diff --git a/mlir/lib/Dialect/SparseTensor/Transforms/SparseGPUCodegen.cpp b/mlir/lib/Dialect/SparseTensor/Transforms/SparseGPUCodegen.cpp --- a/mlir/lib/Dialect/SparseTensor/Transforms/SparseGPUCodegen.cpp +++ b/mlir/lib/Dialect/SparseTensor/Transforms/SparseGPUCodegen.cpp @@ -627,6 +627,143 @@ return success(); } +/// Match and rewrite SDDMM kernel. +static LogicalResult rewriteSDDMM(PatternRewriter &rewriter, + linalg::GenericOp op, bool enableRT) { + + // For now, this pass reuses C and copies the result non-zero elements to + // overwrite C's. + // As an ad hoc solution, this pass also assumes the linalg takes a,b,c as + // input argument, and c as the output. It recognizes this pattern and rewrite + // it. + + Location loc = op.getLoc(); + Value a = op.getOperand(1); + Value b = op.getOperand(2); + Value c = op.getOperand(0); + + SmallVector tokens; + + // Only admissible sparse matrix format and dense matrices. + bool isCOO = false; + SparseTensorType aTp = getSparseTensorType(a); + SparseTensorType bTp = getSparseTensorType(b); + SparseTensorType cTp = getSparseTensorType(c); + + if (!areAdmissibleTypes(cTp, bTp, aTp, enableRT, false, isCOO)) + return failure(); + + // cusparse currently does not support COO in its SDDMM kernel. + if (isCOO) { + return failure(); + } + + // The SDDMM does the in-place operation. + // TODO: If the sparse matrix C is reused, e.g., later on when we remove + // redundant memcpy, we may need to duplicate it before the operation so that + // users could use the new copy instead. Start sparse kernel and copy data + // from host to device. + // a : bufA -> matA + // b : bufB -> matA + // c : memR/memC/memV -> rowC,colC,valC + Value nseC = rewriter.create(loc, c); + Value szm = linalg::createOrFoldDimOp(rewriter, loc, a, 0); + Value szk = linalg::createOrFoldDimOp(rewriter, loc, a, 1); + Value szn = linalg::createOrFoldDimOp(rewriter, loc, b, 1); + Value bufA = genTensorToMemref(rewriter, loc, a); + Value matA = genAllocCopy(rewriter, loc, bufA, tokens); + Value bufB = genTensorToMemref(rewriter, loc, b); + Value matB = genAllocCopy(rewriter, loc, bufB, tokens); + Value memR = genFirstPosOrCrds(rewriter, loc, c, isCOO, enableRT); + Value memC = genSecondCrds(rewriter, loc, c, isCOO, enableRT); + Value memV = genToValues(rewriter, loc, c); + Value rowC = genAllocCopy(rewriter, loc, memR, tokens); + Value colC = memC ? genAllocCopy(rewriter, loc, memC, tokens) : Value(); + Value valC = genAllocCopy(rewriter, loc, memV, tokens); + genBlockingWait(rewriter, loc, tokens); + tokens.clear(); + + // Create sparse environment and sparse matrix/dense matrix handles. + Type indexTp = rewriter.getIndexType(); + Type envHandleTp = rewriter.getType(); + Type dnMatHandleTp = rewriter.getType(); + Type spMatHandleTp = rewriter.getType(); + Type tokenTp = rewriter.getType(); + Value token = genFirstWait(rewriter, loc); + auto env = + rewriter.create(loc, envHandleTp, tokenTp, token); + Value handle = env.getResult(0); + token = env.getAsyncToken(); + + auto dmatA = rewriter.create( + loc, dnMatHandleTp, tokenTp, token, handle, matA, + SmallVector{szm, szk}); + Value dnA = dmatA.getResult(0); + token = dmatA.getAsyncToken(); + auto dmatB = rewriter.create( + loc, dnMatHandleTp, tokenTp, token, handle, matB, + SmallVector{szk, szn}); + Value dnB = dmatB.getResult(0); + token = dmatB.getAsyncToken(); + + Operation *spGenC = + genSpMat(rewriter, loc, spMatHandleTp, tokenTp, token, szm, szn, nseC, + rowC, colC, valC, isCOO, enableRT); + Value spMatC = spGenC->getResult(0); + token = spGenC->getResult(1); + + auto dnCType = llvm::cast(c.getType()).getElementType(); + // Precompute buffersize for SDDMM. + auto bufferComp = rewriter.create( + loc, indexTp, tokenTp, token, handle, dnA, dnB, spMatC, dnCType); + Value bufferSz = bufferComp.getResult(0); + token = bufferComp.getAsyncToken(); + auto buf = genAllocBuffer(rewriter, loc, bufferSz, token); + Value buffer = buf.getResult(0); + token = buf.getAsyncToken(); + + // Perform the SDDMM. + auto sddmmComp = rewriter.create( + loc, tokenTp, token, handle, dnA, dnB, spMatC, dnCType, buffer); + token = sddmmComp.getAsyncToken(); + + // Copy data back to host and free all the resoures. + token = rewriter.create(loc, tokenTp, token, dnA) + .getAsyncToken(); + token = rewriter.create(loc, tokenTp, token, dnB) + .getAsyncToken(); + token = rewriter.create(loc, tokenTp, token, spMatC) + .getAsyncToken(); + token = rewriter.create(loc, tokenTp, token, handle) + .getAsyncToken(); + token = genDeallocMemRef(rewriter, loc, buffer, token); + token = genDeallocMemRef(rewriter, loc, matA, token); + token = genDeallocMemRef(rewriter, loc, matB, token); + token = genDeallocMemRef(rewriter, loc, rowC, token); + if (colC) + token = genDeallocMemRef(rewriter, loc, colC, token); + token = genCopyMemRef(rewriter, loc, memV, valC, token); + token = genDeallocMemRef(rewriter, loc, valC, token); + tokens.push_back(token); + genBlockingWait(rewriter, loc, tokens); + tokens.clear(); + + rewriter.replaceOpWithNewOp(op, op.getOperand(0)); + + // Erasing the dead and illegal alloc_tensor operation applied to the first + // input argument to the linalg operator. + // We need to make sure the first input argument is linked to + // bufferization::alloc_tensor(%args0) + if (op.getDpsInitOperand(0) + ->get() + .getDefiningOp() != nullptr) { + rewriter.eraseOp(op.getDpsInitOperand(0) + ->get() + .getDefiningOp()); + } + return success(); +} + //===----------------------------------------------------------------------===// // Rewriting rules for direct code generation. //===----------------------------------------------------------------------===// @@ -778,6 +915,17 @@ return rewriteSpMM(rewriter, op, enableRT); } + // Recognize a SDDMM kernel. + if (numLoops == 3 && numTensors == 4 && + linalg::isParallelIterator(iteratorTypes[0]) && + linalg::isParallelIterator(iteratorTypes[1]) && + linalg::isReductionIterator(iteratorTypes[2]) && + // TODO: add transposed {i, k}, {k, j} + // TODO: maybe add transposed {i, j} in future + maps == infer({{i, j}, {i, k}, {k, j}, {i, j}})) { + return rewriteSDDMM(rewriter, op, enableRT); + } + return failure(); } diff --git a/mlir/lib/ExecutionEngine/CudaRuntimeWrappers.cpp b/mlir/lib/ExecutionEngine/CudaRuntimeWrappers.cpp --- a/mlir/lib/ExecutionEngine/CudaRuntimeWrappers.cpp +++ b/mlir/lib/ExecutionEngine/CudaRuntimeWrappers.cpp @@ -270,6 +270,22 @@ (beta##p) = reinterpret_cast(&(beta##d)); \ } +#define ZERO(dtp, zero) \ + __nv_bfloat16(zero##16bf) = 0.0f; \ + __half(zero##16f) = 0.0f; \ + float(zero##f) = 0.0f; \ + double(zero##d) = 0.0; \ + const void *(zero##p) = nullptr; \ + if (dtp == CUDA_R_16BF || dtp == CUDA_C_16BF) { \ + (zero##p) = reinterpret_cast(&(zero##16bf)); \ + } else if (dtp == CUDA_R_16F || dtp == CUDA_C_16F) { \ + (zero##p) = reinterpret_cast(&(zero##16f)); \ + } else if (dtp == CUDA_R_32F || dtp == CUDA_C_32F) { \ + (zero##p) = reinterpret_cast(&(zero##f)); \ + } else { \ + (zero##p) = reinterpret_cast(&(zero##d)); \ + } + extern "C" MLIR_CUDA_WRAPPERS_EXPORT void * mgpuCreateSparseEnv(CUstream /*stream*/) { cusparseHandle_t handle = nullptr; @@ -437,9 +453,10 @@ cusparseSpMatDescr_t matC = reinterpret_cast(c); auto cTp = static_cast(ctp); ALPHABETA(cTp, alpha, beta) + ZERO(cTp, zero) size_t bufferSize = 0; CUSPARSE_REPORT_IF_ERROR(cusparseSDDMM_bufferSize( - handle, modeA, modeB, alphap, matA, matB, betap, matC, cTp, + handle, modeA, modeB, alphap, matA, matB, zerop, matC, cTp, CUSPARSE_SDDMM_ALG_DEFAULT, &bufferSize)) return bufferSize == 0 ? 1 : bufferSize; // avoid zero-alloc } @@ -455,8 +472,9 @@ cusparseSpMatDescr_t matC = reinterpret_cast(c); auto cTp = static_cast(ctp); ALPHABETA(cTp, alpha, beta) + ZERO(cTp, zero) CUSPARSE_REPORT_IF_ERROR(cusparseSDDMM(handle, modeA, modeB, alphap, matA, - matB, betap, matC, cTp, + matB, zerop, matC, cTp, CUSPARSE_SDDMM_ALG_DEFAULT, buf)) } diff --git a/mlir/test/Dialect/SparseTensor/GPU/gpu_sampled_matmul_lib.mlir b/mlir/test/Dialect/SparseTensor/GPU/gpu_sampled_matmul_lib.mlir new file mode 100644 --- /dev/null +++ b/mlir/test/Dialect/SparseTensor/GPU/gpu_sampled_matmul_lib.mlir @@ -0,0 +1,108 @@ +// RUN: mlir-opt %s --linalg-generalize-named-ops \ +// RUN: --sparsification="enable-gpu-libgen" | FileCheck %s + +#trait_sampled_dense_dense = { + indexing_maps = [ + affine_map<(i,j,k) -> (i,j)>, // S + affine_map<(i,j,k) -> (i,k)>, // A + affine_map<(i,j,k) -> (k,j)>, // B + affine_map<(i,j,k) -> (i,j)> // X (out) + ], + iterator_types = ["parallel", "parallel", "reduction"], + doc = "X(i,j) += S(i,j) SUM_k A(i,k) B(k,j)" +} + +#trait_vec_op = { + indexing_maps = [ + affine_map<(i,j) -> (i,j)>, // a (in) + affine_map<(i,j) -> (i,j)>, // b (in) + affine_map<(i,j) -> (i,j)> // x (out) + ], + iterator_types = ["parallel", "parallel"] +} + +#CSR = #sparse_tensor.encoding<{ lvlTypes = [ "dense", "compressed" ] }> + +module { + +// CHECK-LABEL: func.func @sparse_sampled_dd( +// CHECK-SAME: %[[VAL_0:.*]]: tensor<8x8xf64, #sparse_tensor.encoding<{ lvlTypes = [ "dense", "compressed" ] }>>, +// CHECK-SAME: %[[VAL_1:.*]]: tensor<8x8xf64>, +// CHECK-SAME: %[[VAL_2:.*]]: tensor<8x8xf64>) -> tensor<8x8xf64, #sparse_tensor.encoding<{ lvlTypes = [ "dense", "compressed" ] }>> { +// CHECK: %[[VAL_3:.*]] = arith.constant 8 : index +// CHECK: %[[VAL_4:.*]] = arith.constant 0 : index +// CHECK: %[[VAL_5:.*]] = sparse_tensor.number_of_entries %[[VAL_0]] : tensor<8x8xf64, #sparse_tensor.encoding<{ lvlTypes = [ "dense", "compressed" ] }>> +// CHECK: %[[VAL_6:.*]] = bufferization.to_memref %[[VAL_1]] : memref<8x8xf64> +// CHECK: %[[VAL_7:.*]] = gpu.wait async +// CHECK: %[[VAL_8:.*]], %[[VAL_9:.*]] = gpu.alloc async {{\[}}%[[VAL_7]]] () : memref<8x8xf64> +// CHECK: %[[VAL_10:.*]] = gpu.memcpy async {{\[}}%[[VAL_9]]] %[[VAL_8]], %[[VAL_6]] : memref<8x8xf64>, memref<8x8xf64> +// CHECK: %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_2]] : memref<8x8xf64> +// CHECK: %[[VAL_12:.*]] = gpu.wait async +// CHECK: %[[VAL_13:.*]], %[[VAL_14:.*]] = gpu.alloc async {{\[}}%[[VAL_12]]] () : memref<8x8xf64> +// CHECK: %[[VAL_15:.*]] = gpu.memcpy async {{\[}}%[[VAL_14]]] %[[VAL_13]], %[[VAL_11]] : memref<8x8xf64>, memref<8x8xf64> +// CHECK: %[[VAL_16:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 1 : index} : tensor<8x8xf64, #sparse_tensor.encoding<{ lvlTypes = [ "dense", "compressed" ] }>> to memref +// CHECK: %[[VAL_17:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 1 : index} : tensor<8x8xf64, #sparse_tensor.encoding<{ lvlTypes = [ "dense", "compressed" ] }>> to memref +// CHECK: %[[VAL_18:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<8x8xf64, #sparse_tensor.encoding<{ lvlTypes = [ "dense", "compressed" ] }>> to memref +// CHECK: %[[VAL_19:.*]] = gpu.wait async +// CHECK: %[[VAL_20:.*]] = memref.dim %[[VAL_16]], %[[VAL_4]] : memref +// CHECK: %[[VAL_21:.*]], %[[VAL_22:.*]] = gpu.alloc async {{\[}}%[[VAL_19]]] (%[[VAL_20]]) : memref +// CHECK: %[[VAL_23:.*]] = gpu.memcpy async {{\[}}%[[VAL_22]]] %[[VAL_21]], %[[VAL_16]] : memref, memref +// CHECK: %[[VAL_24:.*]] = gpu.wait async +// CHECK: %[[VAL_25:.*]] = memref.dim %[[VAL_17]], %[[VAL_4]] : memref +// CHECK: %[[VAL_26:.*]], %[[VAL_27:.*]] = gpu.alloc async {{\[}}%[[VAL_24]]] (%[[VAL_25]]) : memref +// CHECK: %[[VAL_28:.*]] = gpu.memcpy async {{\[}}%[[VAL_27]]] %[[VAL_26]], %[[VAL_17]] : memref, memref +// CHECK: %[[VAL_29:.*]] = gpu.wait async +// CHECK: %[[VAL_30:.*]] = memref.dim %[[VAL_18]], %[[VAL_4]] : memref +// CHECK: %[[VAL_31:.*]], %[[VAL_32:.*]] = gpu.alloc async {{\[}}%[[VAL_29]]] (%[[VAL_30]]) : memref +// CHECK: %[[VAL_33:.*]] = gpu.memcpy async {{\[}}%[[VAL_32]]] %[[VAL_31]], %[[VAL_18]] : memref, memref +// CHECK: gpu.wait {{\[}}%[[VAL_10]], %[[VAL_15]], %[[VAL_23]], %[[VAL_28]], %[[VAL_33]]] +// CHECK: %[[VAL_34:.*]] = gpu.wait async +// CHECK: %[[VAL_35:.*]], %[[VAL_36:.*]] = gpu.create_sparse_env async {{\[}}%[[VAL_34]]] +// CHECK: %[[VAL_37:.*]], %[[VAL_38:.*]] = gpu.create_dn_tensor async {{\[}}%[[VAL_36]]] %[[VAL_35]], %[[VAL_8]], %[[VAL_3]], %[[VAL_3]] : index, index into memref<8x8xf64> +// CHECK: %[[VAL_39:.*]], %[[VAL_40:.*]] = gpu.create_dn_tensor async {{\[}}%[[VAL_38]]] %[[VAL_35]], %[[VAL_13]], %[[VAL_3]], %[[VAL_3]] : index, index into memref<8x8xf64> +// CHECK: %[[VAL_41:.*]], %[[VAL_42:.*]] = gpu.create_csr async {{\[}}%[[VAL_40]]] %[[VAL_3]], %[[VAL_3]], %[[VAL_5]], %[[VAL_21]], %[[VAL_26]], %[[VAL_31]] : memref, memref, memref +// CHECK: %[[VAL_43:.*]], %[[VAL_44:.*]] = gpu.sddmm_buffer_size async {{\[}}%[[VAL_42]]] %[[VAL_35]], %[[VAL_37]], %[[VAL_39]], %[[VAL_41]] into f64 +// CHECK: %[[VAL_45:.*]], %[[VAL_46:.*]] = gpu.alloc async {{\[}}%[[VAL_44]]] (%[[VAL_43]]) : memref +// CHECK: %[[VAL_47:.*]] = gpu.sddmm async {{\[}}%[[VAL_46]]] %[[VAL_35]], %[[VAL_37]], %[[VAL_39]], %[[VAL_41]], %[[VAL_45]] : memref into f64 +// CHECK: %[[VAL_48:.*]] = gpu.destroy_dn_tensor async {{\[}}%[[VAL_47]]] %[[VAL_37]] +// CHECK: %[[VAL_49:.*]] = gpu.destroy_dn_tensor async {{\[}}%[[VAL_48]]] %[[VAL_39]] +// CHECK: %[[VAL_50:.*]] = gpu.destroy_sp_mat async {{\[}}%[[VAL_49]]] %[[VAL_41]] +// CHECK: %[[VAL_51:.*]] = gpu.destroy_sparse_env async {{\[}}%[[VAL_50]]] %[[VAL_35]] +// CHECK: %[[VAL_52:.*]] = gpu.dealloc async {{\[}}%[[VAL_51]]] %[[VAL_45]] : memref +// CHECK: %[[VAL_53:.*]] = gpu.dealloc async {{\[}}%[[VAL_52]]] %[[VAL_8]] : memref<8x8xf64> +// CHECK: %[[VAL_54:.*]] = gpu.dealloc async {{\[}}%[[VAL_53]]] %[[VAL_13]] : memref<8x8xf64> +// CHECK: %[[VAL_55:.*]] = gpu.dealloc async {{\[}}%[[VAL_54]]] %[[VAL_21]] : memref +// CHECK: %[[VAL_56:.*]] = gpu.dealloc async {{\[}}%[[VAL_55]]] %[[VAL_26]] : memref +// CHECK: %[[VAL_57:.*]] = gpu.memcpy async {{\[}}%[[VAL_56]]] %[[VAL_18]], %[[VAL_31]] : memref, memref +// CHECK: %[[VAL_58:.*]] = gpu.dealloc async {{\[}}%[[VAL_57]]] %[[VAL_31]] : memref +// CHECK: gpu.wait {{\[}}%[[VAL_58]]] +// CHECK: %[[VAL_59:.*]] = sparse_tensor.load %[[VAL_0]] : tensor<8x8xf64, #sparse_tensor.encoding<{ lvlTypes = [ "dense", "compressed" ] }>> +// CHECK: return %[[VAL_59]] : tensor<8x8xf64, #sparse_tensor.encoding<{ lvlTypes = [ "dense", "compressed" ] }>> +// CHECK: } +// +// A kernel that computes a direct sampled matrix matrix multiplication +// (with sparse result). +// Compute SDDMM C = C\spy AB +// +func.func @sparse_sampled_dd(%argS: tensor<8x8xf64, #CSR>, + %argA: tensor<8x8xf64>, + %argB: tensor<8x8xf64>) -> tensor<8x8xf64, #CSR> { + // TODO: find a cleaner way to express this + // We currently use this slightly strange idiom with the same sparse + // matrix as input and output to tell the GPU code generator this operation + // can be done "in place" on argS, and the caller will only free the + // resources once. In the long run, we need better ways to express + // this in the IR + %result = linalg.generic #trait_sampled_dense_dense + ins(%argS, %argA, %argB: tensor<8x8xf64, #CSR>, tensor<8x8xf64>, tensor<8x8xf64>) + outs(%argS: tensor<8x8xf64, #CSR>) { + ^bb(%s: f64, %a: f64, %b: f64, %x: f64): + %p = arith.mulf %a, %b : f64 + %q = arith.mulf %s, %p : f64 + %r = arith.addf %x, %q : f64 + linalg.yield %r : f64 + } -> tensor<8x8xf64, #CSR> + return %result : tensor<8x8xf64, #CSR> + } + +} diff --git a/mlir/test/Integration/Dialect/SparseTensor/GPU/CUDA/sparse-sampled-matmul-lib.mlir b/mlir/test/Integration/Dialect/SparseTensor/GPU/CUDA/sparse-sampled-matmul-lib.mlir new file mode 100644 --- /dev/null +++ b/mlir/test/Integration/Dialect/SparseTensor/GPU/CUDA/sparse-sampled-matmul-lib.mlir @@ -0,0 +1,110 @@ +// +// NOTE: this test requires gpu-sm80 +// +// RUN: mlir-opt %s \ +// RUN: --sparse-compiler="enable-runtime-library=true enable-gpu-libgen gpu-triple=nvptx64-nvidia-cuda gpu-chip=sm_80 gpu-features=+ptx71" \ +// RUN: | TENSOR0="%mlir_src_dir/test/Integration/data/test.mtx" \ +// RUN: mlir-cpu-runner \ +// RUN: --shared-libs=%mlir_cuda_runtime \ +// RUN: --shared-libs=%mlir_c_runner_utils \ +// RUN: --e entry --entry-point-result=void \ +// RUN: | FileCheck %s +// + +!Filename = !llvm.ptr + +#CSR = #sparse_tensor.encoding<{ + lvlTypes = ["dense", "compressed"] +}> + +#trait_sampled_dense_dense = { + indexing_maps = [ + affine_map<(i,j,k) -> (i,j)>, // S + affine_map<(i,j,k) -> (i,k)>, // A + affine_map<(i,j,k) -> (k,j)>, // B + affine_map<(i,j,k) -> (i,j)> // X (out) + ], + iterator_types = ["parallel", "parallel", "reduction"], + doc = "X(i,j) += S(i,j) SUM_k A(i,k) B(k,j)" +} + +// +// Integration test that lowers a kernel annotated as sparse to +// actual sparse code, initializes a matching sparse storage scheme +// from file, and runs the resulting code with the JIT compiler. +// +module { + // + // A kernel that computes a sampled matrix matrix multiplication. + // + func.func @sampled_dense_dense(%args: tensor, + %arga: tensor, + %argb: tensor) -> tensor { + %result = linalg.generic #trait_sampled_dense_dense + ins(%args, %arga, %argb: tensor, tensor, tensor) + outs(%args: tensor) { + ^bb(%gs: f32, %ga: f32, %gb: f32, %gx: f32): + %g0 = arith.mulf %ga, %gb : f32 + %g1 = arith.mulf %gs, %g0 : f32 + %g2 = arith.addf %gx, %g1 : f32 + linalg.yield %g2 : f32 + } -> tensor + return %result : tensor + } + + func.func private @getTensorFilename(index) -> (!Filename) + + // + // Main driver that reads matrix from file and calls the sparse kernel. + // + func.func @entry() { + %d0 = arith.constant 0.0 : f32 + %c0 = arith.constant 0 : index + %c1 = arith.constant 1 : index + %c5 = arith.constant 5 : index + %c10 = arith.constant 10 : index + + // Initialize dense matrices. + %x = tensor.generate %c5, %c5 { + ^bb0(%i : index, %j : index): + tensor.yield %d0 : f32 + } : tensor + + %a = tensor.generate %c5, %c10 { + ^bb0(%i: index, %j: index): + %p = arith.addi %i, %c1 : index + %q = arith.index_cast %p : index to i32 + %d = arith.sitofp %q : i32 to f32 + tensor.yield %d : f32 + } : tensor + + %b = tensor.generate %c10, %c5 { + ^bb0(%i: index, %j: index): + %p = arith.addi %j, %c1 : index + %q = arith.index_cast %p : index to i32 + %d = arith.sitofp %q : i32 to f32 + tensor.yield %d : f32 + } : tensor + + // Read the sparse matrix from file, construct sparse storage. + %fileName = call @getTensorFilename(%c0) : (index) -> (!Filename) + %s = sparse_tensor.new %fileName : !Filename to tensor + + // Call the kernel. + %0 = call @sampled_dense_dense(%s, %a, %b) + : (tensor, + tensor, tensor) -> tensor + + // Print the result for verification. + // + // CHECK: ( 10, 40, 40, 100, 90, 40, 160, 100, 250 ) + %vm = sparse_tensor.values %0 : tensor to memref + %vv = vector.transfer_read %vm[%c0], %d0 : memref, vector<9xf32> + vector.print %vv : vector<9xf32> + + // Release the resources. + bufferization.dealloc_tensor %s : tensor + + return + } +}