diff --git a/mlir/lib/ExecutionEngine/CudaRuntimeWrappers.cpp b/mlir/lib/ExecutionEngine/CudaRuntimeWrappers.cpp --- a/mlir/lib/ExecutionEngine/CudaRuntimeWrappers.cpp +++ b/mlir/lib/ExecutionEngine/CudaRuntimeWrappers.cpp @@ -567,7 +567,7 @@ // and returning workspace and compressed matrices data buffer sizes. extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuCuSparseLtSpMMBufferSize(void *bs, int32_t ma, int32_t mb, void *a, void *b, - void *c, int32_t ctp, CUstream /*stream*/) { + void *c, int32_t ctp, CUstream stream) { assert(cusparseLt_initiated && "client did not call mgpuCreateSparseLtEnv()"); // TODO: support more advanced settings, e.g., the input right operand is a // sparse matrix assuming matA is the sparse matrix @@ -596,6 +596,25 @@ CUSPARSE_REPORT_IF_ERROR(cusparseLtMatmulPlanInit( &cusparseLt_env, &(matA->plan), &(matA->matmul), &(matA->alg_sel))) + // Pruning step (in-place). + CUSPARSE_REPORT_IF_ERROR( + cusparseLtSpMMAPrune(&cusparseLt_env, &(matA->matmul), matA->values, + matA->values, CUSPARSELT_PRUNE_SPMMA_STRIP, stream)) + + // Check structure of A. + // Note that this adds a synchronization on the stream. + // TODO: Do we want that? + int *dvalid = (int *)mgpuMemAlloc(sizeof(int), stream); + CUSPARSE_REPORT_IF_ERROR(cusparseLtSpMMAPruneCheck( + &cusparseLt_env, &(matA->matmul), matA->values, dvalid, stream)) + int valid = 0; + mgpuMemcpy(&valid, dvalid, sizeof(int), stream); + mgpuStreamSynchronize(stream); + mgpuMemFree(dvalid, stream); + if (valid != 0) + fprintf(stderr, "CUPARSE-LT: sparse matrix is not 2:4; computed results " + "will be invalid\n"); + CUSPARSE_REPORT_IF_ERROR(cusparseLtMatmulGetWorkspace( &cusparseLt_env, &(matA->plan), &workspace_size_)) CUSPARSE_REPORT_IF_ERROR(cusparseLtSpMMACompressedSize( diff --git a/mlir/test/Integration/Dialect/SparseTensor/GPU/CUDA/sm80-lt/sparse-matmul-2-4-prune.mlir b/mlir/test/Integration/Dialect/SparseTensor/GPU/CUDA/sm80-lt/sparse-matmul-2-4-prune.mlir new file mode 100644 --- /dev/null +++ b/mlir/test/Integration/Dialect/SparseTensor/GPU/CUDA/sm80-lt/sparse-matmul-2-4-prune.mlir @@ -0,0 +1,132 @@ +// +// NOTE: this test requires gpu-sm80 and cusparselt +// +// RUN: mlir-opt --sparse-compiler="enable-runtime-library=false enable-gpu-libgen=true gpu-triple=nvptx64-nvidia-cuda gpu-chip=sm_80 gpu-features=+ptx71" \ +// RUN: %s \ +// RUN: | mlir-cpu-runner \ +// RUN: --shared-libs=%mlir_cuda_runtime \ +// RUN: --shared-libs=%mlir_c_runner_utils \ +// RUN: --e main --entry-point-result=void \ +// RUN: | FileCheck %s + +#map0 = affine_map<(d0, d1, d2) -> (d0, d2)> +#map1 = affine_map<(d0, d1, d2) -> (d2, d1)> +#map2 = affine_map<(d0, d1, d2) -> (d0, d1)> + +module { + + llvm.func @mgpuCreateSparseLtEnv() + llvm.func @mgpuDestroySparseLtEnv() + + // + // TODO: This uses our temporary ATTRIBUTE, replace with 2:4 type! + // + func.func @matmul(%arg0: tensor<16x16xf16>, + %arg1: tensor<16x16xf16>, + %arg2: tensor<16x16xf16>) -> tensor<16x16xf16> { + %0 = linalg.generic { + DENSE24, + indexing_maps = [#map0, #map1, #map2], + iterator_types = ["parallel", "parallel", "reduction"] + } + ins(%arg0, %arg1 : tensor<16x16xf16>, tensor<16x16xf16>) + outs(%arg2 : tensor<16x16xf16>) { + ^bb0(%in: f16, %in_0: f16, %out: f16): + %1 = arith.mulf %in, %in_0 : f16 + %2 = arith.addf %out, %1 : f16 + linalg.yield %2 : f16 + } -> tensor<16x16xf16> + return %0 : tensor<16x16xf16> + } + + func.func @main() { + llvm.call @mgpuCreateSparseLtEnv() : () -> () + + %c0 = arith.constant 0 : index + %c1 = arith.constant 1 : index + %c16 = arith.constant 16 : index + + %f0 = arith.constant 0.0 : f16 + %f1 = arith.constant 1.0 : f16 + %f4 = arith.constant 4.0 : f16 + + // Initial A, B, C matrices. + %A = tensor.generate { + ^bb0(%i: index, %j: index): + %val = arith.andi %j, %c1 : index + %cmp = arith.cmpi eq, %val, %c0 : index + %res = arith.select %cmp, %f4, %f1 : f16 + tensor.yield %res : f16 + } : tensor<16x16xf16> + %B = tensor.generate { + ^bb0(%i: index, %j: index): + %cmp = arith.cmpi eq, %i, %j : index + %res = arith.select %cmp, %f1, %f0 : f16 + tensor.yield %res : f16 + } : tensor<16x16xf16> + %C = tensor.generate { + ^bb0(%i: index, %j: index): + tensor.yield %f0 : f16 + } : tensor<16x16xf16> + + // Call the kernel. + // + // By effectively computing D = A B + C with id(B) and zero(C) + // the resulting matrix returns the pruned A back to the caller. + // + %D = call @matmul(%A, %B, %C): (tensor<16x16xf16>, tensor<16x16xf16>, tensor<16x16xf16>) -> (tensor<16x16xf16>) + + // + // This was the original matrix. + // + // CHECK: ( 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1 ) + // CHECK-NEXT: ( 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1 ) + // CHECK-NEXT: ( 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1 ) + // CHECK-NEXT: ( 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1 ) + // CHECK-NEXT: ( 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1 ) + // CHECK-NEXT: ( 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1 ) + // CHECK-NEXT: ( 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1 ) + // CHECK-NEXT: ( 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1 ) + // CHECK-NEXT: ( 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1 ) + // CHECK-NEXT: ( 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1 ) + // CHECK-NEXT: ( 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1 ) + // CHECK-NEXT: ( 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1 ) + // CHECK-NEXT: ( 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1 ) + // CHECK-NEXT: ( 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1 ) + // CHECK-NEXT: ( 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1 ) + // CHECK-NEXT: ( 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1 ) + // + scf.for %i = %c0 to %c16 step %c1 { + %va = vector.transfer_read %A[%i, %c0], %f0 : tensor<16x16xf16>, vector<16xf16> + vector.print %va : vector<16xf16> + } + + // + // This is the STRIP-pruned matrix. + // + // CHECK-NEXT: ( 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0 ) + // CHECK-NEXT: ( 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0 ) + // CHECK-NEXT: ( 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0 ) + // CHECK-NEXT: ( 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0 ) + // CHECK-NEXT: ( 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0 ) + // CHECK-NEXT: ( 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0 ) + // CHECK-NEXT: ( 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0 ) + // CHECK-NEXT: ( 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0 ) + // CHECK-NEXT: ( 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0 ) + // CHECK-NEXT: ( 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0 ) + // CHECK-NEXT: ( 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0 ) + // CHECK-NEXT: ( 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0 ) + // CHECK-NEXT: ( 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0 ) + // CHECK-NEXT: ( 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0 ) + // CHECK-NEXT: ( 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0 ) + // CHECK-NEXT: ( 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0 ) + // + scf.for %i = %c0 to %c16 step %c1 { + %vd = vector.transfer_read %D[%i, %c0], %f0 : tensor<16x16xf16>, vector<16xf16> + vector.print %vd : vector<16xf16> + } + + llvm.call @mgpuDestroySparseLtEnv() : () -> () + return + } +}