].LocStart, OC.LocEnd) + << CurrentType)) + DidWarnAboutNonPOD = true; + } + + // Look for the field. + LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName); + LookupQualifiedName(R, RD); + FieldDecl *MemberDecl = R.getAsSingle(); + IndirectFieldDecl *IndirectMemberDecl = nullptr; + if (!MemberDecl) { + if ((IndirectMemberDecl = R.getAsSingle())) + MemberDecl = IndirectMemberDecl->getAnonField(); + } + + if (!MemberDecl) + return ExprError(Diag(BuiltinLoc, diag::err_no_member) + << OC.U.IdentInfo << RD << SourceRange(OC.LocStart, + OC.LocEnd)); + + // C99 7.17p3: + // (If the specified member is a bit-field, the behavior is undefined.) + // + // We diagnose this as an error. + if (MemberDecl->isBitField()) { + Diag(OC.LocEnd, diag::err_offsetof_bitfield) + << MemberDecl->getDeclName() + << SourceRange(BuiltinLoc, RParenLoc); + Diag(MemberDecl->getLocation(), diag::note_bitfield_decl); + return ExprError(); + } + + RecordDecl *Parent = MemberDecl->getParent(); + if (IndirectMemberDecl) + Parent = cast(IndirectMemberDecl->getDeclContext()); + + // If the member was found in a base class, introduce OffsetOfNodes for + // the base class indirections. + CXXBasePaths Paths; + if (IsDerivedFrom(OC.LocStart, CurrentType, Context.getTypeDeclType(Parent), + Paths)) { + if (Paths.getDetectedVirtual()) { + Diag(OC.LocEnd, diag::err_offsetof_field_of_virtual_base) + << MemberDecl->getDeclName() + << SourceRange(BuiltinLoc, RParenLoc); + return ExprError(); + } + + CXXBasePath &Path = Paths.front(); + for (const CXXBasePathElement &B : Path) + Comps.push_back(OffsetOfNode(B.Base)); + } + + if (IndirectMemberDecl) { + for (auto *FI : IndirectMemberDecl->chain()) { + assert(isa(FI)); + Comps.push_back(OffsetOfNode(OC.LocStart, + cast(FI), OC.LocEnd)); + } + } else + Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd)); + + CurrentType = MemberDecl->getType().getNonReferenceType(); + } + + return OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc, TInfo, + Comps, Exprs, RParenLoc); + } + + ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S, + SourceLocation BuiltinLoc, + SourceLocation TypeLoc, + ParsedType ParsedArgTy, + ArrayRef Components, + SourceLocation RParenLoc) { + + TypeSourceInfo *ArgTInfo; + QualType ArgTy = GetTypeFromParser(ParsedArgTy, &ArgTInfo); + if (ArgTy.isNull()) + return ExprError(); + + if (!ArgTInfo) + ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc); + + return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, Components, RParenLoc); + } + + + ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc, + Expr *CondExpr, + Expr *LHSExpr, Expr *RHSExpr, + SourceLocation RPLoc) { + assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)"); + + ExprValueKind VK = VK_PRValue; + ExprObjectKind OK = OK_Ordinary; + QualType resType; + bool CondIsTrue = false; + if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) { + resType = Context.DependentTy; + } else { + // The conditional expression is required to be a constant expression. + llvm::APSInt condEval(32); + ExprResult CondICE = VerifyIntegerConstantExpression( + CondExpr, &condEval, diag::err_typecheck_choose_expr_requires_constant); + if (CondICE.isInvalid()) + return ExprError(); + CondExpr = CondICE.get(); + CondIsTrue = condEval.getZExtValue(); + + // If the condition is > zero, then the AST type is the same as the LHSExpr. + Expr *ActiveExpr = CondIsTrue ? LHSExpr : RHSExpr; + + resType = ActiveExpr->getType(); + VK = ActiveExpr->getValueKind(); + OK = ActiveExpr->getObjectKind(); + } + + return new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr, + resType, VK, OK, RPLoc, CondIsTrue); + } + + //===----------------------------------------------------------------------===// + // Clang Extensions. + //===----------------------------------------------------------------------===// + + /// ActOnBlockStart - This callback is invoked when a block literal is started. + void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) { + BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc); + + if (LangOpts.CPlusPlus) { + MangleNumberingContext *MCtx; + Decl *ManglingContextDecl; + std::tie(MCtx, ManglingContextDecl) = + getCurrentMangleNumberContext(Block->getDeclContext()); + if (MCtx) { + unsigned ManglingNumber = MCtx->getManglingNumber(Block); + Block->setBlockMangling(ManglingNumber, ManglingContextDecl); + } + } + + PushBlockScope(CurScope, Block); + CurContext->addDecl(Block); + if (CurScope) + PushDeclContext(CurScope, Block); + else + CurContext = Block; + + getCurBlock()->HasImplicitReturnType = true; + + // Enter a new evaluation context to insulate the block from any + // cleanups from the enclosing full-expression. + PushExpressionEvaluationContext( + ExpressionEvaluationContext::PotentiallyEvaluated); + } + + void Sema::ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo, + Scope *CurScope) { + assert(ParamInfo.getIdentifier() == nullptr && + "block-id should have no identifier!"); + assert(ParamInfo.getContext() == DeclaratorContext::BlockLiteral); + BlockScopeInfo *CurBlock = getCurBlock(); + + TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope); + QualType T = Sig->getType(); + + // FIXME: We should allow unexpanded parameter packs here, but that would, + // in turn, make the block expression contain unexpanded parameter packs. + if (DiagnoseUnexpandedParameterPack(CaretLoc, Sig, UPPC_Block)) { + // Drop the parameters. + FunctionProtoType::ExtProtoInfo EPI; + EPI.HasTrailingReturn = false; + EPI.TypeQuals.addConst(); + T = Context.getFunctionType(Context.DependentTy, std::nullopt, EPI); + Sig = Context.getTrivialTypeSourceInfo(T); + } + + // GetTypeForDeclarator always produces a function type for a block + // literal signature. Furthermore, it is always a FunctionProtoType + // unless the function was written with a typedef. + assert(T->isFunctionType() && + "GetTypeForDeclarator made a non-function block signature"); + + // Look for an explicit signature in that function type. + FunctionProtoTypeLoc ExplicitSignature; + + if ((ExplicitSignature = Sig->getTypeLoc() + .getAsAdjusted())) { + + // Check whether that explicit signature was synthesized by + // GetTypeForDeclarator. If so, don't save that as part of the + // written signature. + if (ExplicitSignature.getLocalRangeBegin() == + ExplicitSignature.getLocalRangeEnd()) { + // This would be much cheaper if we stored TypeLocs instead of + // TypeSourceInfos. + TypeLoc Result = ExplicitSignature.getReturnLoc(); + unsigned Size = Result.getFullDataSize(); + Sig = Context.CreateTypeSourceInfo(Result.getType(), Size); + Sig->getTypeLoc().initializeFullCopy(Result, Size); + + ExplicitSignature = FunctionProtoTypeLoc(); + } + } + + CurBlock->TheDecl->setSignatureAsWritten(Sig); + CurBlock->FunctionType = T; + + const auto *Fn = T->castAs(); + QualType RetTy = Fn->getReturnType(); + bool isVariadic = + (isa(Fn) && cast(Fn)->isVariadic()); + + CurBlock->TheDecl->setIsVariadic(isVariadic); + + // Context.DependentTy is used as a placeholder for a missing block + // return type. TODO: what should we do with declarators like: + // ^ * { ... } + // If the answer is "apply template argument deduction".... + if (RetTy != Context.DependentTy) { + CurBlock->ReturnType = RetTy; + CurBlock->TheDecl->setBlockMissingReturnType(false); + CurBlock->HasImplicitReturnType = false; + } + + // Push block parameters from the declarator if we had them. + SmallVector Params; + if (ExplicitSignature) { + for (unsigned I = 0, E = ExplicitSignature.getNumParams(); I != E; ++I) { + ParmVarDecl *Param = ExplicitSignature.getParam(I); + if (Param->getIdentifier() == nullptr && !Param->isImplicit() && + !Param->isInvalidDecl() && !getLangOpts().CPlusPlus) { + // Diagnose this as an extension in C17 and earlier. + if (!getLangOpts().C2x) + Diag(Param->getLocation(), diag::ext_parameter_name_omitted_c2x); + } + Params.push_back(Param); + } + + // Fake up parameter variables if we have a typedef, like + // ^ fntype { ... } + } else if (const FunctionProtoType *Fn = T->getAs()) { + for (const auto &I : Fn->param_types()) { + ParmVarDecl *Param = BuildParmVarDeclForTypedef( + CurBlock->TheDecl, ParamInfo.getBeginLoc(), I); + Params.push_back(Param); + } + } + + // Set the parameters on the block decl. + if (!Params.empty()) { + CurBlock->TheDecl->setParams(Params); + CheckParmsForFunctionDef(CurBlock->TheDecl->parameters(), + /*CheckParameterNames=*/false); + } + + // Finally we can process decl attributes. + ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo); + + // Put the parameter variables in scope. + for (auto *AI : CurBlock->TheDecl->parameters()) { + AI->setOwningFunction(CurBlock->TheDecl); + + // If this has an identifier, add it to the scope stack. + if (AI->getIdentifier()) { + CheckShadow(CurBlock->TheScope, AI); + + PushOnScopeChains(AI, CurBlock->TheScope); + } + } + } + + /// ActOnBlockError - If there is an error parsing a block, this callback + /// is invoked to pop the information about the block from the action impl. + void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) { + // Leave the expression-evaluation context. + DiscardCleanupsInEvaluationContext(); + PopExpressionEvaluationContext(); + + // Pop off CurBlock, handle nested blocks. + PopDeclContext(); + PopFunctionScopeInfo(); + } + + /// ActOnBlockStmtExpr - This is called when the body of a block statement + /// literal was successfully completed. ^(int x){...} + ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc, + Stmt *Body, Scope *CurScope) { + // If blocks are disabled, emit an error. + if (!LangOpts.Blocks) + Diag(CaretLoc, diag::err_blocks_disable) << LangOpts.OpenCL; + + // Leave the expression-evaluation context. + if (hasAnyUnrecoverableErrorsInThisFunction()) + DiscardCleanupsInEvaluationContext(); + assert(!Cleanup.exprNeedsCleanups() && + "cleanups within block not correctly bound!"); + PopExpressionEvaluationContext(); + + BlockScopeInfo *BSI = cast(FunctionScopes.back()); + BlockDecl *BD = BSI->TheDecl; + + if (BSI->HasImplicitReturnType) + deduceClosureReturnType(*BSI); + + QualType RetTy = Context.VoidTy; + if (!BSI->ReturnType.isNull()) + RetTy = BSI->ReturnType; + + bool NoReturn = BD->hasAttr(); + QualType BlockTy; + + // If the user wrote a function type in some form, try to use that. + if (!BSI->FunctionType.isNull()) { + const FunctionType *FTy = BSI->FunctionType->castAs(); + + FunctionType::ExtInfo Ext = FTy->getExtInfo(); + if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true); + + // Turn protoless block types into nullary block types. + if (isa(FTy)) { + FunctionProtoType::ExtProtoInfo EPI; + EPI.ExtInfo = Ext; + BlockTy = Context.getFunctionType(RetTy, std::nullopt, EPI); + + // Otherwise, if we don't need to change anything about the function type, + // preserve its sugar structure. + } else if (FTy->getReturnType() == RetTy && + (!NoReturn || FTy->getNoReturnAttr())) { + BlockTy = BSI->FunctionType; + + // Otherwise, make the minimal modifications to the function type. + } else { + const FunctionProtoType *FPT = cast(FTy); + FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); + EPI.TypeQuals = Qualifiers(); + EPI.ExtInfo = Ext; + BlockTy = Context.getFunctionType(RetTy, FPT->getParamTypes(), EPI); + } + + // If we don't have a function type, just build one from nothing. + } else { + FunctionProtoType::ExtProtoInfo EPI; + EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn); + BlockTy = Context.getFunctionType(RetTy, std::nullopt, EPI); + } + + DiagnoseUnusedParameters(BD->parameters()); + BlockTy = Context.getBlockPointerType(BlockTy); + + // If needed, diagnose invalid gotos and switches in the block. + if (getCurFunction()->NeedsScopeChecking() && + !PP.isCodeCompletionEnabled()) + DiagnoseInvalidJumps(cast(Body)); + + BD->setBody(cast(Body)); + + if (Body && getCurFunction()->HasPotentialAvailabilityViolations) + DiagnoseUnguardedAvailabilityViolations(BD); + + // Try to apply the named return value optimization. We have to check again + // if we can do this, though, because blocks keep return statements around + // to deduce an implicit return type. + if (getLangOpts().CPlusPlus && RetTy->isRecordType() && + !BD->isDependentContext()) + computeNRVO(Body, BSI); + + if (RetTy.hasNonTrivialToPrimitiveDestructCUnion() || + RetTy.hasNonTrivialToPrimitiveCopyCUnion()) + checkNonTrivialCUnion(RetTy, BD->getCaretLocation(), NTCUC_FunctionReturn, + NTCUK_Destruct|NTCUK_Copy); + + PopDeclContext(); + + // Set the captured variables on the block. + SmallVector Captures; + for (Capture &Cap : BSI->Captures) { + if (Cap.isInvalid() || Cap.isThisCapture()) + continue; + // Cap.getVariable() is always a VarDecl because + // blocks cannot capture structured bindings or other ValueDecl kinds. + auto *Var = cast(Cap.getVariable()); + Expr *CopyExpr = nullptr; + if (getLangOpts().CPlusPlus && Cap.isCopyCapture()) { + if (const RecordType *Record = + Cap.getCaptureType()->getAs()) { + // The capture logic needs the destructor, so make sure we mark it. + // Usually this is unnecessary because most local variables have + // their destructors marked at declaration time, but parameters are + // an exception because it's technically only the call site that + // actually requires the destructor. + if (isa(Var)) + FinalizeVarWithDestructor(Var, Record); + + // Enter a separate potentially-evaluated context while building block + // initializers to isolate their cleanups from those of the block + // itself. + // FIXME: Is this appropriate even when the block itself occurs in an + // unevaluated operand? + EnterExpressionEvaluationContext EvalContext( + *this, ExpressionEvaluationContext::PotentiallyEvaluated); + + SourceLocation Loc = Cap.getLocation(); + + ExprResult Result = BuildDeclarationNameExpr( + CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var); + + // According to the blocks spec, the capture of a variable from + // the stack requires a const copy constructor. This is not true + // of the copy/move done to move a __block variable to the heap. + if (!Result.isInvalid() && + !Result.get()->getType().isConstQualified()) { + Result = ImpCastExprToType(Result.get(), + Result.get()->getType().withConst(), + CK_NoOp, VK_LValue); + } + + if (!Result.isInvalid()) { + Result = PerformCopyInitialization( + InitializedEntity::InitializeBlock(Var->getLocation(), + Cap.getCaptureType()), + Loc, Result.get()); + } + + // Build a full-expression copy expression if initialization + // succeeded and used a non-trivial constructor. Recover from + // errors by pretending that the copy isn't necessary. + if (!Result.isInvalid() && + !cast(Result.get())->getConstructor() + ->isTrivial()) { + Result = MaybeCreateExprWithCleanups(Result); + CopyExpr = Result.get(); + } + } + } + + BlockDecl::Capture NewCap(Var, Cap.isBlockCapture(), Cap.isNested(), + CopyExpr); + Captures.push_back(NewCap); + } + BD->setCaptures(Context, Captures, BSI->CXXThisCaptureIndex != 0); + + // Pop the block scope now but keep it alive to the end of this function. + AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy(); + PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo(&WP, BD, BlockTy); + + BlockExpr *Result = new (Context) BlockExpr(BD, BlockTy); + + // If the block isn't obviously global, i.e. it captures anything at + // all, then we need to do a few things in the surrounding context: + if (Result->getBlockDecl()->hasCaptures()) { + // First, this expression has a new cleanup object. + ExprCleanupObjects.push_back(Result->getBlockDecl()); + Cleanup.setExprNeedsCleanups(true); + + // It also gets a branch-protected scope if any of the captured + // variables needs destruction. + for (const auto &CI : Result->getBlockDecl()->captures()) { + const VarDecl *var = CI.getVariable(); + if (var->getType().isDestructedType() != QualType::DK_none) { + setFunctionHasBranchProtectedScope(); + break; + } + } + } + + if (getCurFunction()) + getCurFunction()->addBlock(BD); + + return Result; + } + + ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc, Expr *E, ParsedType Ty, + SourceLocation RPLoc) { + TypeSourceInfo *TInfo; + GetTypeFromParser(Ty, &TInfo); + return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc); + } + + ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc, + Expr *E, TypeSourceInfo *TInfo, + SourceLocation RPLoc) { + Expr *OrigExpr = E; + bool IsMS = false; + + // CUDA device code does not support varargs. + if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) { + if (const FunctionDecl *F = dyn_cast(CurContext)) { + CUDAFunctionTarget T = IdentifyCUDATarget(F); + if (T == CFT_Global || T == CFT_Device || T == CFT_HostDevice) + return ExprError(Diag(E->getBeginLoc(), diag::err_va_arg_in_device)); + } + } + + // NVPTX does not support va_arg expression. + if (getLangOpts().OpenMP && getLangOpts().OpenMPIsTargetDevice && + Context.getTargetInfo().getTriple().isNVPTX()) + targetDiag(E->getBeginLoc(), diag::err_va_arg_in_device); + + // It might be a __builtin_ms_va_list. (But don't ever mark a va_arg() + // as Microsoft ABI on an actual Microsoft platform, where + // __builtin_ms_va_list and __builtin_va_list are the same.) + if (!E->isTypeDependent() && Context.getTargetInfo().hasBuiltinMSVaList() && + Context.getTargetInfo().getBuiltinVaListKind() != TargetInfo::CharPtrBuiltinVaList) { + QualType MSVaListType = Context.getBuiltinMSVaListType(); + if (Context.hasSameType(MSVaListType, E->getType())) { + if (CheckForModifiableLvalue(E, BuiltinLoc, *this)) + return ExprError(); + IsMS = true; + } + } + + // Get the va_list type + QualType VaListType = Context.getBuiltinVaListType(); + if (!IsMS) { + if (VaListType->isArrayType()) { + // Deal with implicit array decay; for example, on x86-64, + // va_list is an array, but it's supposed to decay to + // a pointer for va_arg. + VaListType = Context.getArrayDecayedType(VaListType); + // Make sure the input expression also decays appropriately. + ExprResult Result = UsualUnaryConversions(E); + if (Result.isInvalid()) + return ExprError(); + E = Result.get(); + } else if (VaListType->isRecordType() && getLangOpts().CPlusPlus) { + // If va_list is a record type and we are compiling in C++ mode, + // check the argument using reference binding. + InitializedEntity Entity = InitializedEntity::InitializeParameter( + Context, Context.getLValueReferenceType(VaListType), false); + ExprResult Init = PerformCopyInitialization(Entity, SourceLocation(), E); + if (Init.isInvalid()) + return ExprError(); + E = Init.getAs(); + } else { + // Otherwise, the va_list argument must be an l-value because + // it is modified by va_arg. + if (!E->isTypeDependent() && + CheckForModifiableLvalue(E, BuiltinLoc, *this)) + return ExprError(); + } + } + + if (!IsMS && !E->isTypeDependent() && + !Context.hasSameType(VaListType, E->getType())) + return ExprError( + Diag(E->getBeginLoc(), + diag::err_first_argument_to_va_arg_not_of_type_va_list) + << OrigExpr->getType() << E->getSourceRange()); + + if (!TInfo->getType()->isDependentType()) { + if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(), + diag::err_second_parameter_to_va_arg_incomplete, + TInfo->getTypeLoc())) + return ExprError(); + + if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(), + TInfo->getType(), + diag::err_second_parameter_to_va_arg_abstract, + TInfo->getTypeLoc())) + return ExprError(); + + if (!TInfo->getType().isPODType(Context)) { + Diag(TInfo->getTypeLoc().getBeginLoc(), + TInfo->getType()->isObjCLifetimeType() + ? diag::warn_second_parameter_to_va_arg_ownership_qualified + : diag::warn_second_parameter_to_va_arg_not_pod) + << TInfo->getType() + << TInfo->getTypeLoc().getSourceRange(); + } + + // Check for va_arg where arguments of the given type will be promoted + // (i.e. this va_arg is guaranteed to have undefined behavior). + QualType PromoteType; + if (Context.isPromotableIntegerType(TInfo->getType())) { + PromoteType = Context.getPromotedIntegerType(TInfo->getType()); + // [cstdarg.syn]p1 defers the C++ behavior to what the C standard says, + // and C2x 7.16.1.1p2 says, in part: + // If type is not compatible with the type of the actual next argument + // (as promoted according to the default argument promotions), the + // behavior is undefined, except for the following cases: + // - both types are pointers to qualified or unqualified versions of + // compatible types; + // - one type is a signed integer type, the other type is the + // corresponding unsigned integer type, and the value is + // representable in both types; + // - one type is pointer to qualified or unqualified void and the + // other is a pointer to a qualified or unqualified character type. + // Given that type compatibility is the primary requirement (ignoring + // qualifications), you would think we could call typesAreCompatible() + // directly to test this. However, in C++, that checks for *same type*, + // which causes false positives when passing an enumeration type to + // va_arg. Instead, get the underlying type of the enumeration and pass + // that. + QualType UnderlyingType = TInfo->getType(); + if (const auto *ET = UnderlyingType->getAs()) + UnderlyingType = ET->getDecl()->getIntegerType(); + if (Context.typesAreCompatible(PromoteType, UnderlyingType, + /*CompareUnqualified*/ true)) + PromoteType = QualType(); + + // If the types are still not compatible, we need to test whether the + // promoted type and the underlying type are the same except for + // signedness. Ask the AST for the correctly corresponding type and see + // if that's compatible. + if (!PromoteType.isNull() && !UnderlyingType->isBooleanType() && + PromoteType->isUnsignedIntegerType() != + UnderlyingType->isUnsignedIntegerType()) { + UnderlyingType = + UnderlyingType->isUnsignedIntegerType() + ? Context.getCorrespondingSignedType(UnderlyingType) + : Context.getCorrespondingUnsignedType(UnderlyingType); + if (Context.typesAreCompatible(PromoteType, UnderlyingType, + /*CompareUnqualified*/ true)) + PromoteType = QualType(); + } + } + if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float)) + PromoteType = Context.DoubleTy; + if (!PromoteType.isNull()) + DiagRuntimeBehavior(TInfo->getTypeLoc().getBeginLoc(), E, + PDiag(diag::warn_second_parameter_to_va_arg_never_compatible) + << TInfo->getType() + << PromoteType + << TInfo->getTypeLoc().getSourceRange()); + } + + QualType T = TInfo->getType().getNonLValueExprType(Context); + return new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T, IsMS); + } + + ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) { + // The type of __null will be int or long, depending on the size of + // pointers on the target. + QualType Ty; + unsigned pw = Context.getTargetInfo().getPointerWidth(LangAS::Default); + if (pw == Context.getTargetInfo().getIntWidth()) + Ty = Context.IntTy; + else if (pw == Context.getTargetInfo().getLongWidth()) + Ty = Context.LongTy; + else if (pw == Context.getTargetInfo().getLongLongWidth()) + Ty = Context.LongLongTy; + else { + llvm_unreachable("I don't know size of pointer!"); + } + + return new (Context) GNUNullExpr(Ty, TokenLoc); + } + + static CXXRecordDecl *LookupStdSourceLocationImpl(Sema &S, SourceLocation Loc) { + CXXRecordDecl *ImplDecl = nullptr; + + // Fetch the std::source_location::__impl decl. + if (NamespaceDecl *Std = S.getStdNamespace()) { + LookupResult ResultSL(S, &S.PP.getIdentifierTable().get("source_location"), + Loc, Sema::LookupOrdinaryName); + if (S.LookupQualifiedName(ResultSL, Std)) { + if (auto *SLDecl = ResultSL.getAsSingle()) { + LookupResult ResultImpl(S, &S.PP.getIdentifierTable().get("__impl"), + Loc, Sema::LookupOrdinaryName); + if ((SLDecl->isCompleteDefinition() || SLDecl->isBeingDefined()) && + S.LookupQualifiedName(ResultImpl, SLDecl)) { + ImplDecl = ResultImpl.getAsSingle(); + } + } + } + } + + if (!ImplDecl || !ImplDecl->isCompleteDefinition()) { + S.Diag(Loc, diag::err_std_source_location_impl_not_found); + return nullptr; + } + + // Verify that __impl is a trivial struct type, with no base classes, and with + // only the four expected fields. + if (ImplDecl->isUnion() || !ImplDecl->isStandardLayout() || + ImplDecl->getNumBases() != 0) { + S.Diag(Loc, diag::err_std_source_location_impl_malformed); + return nullptr; + } + + unsigned Count = 0; + for (FieldDecl *F : ImplDecl->fields()) { + StringRef Name = F->getName(); + + if (Name == "_M_file_name") { + if (F->getType() != + S.Context.getPointerType(S.Context.CharTy.withConst())) + break; + Count++; + } else if (Name == "_M_function_name") { + if (F->getType() != + S.Context.getPointerType(S.Context.CharTy.withConst())) + break; + Count++; + } else if (Name == "_M_line") { + if (!F->getType()->isIntegerType()) + break; + Count++; + } else if (Name == "_M_column") { + if (!F->getType()->isIntegerType()) + break; + Count++; + } else { + Count = 100; // invalid + break; + } + } + if (Count != 4) { + S.Diag(Loc, diag::err_std_source_location_impl_malformed); + return nullptr; + } + + return ImplDecl; + } + + ExprResult Sema::ActOnSourceLocExpr(SourceLocExpr::IdentKind Kind, + SourceLocation BuiltinLoc, + SourceLocation RPLoc) { + QualType ResultTy; + switch (Kind) { + case SourceLocExpr::File: + case SourceLocExpr::FileName: + case SourceLocExpr::Function: + case SourceLocExpr::FuncSig: { + QualType ArrTy = Context.getStringLiteralArrayType(Context.CharTy, 0); + ResultTy = + Context.getPointerType(ArrTy->getAsArrayTypeUnsafe()->getElementType()); + break; + } + case SourceLocExpr::Line: + case SourceLocExpr::Column: + ResultTy = Context.UnsignedIntTy; + break; + case SourceLocExpr::SourceLocStruct: + if (!StdSourceLocationImplDecl) { + StdSourceLocationImplDecl = + LookupStdSourceLocationImpl(*this, BuiltinLoc); + if (!StdSourceLocationImplDecl) + return ExprError(); + } + ResultTy = Context.getPointerType( + Context.getRecordType(StdSourceLocationImplDecl).withConst()); + break; + } + + return BuildSourceLocExpr(Kind, ResultTy, BuiltinLoc, RPLoc, CurContext); + } + + ExprResult Sema::BuildSourceLocExpr(SourceLocExpr::IdentKind Kind, + QualType ResultTy, + SourceLocation BuiltinLoc, + SourceLocation RPLoc, + DeclContext *ParentContext) { + return new (Context) + SourceLocExpr(Context, Kind, ResultTy, BuiltinLoc, RPLoc, ParentContext); + } + + bool Sema::CheckConversionToObjCLiteral(QualType DstType, Expr *&Exp, + bool Diagnose) { + if (!getLangOpts().ObjC) + return false; + + const ObjCObjectPointerType *PT = DstType->getAs(); + if (!PT) + return false; + const ObjCInterfaceDecl *ID = PT->getInterfaceDecl(); + + // Ignore any parens, implicit casts (should only be + // array-to-pointer decays), and not-so-opaque values. The last is + // important for making this trigger for property assignments. + Expr *SrcExpr = Exp->IgnoreParenImpCasts(); + if (OpaqueValueExpr *OV = dyn_cast(SrcExpr)) + if (OV->getSourceExpr()) + SrcExpr = OV->getSourceExpr()->IgnoreParenImpCasts(); + + if (auto *SL = dyn_cast(SrcExpr)) { + if (!PT->isObjCIdType() && + !(ID && ID->getIdentifier()->isStr("NSString"))) + return false; + if (!SL->isOrdinary()) + return false; + + if (Diagnose) { + Diag(SL->getBeginLoc(), diag::err_missing_atsign_prefix) + << /*string*/0 << FixItHint::CreateInsertion(SL->getBeginLoc(), "@"); + Exp = BuildObjCStringLiteral(SL->getBeginLoc(), SL).get(); + } + return true; + } + + if ((isa(SrcExpr) || isa(SrcExpr) || + isa(SrcExpr) || isa(SrcExpr) || + isa(SrcExpr)) && + !SrcExpr->isNullPointerConstant( + getASTContext(), Expr::NPC_NeverValueDependent)) { + if (!ID || !ID->getIdentifier()->isStr("NSNumber")) + return false; + if (Diagnose) { + Diag(SrcExpr->getBeginLoc(), diag::err_missing_atsign_prefix) + << /*number*/1 + << FixItHint::CreateInsertion(SrcExpr->getBeginLoc(), "@"); + Expr *NumLit = + BuildObjCNumericLiteral(SrcExpr->getBeginLoc(), SrcExpr).get(); + if (NumLit) + Exp = NumLit; + } + return true; + } + + return false; + } + + static bool maybeDiagnoseAssignmentToFunction(Sema &S, QualType DstType, + const Expr *SrcExpr) { + if (!DstType->isFunctionPointerType() || + !SrcExpr->getType()->isFunctionType()) + return false; + + auto *DRE = dyn_cast(SrcExpr->IgnoreParenImpCasts()); + if (!DRE) + return false; + + auto *FD = dyn_cast(DRE->getDecl()); + if (!FD) + return false; + + return !S.checkAddressOfFunctionIsAvailable(FD, + /*Complain=*/true, + SrcExpr->getBeginLoc()); + } + + bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy, + SourceLocation Loc, + QualType DstType, QualType SrcType, + Expr *SrcExpr, AssignmentAction Action, + bool *Complained) { + if (Complained) + *Complained = false; + + // Decode the result (notice that AST's are still created for extensions). + bool CheckInferredResultType = false; + bool isInvalid = false; + unsigned DiagKind = 0; + ConversionFixItGenerator ConvHints; + bool MayHaveConvFixit = false; + bool MayHaveFunctionDiff = false; + const ObjCInterfaceDecl *IFace = nullptr; + const ObjCProtocolDecl *PDecl = nullptr; + + switch (ConvTy) { + case Compatible: + DiagnoseAssignmentEnum(DstType, SrcType, SrcExpr); + return false; + + case PointerToInt: + if (getLangOpts().CPlusPlus) { + DiagKind = diag::err_typecheck_convert_pointer_int; + isInvalid = true; + } else { + DiagKind = diag::ext_typecheck_convert_pointer_int; + } + ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this); + MayHaveConvFixit = true; + break; + case IntToPointer: + if (getLangOpts().CPlusPlus) { + DiagKind = diag::err_typecheck_convert_int_pointer; + isInvalid = true; + } else { + DiagKind = diag::ext_typecheck_convert_int_pointer; + } + ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this); + MayHaveConvFixit = true; + break; + case IncompatibleFunctionPointerStrict: + DiagKind = + diag::warn_typecheck_convert_incompatible_function_pointer_strict; + ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this); + MayHaveConvFixit = true; + break; + case IncompatibleFunctionPointer: + if (getLangOpts().CPlusPlus) { + DiagKind = diag::err_typecheck_convert_incompatible_function_pointer; + isInvalid = true; + } else { + DiagKind = diag::ext_typecheck_convert_incompatible_function_pointer; + } + ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this); + MayHaveConvFixit = true; + break; + case IncompatiblePointer: + if (Action == AA_Passing_CFAudited) { + DiagKind = diag::err_arc_typecheck_convert_incompatible_pointer; + } else if (getLangOpts().CPlusPlus) { + DiagKind = diag::err_typecheck_convert_incompatible_pointer; + isInvalid = true; + } else { + DiagKind = diag::ext_typecheck_convert_incompatible_pointer; + } + CheckInferredResultType = DstType->isObjCObjectPointerType() && + SrcType->isObjCObjectPointerType(); + if (!CheckInferredResultType) { + ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this); + } else if (CheckInferredResultType) { + SrcType = SrcType.getUnqualifiedType(); + DstType = DstType.getUnqualifiedType(); + } + MayHaveConvFixit = true; + break; + case IncompatiblePointerSign: + if (getLangOpts().CPlusPlus) { + DiagKind = diag::err_typecheck_convert_incompatible_pointer_sign; + isInvalid = true; + } else { + DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign; + } + break; + case FunctionVoidPointer: + if (getLangOpts().CPlusPlus) { + DiagKind = diag::err_typecheck_convert_pointer_void_func; + isInvalid = true; + } else { + DiagKind = diag::ext_typecheck_convert_pointer_void_func; + } + break; + case IncompatiblePointerDiscardsQualifiers: { + // Perform array-to-pointer decay if necessary. + if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType); + + isInvalid = true; + + Qualifiers lhq = SrcType->getPointeeType().getQualifiers(); + Qualifiers rhq = DstType->getPointeeType().getQualifiers(); + if (lhq.getAddressSpace() != rhq.getAddressSpace()) { + DiagKind = diag::err_typecheck_incompatible_address_space; + break; + + } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) { + DiagKind = diag::err_typecheck_incompatible_ownership; + break; + } + + llvm_unreachable("unknown error case for discarding qualifiers!"); + // fallthrough + } + case CompatiblePointerDiscardsQualifiers: + // If the qualifiers lost were because we were applying the + // (deprecated) C++ conversion from a string literal to a char* + // (or wchar_t*), then there was no error (C++ 4.2p2). FIXME: + // Ideally, this check would be performed in + // checkPointerTypesForAssignment. However, that would require a + // bit of refactoring (so that the second argument is an + // expression, rather than a type), which should be done as part + // of a larger effort to fix checkPointerTypesForAssignment for + // C++ semantics. + if (getLangOpts().CPlusPlus && + IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType)) + return false; + if (getLangOpts().CPlusPlus) { + DiagKind = diag::err_typecheck_convert_discards_qualifiers; + isInvalid = true; + } else { + DiagKind = diag::ext_typecheck_convert_discards_qualifiers; + } + + break; + case IncompatibleNestedPointerQualifiers: + if (getLangOpts().CPlusPlus) { + isInvalid = true; + DiagKind = diag::err_nested_pointer_qualifier_mismatch; + } else { + DiagKind = diag::ext_nested_pointer_qualifier_mismatch; + } + break; + case IncompatibleNestedPointerAddressSpaceMismatch: + DiagKind = diag::err_typecheck_incompatible_nested_address_space; + isInvalid = true; + break; + case IntToBlockPointer: + DiagKind = diag::err_int_to_block_pointer; + isInvalid = true; + break; + case IncompatibleBlockPointer: + DiagKind = diag::err_typecheck_convert_incompatible_block_pointer; + isInvalid = true; + break; + case IncompatibleObjCQualifiedId: { + if (SrcType->isObjCQualifiedIdType()) { + const ObjCObjectPointerType *srcOPT = + SrcType->castAs(); + for (auto *srcProto : srcOPT->quals()) { + PDecl = srcProto; + break; + } + if (const ObjCInterfaceType *IFaceT = + DstType->castAs()->getInterfaceType()) + IFace = IFaceT->getDecl(); + } + else if (DstType->isObjCQualifiedIdType()) { + const ObjCObjectPointerType *dstOPT = + DstType->castAs(); + for (auto *dstProto : dstOPT->quals()) { + PDecl = dstProto; + break; + } + if (const ObjCInterfaceType *IFaceT = + SrcType->castAs()->getInterfaceType()) + IFace = IFaceT->getDecl(); + } + if (getLangOpts().CPlusPlus) { + DiagKind = diag::err_incompatible_qualified_id; + isInvalid = true; + } else { + DiagKind = diag::warn_incompatible_qualified_id; + } + break; + } + case IncompatibleVectors: + if (getLangOpts().CPlusPlus) { + DiagKind = diag::err_incompatible_vectors; + isInvalid = true; + } else { + DiagKind = diag::warn_incompatible_vectors; + } + break; + case IncompatibleObjCWeakRef: + DiagKind = diag::err_arc_weak_unavailable_assign; + isInvalid = true; + break; + case Incompatible: + if (maybeDiagnoseAssignmentToFunction(*this, DstType, SrcExpr)) { + if (Complained) + *Complained = true; + return true; + } + + DiagKind = diag::err_typecheck_convert_incompatible; + ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this); + MayHaveConvFixit = true; + isInvalid = true; + MayHaveFunctionDiff = true; + break; + } + + QualType FirstType, SecondType; + switch (Action) { + case AA_Assigning: + case AA_Initializing: + // The destination type comes first. + FirstType = DstType; + SecondType = SrcType; + break; + + case AA_Returning: + case AA_Passing: + case AA_Passing_CFAudited: + case AA_Converting: + case AA_Sending: + case AA_Casting: + // The source type comes first. + FirstType = SrcType; + SecondType = DstType; + break; + } + + PartialDiagnostic FDiag = PDiag(DiagKind); + AssignmentAction ActionForDiag = Action; + if (Action == AA_Passing_CFAudited) + ActionForDiag = AA_Passing; + + FDiag << FirstType << SecondType << ActionForDiag + << SrcExpr->getSourceRange(); + + if (DiagKind == diag::ext_typecheck_convert_incompatible_pointer_sign || + DiagKind == diag::err_typecheck_convert_incompatible_pointer_sign) { + auto isPlainChar = [](const clang::Type *Type) { + return Type->isSpecificBuiltinType(BuiltinType::Char_S) || + Type->isSpecificBuiltinType(BuiltinType::Char_U); + }; + FDiag << (isPlainChar(FirstType->getPointeeOrArrayElementType()) || + isPlainChar(SecondType->getPointeeOrArrayElementType())); + } + + // If we can fix the conversion, suggest the FixIts. + if (!ConvHints.isNull()) { + for (FixItHint &H : ConvHints.Hints) + FDiag << H; + } + + if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); } + + if (MayHaveFunctionDiff) + HandleFunctionTypeMismatch(FDiag, SecondType, FirstType); + + Diag(Loc, FDiag); + if ((DiagKind == diag::warn_incompatible_qualified_id || + DiagKind == diag::err_incompatible_qualified_id) && + PDecl && IFace && !IFace->hasDefinition()) + Diag(IFace->getLocation(), diag::note_incomplete_class_and_qualified_id) + << IFace << PDecl; + + if (SecondType == Context.OverloadTy) + NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr).Expression, + FirstType, /*TakingAddress=*/true); + + if (CheckInferredResultType) + EmitRelatedResultTypeNote(SrcExpr); + + if (Action == AA_Returning && ConvTy == IncompatiblePointer) + EmitRelatedResultTypeNoteForReturn(DstType); + + if (Complained) + *Complained = true; + return isInvalid; + } + + ExprResult Sema::VerifyIntegerConstantExpression(Expr *E, + llvm::APSInt *Result, + AllowFoldKind CanFold) { + class SimpleICEDiagnoser : public VerifyICEDiagnoser { + public: + SemaDiagnosticBuilder diagnoseNotICEType(Sema &S, SourceLocation Loc, + QualType T) override { + return S.Diag(Loc, diag::err_ice_not_integral) + << T << S.LangOpts.CPlusPlus; + } + SemaDiagnosticBuilder diagnoseNotICE(Sema &S, SourceLocation Loc) override { + return S.Diag(Loc, diag::err_expr_not_ice) << S.LangOpts.CPlusPlus; + } + } Diagnoser; + + return VerifyIntegerConstantExpression(E, Result, Diagnoser, CanFold); + } + + ExprResult Sema::VerifyIntegerConstantExpression(Expr *E, + llvm::APSInt *Result, + unsigned DiagID, + AllowFoldKind CanFold) { + class IDDiagnoser : public VerifyICEDiagnoser { + unsigned DiagID; + + public: + IDDiagnoser(unsigned DiagID) + : VerifyICEDiagnoser(DiagID == 0), DiagID(DiagID) { } + + SemaDiagnosticBuilder diagnoseNotICE(Sema &S, SourceLocation Loc) override { + return S.Diag(Loc, DiagID); + } + } Diagnoser(DiagID); + + return VerifyIntegerConstantExpression(E, Result, Diagnoser, CanFold); + } + + Sema::SemaDiagnosticBuilder + Sema::VerifyICEDiagnoser::diagnoseNotICEType(Sema &S, SourceLocation Loc, + QualType T) { + return diagnoseNotICE(S, Loc); + } + + Sema::SemaDiagnosticBuilder + Sema::VerifyICEDiagnoser::diagnoseFold(Sema &S, SourceLocation Loc) { + return S.Diag(Loc, diag::ext_expr_not_ice) << S.LangOpts.CPlusPlus; + } + + ExprResult + Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result, + VerifyICEDiagnoser &Diagnoser, + AllowFoldKind CanFold) { + SourceLocation DiagLoc = E->getBeginLoc(); + + if (getLangOpts().CPlusPlus11) { + // C++11 [expr.const]p5: + // If an expression of literal class type is used in a context where an + // integral constant expression is required, then that class type shall + // have a single non-explicit conversion function to an integral or + // unscoped enumeration type + ExprResult Converted; + class CXX11ConvertDiagnoser : public ICEConvertDiagnoser { + VerifyICEDiagnoser &BaseDiagnoser; + public: + CXX11ConvertDiagnoser(VerifyICEDiagnoser &BaseDiagnoser) + : ICEConvertDiagnoser(/*AllowScopedEnumerations*/ false, + BaseDiagnoser.Suppress, true), + BaseDiagnoser(BaseDiagnoser) {} + + SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc, + QualType T) override { + return BaseDiagnoser.diagnoseNotICEType(S, Loc, T); + } + + SemaDiagnosticBuilder diagnoseIncomplete( + Sema &S, SourceLocation Loc, QualType T) override { + return S.Diag(Loc, diag::err_ice_incomplete_type) << T; + } + + SemaDiagnosticBuilder diagnoseExplicitConv( + Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override { + return S.Diag(Loc, diag::err_ice_explicit_conversion) << T << ConvTy; + } + + SemaDiagnosticBuilder noteExplicitConv( + Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { + return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here) + << ConvTy->isEnumeralType() << ConvTy; + } + + SemaDiagnosticBuilder diagnoseAmbiguous( + Sema &S, SourceLocation Loc, QualType T) override { + return S.Diag(Loc, diag::err_ice_ambiguous_conversion) << T; + } + + SemaDiagnosticBuilder noteAmbiguous( + Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { + return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here) + << ConvTy->isEnumeralType() << ConvTy; + } + + SemaDiagnosticBuilder diagnoseConversion( + Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override { + llvm_unreachable("conversion functions are permitted"); + } + } ConvertDiagnoser(Diagnoser); + + Converted = PerformContextualImplicitConversion(DiagLoc, E, + ConvertDiagnoser); + if (Converted.isInvalid()) + return Converted; + E = Converted.get(); + if (!E->getType()->isIntegralOrUnscopedEnumerationType()) + return ExprError(); + } else if (!E->getType()->isIntegralOrUnscopedEnumerationType()) { + // An ICE must be of integral or unscoped enumeration type. + if (!Diagnoser.Suppress) + Diagnoser.diagnoseNotICEType(*this, DiagLoc, E->getType()) + << E->getSourceRange(); + return ExprError(); + } + + ExprResult RValueExpr = DefaultLvalueConversion(E); + if (RValueExpr.isInvalid()) + return ExprError(); + + E = RValueExpr.get(); + + // Circumvent ICE checking in C++11 to avoid evaluating the expression twice + // in the non-ICE case. + if (!getLangOpts().CPlusPlus11 && E->isIntegerConstantExpr(Context)) { + if (Result) + *Result = E->EvaluateKnownConstIntCheckOverflow(Context); + if (!isa(E)) + E = Result ? ConstantExpr::Create(Context, E, APValue(*Result)) + : ConstantExpr::Create(Context, E); + return E; + } + + Expr::EvalResult EvalResult; + SmallVector Notes; + EvalResult.Diag = &Notes; + + // Try to evaluate the expression, and produce diagnostics explaining why it's + // not a constant expression as a side-effect. + bool Folded = + E->EvaluateAsRValue(EvalResult, Context, /*isConstantContext*/ true) && + EvalResult.Val.isInt() && !EvalResult.HasSideEffects; + + if (!isa(E)) + E = ConstantExpr::Create(Context, E, EvalResult.Val); + + // In C++11, we can rely on diagnostics being produced for any expression + // which is not a constant expression. If no diagnostics were produced, then + // this is a constant expression. + if (Folded && getLangOpts().CPlusPlus11 && Notes.empty()) { + if (Result) + *Result = EvalResult.Val.getInt(); + return E; + } + + // If our only note is the usual "invalid subexpression" note, just point + // the caret at its location rather than producing an essentially + // redundant note. + if (Notes.size() == 1 && Notes[0].second.getDiagID() == + diag::note_invalid_subexpr_in_const_expr) { + DiagLoc = Notes[0].first; + Notes.clear(); + } + + if (!Folded || !CanFold) { + if (!Diagnoser.Suppress) { + Diagnoser.diagnoseNotICE(*this, DiagLoc) << E->getSourceRange(); + for (const PartialDiagnosticAt &Note : Notes) + Diag(Note.first, Note.second); + } + + return ExprError(); + } + + Diagnoser.diagnoseFold(*this, DiagLoc) << E->getSourceRange(); + for (const PartialDiagnosticAt &Note : Notes) + Diag(Note.first, Note.second); + + if (Result) + *Result = EvalResult.Val.getInt(); + return E; + } + + namespace { + // Handle the case where we conclude a expression which we speculatively + // considered to be unevaluated is actually evaluated. + class TransformToPE : public TreeTransform { + typedef TreeTransform BaseTransform; + + public: + TransformToPE(Sema &SemaRef) : BaseTransform(SemaRef) { } + + // Make sure we redo semantic analysis + bool AlwaysRebuild() { return true; } + bool ReplacingOriginal() { return true; } + + // We need to special-case DeclRefExprs referring to FieldDecls which + // are not part of a member pointer formation; normal TreeTransforming + // doesn't catch this case because of the way we represent them in the AST. + // FIXME: This is a bit ugly; is it really the best way to handle this + // case? + // + // Error on DeclRefExprs referring to FieldDecls. + ExprResult TransformDeclRefExpr(DeclRefExpr *E) { + if (isa(E->getDecl()) && + !SemaRef.isUnevaluatedContext()) + return SemaRef.Diag(E->getLocation(), + diag::err_invalid_non_static_member_use) + << E->getDecl() << E->getSourceRange(); + + return BaseTransform::TransformDeclRefExpr(E); + } + + // Exception: filter out member pointer formation + ExprResult TransformUnaryOperator(UnaryOperator *E) { + if (E->getOpcode() == UO_AddrOf && E->getType()->isMemberPointerType()) + return E; + + return BaseTransform::TransformUnaryOperator(E); + } + + // The body of a lambda-expression is in a separate expression evaluation + // context so never needs to be transformed. + // FIXME: Ideally we wouldn't transform the closure type either, and would + // just recreate the capture expressions and lambda expression. + StmtResult TransformLambdaBody(LambdaExpr *E, Stmt *Body) { + return SkipLambdaBody(E, Body); + } + }; + } + + ExprResult Sema::TransformToPotentiallyEvaluated(Expr *E) { + assert(isUnevaluatedContext() && + "Should only transform unevaluated expressions"); + ExprEvalContexts.back().Context = + ExprEvalContexts[ExprEvalContexts.size()-2].Context; + if (isUnevaluatedContext()) + return E; + return TransformToPE(*this).TransformExpr(E); + } + + TypeSourceInfo *Sema::TransformToPotentiallyEvaluated(TypeSourceInfo *TInfo) { + assert(isUnevaluatedContext() && + "Should only transform unevaluated expressions"); + ExprEvalContexts.back().Context = + ExprEvalContexts[ExprEvalContexts.size() - 2].Context; + if (isUnevaluatedContext()) + return TInfo; + return TransformToPE(*this).TransformType(TInfo); + } + + void + Sema::PushExpressionEvaluationContext( + ExpressionEvaluationContext NewContext, Decl *LambdaContextDecl, + ExpressionEvaluationContextRecord::ExpressionKind ExprContext) { + ExprEvalContexts.emplace_back(NewContext, ExprCleanupObjects.size(), Cleanup, + LambdaContextDecl, ExprContext); + + // Discarded statements and immediate contexts nested in other + // discarded statements or immediate context are themselves + // a discarded statement or an immediate context, respectively. + ExprEvalContexts.back().InDiscardedStatement = + ExprEvalContexts[ExprEvalContexts.size() - 2] + .isDiscardedStatementContext(); + + // C++23 [expr.const]/p15 + // An expression or conversion is in an immediate function context if [...] + // it is a subexpression of a manifestly constant-evaluated expression or + // conversion. + const auto &Prev = ExprEvalContexts[ExprEvalContexts.size() - 2]; + ExprEvalContexts.back().InImmediateFunctionContext = + Prev.isImmediateFunctionContext() || Prev.isConstantEvaluated(); + + ExprEvalContexts.back().InImmediateEscalatingFunctionContext = + Prev.InImmediateEscalatingFunctionContext; + + Cleanup.reset(); + if (!MaybeODRUseExprs.empty()) + std::swap(MaybeODRUseExprs, ExprEvalContexts.back().SavedMaybeODRUseExprs); + } + + void + Sema::PushExpressionEvaluationContext( + ExpressionEvaluationContext NewContext, ReuseLambdaContextDecl_t, + ExpressionEvaluationContextRecord::ExpressionKind ExprContext) { + Decl *ClosureContextDecl = ExprEvalContexts.back().ManglingContextDecl; + PushExpressionEvaluationContext(NewContext, ClosureContextDecl, ExprContext); + } + + namespace { + + const DeclRefExpr *CheckPossibleDeref(Sema &S, const Expr *PossibleDeref) { + PossibleDeref = PossibleDeref->IgnoreParenImpCasts(); + if (const auto *E = dyn_cast(PossibleDeref)) { + if (E->getOpcode() == UO_Deref) + return CheckPossibleDeref(S, E->getSubExpr()); + } else if (const auto *E = dyn_cast(PossibleDeref)) { + return CheckPossibleDeref(S, E->getBase()); + } else if (const auto *E = dyn_cast(PossibleDeref)) { + return CheckPossibleDeref(S, E->getBase()); + } else if (const auto E = dyn_cast(PossibleDeref)) { + QualType Inner; + QualType Ty = E->getType(); + if (const auto *Ptr = Ty->getAs()) + Inner = Ptr->getPointeeType(); + else if (const auto *Arr = S.Context.getAsArrayType(Ty)) + Inner = Arr->getElementType(); + else + return nullptr; + + if (Inner->hasAttr(attr::NoDeref)) + return E; + } + return nullptr; + } + + } // namespace + + void Sema::WarnOnPendingNoDerefs(ExpressionEvaluationContextRecord &Rec) { + for (const Expr *E : Rec.PossibleDerefs) { + const DeclRefExpr *DeclRef = CheckPossibleDeref(*this, E); + if (DeclRef) { + const ValueDecl *Decl = DeclRef->getDecl(); + Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type) + << Decl->getName() << E->getSourceRange(); + Diag(Decl->getLocation(), diag::note_previous_decl) << Decl->getName(); + } else { + Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type_no_decl) + << E->getSourceRange(); + } + } + Rec.PossibleDerefs.clear(); + } + + /// Check whether E, which is either a discarded-value expression or an + /// unevaluated operand, is a simple-assignment to a volatlie-qualified lvalue, + /// and if so, remove it from the list of volatile-qualified assignments that + /// we are going to warn are deprecated. + void Sema::CheckUnusedVolatileAssignment(Expr *E) { + if (!E->getType().isVolatileQualified() || !getLangOpts().CPlusPlus20) + return; + + // Note: ignoring parens here is not justified by the standard rules, but + // ignoring parentheses seems like a more reasonable approach, and this only + // drives a deprecation warning so doesn't affect conformance. + if (auto *BO = dyn_cast(E->IgnoreParenImpCasts())) { + if (BO->getOpcode() == BO_Assign) { + auto &LHSs = ExprEvalContexts.back().VolatileAssignmentLHSs; + llvm::erase_value(LHSs, BO->getLHS()); + } + } + } + + void Sema::MarkExpressionAsImmediateEscalating(Expr *E) { + assert(!FunctionScopes.empty() && "Expected a function scope"); + assert(getLangOpts().CPlusPlus20 && + ExprEvalContexts.back().InImmediateEscalatingFunctionContext && + "Cannot mark an immediate escalating expression outside of an " + "immediate escalating context"); + if (auto *Call = dyn_cast(E->IgnoreImplicit()); + Call && Call->getCallee()) { + if (auto *DeclRef = + dyn_cast(Call->getCallee()->IgnoreImplicit())) + DeclRef->setIsImmediateEscalating(true); + } else if (auto *Ctr = dyn_cast(E->IgnoreImplicit())) { + Ctr->setIsImmediateEscalating(true); + } else if (auto *DeclRef = dyn_cast(E->IgnoreImplicit())) { + DeclRef->setIsImmediateEscalating(true); + } else { + assert(false && "expected an immediately escalating expression"); + } + getCurFunction()->FoundImmediateEscalatingExpression = true; + } + + ExprResult Sema::CheckForImmediateInvocation(ExprResult E, FunctionDecl *Decl) { + if (isUnevaluatedContext() || !E.isUsable() || !Decl || + !Decl->isImmediateFunction() || isConstantEvaluated() || + isCheckingDefaultArgumentOrInitializer() || + RebuildingImmediateInvocation || isImmediateFunctionContext()) + return E; + + /// Opportunistically remove the callee from ReferencesToConsteval if we can. + /// It's OK if this fails; we'll also remove this in + /// HandleImmediateInvocations, but catching it here allows us to avoid + /// walking the AST looking for it in simple cases. + if (auto *Call = dyn_cast(E.get()->IgnoreImplicit())) + if (auto *DeclRef = + dyn_cast(Call->getCallee()->IgnoreImplicit())) + ExprEvalContexts.back().ReferenceToConsteval.erase(DeclRef); + + // C++23 [expr.const]/p16 + // An expression or conversion is immediate-escalating if it is not initially + // in an immediate function context and it is [...] an immediate invocation + // that is not a constant expression and is not a subexpression of an + // immediate invocation. + APValue Cached; + auto CheckConstantExpressionAndKeepResult = [&]() { + llvm::SmallVector Notes; + Expr::EvalResult Eval; + Eval.Diag = &Notes; + bool Res = E.get()->EvaluateAsConstantExpr( + Eval, getASTContext(), ConstantExprKind::ImmediateInvocation); + if (Res && Notes.empty()) { + Cached = std::move(Eval.Val); + return true; + } + return false; + }; + + if (!E.get()->isValueDependent() && + ExprEvalContexts.back().InImmediateEscalatingFunctionContext && + !CheckConstantExpressionAndKeepResult()) { + MarkExpressionAsImmediateEscalating(E.get()); + return E; + } + + if (Cleanup.exprNeedsCleanups()) { + // Since an immediate invocation is a full expression itself - it requires + // an additional ExprWithCleanups node, but it can participate to a bigger + // full expression which actually requires cleanups to be run after so + // create ExprWithCleanups without using MaybeCreateExprWithCleanups as it + // may discard cleanups for outer expression too early. + + // Note that ExprWithCleanups created here must always have empty cleanup + // objects: + // - compound literals do not create cleanup objects in C++ and immediate + // invocations are C++-only. + // - blocks are not allowed inside constant expressions and compiler will + // issue an error if they appear there. + // + // Hence, in correct code any cleanup objects created inside current + // evaluation context must be outside the immediate invocation. + E = ExprWithCleanups::Create(getASTContext(), E.get(), + Cleanup.cleanupsHaveSideEffects(), {}); + } + + ConstantExpr *Res = ConstantExpr::Create( + getASTContext(), E.get(), + ConstantExpr::getStorageKind(Decl->getReturnType().getTypePtr(), + getASTContext()), + /*IsImmediateInvocation*/ true); + if (Cached.hasValue()) + Res->MoveIntoResult(Cached, getASTContext()); + /// Value-dependent constant expressions should not be immediately + /// evaluated until they are instantiated. + if (!Res->isValueDependent()) + ExprEvalContexts.back().ImmediateInvocationCandidates.emplace_back(Res, 0); + return Res; + } + + static void EvaluateAndDiagnoseImmediateInvocation( + Sema &SemaRef, Sema::ImmediateInvocationCandidate Candidate) { + llvm::SmallVector Notes; + Expr::EvalResult Eval; + Eval.Diag = &Notes; + ConstantExpr *CE = Candidate.getPointer(); + bool Result = CE->EvaluateAsConstantExpr( + Eval, SemaRef.getASTContext(), ConstantExprKind::ImmediateInvocation); + if (!Result || !Notes.empty()) { + SemaRef.FailedImmediateInvocations.insert(CE); + Expr *InnerExpr = CE->getSubExpr()->IgnoreImplicit(); + if (auto *FunctionalCast = dyn_cast(InnerExpr)) + InnerExpr = FunctionalCast->getSubExpr(); + FunctionDecl *FD = nullptr; + if (auto *Call = dyn_cast(InnerExpr)) + FD = cast(Call->getCalleeDecl()); + else if (auto *Call = dyn_cast(InnerExpr)) + FD = Call->getConstructor(); + else + llvm_unreachable("unhandled decl kind"); + assert(FD && FD->isImmediateFunction()); + SemaRef.Diag(CE->getBeginLoc(), diag::err_invalid_consteval_call) + << FD << FD->isConsteval(); + if (auto Context = + SemaRef.InnermostDeclarationWithDelayedImmediateInvocations()) { + SemaRef.Diag(Context->Loc, diag::note_invalid_consteval_initializer) + << Context->Decl; + SemaRef.Diag(Context->Decl->getBeginLoc(), diag::note_declared_at); + } + if (!FD->isConsteval()) + SemaRef.DiagnoseImmediateEscalatingReason(FD); + for (auto &Note : Notes) + SemaRef.Diag(Note.first, Note.second); + return; + } + CE->MoveIntoResult(Eval.Val, SemaRef.getASTContext()); + } + + static void RemoveNestedImmediateInvocation( + Sema &SemaRef, Sema::ExpressionEvaluationContextRecord &Rec, + SmallVector::reverse_iterator It) { + struct ComplexRemove : TreeTransform { + using Base = TreeTransform; + llvm::SmallPtrSetImpl &DRSet; + SmallVector &IISet; + SmallVector::reverse_iterator + CurrentII; + ComplexRemove(Sema &SemaRef, llvm::SmallPtrSetImpl &DR, + SmallVector &II, + SmallVector::reverse_iterator Current) + : Base(SemaRef), DRSet(DR), IISet(II), CurrentII(Current) {} + void RemoveImmediateInvocation(ConstantExpr* E) { + auto It = std::find_if(CurrentII, IISet.rend(), + [E](Sema::ImmediateInvocationCandidate Elem) { + return Elem.getPointer() == E; + }); + // It is possible that some subexpression of the current immediate + // invocation was handled from another expression evaluation context. Do + // not handle the current immediate invocation if some of its + // subexpressions failed before. + if (It == IISet.rend()) { + if (SemaRef.FailedImmediateInvocations.contains(E)) + CurrentII->setInt(1); + } else { + It->setInt(1); // Mark as deleted + } + } + ExprResult TransformConstantExpr(ConstantExpr *E) { + if (!E->isImmediateInvocation()) + return Base::TransformConstantExpr(E); + RemoveImmediateInvocation(E); + return Base::TransformExpr(E->getSubExpr()); + } + /// Base::TransfromCXXOperatorCallExpr doesn't traverse the callee so + /// we need to remove its DeclRefExpr from the DRSet. + ExprResult TransformCXXOperatorCallExpr(CXXOperatorCallExpr *E) { + DRSet.erase(cast(E->getCallee()->IgnoreImplicit())); + return Base::TransformCXXOperatorCallExpr(E); + } + /// Base::TransformInitializer skip ConstantExpr so we need to visit them + /// here. + ExprResult TransformInitializer(Expr *Init, bool NotCopyInit) { + if (!Init) + return Init; + /// ConstantExpr are the first layer of implicit node to be removed so if + /// Init isn't a ConstantExpr, no ConstantExpr will be skipped. + if (auto *CE = dyn_cast(Init)) + if (CE->isImmediateInvocation()) + RemoveImmediateInvocation(CE); + return Base::TransformInitializer(Init, NotCopyInit); + } + ExprResult TransformDeclRefExpr(DeclRefExpr *E) { + DRSet.erase(E); + return E; + } + ExprResult TransformLambdaExpr(LambdaExpr *E) { + // Do not rebuild lambdas to avoid creating a new type. + // Lambdas have already been processed inside their eval context. + return E; + } + bool AlwaysRebuild() { return false; } + bool ReplacingOriginal() { return true; } + bool AllowSkippingCXXConstructExpr() { + bool Res = AllowSkippingFirstCXXConstructExpr; + AllowSkippingFirstCXXConstructExpr = true; + return Res; + } + bool AllowSkippingFirstCXXConstructExpr = true; + } Transformer(SemaRef, Rec.ReferenceToConsteval, + Rec.ImmediateInvocationCandidates, It); + + /// CXXConstructExpr with a single argument are getting skipped by + /// TreeTransform in some situtation because they could be implicit. This + /// can only occur for the top-level CXXConstructExpr because it is used + /// nowhere in the expression being transformed therefore will not be rebuilt. + /// Setting AllowSkippingFirstCXXConstructExpr to false will prevent from + /// skipping the first CXXConstructExpr. + if (isa(It->getPointer()->IgnoreImplicit())) + Transformer.AllowSkippingFirstCXXConstructExpr = false; + + ExprResult Res = Transformer.TransformExpr(It->getPointer()->getSubExpr()); + // The result may not be usable in case of previous compilation errors. + // In this case evaluation of the expression may result in crash so just + // don't do anything further with the result. + if (Res.isUsable()) { + Res = SemaRef.MaybeCreateExprWithCleanups(Res); + It->getPointer()->setSubExpr(Res.get()); + } + } + + static void + HandleImmediateInvocations(Sema &SemaRef, + Sema::ExpressionEvaluationContextRecord &Rec) { + if ((Rec.ImmediateInvocationCandidates.size() == 0 && + Rec.ReferenceToConsteval.size() == 0) || + SemaRef.RebuildingImmediateInvocation) + return; + + /// When we have more than 1 ImmediateInvocationCandidates or previously + /// failed immediate invocations, we need to check for nested + /// ImmediateInvocationCandidates in order to avoid duplicate diagnostics. + /// Otherwise we only need to remove ReferenceToConsteval in the immediate + /// invocation. + if (Rec.ImmediateInvocationCandidates.size() > 1 || + !SemaRef.FailedImmediateInvocations.empty()) { + + /// Prevent sema calls during the tree transform from adding pointers that + /// are already in the sets. + llvm::SaveAndRestore DisableIITracking( + SemaRef.RebuildingImmediateInvocation, true); + + /// Prevent diagnostic during tree transfrom as they are duplicates + Sema::TentativeAnalysisScope DisableDiag(SemaRef); + + for (auto It = Rec.ImmediateInvocationCandidates.rbegin(); + It != Rec.ImmediateInvocationCandidates.rend(); It++) + if (!It->getInt()) + RemoveNestedImmediateInvocation(SemaRef, Rec, It); + } else if (Rec.ImmediateInvocationCandidates.size() == 1 && + Rec.ReferenceToConsteval.size()) { + struct SimpleRemove : RecursiveASTVisitor { + llvm::SmallPtrSetImpl &DRSet; + SimpleRemove(llvm::SmallPtrSetImpl &S) : DRSet(S) {} + bool VisitDeclRefExpr(DeclRefExpr *E) { + DRSet.erase(E); + return DRSet.size(); + } + } Visitor(Rec.ReferenceToConsteval); + Visitor.TraverseStmt( + Rec.ImmediateInvocationCandidates.front().getPointer()->getSubExpr()); + } + for (auto CE : Rec.ImmediateInvocationCandidates) + if (!CE.getInt()) + EvaluateAndDiagnoseImmediateInvocation(SemaRef, CE); + for (auto *DR : Rec.ReferenceToConsteval) { + const auto *FD = cast(DR->getDecl()); + const NamedDecl *ND = FD; + if (const auto *MD = dyn_cast(ND); + MD && (MD->isLambdaStaticInvoker() || isLambdaCallOperator(MD))) + ND = MD->getParent(); + + // C++23 [expr.const]/p16 + // An expression or conversion is immediate-escalating if it is not + // initially in an immediate function context and it is [...] a + // potentially-evaluated id-expression that denotes an immediate function + // that is not a subexpression of an immediate invocation. + bool ImmediateEscalating = false; + bool IsPotentiallyEvaluated = + Rec.Context == + Sema::ExpressionEvaluationContext::PotentiallyEvaluated || + Rec.Context == + Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed; + if (SemaRef.inTemplateInstantiation() && IsPotentiallyEvaluated) + ImmediateEscalating = Rec.InImmediateEscalatingFunctionContext; + + if (!Rec.InImmediateEscalatingFunctionContext || + (SemaRef.inTemplateInstantiation() && !ImmediateEscalating)) { + SemaRef.Diag(DR->getBeginLoc(), diag::err_invalid_consteval_take_address) + << ND << isa(ND) << FD->isConsteval(); + SemaRef.Diag(ND->getLocation(), diag::note_declared_at); + if (FD->isImmediateEscalating() && !FD->isConsteval()) + SemaRef.DiagnoseImmediateEscalatingReason(FD); + } else { + SemaRef.MarkExpressionAsImmediateEscalating(DR); + } + } + } + + void Sema::PopExpressionEvaluationContext() { + ExpressionEvaluationContextRecord& Rec = ExprEvalContexts.back(); + unsigned NumTypos = Rec.NumTypos; + + if (!Rec.Lambdas.empty()) { + using ExpressionKind = ExpressionEvaluationContextRecord::ExpressionKind; + if (!getLangOpts().CPlusPlus20 && + (Rec.ExprContext == ExpressionKind::EK_TemplateArgument || + Rec.isUnevaluated() || + (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17))) { + unsigned D; + if (Rec.isUnevaluated()) { + // C++11 [expr.prim.lambda]p2: + // A lambda-expression shall not appear in an unevaluated operand + // (Clause 5). + D = diag::err_lambda_unevaluated_operand; + } else if (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17) { + // C++1y [expr.const]p2: + // A conditional-expression e is a core constant expression unless the + // evaluation of e, following the rules of the abstract machine, would + // evaluate [...] a lambda-expression. + D = diag::err_lambda_in_constant_expression; + } else if (Rec.ExprContext == ExpressionKind::EK_TemplateArgument) { + // C++17 [expr.prim.lamda]p2: + // A lambda-expression shall not appear [...] in a template-argument. + D = diag::err_lambda_in_invalid_context; + } else + llvm_unreachable("Couldn't infer lambda error message."); + + for (const auto *L : Rec.Lambdas) + Diag(L->getBeginLoc(), D); + } + } + + WarnOnPendingNoDerefs(Rec); + HandleImmediateInvocations(*this, Rec); + + // Warn on any volatile-qualified simple-assignments that are not discarded- + // value expressions nor unevaluated operands (those cases get removed from + // this list by CheckUnusedVolatileAssignment). + for (auto *BO : Rec.VolatileAssignmentLHSs) + Diag(BO->getBeginLoc(), diag::warn_deprecated_simple_assign_volatile) + << BO->getType(); + + // When are coming out of an unevaluated context, clear out any + // temporaries that we may have created as part of the evaluation of + // the expression in that context: they aren't relevant because they + // will never be constructed. + if (Rec.isUnevaluated() || Rec.isConstantEvaluated()) { + ExprCleanupObjects.erase(ExprCleanupObjects.begin() + Rec.NumCleanupObjects, + ExprCleanupObjects.end()); + Cleanup = Rec.ParentCleanup; + CleanupVarDeclMarking(); + std::swap(MaybeODRUseExprs, Rec.SavedMaybeODRUseExprs); + // Otherwise, merge the contexts together. + } else { + Cleanup.mergeFrom(Rec.ParentCleanup); + MaybeODRUseExprs.insert(Rec.SavedMaybeODRUseExprs.begin(), + Rec.SavedMaybeODRUseExprs.end()); + } + + // Pop the current expression evaluation context off the stack. + ExprEvalContexts.pop_back(); + + // The global expression evaluation context record is never popped. + ExprEvalContexts.back().NumTypos += NumTypos; + } + + void Sema::DiscardCleanupsInEvaluationContext() { + ExprCleanupObjects.erase( + ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects, + ExprCleanupObjects.end()); + Cleanup.reset(); + MaybeODRUseExprs.clear(); + } + + ExprResult Sema::HandleExprEvaluationContextForTypeof(Expr *E) { + ExprResult Result = CheckPlaceholderExpr(E); + if (Result.isInvalid()) + return ExprError(); + E = Result.get(); + if (!E->getType()->isVariablyModifiedType()) + return E; + return TransformToPotentiallyEvaluated(E); + } + + /// Are we in a context that is potentially constant evaluated per C++20 + /// [expr.const]p12? + static bool isPotentiallyConstantEvaluatedContext(Sema &SemaRef) { + /// C++2a [expr.const]p12: + // An expression or conversion is potentially constant evaluated if it is + switch (SemaRef.ExprEvalContexts.back().Context) { + case Sema::ExpressionEvaluationContext::ConstantEvaluated: + case Sema::ExpressionEvaluationContext::ImmediateFunctionContext: + + // -- a manifestly constant-evaluated expression, + case Sema::ExpressionEvaluationContext::PotentiallyEvaluated: + case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed: + case Sema::ExpressionEvaluationContext::DiscardedStatement: + // -- a potentially-evaluated expression, + case Sema::ExpressionEvaluationContext::UnevaluatedList: + // -- an immediate subexpression of a braced-init-list, + + // -- [FIXME] an expression of the form & cast-expression that occurs + // within a templated entity + // -- a subexpression of one of the above that is not a subexpression of + // a nested unevaluated operand. + return true; + + case Sema::ExpressionEvaluationContext::Unevaluated: + case Sema::ExpressionEvaluationContext::UnevaluatedAbstract: + // Expressions in this context are never evaluated. + return false; + } + llvm_unreachable("Invalid context"); + } + + /// Return true if this function has a calling convention that requires mangling + /// in the size of the parameter pack. + static bool funcHasParameterSizeMangling(Sema &S, FunctionDecl *FD) { + // These manglings don't do anything on non-Windows or non-x86 platforms, so + // we don't need parameter type sizes. + const llvm::Triple &TT = S.Context.getTargetInfo().getTriple(); + if (!TT.isOSWindows() || !TT.isX86()) + return false; + + // If this is C++ and this isn't an extern "C" function, parameters do not + // need to be complete. In this case, C++ mangling will apply, which doesn't + // use the size of the parameters. + if (S.getLangOpts().CPlusPlus && !FD->isExternC()) + return false; + + // Stdcall, fastcall, and vectorcall need this special treatment. + CallingConv CC = FD->getType()->castAs()->getCallConv(); + switch (CC) { + case CC_X86StdCall: + case CC_X86FastCall: + case CC_X86VectorCall: + return true; + default: + break; + } + return false; + } + + /// Require that all of the parameter types of function be complete. Normally, + /// parameter types are only required to be complete when a function is called + /// or defined, but to mangle functions with certain calling conventions, the + /// mangler needs to know the size of the parameter list. In this situation, + /// MSVC doesn't emit an error or instantiate templates. Instead, MSVC mangles + /// the function as _foo@0, i.e. zero bytes of parameters, which will usually + /// result in a linker error. Clang doesn't implement this behavior, and instead + /// attempts to error at compile time. + static void CheckCompleteParameterTypesForMangler(Sema &S, FunctionDecl *FD, + SourceLocation Loc) { + class ParamIncompleteTypeDiagnoser : public Sema::TypeDiagnoser { + FunctionDecl *FD; + ParmVarDecl *Param; + + public: + ParamIncompleteTypeDiagnoser(FunctionDecl *FD, ParmVarDecl *Param) + : FD(FD), Param(Param) {} + + void diagnose(Sema &S, SourceLocation Loc, QualType T) override { + CallingConv CC = FD->getType()->castAs()->getCallConv(); + StringRef CCName; + switch (CC) { + case CC_X86StdCall: + CCName = "stdcall"; + break; + case CC_X86FastCall: + CCName = "fastcall"; + break; + case CC_X86VectorCall: + CCName = "vectorcall"; + break; + default: + llvm_unreachable("CC does not need mangling"); + } + + S.Diag(Loc, diag::err_cconv_incomplete_param_type) + << Param->getDeclName() << FD->getDeclName() << CCName; + } + }; + + for (ParmVarDecl *Param : FD->parameters()) { + ParamIncompleteTypeDiagnoser Diagnoser(FD, Param); + S.RequireCompleteType(Loc, Param->getType(), Diagnoser); + } + } + + namespace { + enum class OdrUseContext { + /// Declarations in this context are not odr-used. + None, + /// Declarations in this context are formally odr-used, but this is a + /// dependent context. + Dependent, + /// Declarations in this context are odr-used but not actually used (yet). + FormallyOdrUsed, + /// Declarations in this context are used. + Used + }; + } + + /// Are we within a context in which references to resolved functions or to + /// variables result in odr-use? + static OdrUseContext isOdrUseContext(Sema &SemaRef) { + OdrUseContext Result; + + switch (SemaRef.ExprEvalContexts.back().Context) { + case Sema::ExpressionEvaluationContext::Unevaluated: + case Sema::ExpressionEvaluationContext::UnevaluatedList: + case Sema::ExpressionEvaluationContext::UnevaluatedAbstract: + return OdrUseContext::None; + + case Sema::ExpressionEvaluationContext::ConstantEvaluated: + case Sema::ExpressionEvaluationContext::ImmediateFunctionContext: + case Sema::ExpressionEvaluationContext::PotentiallyEvaluated: + Result = OdrUseContext::Used; + break; + + case Sema::ExpressionEvaluationContext::DiscardedStatement: + Result = OdrUseContext::FormallyOdrUsed; + break; + + case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed: + // A default argument formally results in odr-use, but doesn't actually + // result in a use in any real sense until it itself is used. + Result = OdrUseContext::FormallyOdrUsed; + break; + } + + if (SemaRef.CurContext->isDependentContext()) + return OdrUseContext::Dependent; + + return Result; + } + + static bool isImplicitlyDefinableConstexprFunction(FunctionDecl *Func) { + if (!Func->isConstexpr()) + return false; + + if (Func->isImplicitlyInstantiable() || !Func->isUserProvided()) + return true; + auto *CCD = dyn_cast(Func); + return CCD && CCD->getInheritedConstructor(); + } + + /// Mark a function referenced, and check whether it is odr-used + /// (C++ [basic.def.odr]p2, C99 6.9p3) + void Sema::MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func, + bool MightBeOdrUse) { + assert(Func && "No function?"); + + Func->setReferenced(); + + // Recursive functions aren't really used until they're used from some other + // context. + bool IsRecursiveCall = CurContext == Func; + + // C++11 [basic.def.odr]p3: + // A function whose name appears as a potentially-evaluated expression is + // odr-used if it is the unique lookup result or the selected member of a + // set of overloaded functions [...]. + // + // We (incorrectly) mark overload resolution as an unevaluated context, so we + // can just check that here. + OdrUseContext OdrUse = + MightBeOdrUse ? isOdrUseContext(*this) : OdrUseContext::None; + if (IsRecursiveCall && OdrUse == OdrUseContext::Used) + OdrUse = OdrUseContext::FormallyOdrUsed; + + // Trivial default constructors and destructors are never actually used. + // FIXME: What about other special members? + if (Func->isTrivial() && !Func->hasAttr() && + OdrUse == OdrUseContext::Used) { + if (auto *Constructor = dyn_cast(Func)) + if (Constructor->isDefaultConstructor()) + OdrUse = OdrUseContext::FormallyOdrUsed; + if (isa(Func)) + OdrUse = OdrUseContext::FormallyOdrUsed; + } + + // C++20 [expr.const]p12: + // A function [...] is needed for constant evaluation if it is [...] a + // constexpr function that is named by an expression that is potentially + // constant evaluated + bool NeededForConstantEvaluation = + isPotentiallyConstantEvaluatedContext(*this) && + isImplicitlyDefinableConstexprFunction(Func); + + // Determine whether we require a function definition to exist, per + // C++11 [temp.inst]p3: + // Unless a function template specialization has been explicitly + // instantiated or explicitly specialized, the function template + // specialization is implicitly instantiated when the specialization is + // referenced in a context that requires a function definition to exist. + // C++20 [temp.inst]p7: + // The existence of a definition of a [...] function is considered to + // affect the semantics of the program if the [...] function is needed for + // constant evaluation by an expression + // C++20 [basic.def.odr]p10: + // Every program shall contain exactly one definition of every non-inline + // function or variable that is odr-used in that program outside of a + // discarded statement + // C++20 [special]p1: + // The implementation will implicitly define [defaulted special members] + // if they are odr-used or needed for constant evaluation. + // + // Note that we skip the implicit instantiation of templates that are only + // used in unused default arguments or by recursive calls to themselves. + // This is formally non-conforming, but seems reasonable in practice. + bool NeedDefinition = !IsRecursiveCall && (OdrUse == OdrUseContext::Used || + NeededForConstantEvaluation); + + // C++14 [temp.expl.spec]p6: + // If a template [...] is explicitly specialized then that specialization + // shall be declared before the first use of that specialization that would + // cause an implicit instantiation to take place, in every translation unit + // in which such a use occurs + if (NeedDefinition && + (Func->getTemplateSpecializationKind() != TSK_Undeclared || + Func->getMemberSpecializationInfo())) + checkSpecializationReachability(Loc, Func); + + if (getLangOpts().CUDA) + CheckCUDACall(Loc, Func); + + // If we need a definition, try to create one. + if (NeedDefinition && !Func->getBody()) { + runWithSufficientStackSpace(Loc, [&] { + if (CXXConstructorDecl *Constructor = + dyn_cast(Func)) { + Constructor = cast(Constructor->getFirstDecl()); + if (Constructor->isDefaulted() && !Constructor->isDeleted()) { + if (Constructor->isDefaultConstructor()) { + if (Constructor->isTrivial() && + !Constructor->hasAttr()) + return; + DefineImplicitDefaultConstructor(Loc, Constructor); + } else if (Constructor->isCopyConstructor()) { + DefineImplicitCopyConstructor(Loc, Constructor); + } else if (Constructor->isMoveConstructor()) { + DefineImplicitMoveConstructor(Loc, Constructor); + } + } else if (Constructor->getInheritedConstructor()) { + DefineInheritingConstructor(Loc, Constructor); + } + } else if (CXXDestructorDecl *Destructor = + dyn_cast(Func)) { + Destructor = cast(Destructor->getFirstDecl()); + if (Destructor->isDefaulted() && !Destructor->isDeleted()) { + if (Destructor->isTrivial() && !Destructor->hasAttr()) + return; + DefineImplicitDestructor(Loc, Destructor); + } + if (Destructor->isVirtual() && getLangOpts().AppleKext) + MarkVTableUsed(Loc, Destructor->getParent()); + } else if (CXXMethodDecl *MethodDecl = dyn_cast(Func)) { + if (MethodDecl->isOverloadedOperator() && + MethodDecl->getOverloadedOperator() == OO_Equal) { + MethodDecl = cast(MethodDecl->getFirstDecl()); + if (MethodDecl->isDefaulted() && !MethodDecl->isDeleted()) { + if (MethodDecl->isCopyAssignmentOperator()) + DefineImplicitCopyAssignment(Loc, MethodDecl); + else if (MethodDecl->isMoveAssignmentOperator()) + DefineImplicitMoveAssignment(Loc, MethodDecl); + } + } else if (isa(MethodDecl) && + MethodDecl->getParent()->isLambda()) { + CXXConversionDecl *Conversion = + cast(MethodDecl->getFirstDecl()); + if (Conversion->isLambdaToBlockPointerConversion()) + DefineImplicitLambdaToBlockPointerConversion(Loc, Conversion); + else + DefineImplicitLambdaToFunctionPointerConversion(Loc, Conversion); + } else if (MethodDecl->isVirtual() && getLangOpts().AppleKext) + MarkVTableUsed(Loc, MethodDecl->getParent()); + } + + if (Func->isDefaulted() && !Func->isDeleted()) { + DefaultedComparisonKind DCK = getDefaultedComparisonKind(Func); + if (DCK != DefaultedComparisonKind::None) + DefineDefaultedComparison(Loc, Func, DCK); + } + + // Implicit instantiation of function templates and member functions of + // class templates. + if (Func->isImplicitlyInstantiable()) { + TemplateSpecializationKind TSK = + Func->getTemplateSpecializationKindForInstantiation(); + SourceLocation PointOfInstantiation = Func->getPointOfInstantiation(); + bool FirstInstantiation = PointOfInstantiation.isInvalid(); + if (FirstInstantiation) { + PointOfInstantiation = Loc; + if (auto *MSI = Func->getMemberSpecializationInfo()) + MSI->setPointOfInstantiation(Loc); + // FIXME: Notify listener. + else + Func->setTemplateSpecializationKind(TSK, PointOfInstantiation); + } else if (TSK != TSK_ImplicitInstantiation) { + // Use the point of use as the point of instantiation, instead of the + // point of explicit instantiation (which we track as the actual point + // of instantiation). This gives better backtraces in diagnostics. + PointOfInstantiation = Loc; + } + + if (FirstInstantiation || TSK != TSK_ImplicitInstantiation || + Func->isConstexpr()) { + if (isa(Func->getDeclContext()) && + cast(Func->getDeclContext())->isLocalClass() && + CodeSynthesisContexts.size()) + PendingLocalImplicitInstantiations.push_back( + std::make_pair(Func, PointOfInstantiation)); + else if (Func->isConstexpr()) + // Do not defer instantiations of constexpr functions, to avoid the + // expression evaluator needing to call back into Sema if it sees a + // call to such a function. + InstantiateFunctionDefinition(PointOfInstantiation, Func); + else { + Func->setInstantiationIsPending(true); + PendingInstantiations.push_back( + std::make_pair(Func, PointOfInstantiation)); + // Notify the consumer that a function was implicitly instantiated. + Consumer.HandleCXXImplicitFunctionInstantiation(Func); + } + } + } else { + // Walk redefinitions, as some of them may be instantiable. + for (auto *i : Func->redecls()) { + if (!i->isUsed(false) && i->isImplicitlyInstantiable()) + MarkFunctionReferenced(Loc, i, MightBeOdrUse); + } + } + }); + } + + // If a constructor was defined in the context of a default parameter + // or of another default member initializer (ie a PotentiallyEvaluatedIfUsed + // context), its initializers may not be referenced yet. + if (CXXConstructorDecl *Constructor = dyn_cast(Func)) { + for (CXXCtorInitializer *Init : Constructor->inits()) { + if (Init->isInClassMemberInitializer()) + runWithSufficientStackSpace(Init->getSourceLocation(), [&]() { + MarkDeclarationsReferencedInExpr(Init->getInit()); + }); + } + } + + // C++14 [except.spec]p17: + // An exception-specification is considered to be needed when: + // - the function is odr-used or, if it appears in an unevaluated operand, + // would be odr-used if the expression were potentially-evaluated; + // + // Note, we do this even if MightBeOdrUse is false. That indicates that the + // function is a pure virtual function we're calling, and in that case the + // function was selected by overload resolution and we need to resolve its + // exception specification for a different reason. + const FunctionProtoType *FPT = Func->getType()->getAs(); + if (FPT && isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) + ResolveExceptionSpec(Loc, FPT); + + // If this is the first "real" use, act on that. + if (OdrUse == OdrUseContext::Used && !Func->isUsed(/*CheckUsedAttr=*/false)) { + // Keep track of used but undefined functions. + if (!Func->isDefined()) { + if (mightHaveNonExternalLinkage(Func)) + UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc)); + else if (Func->getMostRecentDecl()->isInlined() && + !LangOpts.GNUInline && + !Func->getMostRecentDecl()->hasAttr()) + UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc)); + else if (isExternalWithNoLinkageType(Func)) + UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc)); + } + + // Some x86 Windows calling conventions mangle the size of the parameter + // pack into the name. Computing the size of the parameters requires the + // parameter types to be complete. Check that now. + if (funcHasParameterSizeMangling(*this, Func)) + CheckCompleteParameterTypesForMangler(*this, Func, Loc); + + // In the MS C++ ABI, the compiler emits destructor variants where they are + // used. If the destructor is used here but defined elsewhere, mark the + // virtual base destructors referenced. If those virtual base destructors + // are inline, this will ensure they are defined when emitting the complete + // destructor variant. This checking may be redundant if the destructor is + // provided later in this TU. + if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { + if (auto *Dtor = dyn_cast(Func)) { + CXXRecordDecl *Parent = Dtor->getParent(); + if (Parent->getNumVBases() > 0 && !Dtor->getBody()) + CheckCompleteDestructorVariant(Loc, Dtor); + } + } + + Func->markUsed(Context); + } + } + + /// Directly mark a variable odr-used. Given a choice, prefer to use + /// MarkVariableReferenced since it does additional checks and then + /// calls MarkVarDeclODRUsed. + /// If the variable must be captured: + /// - if FunctionScopeIndexToStopAt is null, capture it in the CurContext + /// - else capture it in the DeclContext that maps to the + /// *FunctionScopeIndexToStopAt on the FunctionScopeInfo stack. + static void + MarkVarDeclODRUsed(ValueDecl *V, SourceLocation Loc, Sema &SemaRef, + const unsigned *const FunctionScopeIndexToStopAt = nullptr) { + // Keep track of used but undefined variables. + // FIXME: We shouldn't suppress this warning for static data members. + VarDecl *Var = V->getPotentiallyDecomposedVarDecl(); + assert(Var && "expected a capturable variable"); + + if (Var->hasDefinition(SemaRef.Context) == VarDecl::DeclarationOnly && + (!Var->isExternallyVisible() || Var->isInline() || + SemaRef.isExternalWithNoLinkageType(Var)) && + !(Var->isStaticDataMember() && Var->hasInit())) { + SourceLocation &old = SemaRef.UndefinedButUsed[Var->getCanonicalDecl()]; + if (old.isInvalid()) + old = Loc; + } + QualType CaptureType, DeclRefType; + if (SemaRef.LangOpts.OpenMP) + SemaRef.tryCaptureOpenMPLambdas(V); + SemaRef.tryCaptureVariable(V, Loc, Sema::TryCapture_Implicit, + /*EllipsisLoc*/ SourceLocation(), + /*BuildAndDiagnose*/ true, CaptureType, + DeclRefType, FunctionScopeIndexToStopAt); + + if (SemaRef.LangOpts.CUDA && Var->hasGlobalStorage()) { + auto *FD = dyn_cast_or_null(SemaRef.CurContext); + auto VarTarget = SemaRef.IdentifyCUDATarget(Var); + auto UserTarget = SemaRef.IdentifyCUDATarget(FD); + if (VarTarget == Sema::CVT_Host && + (UserTarget == Sema::CFT_Device || UserTarget == Sema::CFT_HostDevice || + UserTarget == Sema::CFT_Global)) { + // Diagnose ODR-use of host global variables in device functions. + // Reference of device global variables in host functions is allowed + // through shadow variables therefore it is not diagnosed. +- if (SemaRef.LangOpts.CUDAIsDevice) { ++ if (SemaRef.LangOpts.CUDAIsDevice && !SemaRef.LangOpts.HIPStdPar) { + SemaRef.targetDiag(Loc, diag::err_ref_bad_target) + << /*host*/ 2 << /*variable*/ 1 << Var << UserTarget; + SemaRef.targetDiag(Var->getLocation(), + Var->getType().isConstQualified() + ? diag::note_cuda_const_var_unpromoted + : diag::note_cuda_host_var); + } + } else if (VarTarget == Sema::CVT_Device && + (UserTarget == Sema::CFT_Host || + UserTarget == Sema::CFT_HostDevice)) { + // Record a CUDA/HIP device side variable if it is ODR-used + // by host code. This is done conservatively, when the variable is + // referenced in any of the following contexts: + // - a non-function context + // - a host function + // - a host device function + // This makes the ODR-use of the device side variable by host code to + // be visible in the device compilation for the compiler to be able to + // emit template variables instantiated by host code only and to + // externalize the static device side variable ODR-used by host code. + if (!Var->hasExternalStorage()) + SemaRef.getASTContext().CUDADeviceVarODRUsedByHost.insert(Var); + else if (SemaRef.LangOpts.GPURelocatableDeviceCode) + SemaRef.getASTContext().CUDAExternalDeviceDeclODRUsedByHost.insert(Var); + } + } + + V->markUsed(SemaRef.Context); + } + + void Sema::MarkCaptureUsedInEnclosingContext(ValueDecl *Capture, + SourceLocation Loc, + unsigned CapturingScopeIndex) { + MarkVarDeclODRUsed(Capture, Loc, *this, &CapturingScopeIndex); + } + + void diagnoseUncapturableValueReferenceOrBinding(Sema &S, SourceLocation loc, + ValueDecl *var) { + DeclContext *VarDC = var->getDeclContext(); + + // If the parameter still belongs to the translation unit, then + // we're actually just using one parameter in the declaration of + // the next. + if (isa(var) && + isa(VarDC)) + return; + + // For C code, don't diagnose about capture if we're not actually in code + // right now; it's impossible to write a non-constant expression outside of + // function context, so we'll get other (more useful) diagnostics later. + // + // For C++, things get a bit more nasty... it would be nice to suppress this + // diagnostic for certain cases like using a local variable in an array bound + // for a member of a local class, but the correct predicate is not obvious. + if (!S.getLangOpts().CPlusPlus && !S.CurContext->isFunctionOrMethod()) + return; + + unsigned ValueKind = isa(var) ? 1 : 0; + unsigned ContextKind = 3; // unknown + if (isa(VarDC) && + cast(VarDC->getParent())->isLambda()) { + ContextKind = 2; + } else if (isa(VarDC)) { + ContextKind = 0; + } else if (isa(VarDC)) { + ContextKind = 1; + } + + S.Diag(loc, diag::err_reference_to_local_in_enclosing_context) + << var << ValueKind << ContextKind << VarDC; + S.Diag(var->getLocation(), diag::note_entity_declared_at) + << var; + + // FIXME: Add additional diagnostic info about class etc. which prevents + // capture. + } + + static bool isVariableAlreadyCapturedInScopeInfo(CapturingScopeInfo *CSI, + ValueDecl *Var, + bool &SubCapturesAreNested, + QualType &CaptureType, + QualType &DeclRefType) { + // Check whether we've already captured it. + if (CSI->CaptureMap.count(Var)) { + // If we found a capture, any subcaptures are nested. + SubCapturesAreNested = true; + + // Retrieve the capture type for this variable. + CaptureType = CSI->getCapture(Var).getCaptureType(); + + // Compute the type of an expression that refers to this variable. + DeclRefType = CaptureType.getNonReferenceType(); + + // Similarly to mutable captures in lambda, all the OpenMP captures by copy + // are mutable in the sense that user can change their value - they are + // private instances of the captured declarations. + const Capture &Cap = CSI->getCapture(Var); + if (Cap.isCopyCapture() && + !(isa(CSI) && cast(CSI)->Mutable) && + !(isa(CSI) && + cast(CSI)->CapRegionKind == CR_OpenMP)) + DeclRefType.addConst(); + return true; + } + return false; + } + + // Only block literals, captured statements, and lambda expressions can + // capture; other scopes don't work. + static DeclContext *getParentOfCapturingContextOrNull(DeclContext *DC, + ValueDecl *Var, + SourceLocation Loc, + const bool Diagnose, + Sema &S) { + if (isa(DC) || isa(DC) || isLambdaCallOperator(DC)) + return getLambdaAwareParentOfDeclContext(DC); + + VarDecl *Underlying = Var->getPotentiallyDecomposedVarDecl(); + if (Underlying) { + if (Underlying->hasLocalStorage() && Diagnose) + diagnoseUncapturableValueReferenceOrBinding(S, Loc, Var); + } + return nullptr; + } + + // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture + // certain types of variables (unnamed, variably modified types etc.) + // so check for eligibility. + static bool isVariableCapturable(CapturingScopeInfo *CSI, ValueDecl *Var, + SourceLocation Loc, const bool Diagnose, + Sema &S) { + + assert((isa(Var)) && + "Only variables and structured bindings can be captured"); + + bool IsBlock = isa(CSI); + bool IsLambda = isa(CSI); + + // Lambdas are not allowed to capture unnamed variables + // (e.g. anonymous unions). + // FIXME: The C++11 rule don't actually state this explicitly, but I'm + // assuming that's the intent. + if (IsLambda && !Var->getDeclName()) { + if (Diagnose) { + S.Diag(Loc, diag::err_lambda_capture_anonymous_var); + S.Diag(Var->getLocation(), diag::note_declared_at); + } + return false; + } + + // Prohibit variably-modified types in blocks; they're difficult to deal with. + if (Var->getType()->isVariablyModifiedType() && IsBlock) { + if (Diagnose) { + S.Diag(Loc, diag::err_ref_vm_type); + S.Diag(Var->getLocation(), diag::note_previous_decl) << Var; + } + return false; + } + // Prohibit structs with flexible array members too. + // We cannot capture what is in the tail end of the struct. + if (const RecordType *VTTy = Var->getType()->getAs()) { + if (VTTy->getDecl()->hasFlexibleArrayMember()) { + if (Diagnose) { + if (IsBlock) + S.Diag(Loc, diag::err_ref_flexarray_type); + else + S.Diag(Loc, diag::err_lambda_capture_flexarray_type) << Var; + S.Diag(Var->getLocation(), diag::note_previous_decl) << Var; + } + return false; + } + } + const bool HasBlocksAttr = Var->hasAttr(); + // Lambdas and captured statements are not allowed to capture __block + // variables; they don't support the expected semantics. + if (HasBlocksAttr && (IsLambda || isa(CSI))) { + if (Diagnose) { + S.Diag(Loc, diag::err_capture_block_variable) << Var << !IsLambda; + S.Diag(Var->getLocation(), diag::note_previous_decl) << Var; + } + return false; + } + // OpenCL v2.0 s6.12.5: Blocks cannot reference/capture other blocks + if (S.getLangOpts().OpenCL && IsBlock && + Var->getType()->isBlockPointerType()) { + if (Diagnose) + S.Diag(Loc, diag::err_opencl_block_ref_block); + return false; + } + + if (isa(Var)) { + if (!IsLambda || !S.getLangOpts().CPlusPlus) { + if (Diagnose) + diagnoseUncapturableValueReferenceOrBinding(S, Loc, Var); + return false; + } else if (Diagnose && S.getLangOpts().CPlusPlus) { + S.Diag(Loc, S.LangOpts.CPlusPlus20 + ? diag::warn_cxx17_compat_capture_binding + : diag::ext_capture_binding) + << Var; + S.Diag(Var->getLocation(), diag::note_entity_declared_at) << Var; + } + } + + return true; + } + + // Returns true if the capture by block was successful. + static bool captureInBlock(BlockScopeInfo *BSI, ValueDecl *Var, + SourceLocation Loc, const bool BuildAndDiagnose, + QualType &CaptureType, QualType &DeclRefType, + const bool Nested, Sema &S, bool Invalid) { + bool ByRef = false; + + // Blocks are not allowed to capture arrays, excepting OpenCL. + // OpenCL v2.0 s1.12.5 (revision 40): arrays are captured by reference + // (decayed to pointers). + if (!Invalid && !S.getLangOpts().OpenCL && CaptureType->isArrayType()) { + if (BuildAndDiagnose) { + S.Diag(Loc, diag::err_ref_array_type); + S.Diag(Var->getLocation(), diag::note_previous_decl) << Var; + Invalid = true; + } else { + return false; + } + } + + // Forbid the block-capture of autoreleasing variables. + if (!Invalid && + CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) { + if (BuildAndDiagnose) { + S.Diag(Loc, diag::err_arc_autoreleasing_capture) + << /*block*/ 0; + S.Diag(Var->getLocation(), diag::note_previous_decl) << Var; + Invalid = true; + } else { + return false; + } + } + + // Warn about implicitly autoreleasing indirect parameters captured by blocks. + if (const auto *PT = CaptureType->getAs()) { + QualType PointeeTy = PT->getPointeeType(); + + if (!Invalid && PointeeTy->getAs() && + PointeeTy.getObjCLifetime() == Qualifiers::OCL_Autoreleasing && + !S.Context.hasDirectOwnershipQualifier(PointeeTy)) { + if (BuildAndDiagnose) { + SourceLocation VarLoc = Var->getLocation(); + S.Diag(Loc, diag::warn_block_capture_autoreleasing); + S.Diag(VarLoc, diag::note_declare_parameter_strong); + } + } + } + + const bool HasBlocksAttr = Var->hasAttr(); + if (HasBlocksAttr || CaptureType->isReferenceType() || + (S.getLangOpts().OpenMP && S.isOpenMPCapturedDecl(Var))) { + // Block capture by reference does not change the capture or + // declaration reference types. + ByRef = true; + } else { + // Block capture by copy introduces 'const'. + CaptureType = CaptureType.getNonReferenceType().withConst(); + DeclRefType = CaptureType; + } + + // Actually capture the variable. + if (BuildAndDiagnose) + BSI->addCapture(Var, HasBlocksAttr, ByRef, Nested, Loc, SourceLocation(), + CaptureType, Invalid); + + return !Invalid; + } + + /// Capture the given variable in the captured region. + static bool captureInCapturedRegion( + CapturedRegionScopeInfo *RSI, ValueDecl *Var, SourceLocation Loc, + const bool BuildAndDiagnose, QualType &CaptureType, QualType &DeclRefType, + const bool RefersToCapturedVariable, Sema::TryCaptureKind Kind, + bool IsTopScope, Sema &S, bool Invalid) { + // By default, capture variables by reference. + bool ByRef = true; + if (IsTopScope && Kind != Sema::TryCapture_Implicit) { + ByRef = (Kind == Sema::TryCapture_ExplicitByRef); + } else if (S.getLangOpts().OpenMP && RSI->CapRegionKind == CR_OpenMP) { + // Using an LValue reference type is consistent with Lambdas (see below). + if (S.isOpenMPCapturedDecl(Var)) { + bool HasConst = DeclRefType.isConstQualified(); + DeclRefType = DeclRefType.getUnqualifiedType(); + // Don't lose diagnostics about assignments to const. + if (HasConst) + DeclRefType.addConst(); + } + // Do not capture firstprivates in tasks. + if (S.isOpenMPPrivateDecl(Var, RSI->OpenMPLevel, RSI->OpenMPCaptureLevel) != + OMPC_unknown) + return true; + ByRef = S.isOpenMPCapturedByRef(Var, RSI->OpenMPLevel, + RSI->OpenMPCaptureLevel); + } + + if (ByRef) + CaptureType = S.Context.getLValueReferenceType(DeclRefType); + else + CaptureType = DeclRefType; + + // Actually capture the variable. + if (BuildAndDiagnose) + RSI->addCapture(Var, /*isBlock*/ false, ByRef, RefersToCapturedVariable, + Loc, SourceLocation(), CaptureType, Invalid); + + return !Invalid; + } + + /// Capture the given variable in the lambda. + static bool captureInLambda(LambdaScopeInfo *LSI, ValueDecl *Var, + SourceLocation Loc, const bool BuildAndDiagnose, + QualType &CaptureType, QualType &DeclRefType, + const bool RefersToCapturedVariable, + const Sema::TryCaptureKind Kind, + SourceLocation EllipsisLoc, const bool IsTopScope, + Sema &S, bool Invalid) { + // Determine whether we are capturing by reference or by value. + bool ByRef = false; + if (IsTopScope && Kind != Sema::TryCapture_Implicit) { + ByRef = (Kind == Sema::TryCapture_ExplicitByRef); + } else { + ByRef = (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByref); + } + + BindingDecl *BD = dyn_cast(Var); + // FIXME: We should support capturing structured bindings in OpenMP. + if (!Invalid && BD && S.LangOpts.OpenMP) { + if (BuildAndDiagnose) { + S.Diag(Loc, diag::err_capture_binding_openmp) << Var; + S.Diag(Var->getLocation(), diag::note_entity_declared_at) << Var; + } + Invalid = true; + } + + if (BuildAndDiagnose && S.Context.getTargetInfo().getTriple().isWasm() && + CaptureType.getNonReferenceType().isWebAssemblyReferenceType()) { + S.Diag(Loc, diag::err_wasm_ca_reference) << 0; + Invalid = true; + } + + // Compute the type of the field that will capture this variable. + if (ByRef) { + // C++11 [expr.prim.lambda]p15: + // An entity is captured by reference if it is implicitly or + // explicitly captured but not captured by copy. It is + // unspecified whether additional unnamed non-static data + // members are declared in the closure type for entities + // captured by reference. + // + // FIXME: It is not clear whether we want to build an lvalue reference + // to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears + // to do the former, while EDG does the latter. Core issue 1249 will + // clarify, but for now we follow GCC because it's a more permissive and + // easily defensible position. + CaptureType = S.Context.getLValueReferenceType(DeclRefType); + } else { + // C++11 [expr.prim.lambda]p14: + // For each entity captured by copy, an unnamed non-static + // data member is declared in the closure type. The + // declaration order of these members is unspecified. The type + // of such a data member is the type of the corresponding + // captured entity if the entity is not a reference to an + // object, or the referenced type otherwise. [Note: If the + // captured entity is a reference to a function, the + // corresponding data member is also a reference to a + // function. - end note ] + if (const ReferenceType *RefType = CaptureType->getAs()){ + if (!RefType->getPointeeType()->isFunctionType()) + CaptureType = RefType->getPointeeType(); + } + + // Forbid the lambda copy-capture of autoreleasing variables. + if (!Invalid && + CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) { + if (BuildAndDiagnose) { + S.Diag(Loc, diag::err_arc_autoreleasing_capture) << /*lambda*/ 1; + S.Diag(Var->getLocation(), diag::note_previous_decl) + << Var->getDeclName(); + Invalid = true; + } else { + return false; + } + } + + // Make sure that by-copy captures are of a complete and non-abstract type. + if (!Invalid && BuildAndDiagnose) { + if (!CaptureType->isDependentType() && + S.RequireCompleteSizedType( + Loc, CaptureType, + diag::err_capture_of_incomplete_or_sizeless_type, + Var->getDeclName())) + Invalid = true; + else if (S.RequireNonAbstractType(Loc, CaptureType, + diag::err_capture_of_abstract_type)) + Invalid = true; + } + } + + // Compute the type of a reference to this captured variable. + if (ByRef) + DeclRefType = CaptureType.getNonReferenceType(); + else { + // C++ [expr.prim.lambda]p5: + // The closure type for a lambda-expression has a public inline + // function call operator [...]. This function call operator is + // declared const (9.3.1) if and only if the lambda-expression's + // parameter-declaration-clause is not followed by mutable. + DeclRefType = CaptureType.getNonReferenceType(); + if (!LSI->Mutable && !CaptureType->isReferenceType()) + DeclRefType.addConst(); + } + + // Add the capture. + if (BuildAndDiagnose) + LSI->addCapture(Var, /*isBlock=*/false, ByRef, RefersToCapturedVariable, + Loc, EllipsisLoc, CaptureType, Invalid); + + return !Invalid; + } + + static bool canCaptureVariableByCopy(ValueDecl *Var, + const ASTContext &Context) { + // Offer a Copy fix even if the type is dependent. + if (Var->getType()->isDependentType()) + return true; + QualType T = Var->getType().getNonReferenceType(); + if (T.isTriviallyCopyableType(Context)) + return true; + if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) { + + if (!(RD = RD->getDefinition())) + return false; + if (RD->hasSimpleCopyConstructor()) + return true; + if (RD->hasUserDeclaredCopyConstructor()) + for (CXXConstructorDecl *Ctor : RD->ctors()) + if (Ctor->isCopyConstructor()) + return !Ctor->isDeleted(); + } + return false; + } + + /// Create up to 4 fix-its for explicit reference and value capture of \p Var or + /// default capture. Fixes may be omitted if they aren't allowed by the + /// standard, for example we can't emit a default copy capture fix-it if we + /// already explicitly copy capture capture another variable. + static void buildLambdaCaptureFixit(Sema &Sema, LambdaScopeInfo *LSI, + ValueDecl *Var) { + assert(LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None); + // Don't offer Capture by copy of default capture by copy fixes if Var is + // known not to be copy constructible. + bool ShouldOfferCopyFix = canCaptureVariableByCopy(Var, Sema.getASTContext()); + + SmallString<32> FixBuffer; + StringRef Separator = LSI->NumExplicitCaptures > 0 ? ", " : ""; + if (Var->getDeclName().isIdentifier() && !Var->getName().empty()) { + SourceLocation VarInsertLoc = LSI->IntroducerRange.getEnd(); + if (ShouldOfferCopyFix) { + // Offer fixes to insert an explicit capture for the variable. + // [] -> [VarName] + // [OtherCapture] -> [OtherCapture, VarName] + FixBuffer.assign({Separator, Var->getName()}); + Sema.Diag(VarInsertLoc, diag::note_lambda_variable_capture_fixit) + << Var << /*value*/ 0 + << FixItHint::CreateInsertion(VarInsertLoc, FixBuffer); + } + // As above but capture by reference. + FixBuffer.assign({Separator, "&", Var->getName()}); + Sema.Diag(VarInsertLoc, diag::note_lambda_variable_capture_fixit) + << Var << /*reference*/ 1 + << FixItHint::CreateInsertion(VarInsertLoc, FixBuffer); + } + + // Only try to offer default capture if there are no captures excluding this + // and init captures. + // [this]: OK. + // [X = Y]: OK. + // [&A, &B]: Don't offer. + // [A, B]: Don't offer. + if (llvm::any_of(LSI->Captures, [](Capture &C) { + return !C.isThisCapture() && !C.isInitCapture(); + })) + return; + + // The default capture specifiers, '=' or '&', must appear first in the + // capture body. + SourceLocation DefaultInsertLoc = + LSI->IntroducerRange.getBegin().getLocWithOffset(1); + + if (ShouldOfferCopyFix) { + bool CanDefaultCopyCapture = true; + // [=, *this] OK since c++17 + // [=, this] OK since c++20 + if (LSI->isCXXThisCaptured() && !Sema.getLangOpts().CPlusPlus20) + CanDefaultCopyCapture = Sema.getLangOpts().CPlusPlus17 + ? LSI->getCXXThisCapture().isCopyCapture() + : false; + // We can't use default capture by copy if any captures already specified + // capture by copy. + if (CanDefaultCopyCapture && llvm::none_of(LSI->Captures, [](Capture &C) { + return !C.isThisCapture() && !C.isInitCapture() && C.isCopyCapture(); + })) { + FixBuffer.assign({"=", Separator}); + Sema.Diag(DefaultInsertLoc, diag::note_lambda_default_capture_fixit) + << /*value*/ 0 + << FixItHint::CreateInsertion(DefaultInsertLoc, FixBuffer); + } + } + + // We can't use default capture by reference if any captures already specified + // capture by reference. + if (llvm::none_of(LSI->Captures, [](Capture &C) { + return !C.isInitCapture() && C.isReferenceCapture() && + !C.isThisCapture(); + })) { + FixBuffer.assign({"&", Separator}); + Sema.Diag(DefaultInsertLoc, diag::note_lambda_default_capture_fixit) + << /*reference*/ 1 + << FixItHint::CreateInsertion(DefaultInsertLoc, FixBuffer); + } + } + + bool Sema::tryCaptureVariable( + ValueDecl *Var, SourceLocation ExprLoc, TryCaptureKind Kind, + SourceLocation EllipsisLoc, bool BuildAndDiagnose, QualType &CaptureType, + QualType &DeclRefType, const unsigned *const FunctionScopeIndexToStopAt) { + // An init-capture is notionally from the context surrounding its + // declaration, but its parent DC is the lambda class. + DeclContext *VarDC = Var->getDeclContext(); + DeclContext *DC = CurContext; + + // tryCaptureVariable is called every time a DeclRef is formed, + // it can therefore have non-negigible impact on performances. + // For local variables and when there is no capturing scope, + // we can bailout early. + if (CapturingFunctionScopes == 0 && (!BuildAndDiagnose || VarDC == DC)) + return true; + + const auto *VD = dyn_cast(Var); + if (VD) { + if (VD->isInitCapture()) + VarDC = VarDC->getParent(); + } else { + VD = Var->getPotentiallyDecomposedVarDecl(); + } + assert(VD && "Cannot capture a null variable"); + + const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt + ? *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1; + // We need to sync up the Declaration Context with the + // FunctionScopeIndexToStopAt + if (FunctionScopeIndexToStopAt) { + unsigned FSIndex = FunctionScopes.size() - 1; + while (FSIndex != MaxFunctionScopesIndex) { + DC = getLambdaAwareParentOfDeclContext(DC); + --FSIndex; + } + } + + // Capture global variables if it is required to use private copy of this + // variable. + bool IsGlobal = !VD->hasLocalStorage(); + if (IsGlobal && + !(LangOpts.OpenMP && isOpenMPCapturedDecl(Var, /*CheckScopeInfo=*/true, + MaxFunctionScopesIndex))) + return true; + + if (isa(Var)) + Var = cast(Var->getCanonicalDecl()); + + // Walk up the stack to determine whether we can capture the variable, + // performing the "simple" checks that don't depend on type. We stop when + // we've either hit the declared scope of the variable or find an existing + // capture of that variable. We start from the innermost capturing-entity + // (the DC) and ensure that all intervening capturing-entities + // (blocks/lambdas etc.) between the innermost capturer and the variable`s + // declcontext can either capture the variable or have already captured + // the variable. + CaptureType = Var->getType(); + DeclRefType = CaptureType.getNonReferenceType(); + bool Nested = false; + bool Explicit = (Kind != TryCapture_Implicit); + unsigned FunctionScopesIndex = MaxFunctionScopesIndex; + do { + + LambdaScopeInfo *LSI = nullptr; + if (!FunctionScopes.empty()) + LSI = dyn_cast_or_null( + FunctionScopes[FunctionScopesIndex]); + + bool IsInScopeDeclarationContext = + !LSI || LSI->AfterParameterList || CurContext == LSI->CallOperator; + + if (LSI && !LSI->AfterParameterList) { + // This allows capturing parameters from a default value which does not + // seems correct + if (isa(Var) && !Var->getDeclContext()->isFunctionOrMethod()) + return true; + } + // If the variable is declared in the current context, there is no need to + // capture it. + if (IsInScopeDeclarationContext && + FunctionScopesIndex == MaxFunctionScopesIndex && VarDC == DC) + return true; + + // When evaluating some attributes (like enable_if) we might refer to a + // function parameter appertaining to the same declaration as that + // attribute. + if (const auto *Parm = dyn_cast(Var); + Parm && Parm->getDeclContext() == DC) + return true; + + // Only block literals, captured statements, and lambda expressions can + // capture; other scopes don't work. + DeclContext *ParentDC = + !IsInScopeDeclarationContext + ? DC->getParent() + : getParentOfCapturingContextOrNull(DC, Var, ExprLoc, + BuildAndDiagnose, *this); + // We need to check for the parent *first* because, if we *have* + // private-captured a global variable, we need to recursively capture it in + // intermediate blocks, lambdas, etc. + if (!ParentDC) { + if (IsGlobal) { + FunctionScopesIndex = MaxFunctionScopesIndex - 1; + break; + } + return true; + } + + FunctionScopeInfo *FSI = FunctionScopes[FunctionScopesIndex]; + CapturingScopeInfo *CSI = cast(FSI); + + // Check whether we've already captured it. + if (isVariableAlreadyCapturedInScopeInfo(CSI, Var, Nested, CaptureType, + DeclRefType)) { + CSI->getCapture(Var).markUsed(BuildAndDiagnose); + break; + } + // If we are instantiating a generic lambda call operator body, + // we do not want to capture new variables. What was captured + // during either a lambdas transformation or initial parsing + // should be used. + if (isGenericLambdaCallOperatorSpecialization(DC)) { + if (BuildAndDiagnose) { + LambdaScopeInfo *LSI = cast(CSI); + if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None) { + Diag(ExprLoc, diag::err_lambda_impcap) << Var; + Diag(Var->getLocation(), diag::note_previous_decl) << Var; + Diag(LSI->Lambda->getBeginLoc(), diag::note_lambda_decl); + buildLambdaCaptureFixit(*this, LSI, Var); + } else + diagnoseUncapturableValueReferenceOrBinding(*this, ExprLoc, Var); + } + return true; + } + + // Try to capture variable-length arrays types. + if (Var->getType()->isVariablyModifiedType()) { + // We're going to walk down into the type and look for VLA + // expressions. + QualType QTy = Var->getType(); + if (ParmVarDecl *PVD = dyn_cast_or_null(Var)) + QTy = PVD->getOriginalType(); + captureVariablyModifiedType(Context, QTy, CSI); + } + + if (getLangOpts().OpenMP) { + if (auto *RSI = dyn_cast(CSI)) { + // OpenMP private variables should not be captured in outer scope, so + // just break here. Similarly, global variables that are captured in a + // target region should not be captured outside the scope of the region. + if (RSI->CapRegionKind == CR_OpenMP) { + OpenMPClauseKind IsOpenMPPrivateDecl = isOpenMPPrivateDecl( + Var, RSI->OpenMPLevel, RSI->OpenMPCaptureLevel); + // If the variable is private (i.e. not captured) and has variably + // modified type, we still need to capture the type for correct + // codegen in all regions, associated with the construct. Currently, + // it is captured in the innermost captured region only. + if (IsOpenMPPrivateDecl != OMPC_unknown && + Var->getType()->isVariablyModifiedType()) { + QualType QTy = Var->getType(); + if (ParmVarDecl *PVD = dyn_cast_or_null(Var)) + QTy = PVD->getOriginalType(); + for (int I = 1, E = getNumberOfConstructScopes(RSI->OpenMPLevel); + I < E; ++I) { + auto *OuterRSI = cast( + FunctionScopes[FunctionScopesIndex - I]); + assert(RSI->OpenMPLevel == OuterRSI->OpenMPLevel && + "Wrong number of captured regions associated with the " + "OpenMP construct."); + captureVariablyModifiedType(Context, QTy, OuterRSI); + } + } + bool IsTargetCap = + IsOpenMPPrivateDecl != OMPC_private && + isOpenMPTargetCapturedDecl(Var, RSI->OpenMPLevel, + RSI->OpenMPCaptureLevel); + // Do not capture global if it is not privatized in outer regions. + bool IsGlobalCap = + IsGlobal && isOpenMPGlobalCapturedDecl(Var, RSI->OpenMPLevel, + RSI->OpenMPCaptureLevel); + + // When we detect target captures we are looking from inside the + // target region, therefore we need to propagate the capture from the + // enclosing region. Therefore, the capture is not initially nested. + if (IsTargetCap) + adjustOpenMPTargetScopeIndex(FunctionScopesIndex, RSI->OpenMPLevel); + + if (IsTargetCap || IsOpenMPPrivateDecl == OMPC_private || + (IsGlobal && !IsGlobalCap)) { + Nested = !IsTargetCap; + bool HasConst = DeclRefType.isConstQualified(); + DeclRefType = DeclRefType.getUnqualifiedType(); + // Don't lose diagnostics about assignments to const. + if (HasConst) + DeclRefType.addConst(); + CaptureType = Context.getLValueReferenceType(DeclRefType); + break; + } + } + } + } + if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None && !Explicit) { + // No capture-default, and this is not an explicit capture + // so cannot capture this variable. + if (BuildAndDiagnose) { + Diag(ExprLoc, diag::err_lambda_impcap) << Var; + Diag(Var->getLocation(), diag::note_previous_decl) << Var; + auto *LSI = cast(CSI); + if (LSI->Lambda) { + Diag(LSI->Lambda->getBeginLoc(), diag::note_lambda_decl); + buildLambdaCaptureFixit(*this, LSI, Var); + } + // FIXME: If we error out because an outer lambda can not implicitly + // capture a variable that an inner lambda explicitly captures, we + // should have the inner lambda do the explicit capture - because + // it makes for cleaner diagnostics later. This would purely be done + // so that the diagnostic does not misleadingly claim that a variable + // can not be captured by a lambda implicitly even though it is captured + // explicitly. Suggestion: + // - create const bool VariableCaptureWasInitiallyExplicit = Explicit + // at the function head + // - cache the StartingDeclContext - this must be a lambda + // - captureInLambda in the innermost lambda the variable. + } + return true; + } + Explicit = false; + FunctionScopesIndex--; + if (IsInScopeDeclarationContext) + DC = ParentDC; + } while (!VarDC->Equals(DC)); + + // Walk back down the scope stack, (e.g. from outer lambda to inner lambda) + // computing the type of the capture at each step, checking type-specific + // requirements, and adding captures if requested. + // If the variable had already been captured previously, we start capturing + // at the lambda nested within that one. + bool Invalid = false; + for (unsigned I = ++FunctionScopesIndex, N = MaxFunctionScopesIndex + 1; I != N; + ++I) { + CapturingScopeInfo *CSI = cast(FunctionScopes[I]); + + // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture + // certain types of variables (unnamed, variably modified types etc.) + // so check for eligibility. + if (!Invalid) + Invalid = + !isVariableCapturable(CSI, Var, ExprLoc, BuildAndDiagnose, *this); + + // After encountering an error, if we're actually supposed to capture, keep + // capturing in nested contexts to suppress any follow-on diagnostics. + if (Invalid && !BuildAndDiagnose) + return true; + + if (BlockScopeInfo *BSI = dyn_cast(CSI)) { + Invalid = !captureInBlock(BSI, Var, ExprLoc, BuildAndDiagnose, CaptureType, + DeclRefType, Nested, *this, Invalid); + Nested = true; + } else if (CapturedRegionScopeInfo *RSI = dyn_cast(CSI)) { + Invalid = !captureInCapturedRegion( + RSI, Var, ExprLoc, BuildAndDiagnose, CaptureType, DeclRefType, Nested, + Kind, /*IsTopScope*/ I == N - 1, *this, Invalid); + Nested = true; + } else { + LambdaScopeInfo *LSI = cast(CSI); + Invalid = + !captureInLambda(LSI, Var, ExprLoc, BuildAndDiagnose, CaptureType, + DeclRefType, Nested, Kind, EllipsisLoc, + /*IsTopScope*/ I == N - 1, *this, Invalid); + Nested = true; + } + + if (Invalid && !BuildAndDiagnose) + return true; + } + return Invalid; + } + + bool Sema::tryCaptureVariable(ValueDecl *Var, SourceLocation Loc, + TryCaptureKind Kind, SourceLocation EllipsisLoc) { + QualType CaptureType; + QualType DeclRefType; + return tryCaptureVariable(Var, Loc, Kind, EllipsisLoc, + /*BuildAndDiagnose=*/true, CaptureType, + DeclRefType, nullptr); + } + + bool Sema::NeedToCaptureVariable(ValueDecl *Var, SourceLocation Loc) { + QualType CaptureType; + QualType DeclRefType; + return !tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(), + /*BuildAndDiagnose=*/false, CaptureType, + DeclRefType, nullptr); + } + + QualType Sema::getCapturedDeclRefType(ValueDecl *Var, SourceLocation Loc) { + QualType CaptureType; + QualType DeclRefType; + + // Determine whether we can capture this variable. + if (tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(), + /*BuildAndDiagnose=*/false, CaptureType, + DeclRefType, nullptr)) + return QualType(); + + return DeclRefType; + } + + namespace { + // Helper to copy the template arguments from a DeclRefExpr or MemberExpr. + // The produced TemplateArgumentListInfo* points to data stored within this + // object, so should only be used in contexts where the pointer will not be + // used after the CopiedTemplateArgs object is destroyed. + class CopiedTemplateArgs { + bool HasArgs; + TemplateArgumentListInfo TemplateArgStorage; + public: + template + CopiedTemplateArgs(RefExpr *E) : HasArgs(E->hasExplicitTemplateArgs()) { + if (HasArgs) + E->copyTemplateArgumentsInto(TemplateArgStorage); + } + operator TemplateArgumentListInfo*() + #ifdef __has_cpp_attribute + #if __has_cpp_attribute(clang::lifetimebound) + [[clang::lifetimebound]] + #endif + #endif + { + return HasArgs ? &TemplateArgStorage : nullptr; + } + }; + } + + /// Walk the set of potential results of an expression and mark them all as + /// non-odr-uses if they satisfy the side-conditions of the NonOdrUseReason. + /// + /// \return A new expression if we found any potential results, ExprEmpty() if + /// not, and ExprError() if we diagnosed an error. + static ExprResult rebuildPotentialResultsAsNonOdrUsed(Sema &S, Expr *E, + NonOdrUseReason NOUR) { + // Per C++11 [basic.def.odr], a variable is odr-used "unless it is + // an object that satisfies the requirements for appearing in a + // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1) + // is immediately applied." This function handles the lvalue-to-rvalue + // conversion part. + // + // If we encounter a node that claims to be an odr-use but shouldn't be, we + // transform it into the relevant kind of non-odr-use node and rebuild the + // tree of nodes leading to it. + // + // This is a mini-TreeTransform that only transforms a restricted subset of + // nodes (and only certain operands of them). + + // Rebuild a subexpression. + auto Rebuild = [&](Expr *Sub) { + return rebuildPotentialResultsAsNonOdrUsed(S, Sub, NOUR); + }; + + // Check whether a potential result satisfies the requirements of NOUR. + auto IsPotentialResultOdrUsed = [&](NamedDecl *D) { + // Any entity other than a VarDecl is always odr-used whenever it's named + // in a potentially-evaluated expression. + auto *VD = dyn_cast(D); + if (!VD) + return true; + + // C++2a [basic.def.odr]p4: + // A variable x whose name appears as a potentially-evalauted expression + // e is odr-used by e unless + // -- x is a reference that is usable in constant expressions, or + // -- x is a variable of non-reference type that is usable in constant + // expressions and has no mutable subobjects, and e is an element of + // the set of potential results of an expression of + // non-volatile-qualified non-class type to which the lvalue-to-rvalue + // conversion is applied, or + // -- x is a variable of non-reference type, and e is an element of the + // set of potential results of a discarded-value expression to which + // the lvalue-to-rvalue conversion is not applied + // + // We check the first bullet and the "potentially-evaluated" condition in + // BuildDeclRefExpr. We check the type requirements in the second bullet + // in CheckLValueToRValueConversionOperand below. + switch (NOUR) { + case NOUR_None: + case NOUR_Unevaluated: + llvm_unreachable("unexpected non-odr-use-reason"); + + case NOUR_Constant: + // Constant references were handled when they were built. + if (VD->getType()->isReferenceType()) + return true; + if (auto *RD = VD->getType()->getAsCXXRecordDecl()) + if (RD->hasMutableFields()) + return true; + if (!VD->isUsableInConstantExpressions(S.Context)) + return true; + break; + + case NOUR_Discarded: + if (VD->getType()->isReferenceType()) + return true; + break; + } + return false; + }; + + // Mark that this expression does not constitute an odr-use. + auto MarkNotOdrUsed = [&] { + S.MaybeODRUseExprs.remove(E); + if (LambdaScopeInfo *LSI = S.getCurLambda()) + LSI->markVariableExprAsNonODRUsed(E); + }; + + // C++2a [basic.def.odr]p2: + // The set of potential results of an expression e is defined as follows: + switch (E->getStmtClass()) { + // -- If e is an id-expression, ... + case Expr::DeclRefExprClass: { + auto *DRE = cast(E); + if (DRE->isNonOdrUse() || IsPotentialResultOdrUsed(DRE->getDecl())) + break; + + // Rebuild as a non-odr-use DeclRefExpr. + MarkNotOdrUsed(); + return DeclRefExpr::Create( + S.Context, DRE->getQualifierLoc(), DRE->getTemplateKeywordLoc(), + DRE->getDecl(), DRE->refersToEnclosingVariableOrCapture(), + DRE->getNameInfo(), DRE->getType(), DRE->getValueKind(), + DRE->getFoundDecl(), CopiedTemplateArgs(DRE), NOUR); + } + + case Expr::FunctionParmPackExprClass: { + auto *FPPE = cast(E); + // If any of the declarations in the pack is odr-used, then the expression + // as a whole constitutes an odr-use. + for (VarDecl *D : *FPPE) + if (IsPotentialResultOdrUsed(D)) + return ExprEmpty(); + + // FIXME: Rebuild as a non-odr-use FunctionParmPackExpr? In practice, + // nothing cares about whether we marked this as an odr-use, but it might + // be useful for non-compiler tools. + MarkNotOdrUsed(); + break; + } + + // -- If e is a subscripting operation with an array operand... + case Expr::ArraySubscriptExprClass: { + auto *ASE = cast(E); + Expr *OldBase = ASE->getBase()->IgnoreImplicit(); + if (!OldBase->getType()->isArrayType()) + break; + ExprResult Base = Rebuild(OldBase); + if (!Base.isUsable()) + return Base; + Expr *LHS = ASE->getBase() == ASE->getLHS() ? Base.get() : ASE->getLHS(); + Expr *RHS = ASE->getBase() == ASE->getRHS() ? Base.get() : ASE->getRHS(); + SourceLocation LBracketLoc = ASE->getBeginLoc(); // FIXME: Not stored. + return S.ActOnArraySubscriptExpr(nullptr, LHS, LBracketLoc, RHS, + ASE->getRBracketLoc()); + } + + case Expr::MemberExprClass: { + auto *ME = cast(E); + // -- If e is a class member access expression [...] naming a non-static + // data member... + if (isa(ME->getMemberDecl())) { + ExprResult Base = Rebuild(ME->getBase()); + if (!Base.isUsable()) + return Base; + return MemberExpr::Create( + S.Context, Base.get(), ME->isArrow(), ME->getOperatorLoc(), + ME->getQualifierLoc(), ME->getTemplateKeywordLoc(), + ME->getMemberDecl(), ME->getFoundDecl(), ME->getMemberNameInfo(), + CopiedTemplateArgs(ME), ME->getType(), ME->getValueKind(), + ME->getObjectKind(), ME->isNonOdrUse()); + } + + if (ME->getMemberDecl()->isCXXInstanceMember()) + break; + + // -- If e is a class member access expression naming a static data member, + // ... + if (ME->isNonOdrUse() || IsPotentialResultOdrUsed(ME->getMemberDecl())) + break; + + // Rebuild as a non-odr-use MemberExpr. + MarkNotOdrUsed(); + return MemberExpr::Create( + S.Context, ME->getBase(), ME->isArrow(), ME->getOperatorLoc(), + ME->getQualifierLoc(), ME->getTemplateKeywordLoc(), ME->getMemberDecl(), + ME->getFoundDecl(), ME->getMemberNameInfo(), CopiedTemplateArgs(ME), + ME->getType(), ME->getValueKind(), ME->getObjectKind(), NOUR); + } + + case Expr::BinaryOperatorClass: { + auto *BO = cast(E); + Expr *LHS = BO->getLHS(); + Expr *RHS = BO->getRHS(); + // -- If e is a pointer-to-member expression of the form e1 .* e2 ... + if (BO->getOpcode() == BO_PtrMemD) { + ExprResult Sub = Rebuild(LHS); + if (!Sub.isUsable()) + return Sub; + LHS = Sub.get(); + // -- If e is a comma expression, ... + } else if (BO->getOpcode() == BO_Comma) { + ExprResult Sub = Rebuild(RHS); + if (!Sub.isUsable()) + return Sub; + RHS = Sub.get(); + } else { + break; + } + return S.BuildBinOp(nullptr, BO->getOperatorLoc(), BO->getOpcode(), + LHS, RHS); + } + + // -- If e has the form (e1)... + case Expr::ParenExprClass: { + auto *PE = cast(E); + ExprResult Sub = Rebuild(PE->getSubExpr()); + if (!Sub.isUsable()) + return Sub; + return S.ActOnParenExpr(PE->getLParen(), PE->getRParen(), Sub.get()); + } + + // -- If e is a glvalue conditional expression, ... + // We don't apply this to a binary conditional operator. FIXME: Should we? + case Expr::ConditionalOperatorClass: { + auto *CO = cast(E); + ExprResult LHS = Rebuild(CO->getLHS()); + if (LHS.isInvalid()) + return ExprError(); + ExprResult RHS = Rebuild(CO->getRHS()); + if (RHS.isInvalid()) + return ExprError(); + if (!LHS.isUsable() && !RHS.isUsable()) + return ExprEmpty(); + if (!LHS.isUsable()) + LHS = CO->getLHS(); + if (!RHS.isUsable()) + RHS = CO->getRHS(); + return S.ActOnConditionalOp(CO->getQuestionLoc(), CO->getColonLoc(), + CO->getCond(), LHS.get(), RHS.get()); + } + + // [Clang extension] + // -- If e has the form __extension__ e1... + case Expr::UnaryOperatorClass: { + auto *UO = cast(E); + if (UO->getOpcode() != UO_Extension) + break; + ExprResult Sub = Rebuild(UO->getSubExpr()); + if (!Sub.isUsable()) + return Sub; + return S.BuildUnaryOp(nullptr, UO->getOperatorLoc(), UO_Extension, + Sub.get()); + } + + // [Clang extension] + // -- If e has the form _Generic(...), the set of potential results is the + // union of the sets of potential results of the associated expressions. + case Expr::GenericSelectionExprClass: { + auto *GSE = cast(E); + + SmallVector AssocExprs; + bool AnyChanged = false; + for (Expr *OrigAssocExpr : GSE->getAssocExprs()) { + ExprResult AssocExpr = Rebuild(OrigAssocExpr); + if (AssocExpr.isInvalid()) + return ExprError(); + if (AssocExpr.isUsable()) { + AssocExprs.push_back(AssocExpr.get()); + AnyChanged = true; + } else { + AssocExprs.push_back(OrigAssocExpr); + } + } + + void *ExOrTy = nullptr; + bool IsExpr = GSE->isExprPredicate(); + if (IsExpr) + ExOrTy = GSE->getControllingExpr(); + else + ExOrTy = GSE->getControllingType(); + return AnyChanged ? S.CreateGenericSelectionExpr( + GSE->getGenericLoc(), GSE->getDefaultLoc(), + GSE->getRParenLoc(), IsExpr, ExOrTy, + GSE->getAssocTypeSourceInfos(), AssocExprs) + : ExprEmpty(); + } + + // [Clang extension] + // -- If e has the form __builtin_choose_expr(...), the set of potential + // results is the union of the sets of potential results of the + // second and third subexpressions. + case Expr::ChooseExprClass: { + auto *CE = cast(E); + + ExprResult LHS = Rebuild(CE->getLHS()); + if (LHS.isInvalid()) + return ExprError(); + + ExprResult RHS = Rebuild(CE->getLHS()); + if (RHS.isInvalid()) + return ExprError(); + + if (!LHS.get() && !RHS.get()) + return ExprEmpty(); + if (!LHS.isUsable()) + LHS = CE->getLHS(); + if (!RHS.isUsable()) + RHS = CE->getRHS(); + + return S.ActOnChooseExpr(CE->getBuiltinLoc(), CE->getCond(), LHS.get(), + RHS.get(), CE->getRParenLoc()); + } + + // Step through non-syntactic nodes. + case Expr::ConstantExprClass: { + auto *CE = cast(E); + ExprResult Sub = Rebuild(CE->getSubExpr()); + if (!Sub.isUsable()) + return Sub; + return ConstantExpr::Create(S.Context, Sub.get()); + } + + // We could mostly rely on the recursive rebuilding to rebuild implicit + // casts, but not at the top level, so rebuild them here. + case Expr::ImplicitCastExprClass: { + auto *ICE = cast(E); + // Only step through the narrow set of cast kinds we expect to encounter. + // Anything else suggests we've left the region in which potential results + // can be found. + switch (ICE->getCastKind()) { + case CK_NoOp: + case CK_DerivedToBase: + case CK_UncheckedDerivedToBase: { + ExprResult Sub = Rebuild(ICE->getSubExpr()); + if (!Sub.isUsable()) + return Sub; + CXXCastPath Path(ICE->path()); + return S.ImpCastExprToType(Sub.get(), ICE->getType(), ICE->getCastKind(), + ICE->getValueKind(), &Path); + } + + default: + break; + } + break; + } + + default: + break; + } + + // Can't traverse through this node. Nothing to do. + return ExprEmpty(); + } + + ExprResult Sema::CheckLValueToRValueConversionOperand(Expr *E) { + // Check whether the operand is or contains an object of non-trivial C union + // type. + if (E->getType().isVolatileQualified() && + (E->getType().hasNonTrivialToPrimitiveDestructCUnion() || + E->getType().hasNonTrivialToPrimitiveCopyCUnion())) + checkNonTrivialCUnion(E->getType(), E->getExprLoc(), + Sema::NTCUC_LValueToRValueVolatile, + NTCUK_Destruct|NTCUK_Copy); + + // C++2a [basic.def.odr]p4: + // [...] an expression of non-volatile-qualified non-class type to which + // the lvalue-to-rvalue conversion is applied [...] + if (E->getType().isVolatileQualified() || E->getType()->getAs()) + return E; + + ExprResult Result = + rebuildPotentialResultsAsNonOdrUsed(*this, E, NOUR_Constant); + if (Result.isInvalid()) + return ExprError(); + return Result.get() ? Result : E; + } + + ExprResult Sema::ActOnConstantExpression(ExprResult Res) { + Res = CorrectDelayedTyposInExpr(Res); + + if (!Res.isUsable()) + return Res; + + // If a constant-expression is a reference to a variable where we delay + // deciding whether it is an odr-use, just assume we will apply the + // lvalue-to-rvalue conversion. In the one case where this doesn't happen + // (a non-type template argument), we have special handling anyway. + return CheckLValueToRValueConversionOperand(Res.get()); + } + + void Sema::CleanupVarDeclMarking() { + // Iterate through a local copy in case MarkVarDeclODRUsed makes a recursive + // call. + MaybeODRUseExprSet LocalMaybeODRUseExprs; + std::swap(LocalMaybeODRUseExprs, MaybeODRUseExprs); + + for (Expr *E : LocalMaybeODRUseExprs) { + if (auto *DRE = dyn_cast(E)) { + MarkVarDeclODRUsed(cast(DRE->getDecl()), + DRE->getLocation(), *this); + } else if (auto *ME = dyn_cast(E)) { + MarkVarDeclODRUsed(cast(ME->getMemberDecl()), ME->getMemberLoc(), + *this); + } else if (auto *FP = dyn_cast(E)) { + for (VarDecl *VD : *FP) + MarkVarDeclODRUsed(VD, FP->getParameterPackLocation(), *this); + } else { + llvm_unreachable("Unexpected expression"); + } + } + + assert(MaybeODRUseExprs.empty() && + "MarkVarDeclODRUsed failed to cleanup MaybeODRUseExprs?"); + } + + static void DoMarkPotentialCapture(Sema &SemaRef, SourceLocation Loc, + ValueDecl *Var, Expr *E) { + VarDecl *VD = Var->getPotentiallyDecomposedVarDecl(); + if (!VD) + return; + + const bool RefersToEnclosingScope = + (SemaRef.CurContext != VD->getDeclContext() && + VD->getDeclContext()->isFunctionOrMethod() && VD->hasLocalStorage()); + if (RefersToEnclosingScope) { + LambdaScopeInfo *const LSI = + SemaRef.getCurLambda(/*IgnoreNonLambdaCapturingScope=*/true); + if (LSI && (!LSI->CallOperator || + !LSI->CallOperator->Encloses(Var->getDeclContext()))) { + // If a variable could potentially be odr-used, defer marking it so + // until we finish analyzing the full expression for any + // lvalue-to-rvalue + // or discarded value conversions that would obviate odr-use. + // Add it to the list of potential captures that will be analyzed + // later (ActOnFinishFullExpr) for eventual capture and odr-use marking + // unless the variable is a reference that was initialized by a constant + // expression (this will never need to be captured or odr-used). + // + // FIXME: We can simplify this a lot after implementing P0588R1. + assert(E && "Capture variable should be used in an expression."); + if (!Var->getType()->isReferenceType() || + !VD->isUsableInConstantExpressions(SemaRef.Context)) + LSI->addPotentialCapture(E->IgnoreParens()); + } + } + } + + static void DoMarkVarDeclReferenced( + Sema &SemaRef, SourceLocation Loc, VarDecl *Var, Expr *E, + llvm::DenseMap &RefsMinusAssignments) { + assert((!E || isa(E) || isa(E) || + isa(E)) && + "Invalid Expr argument to DoMarkVarDeclReferenced"); + Var->setReferenced(); + + if (Var->isInvalidDecl()) + return; + + auto *MSI = Var->getMemberSpecializationInfo(); + TemplateSpecializationKind TSK = MSI ? MSI->getTemplateSpecializationKind() + : Var->getTemplateSpecializationKind(); + + OdrUseContext OdrUse = isOdrUseContext(SemaRef); + bool UsableInConstantExpr = + Var->mightBeUsableInConstantExpressions(SemaRef.Context); + + if (Var->isLocalVarDeclOrParm() && !Var->hasExternalStorage()) { + RefsMinusAssignments.insert({Var, 0}).first->getSecond()++; + } + + // C++20 [expr.const]p12: + // A variable [...] is needed for constant evaluation if it is [...] a + // variable whose name appears as a potentially constant evaluated + // expression that is either a contexpr variable or is of non-volatile + // const-qualified integral type or of reference type + bool NeededForConstantEvaluation = + isPotentiallyConstantEvaluatedContext(SemaRef) && UsableInConstantExpr; + + bool NeedDefinition = + OdrUse == OdrUseContext::Used || NeededForConstantEvaluation; + + assert(!isa(Var) && + "Can't instantiate a partial template specialization."); + + // If this might be a member specialization of a static data member, check + // the specialization is visible. We already did the checks for variable + // template specializations when we created them. + if (NeedDefinition && TSK != TSK_Undeclared && + !isa(Var)) + SemaRef.checkSpecializationVisibility(Loc, Var); + + // Perform implicit instantiation of static data members, static data member + // templates of class templates, and variable template specializations. Delay + // instantiations of variable templates, except for those that could be used + // in a constant expression. + if (NeedDefinition && isTemplateInstantiation(TSK)) { + // Per C++17 [temp.explicit]p10, we may instantiate despite an explicit + // instantiation declaration if a variable is usable in a constant + // expression (among other cases). + bool TryInstantiating = + TSK == TSK_ImplicitInstantiation || + (TSK == TSK_ExplicitInstantiationDeclaration && UsableInConstantExpr); + + if (TryInstantiating) { + SourceLocation PointOfInstantiation = + MSI ? MSI->getPointOfInstantiation() : Var->getPointOfInstantiation(); + bool FirstInstantiation = PointOfInstantiation.isInvalid(); + if (FirstInstantiation) { + PointOfInstantiation = Loc; + if (MSI) + MSI->setPointOfInstantiation(PointOfInstantiation); + // FIXME: Notify listener. + else + Var->setTemplateSpecializationKind(TSK, PointOfInstantiation); + } + + if (UsableInConstantExpr) { + // Do not defer instantiations of variables that could be used in a + // constant expression. + SemaRef.runWithSufficientStackSpace(PointOfInstantiation, [&] { + SemaRef.InstantiateVariableDefinition(PointOfInstantiation, Var); + }); + + // Re-set the member to trigger a recomputation of the dependence bits + // for the expression. + if (auto *DRE = dyn_cast_or_null(E)) + DRE->setDecl(DRE->getDecl()); + else if (auto *ME = dyn_cast_or_null(E)) + ME->setMemberDecl(ME->getMemberDecl()); + } else if (FirstInstantiation) { + SemaRef.PendingInstantiations + .push_back(std::make_pair(Var, PointOfInstantiation)); + } else { + bool Inserted = false; + for (auto &I : SemaRef.SavedPendingInstantiations) { + auto Iter = llvm::find_if( + I, [Var](const Sema::PendingImplicitInstantiation &P) { + return P.first == Var; + }); + if (Iter != I.end()) { + SemaRef.PendingInstantiations.push_back(*Iter); + I.erase(Iter); + Inserted = true; + break; + } + } + + // FIXME: For a specialization of a variable template, we don't + // distinguish between "declaration and type implicitly instantiated" + // and "implicit instantiation of definition requested", so we have + // no direct way to avoid enqueueing the pending instantiation + // multiple times. + if (isa(Var) && !Inserted) + SemaRef.PendingInstantiations + .push_back(std::make_pair(Var, PointOfInstantiation)); + } + } + } + + // C++2a [basic.def.odr]p4: + // A variable x whose name appears as a potentially-evaluated expression e + // is odr-used by e unless + // -- x is a reference that is usable in constant expressions + // -- x is a variable of non-reference type that is usable in constant + // expressions and has no mutable subobjects [FIXME], and e is an + // element of the set of potential results of an expression of + // non-volatile-qualified non-class type to which the lvalue-to-rvalue + // conversion is applied + // -- x is a variable of non-reference type, and e is an element of the set + // of potential results of a discarded-value expression to which the + // lvalue-to-rvalue conversion is not applied [FIXME] + // + // We check the first part of the second bullet here, and + // Sema::CheckLValueToRValueConversionOperand deals with the second part. + // FIXME: To get the third bullet right, we need to delay this even for + // variables that are not usable in constant expressions. + + // If we already know this isn't an odr-use, there's nothing more to do. + if (DeclRefExpr *DRE = dyn_cast_or_null(E)) + if (DRE->isNonOdrUse()) + return; + if (MemberExpr *ME = dyn_cast_or_null(E)) + if (ME->isNonOdrUse()) + return; + + switch (OdrUse) { + case OdrUseContext::None: + // In some cases, a variable may not have been marked unevaluated, if it + // appears in a defaukt initializer. + assert((!E || isa(E) || + SemaRef.isUnevaluatedContext()) && + "missing non-odr-use marking for unevaluated decl ref"); + break; + + case OdrUseContext::FormallyOdrUsed: + // FIXME: Ignoring formal odr-uses results in incorrect lambda capture + // behavior. + break; + + case OdrUseContext::Used: + // If we might later find that this expression isn't actually an odr-use, + // delay the marking. + if (E && Var->isUsableInConstantExpressions(SemaRef.Context)) + SemaRef.MaybeODRUseExprs.insert(E); + else + MarkVarDeclODRUsed(Var, Loc, SemaRef); + break; + + case OdrUseContext::Dependent: + // If this is a dependent context, we don't need to mark variables as + // odr-used, but we may still need to track them for lambda capture. + // FIXME: Do we also need to do this inside dependent typeid expressions + // (which are modeled as unevaluated at this point)? + DoMarkPotentialCapture(SemaRef, Loc, Var, E); + break; + } + } + + static void DoMarkBindingDeclReferenced(Sema &SemaRef, SourceLocation Loc, + BindingDecl *BD, Expr *E) { + BD->setReferenced(); + + if (BD->isInvalidDecl()) + return; + + OdrUseContext OdrUse = isOdrUseContext(SemaRef); + if (OdrUse == OdrUseContext::Used) { + QualType CaptureType, DeclRefType; + SemaRef.tryCaptureVariable(BD, Loc, Sema::TryCapture_Implicit, + /*EllipsisLoc*/ SourceLocation(), + /*BuildAndDiagnose*/ true, CaptureType, + DeclRefType, + /*FunctionScopeIndexToStopAt*/ nullptr); + } else if (OdrUse == OdrUseContext::Dependent) { + DoMarkPotentialCapture(SemaRef, Loc, BD, E); + } + } + + /// Mark a variable referenced, and check whether it is odr-used + /// (C++ [basic.def.odr]p2, C99 6.9p3). Note that this should not be + /// used directly for normal expressions referring to VarDecl. + void Sema::MarkVariableReferenced(SourceLocation Loc, VarDecl *Var) { + DoMarkVarDeclReferenced(*this, Loc, Var, nullptr, RefsMinusAssignments); + } + + static void + MarkExprReferenced(Sema &SemaRef, SourceLocation Loc, Decl *D, Expr *E, + bool MightBeOdrUse, + llvm::DenseMap &RefsMinusAssignments) { + if (SemaRef.isInOpenMPDeclareTargetContext()) + SemaRef.checkDeclIsAllowedInOpenMPTarget(E, D); + + if (VarDecl *Var = dyn_cast(D)) { + DoMarkVarDeclReferenced(SemaRef, Loc, Var, E, RefsMinusAssignments); + return; + } + + if (BindingDecl *Decl = dyn_cast(D)) { + DoMarkBindingDeclReferenced(SemaRef, Loc, Decl, E); + return; + } + + SemaRef.MarkAnyDeclReferenced(Loc, D, MightBeOdrUse); + + // If this is a call to a method via a cast, also mark the method in the + // derived class used in case codegen can devirtualize the call. + const MemberExpr *ME = dyn_cast(E); + if (!ME) + return; + CXXMethodDecl *MD = dyn_cast(ME->getMemberDecl()); + if (!MD) + return; + // Only attempt to devirtualize if this is truly a virtual call. + bool IsVirtualCall = MD->isVirtual() && + ME->performsVirtualDispatch(SemaRef.getLangOpts()); + if (!IsVirtualCall) + return; + + // If it's possible to devirtualize the call, mark the called function + // referenced. + CXXMethodDecl *DM = MD->getDevirtualizedMethod( + ME->getBase(), SemaRef.getLangOpts().AppleKext); + if (DM) + SemaRef.MarkAnyDeclReferenced(Loc, DM, MightBeOdrUse); + } + + /// Perform reference-marking and odr-use handling for a DeclRefExpr. + /// + /// Note, this may change the dependence of the DeclRefExpr, and so needs to be + /// handled with care if the DeclRefExpr is not newly-created. + void Sema::MarkDeclRefReferenced(DeclRefExpr *E, const Expr *Base) { + // TODO: update this with DR# once a defect report is filed. + // C++11 defect. The address of a pure member should not be an ODR use, even + // if it's a qualified reference. + bool OdrUse = true; + if (const CXXMethodDecl *Method = dyn_cast(E->getDecl())) + if (Method->isVirtual() && + !Method->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) + OdrUse = false; + + if (auto *FD = dyn_cast(E->getDecl())) { + if (!isUnevaluatedContext() && !isConstantEvaluated() && + !isImmediateFunctionContext() && + !isCheckingDefaultArgumentOrInitializer() && + FD->isImmediateFunction() && !RebuildingImmediateInvocation && + !FD->isDependentContext()) + ExprEvalContexts.back().ReferenceToConsteval.insert(E); + } + MarkExprReferenced(*this, E->getLocation(), E->getDecl(), E, OdrUse, + RefsMinusAssignments); + } + + /// Perform reference-marking and odr-use handling for a MemberExpr. + void Sema::MarkMemberReferenced(MemberExpr *E) { + // C++11 [basic.def.odr]p2: + // A non-overloaded function whose name appears as a potentially-evaluated + // expression or a member of a set of candidate functions, if selected by + // overload resolution when referred to from a potentially-evaluated + // expression, is odr-used, unless it is a pure virtual function and its + // name is not explicitly qualified. + bool MightBeOdrUse = true; + if (E->performsVirtualDispatch(getLangOpts())) { + if (CXXMethodDecl *Method = dyn_cast(E->getMemberDecl())) + if (Method->isPure()) + MightBeOdrUse = false; + } + SourceLocation Loc = + E->getMemberLoc().isValid() ? E->getMemberLoc() : E->getBeginLoc(); + MarkExprReferenced(*this, Loc, E->getMemberDecl(), E, MightBeOdrUse, + RefsMinusAssignments); + } + + /// Perform reference-marking and odr-use handling for a FunctionParmPackExpr. + void Sema::MarkFunctionParmPackReferenced(FunctionParmPackExpr *E) { + for (VarDecl *VD : *E) + MarkExprReferenced(*this, E->getParameterPackLocation(), VD, E, true, + RefsMinusAssignments); + } + + /// Perform marking for a reference to an arbitrary declaration. It + /// marks the declaration referenced, and performs odr-use checking for + /// functions and variables. This method should not be used when building a + /// normal expression which refers to a variable. + void Sema::MarkAnyDeclReferenced(SourceLocation Loc, Decl *D, + bool MightBeOdrUse) { + if (MightBeOdrUse) { + if (auto *VD = dyn_cast(D)) { + MarkVariableReferenced(Loc, VD); + return; + } + } + if (auto *FD = dyn_cast(D)) { + MarkFunctionReferenced(Loc, FD, MightBeOdrUse); + return; + } + D->setReferenced(); + } + + namespace { + // Mark all of the declarations used by a type as referenced. + // FIXME: Not fully implemented yet! We need to have a better understanding + // of when we're entering a context we should not recurse into. + // FIXME: This is and EvaluatedExprMarker are more-or-less equivalent to + // TreeTransforms rebuilding the type in a new context. Rather than + // duplicating the TreeTransform logic, we should consider reusing it here. + // Currently that causes problems when rebuilding LambdaExprs. + class MarkReferencedDecls : public RecursiveASTVisitor { + Sema &S; + SourceLocation Loc; + + public: + typedef RecursiveASTVisitor Inherited; + + MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { } + + bool TraverseTemplateArgument(const TemplateArgument &Arg); + }; + } + + bool MarkReferencedDecls::TraverseTemplateArgument( + const TemplateArgument &Arg) { + { + // A non-type template argument is a constant-evaluated context. + EnterExpressionEvaluationContext Evaluated( + S, Sema::ExpressionEvaluationContext::ConstantEvaluated); + if (Arg.getKind() == TemplateArgument::Declaration) { + if (Decl *D = Arg.getAsDecl()) + S.MarkAnyDeclReferenced(Loc, D, true); + } else if (Arg.getKind() == TemplateArgument::Expression) { + S.MarkDeclarationsReferencedInExpr(Arg.getAsExpr(), false); + } + } + + return Inherited::TraverseTemplateArgument(Arg); + } + + void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) { + MarkReferencedDecls Marker(*this, Loc); + Marker.TraverseType(T); + } + + namespace { + /// Helper class that marks all of the declarations referenced by + /// potentially-evaluated subexpressions as "referenced". + class EvaluatedExprMarker : public UsedDeclVisitor { + public: + typedef UsedDeclVisitor Inherited; + bool SkipLocalVariables; + ArrayRef StopAt; + + EvaluatedExprMarker(Sema &S, bool SkipLocalVariables, + ArrayRef StopAt) + : Inherited(S), SkipLocalVariables(SkipLocalVariables), StopAt(StopAt) {} + + void visitUsedDecl(SourceLocation Loc, Decl *D) { + S.MarkFunctionReferenced(Loc, cast(D)); + } + + void Visit(Expr *E) { + if (llvm::is_contained(StopAt, E)) + return; + Inherited::Visit(E); + } + + void VisitConstantExpr(ConstantExpr *E) { + // Don't mark declarations within a ConstantExpression, as this expression + // will be evaluated and folded to a value. + } + + void VisitDeclRefExpr(DeclRefExpr *E) { + // If we were asked not to visit local variables, don't. + if (SkipLocalVariables) { + if (VarDecl *VD = dyn_cast(E->getDecl())) + if (VD->hasLocalStorage()) + return; + } + + // FIXME: This can trigger the instantiation of the initializer of a + // variable, which can cause the expression to become value-dependent + // or error-dependent. Do we need to propagate the new dependence bits? + S.MarkDeclRefReferenced(E); + } + + void VisitMemberExpr(MemberExpr *E) { + S.MarkMemberReferenced(E); + Visit(E->getBase()); + } + }; + } // namespace + + /// Mark any declarations that appear within this expression or any + /// potentially-evaluated subexpressions as "referenced". + /// + /// \param SkipLocalVariables If true, don't mark local variables as + /// 'referenced'. + /// \param StopAt Subexpressions that we shouldn't recurse into. + void Sema::MarkDeclarationsReferencedInExpr(Expr *E, + bool SkipLocalVariables, + ArrayRef StopAt) { + EvaluatedExprMarker(*this, SkipLocalVariables, StopAt).Visit(E); + } + + /// Emit a diagnostic when statements are reachable. + /// FIXME: check for reachability even in expressions for which we don't build a + /// CFG (eg, in the initializer of a global or in a constant expression). + /// For example, + /// namespace { auto *p = new double[3][false ? (1, 2) : 3]; } + bool Sema::DiagIfReachable(SourceLocation Loc, ArrayRef Stmts, + const PartialDiagnostic &PD) { + if (!Stmts.empty() && getCurFunctionOrMethodDecl()) { + if (!FunctionScopes.empty()) + FunctionScopes.back()->PossiblyUnreachableDiags.push_back( + sema::PossiblyUnreachableDiag(PD, Loc, Stmts)); + return true; + } + + // The initializer of a constexpr variable or of the first declaration of a + // static data member is not syntactically a constant evaluated constant, + // but nonetheless is always required to be a constant expression, so we + // can skip diagnosing. + // FIXME: Using the mangling context here is a hack. + if (auto *VD = dyn_cast_or_null( + ExprEvalContexts.back().ManglingContextDecl)) { + if (VD->isConstexpr() || + (VD->isStaticDataMember() && VD->isFirstDecl() && !VD->isInline())) + return false; + // FIXME: For any other kind of variable, we should build a CFG for its + // initializer and check whether the context in question is reachable. + } + + Diag(Loc, PD); + return true; + } + + /// Emit a diagnostic that describes an effect on the run-time behavior + /// of the program being compiled. + /// + /// This routine emits the given diagnostic when the code currently being + /// type-checked is "potentially evaluated", meaning that there is a + /// possibility that the code will actually be executable. Code in sizeof() + /// expressions, code used only during overload resolution, etc., are not + /// potentially evaluated. This routine will suppress such diagnostics or, + /// in the absolutely nutty case of potentially potentially evaluated + /// expressions (C++ typeid), queue the diagnostic to potentially emit it + /// later. + /// + /// This routine should be used for all diagnostics that describe the run-time + /// behavior of a program, such as passing a non-POD value through an ellipsis. + /// Failure to do so will likely result in spurious diagnostics or failures + /// during overload resolution or within sizeof/alignof/typeof/typeid. + bool Sema::DiagRuntimeBehavior(SourceLocation Loc, ArrayRef Stmts, + const PartialDiagnostic &PD) { + + if (ExprEvalContexts.back().isDiscardedStatementContext()) + return false; + + switch (ExprEvalContexts.back().Context) { + case ExpressionEvaluationContext::Unevaluated: + case ExpressionEvaluationContext::UnevaluatedList: + case ExpressionEvaluationContext::UnevaluatedAbstract: + case ExpressionEvaluationContext::DiscardedStatement: + // The argument will never be evaluated, so don't complain. + break; + + case ExpressionEvaluationContext::ConstantEvaluated: + case ExpressionEvaluationContext::ImmediateFunctionContext: + // Relevant diagnostics should be produced by constant evaluation. + break; + + case ExpressionEvaluationContext::PotentiallyEvaluated: + case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed: + return DiagIfReachable(Loc, Stmts, PD); + } + + return false; + } + + bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement, + const PartialDiagnostic &PD) { + return DiagRuntimeBehavior( + Loc, Statement ? llvm::ArrayRef(Statement) : std::nullopt, PD); + } + + bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc, + CallExpr *CE, FunctionDecl *FD) { + if (ReturnType->isVoidType() || !ReturnType->isIncompleteType()) + return false; + + // If we're inside a decltype's expression, don't check for a valid return + // type or construct temporaries until we know whether this is the last call. + if (ExprEvalContexts.back().ExprContext == + ExpressionEvaluationContextRecord::EK_Decltype) { + ExprEvalContexts.back().DelayedDecltypeCalls.push_back(CE); + return false; + } + + class CallReturnIncompleteDiagnoser : public TypeDiagnoser { + FunctionDecl *FD; + CallExpr *CE; + + public: + CallReturnIncompleteDiagnoser(FunctionDecl *FD, CallExpr *CE) + : FD(FD), CE(CE) { } + + void diagnose(Sema &S, SourceLocation Loc, QualType T) override { + if (!FD) { + S.Diag(Loc, diag::err_call_incomplete_return) + << T << CE->getSourceRange(); + return; + } + + S.Diag(Loc, diag::err_call_function_incomplete_return) + << CE->getSourceRange() << FD << T; + S.Diag(FD->getLocation(), diag::note_entity_declared_at) + << FD->getDeclName(); + } + } Diagnoser(FD, CE); + + if (RequireCompleteType(Loc, ReturnType, Diagnoser)) + return true; + + return false; + } + + // Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses + // will prevent this condition from triggering, which is what we want. + void Sema::DiagnoseAssignmentAsCondition(Expr *E) { + SourceLocation Loc; + + unsigned diagnostic = diag::warn_condition_is_assignment; + bool IsOrAssign = false; + + if (BinaryOperator *Op = dyn_cast(E)) { + if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign) + return; + + IsOrAssign = Op->getOpcode() == BO_OrAssign; + + // Greylist some idioms by putting them into a warning subcategory. + if (ObjCMessageExpr *ME + = dyn_cast(Op->getRHS()->IgnoreParenCasts())) { + Selector Sel = ME->getSelector(); + + // self = [ init...] + if (isSelfExpr(Op->getLHS()) && ME->getMethodFamily() == OMF_init) + diagnostic = diag::warn_condition_is_idiomatic_assignment; + + // = [ nextObject] + else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject") + diagnostic = diag::warn_condition_is_idiomatic_assignment; + } + + Loc = Op->getOperatorLoc(); + } else if (CXXOperatorCallExpr *Op = dyn_cast(E)) { + if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual) + return; + + IsOrAssign = Op->getOperator() == OO_PipeEqual; + Loc = Op->getOperatorLoc(); + } else if (PseudoObjectExpr *POE = dyn_cast(E)) + return DiagnoseAssignmentAsCondition(POE->getSyntacticForm()); + else { + // Not an assignment. + return; + } + + Diag(Loc, diagnostic) << E->getSourceRange(); + + SourceLocation Open = E->getBeginLoc(); + SourceLocation Close = getLocForEndOfToken(E->getSourceRange().getEnd()); + Diag(Loc, diag::note_condition_assign_silence) + << FixItHint::CreateInsertion(Open, "(") + << FixItHint::CreateInsertion(Close, ")"); + + if (IsOrAssign) + Diag(Loc, diag::note_condition_or_assign_to_comparison) + << FixItHint::CreateReplacement(Loc, "!="); + else + Diag(Loc, diag::note_condition_assign_to_comparison) + << FixItHint::CreateReplacement(Loc, "=="); + } + + /// Redundant parentheses over an equality comparison can indicate + /// that the user intended an assignment used as condition. + void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) { + // Don't warn if the parens came from a macro. + SourceLocation parenLoc = ParenE->getBeginLoc(); + if (parenLoc.isInvalid() || parenLoc.isMacroID()) + return; + // Don't warn for dependent expressions. + if (ParenE->isTypeDependent()) + return; + + Expr *E = ParenE->IgnoreParens(); + + if (BinaryOperator *opE = dyn_cast(E)) + if (opE->getOpcode() == BO_EQ && + opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context) + == Expr::MLV_Valid) { + SourceLocation Loc = opE->getOperatorLoc(); + + Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange(); + SourceRange ParenERange = ParenE->getSourceRange(); + Diag(Loc, diag::note_equality_comparison_silence) + << FixItHint::CreateRemoval(ParenERange.getBegin()) + << FixItHint::CreateRemoval(ParenERange.getEnd()); + Diag(Loc, diag::note_equality_comparison_to_assign) + << FixItHint::CreateReplacement(Loc, "="); + } + } + + ExprResult Sema::CheckBooleanCondition(SourceLocation Loc, Expr *E, + bool IsConstexpr) { + DiagnoseAssignmentAsCondition(E); + if (ParenExpr *parenE = dyn_cast(E)) + DiagnoseEqualityWithExtraParens(parenE); + + ExprResult result = CheckPlaceholderExpr(E); + if (result.isInvalid()) return ExprError(); + E = result.get(); + + if (!E->isTypeDependent()) { + if (getLangOpts().CPlusPlus) + return CheckCXXBooleanCondition(E, IsConstexpr); // C++ 6.4p4 + + ExprResult ERes = DefaultFunctionArrayLvalueConversion(E); + if (ERes.isInvalid()) + return ExprError(); + E = ERes.get(); + + QualType T = E->getType(); + if (!T->isScalarType()) { // C99 6.8.4.1p1 + Diag(Loc, diag::err_typecheck_statement_requires_scalar) + << T << E->getSourceRange(); + return ExprError(); + } + CheckBoolLikeConversion(E, Loc); + } + + return E; + } + + Sema::ConditionResult Sema::ActOnCondition(Scope *S, SourceLocation Loc, + Expr *SubExpr, ConditionKind CK, + bool MissingOK) { + // MissingOK indicates whether having no condition expression is valid + // (for loop) or invalid (e.g. while loop). + if (!SubExpr) + return MissingOK ? ConditionResult() : ConditionError(); + + ExprResult Cond; + switch (CK) { + case ConditionKind::Boolean: + Cond = CheckBooleanCondition(Loc, SubExpr); + break; + + case ConditionKind::ConstexprIf: + Cond = CheckBooleanCondition(Loc, SubExpr, true); + break; + + case ConditionKind::Switch: + Cond = CheckSwitchCondition(Loc, SubExpr); + break; + } + if (Cond.isInvalid()) { + Cond = CreateRecoveryExpr(SubExpr->getBeginLoc(), SubExpr->getEndLoc(), + {SubExpr}, PreferredConditionType(CK)); + if (!Cond.get()) + return ConditionError(); + } + // FIXME: FullExprArg doesn't have an invalid bit, so check nullness instead. + FullExprArg FullExpr = MakeFullExpr(Cond.get(), Loc); + if (!FullExpr.get()) + return ConditionError(); + + return ConditionResult(*this, nullptr, FullExpr, + CK == ConditionKind::ConstexprIf); + } + + namespace { + /// A visitor for rebuilding a call to an __unknown_any expression + /// to have an appropriate type. + struct RebuildUnknownAnyFunction + : StmtVisitor { + + Sema &S; + + RebuildUnknownAnyFunction(Sema &S) : S(S) {} + + ExprResult VisitStmt(Stmt *S) { + llvm_unreachable("unexpected statement!"); + } + + ExprResult VisitExpr(Expr *E) { + S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call) + << E->getSourceRange(); + return ExprError(); + } + + /// Rebuild an expression which simply semantically wraps another + /// expression which it shares the type and value kind of. + template ExprResult rebuildSugarExpr(T *E) { + ExprResult SubResult = Visit(E->getSubExpr()); + if (SubResult.isInvalid()) return ExprError(); + + Expr *SubExpr = SubResult.get(); + E->setSubExpr(SubExpr); + E->setType(SubExpr->getType()); + E->setValueKind(SubExpr->getValueKind()); + assert(E->getObjectKind() == OK_Ordinary); + return E; + } + + ExprResult VisitParenExpr(ParenExpr *E) { + return rebuildSugarExpr(E); + } + + ExprResult VisitUnaryExtension(UnaryOperator *E) { + return rebuildSugarExpr(E); + } + + ExprResult VisitUnaryAddrOf(UnaryOperator *E) { + ExprResult SubResult = Visit(E->getSubExpr()); + if (SubResult.isInvalid()) return ExprError(); + + Expr *SubExpr = SubResult.get(); + E->setSubExpr(SubExpr); + E->setType(S.Context.getPointerType(SubExpr->getType())); + assert(E->isPRValue()); + assert(E->getObjectKind() == OK_Ordinary); + return E; + } + + ExprResult resolveDecl(Expr *E, ValueDecl *VD) { + if (!isa(VD)) return VisitExpr(E); + + E->setType(VD->getType()); + + assert(E->isPRValue()); + if (S.getLangOpts().CPlusPlus && + !(isa(VD) && + cast(VD)->isInstance())) + E->setValueKind(VK_LValue); + + return E; + } + + ExprResult VisitMemberExpr(MemberExpr *E) { + return resolveDecl(E, E->getMemberDecl()); + } + + ExprResult VisitDeclRefExpr(DeclRefExpr *E) { + return resolveDecl(E, E->getDecl()); + } + }; + } + + /// Given a function expression of unknown-any type, try to rebuild it + /// to have a function type. + static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) { + ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr); + if (Result.isInvalid()) return ExprError(); + return S.DefaultFunctionArrayConversion(Result.get()); + } + + namespace { + /// A visitor for rebuilding an expression of type __unknown_anytype + /// into one which resolves the type directly on the referring + /// expression. Strict preservation of the original source + /// structure is not a goal. + struct RebuildUnknownAnyExpr + : StmtVisitor { + + Sema &S; + + /// The current destination type. + QualType DestType; + + RebuildUnknownAnyExpr(Sema &S, QualType CastType) + : S(S), DestType(CastType) {} + + ExprResult VisitStmt(Stmt *S) { + llvm_unreachable("unexpected statement!"); + } + + ExprResult VisitExpr(Expr *E) { + S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr) + << E->getSourceRange(); + return ExprError(); + } + + ExprResult VisitCallExpr(CallExpr *E); + ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E); + + /// Rebuild an expression which simply semantically wraps another + /// expression which it shares the type and value kind of. + template ExprResult rebuildSugarExpr(T *E) { + ExprResult SubResult = Visit(E->getSubExpr()); + if (SubResult.isInvalid()) return ExprError(); + Expr *SubExpr = SubResult.get(); + E->setSubExpr(SubExpr); + E->setType(SubExpr->getType()); + E->setValueKind(SubExpr->getValueKind()); + assert(E->getObjectKind() == OK_Ordinary); + return E; + } + + ExprResult VisitParenExpr(ParenExpr *E) { + return rebuildSugarExpr(E); + } + + ExprResult VisitUnaryExtension(UnaryOperator *E) { + return rebuildSugarExpr(E); + } + + ExprResult VisitUnaryAddrOf(UnaryOperator *E) { + const PointerType *Ptr = DestType->getAs(); + if (!Ptr) { + S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof) + << E->getSourceRange(); + return ExprError(); + } + + if (isa(E->getSubExpr())) { + S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof_call) + << E->getSourceRange(); + return ExprError(); + } + + assert(E->isPRValue()); + assert(E->getObjectKind() == OK_Ordinary); + E->setType(DestType); + + // Build the sub-expression as if it were an object of the pointee type. + DestType = Ptr->getPointeeType(); + ExprResult SubResult = Visit(E->getSubExpr()); + if (SubResult.isInvalid()) return ExprError(); + E->setSubExpr(SubResult.get()); + return E; + } + + ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E); + + ExprResult resolveDecl(Expr *E, ValueDecl *VD); + + ExprResult VisitMemberExpr(MemberExpr *E) { + return resolveDecl(E, E->getMemberDecl()); + } + + ExprResult VisitDeclRefExpr(DeclRefExpr *E) { + return resolveDecl(E, E->getDecl()); + } + }; + } + + /// Rebuilds a call expression which yielded __unknown_anytype. + ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) { + Expr *CalleeExpr = E->getCallee(); + + enum FnKind { + FK_MemberFunction, + FK_FunctionPointer, + FK_BlockPointer + }; + + FnKind Kind; + QualType CalleeType = CalleeExpr->getType(); + if (CalleeType == S.Context.BoundMemberTy) { + assert(isa(E) || isa(E)); + Kind = FK_MemberFunction; + CalleeType = Expr::findBoundMemberType(CalleeExpr); + } else if (const PointerType *Ptr = CalleeType->getAs()) { + CalleeType = Ptr->getPointeeType(); + Kind = FK_FunctionPointer; + } else { + CalleeType = CalleeType->castAs()->getPointeeType(); + Kind = FK_BlockPointer; + } + const FunctionType *FnType = CalleeType->castAs(); + + // Verify that this is a legal result type of a function. + if (DestType->isArrayType() || DestType->isFunctionType()) { + unsigned diagID = diag::err_func_returning_array_function; + if (Kind == FK_BlockPointer) + diagID = diag::err_block_returning_array_function; + + S.Diag(E->getExprLoc(), diagID) + << DestType->isFunctionType() << DestType; + return ExprError(); + } + + // Otherwise, go ahead and set DestType as the call's result. + E->setType(DestType.getNonLValueExprType(S.Context)); + E->setValueKind(Expr::getValueKindForType(DestType)); + assert(E->getObjectKind() == OK_Ordinary); + + // Rebuild the function type, replacing the result type with DestType. + const FunctionProtoType *Proto = dyn_cast(FnType); + if (Proto) { + // __unknown_anytype(...) is a special case used by the debugger when + // it has no idea what a function's signature is. + // + // We want to build this call essentially under the K&R + // unprototyped rules, but making a FunctionNoProtoType in C++ + // would foul up all sorts of assumptions. However, we cannot + // simply pass all arguments as variadic arguments, nor can we + // portably just call the function under a non-variadic type; see + // the comment on IR-gen's TargetInfo::isNoProtoCallVariadic. + // However, it turns out that in practice it is generally safe to + // call a function declared as "A foo(B,C,D);" under the prototype + // "A foo(B,C,D,...);". The only known exception is with the + // Windows ABI, where any variadic function is implicitly cdecl + // regardless of its normal CC. Therefore we change the parameter + // types to match the types of the arguments. + // + // This is a hack, but it is far superior to moving the + // corresponding target-specific code from IR-gen to Sema/AST. + + ArrayRef ParamTypes = Proto->getParamTypes(); + SmallVector ArgTypes; + if (ParamTypes.empty() && Proto->isVariadic()) { // the special case + ArgTypes.reserve(E->getNumArgs()); + for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) { + ArgTypes.push_back(S.Context.getReferenceQualifiedType(E->getArg(i))); + } + ParamTypes = ArgTypes; + } + DestType = S.Context.getFunctionType(DestType, ParamTypes, + Proto->getExtProtoInfo()); + } else { + DestType = S.Context.getFunctionNoProtoType(DestType, + FnType->getExtInfo()); + } + + // Rebuild the appropriate pointer-to-function type. + switch (Kind) { + case FK_MemberFunction: + // Nothing to do. + break; + + case FK_FunctionPointer: + DestType = S.Context.getPointerType(DestType); + break; + + case FK_BlockPointer: + DestType = S.Context.getBlockPointerType(DestType); + break; + } + + // Finally, we can recurse. + ExprResult CalleeResult = Visit(CalleeExpr); + if (!CalleeResult.isUsable()) return ExprError(); + E->setCallee(CalleeResult.get()); + + // Bind a temporary if necessary. + return S.MaybeBindToTemporary(E); + } + + ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) { + // Verify that this is a legal result type of a call. + if (DestType->isArrayType() || DestType->isFunctionType()) { + S.Diag(E->getExprLoc(), diag::err_func_returning_array_function) + << DestType->isFunctionType() << DestType; + return ExprError(); + } + + // Rewrite the method result type if available. + if (ObjCMethodDecl *Method = E->getMethodDecl()) { + assert(Method->getReturnType() == S.Context.UnknownAnyTy); + Method->setReturnType(DestType); + } + + // Change the type of the message. + E->setType(DestType.getNonReferenceType()); + E->setValueKind(Expr::getValueKindForType(DestType)); + + return S.MaybeBindToTemporary(E); + } + + ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) { + // The only case we should ever see here is a function-to-pointer decay. + if (E->getCastKind() == CK_FunctionToPointerDecay) { + assert(E->isPRValue()); + assert(E->getObjectKind() == OK_Ordinary); + + E->setType(DestType); + + // Rebuild the sub-expression as the pointee (function) type. + DestType = DestType->castAs()->getPointeeType(); + + ExprResult Result = Visit(E->getSubExpr()); + if (!Result.isUsable()) return ExprError(); + + E->setSubExpr(Result.get()); + return E; + } else if (E->getCastKind() == CK_LValueToRValue) { + assert(E->isPRValue()); + assert(E->getObjectKind() == OK_Ordinary); + + assert(isa(E->getType())); + + E->setType(DestType); + + // The sub-expression has to be a lvalue reference, so rebuild it as such. + DestType = S.Context.getLValueReferenceType(DestType); + + ExprResult Result = Visit(E->getSubExpr()); + if (!Result.isUsable()) return ExprError(); + + E->setSubExpr(Result.get()); + return E; + } else { + llvm_unreachable("Unhandled cast type!"); + } + } + + ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) { + ExprValueKind ValueKind = VK_LValue; + QualType Type = DestType; + + // We know how to make this work for certain kinds of decls: + + // - functions + if (FunctionDecl *FD = dyn_cast(VD)) { + if (const PointerType *Ptr = Type->getAs()) { + DestType = Ptr->getPointeeType(); + ExprResult Result = resolveDecl(E, VD); + if (Result.isInvalid()) return ExprError(); + return S.ImpCastExprToType(Result.get(), Type, CK_FunctionToPointerDecay, + VK_PRValue); + } + + if (!Type->isFunctionType()) { + S.Diag(E->getExprLoc(), diag::err_unknown_any_function) + << VD << E->getSourceRange(); + return ExprError(); + } + if (const FunctionProtoType *FT = Type->getAs()) { + // We must match the FunctionDecl's type to the hack introduced in + // RebuildUnknownAnyExpr::VisitCallExpr to vararg functions of unknown + // type. See the lengthy commentary in that routine. + QualType FDT = FD->getType(); + const FunctionType *FnType = FDT->castAs(); + const FunctionProtoType *Proto = dyn_cast_or_null(FnType); + DeclRefExpr *DRE = dyn_cast(E); + if (DRE && Proto && Proto->getParamTypes().empty() && Proto->isVariadic()) { + SourceLocation Loc = FD->getLocation(); + FunctionDecl *NewFD = FunctionDecl::Create( + S.Context, FD->getDeclContext(), Loc, Loc, + FD->getNameInfo().getName(), DestType, FD->getTypeSourceInfo(), + SC_None, S.getCurFPFeatures().isFPConstrained(), + false /*isInlineSpecified*/, FD->hasPrototype(), + /*ConstexprKind*/ ConstexprSpecKind::Unspecified); + + if (FD->getQualifier()) + NewFD->setQualifierInfo(FD->getQualifierLoc()); + + SmallVector Params; + for (const auto &AI : FT->param_types()) { + ParmVarDecl *Param = + S.BuildParmVarDeclForTypedef(FD, Loc, AI); + Param->setScopeInfo(0, Params.size()); + Params.push_back(Param); + } + NewFD->setParams(Params); + DRE->setDecl(NewFD); + VD = DRE->getDecl(); + } + } + + if (CXXMethodDecl *MD = dyn_cast(FD)) + if (MD->isInstance()) { + ValueKind = VK_PRValue; + Type = S.Context.BoundMemberTy; + } + + // Function references aren't l-values in C. + if (!S.getLangOpts().CPlusPlus) + ValueKind = VK_PRValue; + + // - variables + } else if (isa(VD)) { + if (const ReferenceType *RefTy = Type->getAs()) { + Type = RefTy->getPointeeType(); + } else if (Type->isFunctionType()) { + S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type) + << VD << E->getSourceRange(); + return ExprError(); + } + + // - nothing else + } else { + S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl) + << VD << E->getSourceRange(); + return ExprError(); + } + + // Modifying the declaration like this is friendly to IR-gen but + // also really dangerous. + VD->setType(DestType); + E->setType(Type); + E->setValueKind(ValueKind); + return E; + } + + /// Check a cast of an unknown-any type. We intentionally only + /// trigger this for C-style casts. + ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType, + Expr *CastExpr, CastKind &CastKind, + ExprValueKind &VK, CXXCastPath &Path) { + // The type we're casting to must be either void or complete. + if (!CastType->isVoidType() && + RequireCompleteType(TypeRange.getBegin(), CastType, + diag::err_typecheck_cast_to_incomplete)) + return ExprError(); + + // Rewrite the casted expression from scratch. + ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr); + if (!result.isUsable()) return ExprError(); + + CastExpr = result.get(); + VK = CastExpr->getValueKind(); + CastKind = CK_NoOp; + + return CastExpr; + } + + ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) { + return RebuildUnknownAnyExpr(*this, ToType).Visit(E); + } + + ExprResult Sema::checkUnknownAnyArg(SourceLocation callLoc, + Expr *arg, QualType ¶mType) { + // If the syntactic form of the argument is not an explicit cast of + // any sort, just do default argument promotion. + ExplicitCastExpr *castArg = dyn_cast(arg->IgnoreParens()); + if (!castArg) { + ExprResult result = DefaultArgumentPromotion(arg); + if (result.isInvalid()) return ExprError(); + paramType = result.get()->getType(); + return result; + } + + // Otherwise, use the type that was written in the explicit cast. + assert(!arg->hasPlaceholderType()); + paramType = castArg->getTypeAsWritten(); + + // Copy-initialize a parameter of that type. + InitializedEntity entity = + InitializedEntity::InitializeParameter(Context, paramType, + /*consumed*/ false); + return PerformCopyInitialization(entity, callLoc, arg); + } + + static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) { + Expr *orig = E; + unsigned diagID = diag::err_uncasted_use_of_unknown_any; + while (true) { + E = E->IgnoreParenImpCasts(); + if (CallExpr *call = dyn_cast(E)) { + E = call->getCallee(); + diagID = diag::err_uncasted_call_of_unknown_any; + } else { + break; + } + } + + SourceLocation loc; + NamedDecl *d; + if (DeclRefExpr *ref = dyn_cast(E)) { + loc = ref->getLocation(); + d = ref->getDecl(); + } else if (MemberExpr *mem = dyn_cast(E)) { + loc = mem->getMemberLoc(); + d = mem->getMemberDecl(); + } else if (ObjCMessageExpr *msg = dyn_cast(E)) { + diagID = diag::err_uncasted_call_of_unknown_any; + loc = msg->getSelectorStartLoc(); + d = msg->getMethodDecl(); + if (!d) { + S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method) + << static_cast(msg->isClassMessage()) << msg->getSelector() + << orig->getSourceRange(); + return ExprError(); + } + } else { + S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr) + << E->getSourceRange(); + return ExprError(); + } + + S.Diag(loc, diagID) << d << orig->getSourceRange(); + + // Never recoverable. + return ExprError(); + } + + /// Check for operands with placeholder types and complain if found. + /// Returns ExprError() if there was an error and no recovery was possible. + ExprResult Sema::CheckPlaceholderExpr(Expr *E) { + if (!Context.isDependenceAllowed()) { + // C cannot handle TypoExpr nodes on either side of a binop because it + // doesn't handle dependent types properly, so make sure any TypoExprs have + // been dealt with before checking the operands. + ExprResult Result = CorrectDelayedTyposInExpr(E); + if (!Result.isUsable()) return ExprError(); + E = Result.get(); + } + + const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType(); + if (!placeholderType) return E; + + switch (placeholderType->getKind()) { + + // Overloaded expressions. + case BuiltinType::Overload: { + // Try to resolve a single function template specialization. + // This is obligatory. + ExprResult Result = E; + if (ResolveAndFixSingleFunctionTemplateSpecialization(Result, false)) + return Result; + + // No guarantees that ResolveAndFixSingleFunctionTemplateSpecialization + // leaves Result unchanged on failure. + Result = E; + if (resolveAndFixAddressOfSingleOverloadCandidate(Result)) + return Result; + + // If that failed, try to recover with a call. + tryToRecoverWithCall(Result, PDiag(diag::err_ovl_unresolvable), + /*complain*/ true); + return Result; + } + + // Bound member functions. + case BuiltinType::BoundMember: { + ExprResult result = E; + const Expr *BME = E->IgnoreParens(); + PartialDiagnostic PD = PDiag(diag::err_bound_member_function); + // Try to give a nicer diagnostic if it is a bound member that we recognize. + if (isa(BME)) { + PD = PDiag(diag::err_dtor_expr_without_call) << /*pseudo-destructor*/ 1; + } else if (const auto *ME = dyn_cast(BME)) { + if (ME->getMemberNameInfo().getName().getNameKind() == + DeclarationName::CXXDestructorName) + PD = PDiag(diag::err_dtor_expr_without_call) << /*destructor*/ 0; + } + tryToRecoverWithCall(result, PD, + /*complain*/ true); + return result; + } + + // ARC unbridged casts. + case BuiltinType::ARCUnbridgedCast: { + Expr *realCast = stripARCUnbridgedCast(E); + diagnoseARCUnbridgedCast(realCast); + return realCast; + } + + // Expressions of unknown type. + case BuiltinType::UnknownAny: + return diagnoseUnknownAnyExpr(*this, E); + + // Pseudo-objects. + case BuiltinType::PseudoObject: + return checkPseudoObjectRValue(E); + + case BuiltinType::BuiltinFn: { + // Accept __noop without parens by implicitly converting it to a call expr. + auto *DRE = dyn_cast(E->IgnoreParenImpCasts()); + if (DRE) { + auto *FD = cast(DRE->getDecl()); + unsigned BuiltinID = FD->getBuiltinID(); + if (BuiltinID == Builtin::BI__noop) { + E = ImpCastExprToType(E, Context.getPointerType(FD->getType()), + CK_BuiltinFnToFnPtr) + .get(); + return CallExpr::Create(Context, E, /*Args=*/{}, Context.IntTy, + VK_PRValue, SourceLocation(), + FPOptionsOverride()); + } + + if (Context.BuiltinInfo.isInStdNamespace(BuiltinID)) { + // Any use of these other than a direct call is ill-formed as of C++20, + // because they are not addressable functions. In earlier language + // modes, warn and force an instantiation of the real body. + Diag(E->getBeginLoc(), + getLangOpts().CPlusPlus20 + ? diag::err_use_of_unaddressable_function + : diag::warn_cxx20_compat_use_of_unaddressable_function); + if (FD->isImplicitlyInstantiable()) { + // Require a definition here because a normal attempt at + // instantiation for a builtin will be ignored, and we won't try + // again later. We assume that the definition of the template + // precedes this use. + InstantiateFunctionDefinition(E->getBeginLoc(), FD, + /*Recursive=*/false, + /*DefinitionRequired=*/true, + /*AtEndOfTU=*/false); + } + // Produce a properly-typed reference to the function. + CXXScopeSpec SS; + SS.Adopt(DRE->getQualifierLoc()); + TemplateArgumentListInfo TemplateArgs; + DRE->copyTemplateArgumentsInto(TemplateArgs); + return BuildDeclRefExpr( + FD, FD->getType(), VK_LValue, DRE->getNameInfo(), + DRE->hasQualifier() ? &SS : nullptr, DRE->getFoundDecl(), + DRE->getTemplateKeywordLoc(), + DRE->hasExplicitTemplateArgs() ? &TemplateArgs : nullptr); + } + } + + Diag(E->getBeginLoc(), diag::err_builtin_fn_use); + return ExprError(); + } + + case BuiltinType::IncompleteMatrixIdx: + Diag(cast(E->IgnoreParens()) + ->getRowIdx() + ->getBeginLoc(), + diag::err_matrix_incomplete_index); + return ExprError(); + + // Expressions of unknown type. + case BuiltinType::OMPArraySection: + Diag(E->getBeginLoc(), diag::err_omp_array_section_use); + return ExprError(); + + // Expressions of unknown type. + case BuiltinType::OMPArrayShaping: + return ExprError(Diag(E->getBeginLoc(), diag::err_omp_array_shaping_use)); + + case BuiltinType::OMPIterator: + return ExprError(Diag(E->getBeginLoc(), diag::err_omp_iterator_use)); + + // Everything else should be impossible. + #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ + case BuiltinType::Id: + #include "clang/Basic/OpenCLImageTypes.def" + #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ + case BuiltinType::Id: + #include "clang/Basic/OpenCLExtensionTypes.def" + #define SVE_TYPE(Name, Id, SingletonId) \ + case BuiltinType::Id: + #include "clang/Basic/AArch64SVEACLETypes.def" + #define PPC_VECTOR_TYPE(Name, Id, Size) \ + case BuiltinType::Id: + #include "clang/Basic/PPCTypes.def" + #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id: + #include "clang/Basic/RISCVVTypes.def" + #define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id: + #include "clang/Basic/WebAssemblyReferenceTypes.def" + #define BUILTIN_TYPE(Id, SingletonId) case BuiltinType::Id: + #define PLACEHOLDER_TYPE(Id, SingletonId) + #include "clang/AST/BuiltinTypes.def" + break; + } + + llvm_unreachable("invalid placeholder type!"); + } + + bool Sema::CheckCaseExpression(Expr *E) { + if (E->isTypeDependent()) + return true; + if (E->isValueDependent() || E->isIntegerConstantExpr(Context)) + return E->getType()->isIntegralOrEnumerationType(); + return false; + } + + /// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals. + ExprResult + Sema::ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) { + assert((Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) && + "Unknown Objective-C Boolean value!"); + QualType BoolT = Context.ObjCBuiltinBoolTy; + if (!Context.getBOOLDecl()) { + LookupResult Result(*this, &Context.Idents.get("BOOL"), OpLoc, + Sema::LookupOrdinaryName); + if (LookupName(Result, getCurScope()) && Result.isSingleResult()) { + NamedDecl *ND = Result.getFoundDecl(); + if (TypedefDecl *TD = dyn_cast(ND)) + Context.setBOOLDecl(TD); + } + } + if (Context.getBOOLDecl()) + BoolT = Context.getBOOLType(); + return new (Context) + ObjCBoolLiteralExpr(Kind == tok::kw___objc_yes, BoolT, OpLoc); + } + + ExprResult Sema::ActOnObjCAvailabilityCheckExpr( + llvm::ArrayRef AvailSpecs, SourceLocation AtLoc, + SourceLocation RParen) { + auto FindSpecVersion = + [&](StringRef Platform) -> std::optional { + auto Spec = llvm::find_if(AvailSpecs, [&](const AvailabilitySpec &Spec) { + return Spec.getPlatform() == Platform; + }); + // Transcribe the "ios" availability check to "maccatalyst" when compiling + // for "maccatalyst" if "maccatalyst" is not specified. + if (Spec == AvailSpecs.end() && Platform == "maccatalyst") { + Spec = llvm::find_if(AvailSpecs, [&](const AvailabilitySpec &Spec) { + return Spec.getPlatform() == "ios"; + }); + } + if (Spec == AvailSpecs.end()) + return std::nullopt; + return Spec->getVersion(); + }; + + VersionTuple Version; + if (auto MaybeVersion = + FindSpecVersion(Context.getTargetInfo().getPlatformName())) + Version = *MaybeVersion; + + // The use of `@available` in the enclosing context should be analyzed to + // warn when it's used inappropriately (i.e. not if(@available)). + if (FunctionScopeInfo *Context = getCurFunctionAvailabilityContext()) + Context->HasPotentialAvailabilityViolations = true; + + return new (Context) + ObjCAvailabilityCheckExpr(Version, AtLoc, RParen, Context.BoolTy); + } + + ExprResult Sema::CreateRecoveryExpr(SourceLocation Begin, SourceLocation End, + ArrayRef SubExprs, QualType T) { + if (!Context.getLangOpts().RecoveryAST) + return ExprError(); + + if (isSFINAEContext()) + return ExprError(); + + if (T.isNull() || T->isUndeducedType() || + !Context.getLangOpts().RecoveryASTType) + // We don't know the concrete type, fallback to dependent type. + T = Context.DependentTy; + + return RecoveryExpr::Create(Context, T, Begin, End, SubExprs); + } +diff --git a/clang/test/SemaStdPar/Inputs/stdpar_lib.hpp b/clang/test/SemaStdPar/Inputs/stdpar_lib.hpp +new file mode 100644 +index 000000000000..e69de29bb2d1 +diff --git a/clang/test/SemaStdPar/device-can-call-host.cpp b/clang/test/SemaStdPar/device-can-call-host.cpp +new file mode 100644 +index 000000000000..60f7a2ebbc6a +--- /dev/null ++++ b/clang/test/SemaStdPar/device-can-call-host.cpp +@@ -0,0 +1,91 @@ ++// RUN: %clang %s --stdpar --stdpar-path=%S/Inputs \ ++// RUN: --stdpar-thrust-path=%S/Inputs --stdpar-prim-path=%S/Inputs \ ++// RUN: --offload-device-only -emit-llvm -o /dev/null -Xclang -verify ++ ++// Note: These would happen implicitly, within the implementation of the ++// accelerator specific algorithm library, and not from user code. ++ ++// Calls from the accelerator side to implicitly host (i.e. unannotated) ++// functions are fine. ++ ++// expected-no-diagnostics ++ ++extern "C" void host_fn() {} ++ ++struct Dummy {}; ++ ++struct S { ++ S() {} ++ ~S() { host_fn(); } ++ ++ int x; ++}; ++ ++struct T { ++ __device__ void hd() { host_fn(); } ++ ++ __device__ void hd3(); ++ ++ void h() {} ++ ++ void operator+(); ++ void operator-(const T&) {} ++ ++ operator Dummy() { return Dum \ No newline at end of file